101
|
Abstract
Mop regulates endosomal localization and recycling of Frizzled. Hrs is ubiquitinated and degraded in the absence of Mop. Mop aids in the maintenance of Ubpy to control the ubiquitin homeostasis of Hrs. Mop and Ubpy can rescue each other. Mop’s function is not required in the cell in the absence of the ubiquitin ligase Cbl. Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
102
|
Abstract
The ability to repair damaged or lost tissues varies significantly among vertebrates. The regenerative ability of the heart is clinically very relevant, because adult teleost fish and amphibians can regenerate heart tissue, but we mammals cannot. Interestingly, heart regeneration is possible in neonatal mice, but this ability is lost within 7 days after birth. In zebrafish and neonatal mice, lost cardiomyocytes are regenerated via proliferation of spared, differentiated cardiomyocytes. While some cardiomyocyte turnover occurs in adult mammals, the cardiomyocyte production rate is too low in response to injury to regenerate the heart. Instead, mammalian hearts respond to injury by remodeling of spared tissue, which includes cardiomyocyte hypertrophy. Wnt/β-catenin signaling plays important roles during vertebrate heart development, and it is re-activated in response to cardiac injury. In this review, we discuss the known functions of this signaling pathway in injured hearts, its involvement in cardiac fibrosis and hypertrophy, and potential therapeutic approaches that might promote cardiac repair after injury by modifying Wnt/β-catenin signaling. Regulation of cardiac remodeling by this signaling pathway appears to vary depending on the injury model and the exact stages that have been studied. Thus, conflicting data have been published regarding a potential role of Wnt/β-catenin pathway in promotion of fibrosis and cardiomyocyte hypertrophy. In addition, the Wnt inhibitory secreted Frizzled-related proteins (sFrps) appear to have Wnt-dependent and Wnt-independent roles in the injured heart. Thus, while the exact functions of Wnt/β-catenin pathway activity in response to injury still need to be elucidated in the non-regenerating mammalian heart, but also in regenerating lower vertebrates, manipulation of the pathway is essential for creation of therapeutically useful cardiomyocytes from stem cells in culture. Hopefully, a detailed understanding of the in vivo role of Wnt/β-catenin signaling in injured mammalian and non-mammalian hearts will also contribute to the success of current efforts towards developing regenerative therapies.
Collapse
Affiliation(s)
- Gunes Ozhan
- Izmir Biomedicine and Genome Center (iBG-izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey ; Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
103
|
Abstract
In the mammalian hippocampus, canonical Wnt signals provided by the microenvironment regulate the differentiation of adult neural stem cells (NSCs) toward the neuronal lineage. Wnts are part of a complex and diverse set of signaling pathways and the role of Wnt/Planar cell polarity (PCP) signaling in adult neurogenesis remains unknown. Using in vitro assays on differentiating adult NSCs, we identified a transition of Wnt signaling responsiveness from Wnt/β-catenin to Wnt/PCP signaling. In mice, retroviral knockdown strategies against ATP6AP2, a recently discovered core protein involved in both signaling pathways, revealed that its dual role is critical for granule cell fate and morphogenesis. We were able to confirm its dual role in neurogenic Wnt signaling in vitro for both canonical Wnt signaling in proliferating adult NSCs and non-canonical Wnt signaling in differentiating neuroblasts. Although LRP6 appeared to be critical for granule cell fate determination, in vivo knockdown of PCP core proteins FZD3 and CELSR1-3 revealed severe maturational defects without changing the identity of newborn granule cells. Furthermore, we found that CELSR1-3 control distinctive aspects of PCP-mediated granule cell morphogenesis with CELSR1 regulating the direction of dendrite initiation sites and CELSR2/3 controlling radial migration and dendritic patterning. The data presented here characterize distinctive roles for Wnt/β-catenin signaling in granule cell fate determination and for Wnt/PCP signaling in controlling the morphological maturation of differentiating neuroblasts.
Collapse
|
104
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
105
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
106
|
Ibuka S, Matsumoto S, Fujii S, Kikuchi A. The P2Y₂ receptor promotes Wnt3a- and EGF-induced epithelial tubular formation by IEC6 cells by binding to integrins. J Cell Sci 2015; 128:2156-68. [PMID: 25908848 DOI: 10.1242/jcs.169060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022] Open
Abstract
Epithelial tubular structures are essential units in various organs. Here, we used rat intestinal epithelial IEC6 cells to investigate tubulogenesis and we found that tubular formation was induced by a combination of Wnt3a and EGF signaling during three-dimensional culture. Wnt3a and EGF induced the expression of the P2Y2 receptor (P2Y2R, also known as P2RY2), and knockdown of P2Y2R suppressed tubular formation. A P2Y2R mutant that lacks nucleotide responsiveness rescued the phenotypes resulting from P2Y2R knockdown, suggesting that nucleotide-dependent responses are not required for P2Y2R functions in tubular formation. The Arg-Gly-Asp (RGD) sequence of P2Y2R has been shown to interact with integrins, and a P2Y2R mutant lacking integrin-binding activity was unable to induce tubular formation. P2Y2R expression inhibited the interaction between integrins and fibronectin, and induced cell morphological changes and proliferation. Inhibition of integrin and fibronectin binding by treatment with the cyclic RGD peptide and fibronectin knockdown induced tubular formation in the presence of EGF alone, but a fibronectin coat suppressed Wnt3a- and EGF-induced tubular formation. These results suggest that Wnt3a- and EGF-induced P2Y2R expression causes tubular formation by preventing the binding of integrins and fibronectin rather than by mediating nucleotide responses.
Collapse
Affiliation(s)
- Souji Ibuka
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan Pediatric Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinsuke Fujii
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
107
|
Ren DN, Chen J, Li Z, Yan H, Yin Y, Wo D, Zhang J, Ao L, Chen B, Ito TK, Chen Y, Liu Z, Li Y, Yang J, Lu X, Peng Y, Pan L, Zhao Y, Liu S, Zhu W. LRP5/6 directly bind to Frizzled and prevent Frizzled-regulated tumour metastasis. Nat Commun 2015; 6:6906. [PMID: 25902418 DOI: 10.1038/ncomms7906] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 01/07/2023] Open
Abstract
How Wnt signalling including canonical and non-canonical pathways are initiated at the cell surface is not completely understood. Here we report that Wnt receptor Frizzled (Frz) and theco-receptors LRP5 and LRP6 (LRP5/6) directly interact with each other and this interaction is regulated by the LRP6 ectodomain. Importantly, through direct binding to Frz, LRP5/6 are able to prevent Frz-regulated non-canonical pathway activation and further non-canonical pathway-mediated tumour metastasis. Knockdown of endogenous LRP5/6 promotes otherwise-nonaggressive tumour cells to migrate in vitro, whereas a soluble recombinant protein of LRP6 ectodomain suppresses migration and metastasis of otherwise-aggressive tumour cells in vitro and in vivo. Furthermore, the expression level of membrane LRP5/6 correlates inversely with metastasis in mouse and human breast cancer. Our study suggests a previously unrecognized mode of receptor interaction, revealing the mechanism of LRP5/6 in inhibition of non-canonical pathway, and a possible clinical use of the LRP6 ectodomain to impede metastasis.
Collapse
Affiliation(s)
- Dan-Ni Ren
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Jinxiao Chen
- Tongji University School of Medicine, Shanghai, China
| | - Zhi Li
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hongwei Yan
- Tongji University School of Medicine, Shanghai, China
| | - Yan Yin
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Da Wo
- Tongji University School of Medicine, Shanghai, China
| | | | - Luoquan Ao
- Tongji University School of Medicine, Shanghai, China
| | - Bo Chen
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Takashi K Ito
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yihan Chen
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| | - Zhongmin Liu
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China
| | - Yongyong Li
- Tongji University School of Medicine, Shanghai, China
| | - Jianhua Yang
- Tongji University School of Medicine, Shanghai, China
| | - Xiaoling Lu
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Peng
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Linghui Pan
- Department of Oncology Research, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Shangfeng Liu
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| | - Weidong Zhu
- 1] Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai, China [2] Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
108
|
Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases. Mol Cell 2015; 58:522-33. [PMID: 25891077 DOI: 10.1016/j.molcel.2015.03.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/26/2015] [Accepted: 03/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor suppressors ZNRF3 and RNF43 inhibit Wnt signaling through promoting degradation of Wnt coreceptors Frizzled (FZD) and LRP6, and this activity is counteracted by stem cell growth factor R-spondin. The mechanism by which ZNRF3 and RNF43 recognize Wnt receptors remains unclear. Here we uncover an unexpected role of Dishevelled (DVL), a positive Wnt regulator, in promoting Wnt receptor degradation. DVL knockout cells have significantly increased cell surface levels of FZD and LRP6. DVL is required for ZNRF3/RNF43-mediated ubiquitination and degradation of FZD. Physical interaction with DVL is essential for the Wnt inhibitory activity of ZNRF3/RNF43. Binding of FZD through the DEP domain of DVL is required for DVL-mediated downregulation of FZD. Fusion of the DEP domain to ZNRF3/RNF43 overcomes their DVL dependency to downregulate FZD. Our study reveals DVL as a dual function adaptor to recruit negative regulators ZNRF3/RNF43 to Wnt receptors to ensure proper control of pathway activity.
Collapse
|
109
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
110
|
Chang B, Tessneer KL, McManus J, Liu X, Hahn S, Pasula S, Wu H, Song H, Chen Y, Cai X, Dong Y, Brophy ML, Rahman R, Ma JX, Xia L, Chen H. Epsin is required for Dishevelled stability and Wnt signalling activation in colon cancer development. Nat Commun 2015; 6:6380. [PMID: 25871009 PMCID: PMC4397653 DOI: 10.1038/ncomms7380] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/26/2015] [Indexed: 02/08/2023] Open
Abstract
Uncontrolled canonical Wnt signalling supports colon epithelial tumour expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, the involvement of epsins in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signalling effector, dishevelled (Dvl2), and impairing Wnt signalling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signalling in colon cancer cells to ensure robust colon cancer progression. The pro-carcinogenic role of Epsins suggests that they are potential therapeutic targets to combat colon cancer.
Collapse
Affiliation(s)
- Baojun Chang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Kandice L Tessneer
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - John McManus
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Xiaolei Liu
- 1] Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA [2] Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Scott Hahn
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Satish Pasula
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Hao Wu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Hoogeun Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Yiyuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Yunzhou Dong
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Megan L Brophy
- 1] Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA [2] Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Ruby Rahman
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Jian-Xing Ma
- Department of Endocrinology and Diabetes, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Lijun Xia
- 1] Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA [2] Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Hong Chen
- 1] Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA [2] Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
111
|
Corallino S, Malabarba MG, Zobel M, Di Fiore PP, Scita G. Epithelial-to-Mesenchymal Plasticity Harnesses Endocytic Circuitries. Front Oncol 2015; 5:45. [PMID: 25767773 PMCID: PMC4341543 DOI: 10.3389/fonc.2015.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to alter their phenotypic and morphological characteristics, known as cellular plasticity, is critical in normal embryonic development and adult tissue repair and contributes to the pathogenesis of diseases, such as organ fibrosis and cancer. The epithelial-to-mesenchymal transition (EMT) is a type of cellular plasticity. This transition involves genetic and epigenetic changes as well as alterations in protein expression and post-translational modifications. These changes result in reduced cell-cell adhesion, enhanced cell adhesion to the extracellular matrix, and altered organization of the cytoskeleton and of cell polarity. Among these modifications, loss of cell polarity represents the nearly invariable, distinguishing feature of EMT that frequently precedes the other traits or might even occur in their absence. EMT transforms cell morphology and physiology, and hence cell identity, from one typical of cells that form a tight barrier, like epithelial and endothelial cells, to one characterized by a highly motile mesenchymal phenotype. Time-resolved proteomic and phosphoproteomic analyses of cells undergoing EMT recently identified thousands of changes in proteins involved in many cellular processes, including cell proliferation and motility, DNA repair, and - unexpectedly - membrane trafficking (1). These results have highlighted a picture of great complexity. First, the EMT transition is not an all-or-none response but rather a gradual process that develops over time. Second, EMT events are highly dynamic and frequently reversible, involving both cell-autonomous and non-autonomous mechanisms. The net results is that EMT generates populations of mixed cells, with partial or full phenotypes, possibly accounting (at least in part) for the physiological as well as pathological cellular heterogeneity of some tissues. Endocytic circuitries have emerged as complex connectivity infrastructures for numerous cellular networks required for the execution of different biological processes, with a primary role in the control of polarized functions. Thus, they may be relevant for controlling EMT or certain aspects of it. Here, by discussing a few paradigmatic cases, we will outline how endocytosis may be harnessed by the EMT process to promote dynamic changes in cellular identity, and to increase cellular flexibility and adaptation to micro-environmental cues, ultimately impacting on physiological and pathological processes, first and foremost cancer progression.
Collapse
Affiliation(s)
| | - Maria Grazia Malabarba
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| | - Martina Zobel
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy
| | - Pier Paolo Di Fiore
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy ; Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia , Milan , Italy
| | - Giorgio Scita
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM) , Milan , Italy ; Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
112
|
Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci Rep 2015; 5:8042. [PMID: 25622531 PMCID: PMC4306915 DOI: 10.1038/srep08042] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/29/2014] [Indexed: 12/22/2022] Open
Abstract
Wnt5a activates the Wnt/β-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively.
Collapse
|
113
|
Yamamoto H, Awada C, Matsumoto S, Kaneiwa T, Sugimoto T, Takao T, Kikuchi A. Basolateral secretion of Wnt5a in polarized epithelial cells is required for apical lumen formation. J Cell Sci 2015; 128:1051-63. [PMID: 25593127 DOI: 10.1242/jcs.163683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wnt5a regulates planar cell polarity in epithelial cells, but it remains to be determined whether Wnt5a and its receptors are sorted apically or basolaterally, and how Wnt5a signaling is involved in apical and basolateral polarization. We found that Wnt5a was secreted basolaterally in polarized kidney epithelial cells. The basolateral secretion of Wnt5a required Wntless (Wls), clathrin and adaptor protein 1 (AP-1). Wnt5a receptors were also localized to the basolateral membranes, but their sorting did not require Wls. Wnt5a-induced signaling was stimulated more efficiently at the basolateral side than the apical side of epithelial cells. Knockdown of Wnt5a delayed apical lumen formation of the epithelial cyst, and these phenotypes were rescued by wild-type Wnt5a, but not by a Wnt5a mutant that is secreted apically. Although apoptosis was not required for apical lumen formation in a wild-type cyst, apoptosis was necessary for eliminating luminal cells in a Wnt5a-depleted cyst. These results suggest that Wnt5a and its receptors are sorted to their correct destination by different mechanisms and that the basolateral secretion of Wnt5a is necessary for apical lumen formation in the epithelial cyst.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chihiro Awada
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyuki Kaneiwa
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Sugimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
114
|
Motomura E, Narita T, Nasu Y, Kato H, Sedohara A, Nishimatsu SI, Sakai M. Cell-autonomous signal transduction in the Xenopus egg Wnt/β-catenin pathway. Dev Growth Differ 2014; 56:640-52. [PMID: 25330272 PMCID: PMC4298249 DOI: 10.1111/dgd.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022]
Abstract
Wnt proteins are thought to bind to their receptors on the cell surfaces of neighboring cells. Wnt8 likely substitutes for the dorsal determinants in Xenopus embryos to dorsalize early embryos via the Wnt/β-catenin pathway. Here, we show that Wnt8 can dorsalize Xenopus embryos working cell autonomously. Wnt8 mRNA was injected into a cleavage-stage blastomere, and the subcellular distribution of Wnt8 protein was analyzed. Wnt8 protein was predominantly found in the endoplasmic reticulum (ER) and resided at the periphery of the cells; however, this protein was restricted to the mRNA-injected cellular region as shown by lineage tracing. A mutant Wnt8 that contained an ER retention signal (Wnt8-KDEL) could dorsalize Xenopus embryos. Finally, Wnt8-induced dorsalization occurred only in cells injected with Wnt8 mRNA. These experiments suggest that the Wnt8 protein acts within the cell, likely in the ER or on the cell surface in an autocrine manner for dorsalization.
Collapse
Affiliation(s)
- Eriko Motomura
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Tomohiro Narita
- Department of Molecular Biology, Kawasaki Medical SchoolKurashiki, Japan
| | - Yuya Nasu
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Hirotaka Kato
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| | - Ayako Sedohara
- Central Institute for Experimental AnimalsKawasaki-ku, Kawasaki, Japan
| | | | - Masao Sakai
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima UniversityKagoshima, Japan
| |
Collapse
|
115
|
Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling. EMBO Rep 2014; 15:1254-67. [PMID: 25391905 DOI: 10.15252/embr.201439644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janine Wesslowski
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anja I Hagemann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
116
|
Wallkamm V, Dörlich R, Rahm K, Klessing T, Nienhaus GU, Wedlich D, Gradl D. Live imaging of Xwnt5A-ROR2 complexes. PLoS One 2014; 9:e109428. [PMID: 25313906 PMCID: PMC4196911 DOI: 10.1371/journal.pone.0109428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/30/2014] [Indexed: 12/26/2022] Open
Abstract
Secreted molecules of the Wnt family regulate key decisions in embryogenesis and adult tissue homeostasis by activating a complex network of Wnt signaling pathways. Although the different branches of Wnt signaling have been studied for more than 25 years, fluorophore tagged constructs for live cell imaging of Wnt molecules activating the Wnt/β-catenin pathway have become available only recently. We have generated a fluorophore tagged Wnt construct of the Xenopus Wnt5a protein (Xwnt5A) with the enhanced green fluorescent protein (EGFP), Xwnt5A-EGFP. This construct activates non-canonical Wnt pathways in an endocytosis dependent manner and is capable of compensating for the loss of endogenous Xwnt5A in Xenopus embryos. Strikingly, non-canonical Wnt pathway activation was restricted to short-range signaling while an inhibitory effect was observed in transwell cell cultures taken as long-range signaling model sytem. We used our Xwnt5A-EGFP construct to analyze in vivo binding of Wnt5A to its co-receptor ROR2 on the microscopic and on the molecular level. On the microscopic level, Xwnt5A-EGFP clusters in the membrane and recruits ROR2-mCherry to these clusters. Applying dual-colour dual-focus line-scanning fluorescence correlation spectroscopy on dorsal marginal zone explants, we identified membrane tethered Xwnt5A-EGFP molecules binding to ROR2-mCherry molecules. Our data favour a model, in which membrane-tethered Wnt-5A recruits ROR2 to form large ligand/receptor clusters and signals in an endocytosis-dependent manner.
Collapse
Affiliation(s)
- Veronika Wallkamm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rene Dörlich
- Institute of Applied Physics and Insitute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Karolin Rahm
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tina Klessing
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics and Insitute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Doris Wedlich
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dietmar Gradl
- Zoological Institute, Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
117
|
Martineau C, Kevorkova O, Brissette L, Moreau R. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation. Physiol Rep 2014; 2:2/10/e12117. [PMID: 25281615 PMCID: PMC4254088 DOI: 10.14814/phy2.12117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI), the Scarb1 gene product, is a high-density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1-deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1-null and wild-type (WT) cells. Scarb1 genic expression was down-regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1-null mice. Genic expression of co-receptors for Wnt signaling, namely LDL-related protein (Lrp) 5 and Lrp8, was increased, respectively, by two- and threefold, and of transcription target-genes axis inhibition protein 2 (Axin2) and lymphoid enhancer-binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs-related protein 1 (Dkk1) were found to be increased 10- to 20-fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1-deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice.
Collapse
Affiliation(s)
- Corine Martineau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Olha Kevorkova
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, BioMed, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| | - Robert Moreau
- Laboratoire du Métabolisme Osseux, BioMed, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, H3C 3P8, Quebec, Canada
| |
Collapse
|
118
|
Abrogation of β-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 2014; 34:10285-97. [PMID: 25080590 DOI: 10.1523/jneurosci.4915-13.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When the brain or spinal cord is injured, glial cells in the damaged area undergo complex morphological and physiological changes resulting in the formation of the glial scar. This scar contains reactive astrocytes, activated microglia, macrophages and other myeloid cells, meningeal cells, proliferating oligodendrocyte precursor cells (OPCs), and a dense extracellular matrix. Whether the scar is beneficial or detrimental to recovery remains controversial. In the acute phase of recovery, scar-forming astrocytes limit the invasion of leukocytes and macrophages, but in the subacute and chronic phases of injury the glial scar is a physical and biochemical barrier to axonal regrowth. The signals that initiate the formation of the glial scar are unknown. Both canonical and noncanonical signaling Wnts are increased after spinal cord injury (SCI). Because Wnts are important regulators of OPC and oligodendrocyte development, we examined the role of canonical Wnt signaling in the glial reactions to CNS injury. In adult female mice carrying an OPC-specific conditionally deleted β-catenin gene, there is reduced proliferation of OPCs after SCI, reduced accumulation of activated microglia/macrophages, and reduced astrocyte hypertrophy. Using an infraorbital optic nerve crush injury, we show that reducing β-catenin-dependent signaling in OPCs creates an environment that is permissive to axonal regeneration. Viral-induced expression of Wnt3a in the normal adult mouse spinal cord induces an injury-like response in glia. Thus canonical Wnt signaling is both necessary and sufficient to induce injury responses among glial cells. These data suggest that targeting Wnt expression after SCI may have therapeutic potential in promoting axon regeneration.
Collapse
|
119
|
Gagliardi M, Hernandez A, McGough IJ, Vincent JP. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal β-catenin/Armadillo. J Cell Sci 2014; 127:4918-26. [PMID: 25236598 PMCID: PMC4231306 DOI: 10.1242/jcs.155424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A key step in the canonical Wnt signalling pathway is the inhibition of GSK3β, which results in the accumulation of nuclear β-catenin (also known as CTNNB1), and hence regulation of target genes. Evidence suggests that endocytosis is required for signalling, yet its role and the molecular understanding remains unclear. A recent and controversial model suggests that endocytosis contributes to Wnt signalling by causing the sequestration of the ligand-receptor complex, including LRP6 and GSK3 to multivesicular bodies (MVBs), thus preventing GSK3β from accessing β-catenin. Here, we use specific inhibitors (Dynasore and Dyngo-4a) to confirm the essential role of endocytosis in Wnt/Wingless signalling in human and Drosophila cells. However, we find no evidence that, in Drosophila cells or wing imaginal discs, LRP6/Arrow traffics to MVBs or that MVBs are required for Wnt/Wingless signalling. Moreover, we show that activation of signalling through chemical blockade of GSK3β is prevented by endocytosis inhibitors, suggesting that endocytosis impacts on Wnt/Wingless signalling downstream of the ligand-receptor complex. We propose that, through an unknown mechanism, endocytosis boosts the resting pool of β-catenin upon which GSK3β normally acts.
Collapse
Affiliation(s)
- Maria Gagliardi
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Ana Hernandez
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ian J McGough
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| | - Jean-Paul Vincent
- MRC's National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, UK
| |
Collapse
|
120
|
Feng L, Jiang H, Wu P, Marlow FL. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish. Dev Biol 2014; 395:268-86. [PMID: 25238963 DOI: 10.1016/j.ydbio.2014.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/05/2023]
Abstract
L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.
Collapse
Affiliation(s)
- Lei Feng
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Hao Jiang
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| | - Peng Wu
- Department of Biochemistry, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA.
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Yeshiva University, Bronx, NY 10461, USA
| |
Collapse
|
121
|
Liu CC, Kanekiyo T, Roth B, Bu G. Tyrosine-based signal mediates LRP6 receptor endocytosis and desensitization of Wnt/β-catenin pathway signaling. J Biol Chem 2014; 289:27562-70. [PMID: 25143377 DOI: 10.1074/jbc.m113.533927] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt/β-catenin signaling orchestrates a number of critical events including cell growth, differentiation, and cell survival during development. Misregulation of this pathway leads to various human diseases, specifically cancers. Endocytosis and phosphorylation of the LDL receptor-related protein 6 (LRP6), an essential co-receptor for Wnt/β-catenin signaling, play a vital role in mediating Wnt/β-catenin signal transduction. However, its regulatory mechanism is not fully understood. In this study, we define the mechanisms by which LRP6 endocytic trafficking regulates Wnt/β-catenin signaling activation. We show that LRP6 mutant with defective tyrosine-based signal in its cytoplasmic tail has an increased cell surface distribution and decreased endocytosis rate. These changes in LRP6 endocytosis coincide with an increased distribution to caveolae, increased phosphorylation, and enhanced Wnt/β-catenin signaling. We further demonstrate that treatment of Wnt3a ligands or blocking the clathrin-mediated endocytosis of LRP6 leads to a redistribution of wild-type receptor to lipid rafts. The LRP6 tyrosine mutant also exhibited an increase in signaling activation in response to Wnt3a stimulation when compared with wild-type LRP6, and this activation is suppressed when caveolae-mediated endocytosis is blocked. Our results reveal molecular mechanisms by which LRP6 endocytosis routes regulate its phosphorylation and the strength of Wnt/β-catenin signaling, and have implications on how this pathway can be modulated in human diseases.
Collapse
Affiliation(s)
- Chia-Chen Liu
- From the Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China and the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Takahisa Kanekiyo
- the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Barbara Roth
- the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| | - Guojun Bu
- From the Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian 361005, China and the Department of Neuroscience, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
122
|
Hagemann AIH, Kurz J, Kauffeld S, Chen Q, Reeves PM, Weber S, Schindler S, Davidson G, Kirchhausen T, Scholpp S. In vivo analysis of formation and endocytosis of the Wnt/β-catenin signaling complex in zebrafish embryos. J Cell Sci 2014; 127:3970-82. [PMID: 25074807 PMCID: PMC4163645 DOI: 10.1242/jcs.148767] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After activation by Wnt/β-Catenin ligands, a multi-protein complex assembles at the clustering membrane-bound receptors and intracellular signal transducers into the so-called Lrp6-signalosome. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt–Fz–Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The μ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2μ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2μ2-mediated endocytosis is important to maintain Wnt/β-catenin signaling in vertebrates.
Collapse
Affiliation(s)
- Anja I H Hagemann
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Jennifer Kurz
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Silke Kauffeld
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Qing Chen
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Patrick M Reeves
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Sabrina Weber
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Simone Schindler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| | - Tomas Kirchhausen
- Departments of Cell Biology and Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, 02115 MA, USA
| | - Steffen Scholpp
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics (ITG), 76021 Karsruhe, Germany
| |
Collapse
|
123
|
Sheng R, Kim H, Lee H, Xin Y, Chen Y, Tian W, Cui Y, Choi JC, Doh J, Han JK, Cho W. Cholesterol selectively activates canonical Wnt signalling over non-canonical Wnt signalling. Nat Commun 2014; 5:4393. [PMID: 25024088 PMCID: PMC4100210 DOI: 10.1038/ncomms5393] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt proteins control diverse biological processes through β-catenin-dependent canonical signalling and β-catenin-independent non-canonical signalling. The mechanisms by which these signalling pathways are differentially triggered and controlled are not fully understood. Dishevelled (Dvl) is a scaffold protein that serves as the branch point of these pathways. Here, we show that cholesterol selectively activates canonical Wnt signalling over non-canonical signalling under physiological conditions by specifically facilitating the membrane recruitment of the PDZ domain of Dvl and its interaction with other proteins. Single-molecule imaging analysis shows that cholesterol is enriched around the Wnt-activated Frizzled and low-density lipoprotein receptor-related protein 5/6 receptors and plays an essential role for Dvl-mediated formation and maintenance of the canonical Wnt signalling complex. Collectively, our results suggest a new regulatory role of cholesterol in Wnt signalling and a potential link between cellular cholesterol levels and the balance between canonical and non-canonical Wnt signalling activities.
Collapse
Affiliation(s)
- Ren Sheng
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | - Yao Xin
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yong Chen
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wen Tian
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yang Cui
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jong-Cheol Choi
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | - Junsang Doh
- Mechanical Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
124
|
Doroudi M, Olivares-Navarrete R, Hyzy SL, Boyan BD, Schwartz Z. Signaling components of the 1α,25(OH)2D3-dependent Pdia3 receptor complex are required for Wnt5a calcium-dependent signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2365-75. [PMID: 24946135 DOI: 10.1016/j.bbamcr.2014.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/06/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
Abstract
Wnt5a and 1α,25(OH)2D3 are important regulators of endochondral ossification. In osteoblasts and growth plate chondrocytes, 1α,25(OH)2D3 initiates rapid effects via its membrane-associated receptor protein disulfide isomerase A3 (Pdia3) in caveolae, activating phospholipase A2 (PLA2)-activating protein (PLAA), calcium/calmodulin-dependent protein kinase II (CaMKII), and PLA2, resulting in protein kinase C (PKC) activation. Wnt5a initiates its calcium-dependent effects via intracellular calcium release, activating PKC and CaMKII. We investigated the requirement for components of the Pdia3 receptor complex in Wnt5a calcium-dependent signaling. We determined that Wnt5a signals through a CaMKII/PLA2/PGE2/PKC cascade. Silencing or blocking Pdia3, PLAA, or vitamin D receptor (VDR), and inhibition of calmodulin (CaM), CaMKII, or PLA2 inhibited Wnt5a-induced PKC activity. Wnt5a activated PKC in caveolin-1-silenced cells, but methyl-beta-cyclodextrin reduced its stimulatory effect. 1α,25(OH)2D3 reduced stimulatory effects of Wnt5a on PKC in a dose-dependent manner. In contrast, Wnt5a had a biphasic effect on 1α,25(OH)2D3-stimulated PKC activation; 50ng/ml Wnt5a caused a 2-fold increase in 1α,25(OH)2D3-stimulated PKC but higher Wnt5a concentrations reduced 1α,25(OH)2D3-stimulated PKC activation. Western blots showed that Wnt receptors Frizzled2 (FZD2) and Frizzled5 (FZD5), and receptor tyrosine kinase-like orphan receptor 2 (ROR2) were localized to caveolae. Blocking ROR2, but not FZD2 or FZD5, abolished the stimulatory effects of 1α,25(OH)2D3 on PKC and CaMKII. 1α,25(OH)2D3 membrane receptor complex components (Pdia3, PLAA, caveolin-1, CaM) interacted with Wnt5a receptors/co-receptors (ROR2, FZD2, FZD5) in immunoprecipitation studies, interactions that changed with either 1α,25(OH)2D3 or Wnt5a treatment. This study demonstrates that 1α,25(OH)2D3 and Wnt5a mediate their effects via similar receptor components and suggests that these pathways may interact.
Collapse
Affiliation(s)
- Maryam Doroudi
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D Boyan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78284, USA
| |
Collapse
|
125
|
Shvets E, Ludwig A, Nichols BJ. News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 2014; 29:99-106. [PMID: 24908346 DOI: 10.1016/j.ceb.2014.04.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent data from the study of the cell biology of caveolae have provided insights both into how these flask-shaped invaginations of the plasma membrane are formed and how they may function in different contexts. This review discusses experiments that analyse the composition and ultrastructural distribution of protein complexes responsible for generating caveolae, that suggest functions for caveolae in response to mechanical stress or damage to the plasma membrane, that show that caveolae may have an important role during the signalling events for regulation of metabolism, and that imply that caveolae can act as endocytic vesicles at the plasma membrane. We also highlight unexpected roles for caveolar proteins in regulating circadian rhythms and new insights into the way in which caveolae may be involved in fatty acid uptake in the intestine. Current outstanding questions in the field are emphasised.
Collapse
Affiliation(s)
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
126
|
Sakane H, Horii Y, Nogami S, Kawano Y, Kaneko-Kawano T, Shirataki H. α-Taxilin interacts with sorting nexin 4 and participates in the recycling pathway of transferrin receptor. PLoS One 2014; 9:e93509. [PMID: 24690921 PMCID: PMC3972091 DOI: 10.1371/journal.pone.0093509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/06/2014] [Indexed: 01/09/2023] Open
Abstract
Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR), a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4), which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yukimi Horii
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Satoru Nogami
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Yoji Kawano
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Takako Kaneko-Kawano
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Hiromichi Shirataki
- Department of Molecular and Cell Biology, Graduate school of Medicine, Dokkyo Medical University, Mibu, Tochigi, Japan
- * E-mail:
| |
Collapse
|
127
|
Wnt5a/β-catenin signaling drives calcium-induced differentiation of human primary keratinocytes. J Invest Dermatol 2014; 134:2183-2191. [PMID: 24658506 DOI: 10.1038/jid.2014.149] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/21/2014] [Accepted: 03/06/2014] [Indexed: 12/22/2022]
Abstract
It is well established that a gradient of extracellular calcium within the epidermis regulates the differentiation of keratinocytes. However, the molecular mechanisms implicated in this process are not fully understood. RNA interference of the calcium-sensing receptor (CaSR) showed that CaSR is essential in calcium-induced differentiation of normal human epidermal keratinocytes (NHEKs) by increasing the levels of free intracellular calcium, which upregulates the expression of Wnt5a but not Wnt3a, Wnt4, and Dkk-1 in the cells. Subsequently, autocrine Wnt5a promotes the differentiation of NHEKs, determined by increased biosynthesis of keratin-1 and loricrin, whereas proliferation is suppressed. Addition of both Wnt5a and calcium to NHEKs activated the Wnt/β-catenin signaling pathway as indicated by (i) increased stability of β-catenin in the cells, (ii) enhanced β-catenin transcriptional activity, demonstrated by a luciferase-based β-catenin-activated reporter assay, and (iii) augmented Wnt/β-catenin target gene expression. NHEKs depleted for β-catenin had a significantly reduced susceptibility to calcium-induced differentiation. Knockdown of axin 2, an antagonist of β-catenin stability, enhanced the biosynthesis of keratin-1 and loricrin in the cells. Our findings establish a directional crosstalk between CaSR and Wnt/β-catenin signaling in keratinocyte differentiation via Wnt5a that acts as an autocrine stimulus in this process.
Collapse
|
128
|
Kumar KK, Burgess AW, Gulbis JM. Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells. Protein Sci 2014; 23:551-65. [PMID: 24677446 DOI: 10.1002/pro.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 01/14/2023]
Abstract
G-protein coupled receptors (GPCRs) are an important class of membrane protein that transmit extracellular signals invoked by sensing molecules such as hormones and neurotransmitters. GPCR dysfunction is implicated in many diseases and hence these proteins are of great interest to academia and the pharmaceutical industry. Leucine-rich repeat-containing GPCRs contain a characteristic extracellular domain that is an important modulator of intracellular signaling. One member of this class is the leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), a stem cell marker in intestinal crypts, and mammary glands. LGR5 modulates Wnt signaling in the presence of the ligand R-spondin (RSPO). The mechanism of activation of LGR5 by RSPO is not understood, nor is the intracellular signaling mechanism known. Recently reported structures of the extracellular domain of LGR5 bound to RSPO reveal a horseshoe-shaped architecture made up of consecutive leucine-rich repeats, with RSPO bound on the concave surface. This review discusses the discovery of LGR5 and the impact it is having on our understanding of stem cell and cancer biology of the colon. In addition, it covers functional relationships suggested by sequence homology and structural analyses, as well as some intriguing conundrums with respect to the involvement of LGR5 in Wnt signaling.
Collapse
Affiliation(s)
- Kaavya Krishna Kumar
- Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3052, Australia
| | | | | |
Collapse
|
129
|
Abstract
A decade ago, the (P)RR [(pro)renin receptor] was discovered and depicted as a potential activator of the tissue renin-angiotensin system. For this reason, the role of the (P)RR in cardiovascular diseases and diabetes has been particularly studied. However, the discovery of embryonic lethality after (P)RR gene deletion in mouse and zebrafish paved the way for additional roles of (P)RR in cell homoeostasis. Indeed, the (P)RR has been shown to associate with vacuolar H+-ATPase, hence its other name ATP6ap2. Developmental studies in Xenopus and Drosophila have revealed an essential role of this association to promote the canonical and non-canonical Wnt signalling pathways, whereas studies with tissue-specific gene deletion have pointed out a role in autophagy. The present review aims to summarize recent findings on the cellular functions of (P)RR emerging from various mutated and transgenic animal models.
Collapse
|
130
|
Abstract
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling.
Collapse
Affiliation(s)
- Christian Bökel
- Center for Regenerative Therapies Dresden and Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | |
Collapse
|
131
|
Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, García de Herreros A, Duñach M. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 2014; 53:444-57. [PMID: 24412065 DOI: 10.1016/j.molcel.2013.12.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
Abstract
The Wnt canonical ligands elicit the activation of β-catenin transcriptional activity, a response dependent on, but not limited to, β-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the β-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of β-catenin stabilization by Wnt.
Collapse
Affiliation(s)
- Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
132
|
Özhan G, Sezgin E, Wehner D, Pfister AS, Kühl SJ, Kagermeier-Schenk B, Kühl M, Schwille P, Weidinger G. Lypd6 enhances Wnt/β-catenin signaling by promoting Lrp6 phosphorylation in raft plasma membrane domains. Dev Cell 2013; 26:331-45. [PMID: 23987510 DOI: 10.1016/j.devcel.2013.07.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 05/23/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
Abstract
Wnt/β-catenin signaling plays critical roles during embryogenesis, tissue homeostasis, and regeneration. How Wnt-receptor complex activity is regulated is not yet fully understood. Here, we identify the Ly6 family protein LY6/PLAUR domain-containing 6 (Lypd6) as a positive feedback regulator of Wnt/β-catenin signaling. lypd6 enhances Wnt signaling in zebrafish and Xenopus embryos and in mammalian cells, and it is required for wnt8-mediated patterning of the mesoderm and neuroectoderm during zebrafish gastrulation. Lypd6 is GPI anchored to the plasma membrane and physically interacts with the Wnt receptor Frizzled8 and the coreceptor Lrp6. Biophysical and biochemical evidence indicates that Lypd6 preferentially localizes to raft membrane domains, where Lrp6 is phosphorylated upon Wnt stimulation. lypd6 knockdown or mislocalization of the Lypd6 protein to nonraft membrane domains shifts Lrp6 phosphorylation to these domains and inhibits Wnt signaling. Thus, Lypd6 appears to control Lrp6 activation specifically in membrane rafts, which is essential for downstream signaling.
Collapse
Affiliation(s)
- Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Tatzberg 47, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Ring L, Neth P, Weber C, Steffens S, Faussner A. β-Catenin-dependent pathway activation by both promiscuous "canonical" WNT3a-, and specific "noncanonical" WNT4- and WNT5a-FZD receptor combinations with strong differences in LRP5 and LRP6 dependency. Cell Signal 2013; 26:260-7. [PMID: 24269653 DOI: 10.1016/j.cellsig.2013.11.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 01/07/2023]
Abstract
The WNT/β-catenin signalling cascade is the best-investigated frizzled receptor (FZD) pathway, however, whether and how specific combinations of WNT/FZD and co-receptors LRP5 and LRP6 differentially affect this pathway are not well understood. This is mostly due to the fact that there are 19 WNTs, 10 FZDs and at least two co-receptors. In our attempt to identify the signalling capabilities of specific WNT/FZD/LRP combinations we made use of our previously reported TCF/LEF Gaussia luciferase reporter gene HEK293 cell line (Ring et al., 2011). Generation of WNT/FZD fusion constructs - but not their separate transfection - without or with additional isogenic overexpression of LRP5 and LRP6 in our reporter cells permitted the investigation of specific WNT/FZD/LRP combinations. The canonical WNT3a in fusion to almost all FZDs was able to induce β-catenin-dependent signalling with strong dependency on LRP6 but not LRP5. Interestingly, noncanonical WNT ligands, WNT4 and WNT5a, were also able to act "canonically" but only in fusion with specific FZDs and with selective dependence on LRP5 or LRP6. These data and extension of this experimental setup to the poorly characterized other WNTs should facilitate deeper insight into the complex WNT/FZD signalling system and its function.
Collapse
Affiliation(s)
- Larisa Ring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, 80336 Munich, Germany.
| | - Peter Neth
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, 80336 Munich, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, 80336 Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80336 Munich, Germany.
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, 80336 Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, 80336 Munich, Germany.
| | - Alexander Faussner
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Pettenkoferstraße 9, 80336 Munich, Germany.
| |
Collapse
|
134
|
Gendreau KL, Hall GF. Tangles, Toxicity, and Tau Secretion in AD - New Approaches to a Vexing Problem. Front Neurol 2013; 4:160. [PMID: 24151487 PMCID: PMC3801151 DOI: 10.3389/fneur.2013.00160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/26/2013] [Indexed: 12/14/2022] Open
Abstract
When the microtubule (MT)-associated protein tau is not bound to axonal MTs, it becomes hyperphosphorylated and vulnerable to proteolytic cleavage and other changes typically seen in the hallmark tau deposits (neurofibrillary tangles) of tau-associated neurodegenerative diseases (tauopathies). Neurofibrillary tangle formation is preceded by tau oligomerization and accompanied by covalent crosslinking and cytotoxicity, making tangle cytopathogenesis a natural central focus of studies directed at understanding the role of tau in neurodegenerative disease. Recent studies suggest that the formation of tau oligomers may be more closely related to tau neurotoxicity than the presence of the tangles themselves. It has also become increasingly clear that tau pathobiology involves a wide variety of other cellular abnormalities including a disruption of autophagy, vesicle trafficking mechanisms, axoplasmic transport, neuronal polarity, and even the secretion of tau, which is normally a cytosolic protein, to the extracellular space. In this review, we discuss tau misprocessing, toxicity and secretion in the context of normal tau functions in developing and mature neurons. We also compare tau cytopathology to that of other aggregation-prone proteins involved in neurodegeneration (alpha synuclein, prion protein, and APP). Finally, we consider potential mechanisms of intra- and interneuronal tau lesion spreading, an area of particular recent interest.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, University of Massachusetts Lowell , Lowell, MA , USA
| | | |
Collapse
|
135
|
Demir K, Kirsch N, Beretta C, Erdmann G, Ingelfinger D, Moro E, Argenton F, Carl M, Niehrs C, Boutros M. RAB8B Is Required for Activity and Caveolar Endocytosis of LRP6. Cell Rep 2013; 4:1224-34. [DOI: 10.1016/j.celrep.2013.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022] Open
|
136
|
Danilchik M, Williams M, Brown E. Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: Potential roles in morphogen distribution and detection. Dev Biol 2013; 382:70-81. [PMID: 23916849 DOI: 10.1016/j.ydbio.2013.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022]
Abstract
In the frog Xenopus laevis, dorsal-ventral axis specification involves cytoskeleton-dependent transport of localized transcripts and proteins during the first cell cycle, and activation of the canonical Wnt pathway to locally stabilize translated beta-catenin which, by as early as the 32-cell stage, commits nuclei in prospective dorsal lineages to the subsequent expression of dorsal target genes. Maternal ligands important for activating this dorsal-specific signaling pathway are thought to interact with secreted glypicans and coreceptors in the blastocoel. While diffusion between cells is generally thought of as sufficient to accomplish the distribution of secreted maternal ligands to their appropriate targets, signaling may also involve other potential mechanisms, including direct transfer of morphogens via membrane-bounded entities, such as argosomes, exosomes, or even filopodia. In Xenopus, the blastocoel-facing, basolateral surfaces where signaling interactions ostensibly take place have not been previously examined in detail. Here, we report that the cleavage-stage blastocoel is traversed by hundreds of extremely long cellular protrusions that maintain long-term contacts between nonadjacent blastomeres during expansion of the interstitial space in early embryogenesis. The involvement of these protrusions in early embryonic patterning is suggested by the discoveries that (a) they fragment into microvesicles, whose resorption facilitates considerable exchange of cytoplasm and membrane between blastomeres; and (b) they are active in caveolar endocytosis, a prerequisite for ligand-receptor signaling.
Collapse
Affiliation(s)
- Michael Danilchik
- Department of Integrative Biosciences, SD-IB, Oregon Health & Sciences University, Portland, OR 97239-3097 USA.
| | | | | |
Collapse
|
137
|
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. Dev Biol 2013; 379:16-27. [DOI: 10.1016/j.ydbio.2012.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/18/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|
138
|
Shen W, Zou X, Chen M, Shen Y, Huang S, Guo H, Zhang L, Liu P. Effect of pantoprazole on human gastric adenocarcinoma SGC7901 cells through regulation of phospho‑LRP6 expression in Wnt/β-catenin signaling. Oncol Rep 2013; 30:851-5. [PMID: 23754096 DOI: 10.3892/or.2013.2524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/23/2013] [Indexed: 02/07/2023] Open
Abstract
Recent studies have found that an acidic tumor microenvironment is the key to managing cancer progression and metastasis. Our previous study found that proton pump inhibitors (PPIs) inhibit the expression of vacuolar-ATPases (V-ATPases) and reverse the transmembrane pH gradient. The present study was conducted to explore the effect of pantoprazole on gastric adenocarcinoma through the regulation of Wnt/β-catenin signaling. We used SGC7901 human gastric cancer cells as an in vitro model to study the effect of pantoprazole. The antiproliferative, pro-apoptotic and anti‑invasive effects of pantoprazole were examined. The effects of pantoprazole on the expression of the Wnt/β-catenin signaling pathway were also studied by western blotting. Our study found that pantoprazole inhibited the proliferation and induced the apoptosis of SGC7901 human gastric cancer cells. The expression of V-ATPases was decreased following treatment with pantoprazole. Further study found that pantoprazole treatment caused a decrease in phospho-LRP6, but not in LRP6. β-catenin in Wnt/β-catenin signaling and its target genes c-Myc and cyclin D1 were also decreased upon the inhibition of V-ATPases. Therefore, pantoprazole could be characterized as a V-ATPase inhibitor for treating gastric cancer by inhibiting the phosphorylation of LRP6 in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Weidong Shen
- Department of Digestive Disease, Gastrointestinal Center, Jiangyin People's Hospital, Medical School of the University of Southeast China, Jiangyin, Jiangsu 214400. PR China.
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Park DS, Seo JH, Hong M, Choi SC. Role of the Rap2/TNIK kinase pathway in regulation of LRP6 stability for Wnt signaling. Biochem Biophys Res Commun 2013; 436:338-43. [PMID: 23743195 DOI: 10.1016/j.bbrc.2013.05.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 01/17/2023]
Abstract
The Wnt/β-catenin signaling pathway plays critical roles in early embryonic development, stem cell biology and human diseases including cancers. Although Rap2, a member of Ras GTPase family, is essential for the Wnt/β-catenin pathway during the body axis specification in Xenopus embryo, the mechanism underlying its regulation of Wnt signaling remains poorly understood. Here, we show that Rap2 is implicated in control of the stability of Wnt receptor, low-density lipoprotein receptor-related protein 6 (LRP6). Knockdown of Rap2 resulted in the proteasome and/or lysosome-dependent degradation of LRP6 both in the presence and absence of Wnt ligand stimulation. In line with this, constitutively active LRP6 lacking its extracellular domain, which is constitutively phosphorylated and resides in intracellular vesicles, was also degraded in the Rap2-silenced cells. In addition, Rap2 and LRP6 associated physically with each other. Furthermore, we found that TRAF2/Nck-interacting kinase (TNIK), a member of the Ste20 protein family, acts as a downstream effector of Rap2 in control of LRP6 stabilization. Consistently, TNIK could rescue the inhibitory effects of Rap2 depletion on Wnt-dependent gene transcription, reporter activation and neural crest induction. Taken together, these results suggest that Rap2 acts via TNIK to regulate the stability of LRP6 receptor for Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Pungnap-Dong, Songpa-Gu, Seoul 138-736, Republic of Korea
| | | | | | | |
Collapse
|
140
|
Maharzi N, Parietti V, Nelson E, Denti S, Robledo-Sarmiento M, Setterblad N, Parcelier A, Pla M, Sigaux F, Gluckman JC, Canque B. Identification of TMEM131L as a novel regulator of thymocyte proliferation in humans. THE JOURNAL OF IMMUNOLOGY 2013; 190:6187-97. [PMID: 23690469 DOI: 10.4049/jimmunol.1300400] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we identify transmembrane protein 131-like (TMEM131L) as a novel regulator of thymocyte proliferation and demonstrate that it corresponds to a not as yet reported inhibitor of Wnt signaling. Short hairpin RNA-mediated silencing of TMEM131L in human CD34(+) hematopoietic progenitors, which were then grafted in NOD-SCID/IL-2rγ(null) mice, resulted in both thymocyte hyperproliferation and multiple pre- and post-β-selection intrathymic developmental defects. Consistent with deregulated Wnt signaling, TMEM131L-deficient thymocytes expressed Wnt target genes at abnormally high levels, and they displayed both constitutive phosphorylation of Wnt coreceptor LRP6 and β-catenin intranuclear accumulation. Using T cell factor reporter assays, we found that membrane-associated TMEM131L inhibited canonical Wnt/β-catenin signaling at the LRP6 coreceptor level. Whereas membrane-associated TMEM131L did not affect LRP6 expression under basal conditions, it triggered lysosome-dependent degradation of its active phosphorylated form following Wnt activation. Genetic mapping showed that phosphorylated LRP6 degradation did not depend on TMEM131L cytoplasmic part but rather on a conserved extracellular domain proximal to the membrane. Collectively, these data indicate that, during thymopoiesis, stage-specific surface translocation of TMEM131L may regulate immature single-positive thymocyte proliferation arrest by acting through mixed Wnt-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Nesrine Maharzi
- Laboratoire Développement du Système Immunitaire de l'Ecole Pratique des Hautes Etudes, Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75571 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Wada Y, Sun-Wada GH. Positive and negative regulation of developmental signaling by the endocytic pathway. Curr Opin Genet Dev 2013; 23:391-8. [PMID: 23669551 DOI: 10.1016/j.gde.2013.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
Multicellular organisms acquire complex architecture through highly regulated developmental processes in which cells are programmed to respond to a specific set of extracellular signals produced by themselves and others. Modulation of sensitivity or duration of response is controlled by a variety of intracellular mechanisms. The endoocytic pathway performs essential regulatory roles both for the activation as well as the inactivation of signal transduction. Early stage of endocytic pathway is required for the recruitment of cytosolic mediators for signal amplification of signaling, whereas signal termination by late endosomes/lysosomes is important for spatiotemporal regulation. Herein, we summarize recent studies showing that dysfunction in endocytic pathways causes patterning defects in early embryogenesis in mammals.
Collapse
Affiliation(s)
- Yoh Wada
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | |
Collapse
|
142
|
Pepperl J, Reim G, Lüthi U, Kaech A, Hausmann G, Basler K. Sphingolipid depletion impairs endocytic traffic and inhibits Wingless signaling. Mech Dev 2013; 130:493-505. [PMID: 23665457 DOI: 10.1016/j.mod.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022]
Abstract
Sphingolipids are an important part of the plasma membrane and implicated in a multitude of cellular processes. However, little is known about the role of sphingolipids in an epithelial context and their potential influence on the activity of signaling pathways. To shed light on these aspects we analyzed the consequences of changing ceramide levels in vivo in the Drosophila wing disc: an epithelial tissue in which the most fundamental signaling pathways, including the Wnt/Wg signaling pathway, are well characterized. We found that downregulation of Drosophila's only ceramide synthase gene schlank led to defects in the endosomal trafficking of proteins. One of the affected proteins is the Wnt ligand Wingless (Wg) that accumulated. Unexpectedly, although Wg protein levels were raised, signaling activity of the Wg pathway was impaired. Recent work has spotlighted the central role of the endocytic trafficking in the transduction of the Wnt signal. Our results underscore this and support the view that sphingolipid levels are crucial in orchestrating epithelial endocytic trafficking in vivo. They further demonstrate that ceramide/sphingolipid levels can affect Wnt signaling.
Collapse
Affiliation(s)
- Julia Pepperl
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
143
|
Yamada K, Hayashi M, Madokoro H, Nishida H, Du W, Ohnuma K, Sakamoto M, Morimoto C, Yamada T. Nuclear localization of CD26 induced by a humanized monoclonal antibody inhibits tumor cell growth by modulating of POLR2A transcription. PLoS One 2013; 8:e62304. [PMID: 23638030 PMCID: PMC3639274 DOI: 10.1371/journal.pone.0062304] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/19/2013] [Indexed: 12/29/2022] Open
Abstract
CD26 is a type II glycoprotein known as dipeptidyl peptidase IV and has been identified as one of the cell surface markers associated with various types of cancers and a subset of cancer stem cells. Recent studies have suggested that CD26 expression is involved in tumor growth, tumor invasion, and metastasis. The CD26 is shown in an extensive intracellular distribution, ranging from the cell surface to the nucleus. We have previously showed that the humanized anti-CD26 monoclonal antibody (mAb), YS110, exhibits inhibitory effects on various cancers. However, functions of CD26 on cancer cells and molecular mechanisms of impaired tumor growth by YS110 treatment are not well understood. In this study, we demonstrated that the treatment with YS110 induced nuclear translocation of both cell-surface CD26 and YS110 in cancer cells and xenografted tumor. It was shown that the CD26 and YS110 were co-localized in nucleus by immunoelectron microscopic analysis. In response to YS110 treatment, CD26 was translocated into the nucleus via caveolin-dependent endocytosis. It was revealed that the nuclear CD26 interacted with a genomic flanking region of the gene for POLR2A, a subunit of RNA polymerase II, using a chromatin immunoprecipitation assay. This interaction with nuclear CD26 and POLR2A gene consequently led to transcriptional repression of the POLR2A gene, resulting in retarded cell proliferation of cancer cells. Furthermore, the impaired nuclear transport of CD26 by treatment with an endocytosis inhibitor or expressions of deletion mutants of CD26 reversed the POLR2A repression induced by YS110 treatment. These findings reveal that the nuclear CD26 functions in the regulation of gene expression and tumor growth, and provide a novel mechanism of mAb-therapy related to inducible translocation of cell-surface target molecule into the nucleus.
Collapse
Affiliation(s)
- Kohji Yamada
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Mutsumi Hayashi
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Madokoro
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Hiroko Nishida
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Wenlin Du
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Kei Ohnuma
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Taketo Yamada
- Department of Pathology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
144
|
Abstract
Planar cell polarity (PCP), a process controlling coordinated, uniformly polarized cellular behaviors in a field of cells, has been identified to be critically required for many fundamental developmental processes. However, a global directional cue that establishes PCP in a three-dimensional tissue or organ with respect to the body axes remains elusive. In vertebrate, while Wnt-secreted signaling molecules have been implicated in regulating PCP in a β-catenin-independent manner, whether they function permissively or act as a global cue to convey directional information is not clearly defined. In addition, the underlying molecular mechanism by which Wnt signal is transduced to core PCP proteins is largely unknown. In this chapter, I review the roles of Wnt signaling in regulating PCP during vertebrate development and update our knowledge of its regulatory mechanism.
Collapse
Affiliation(s)
- Bo Gao
- National Human Genome Research Institute, Bethesda, Maryland, USA.
| |
Collapse
|
145
|
Caveolin-1 up-regulates integrin α2,6-sialylation to promote integrin α5β1-dependent hepatocarcinoma cell adhesion. FEBS Lett 2013; 587:782-7. [PMID: 23416306 DOI: 10.1016/j.febslet.2013.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/01/2013] [Accepted: 02/03/2013] [Indexed: 11/20/2022]
Abstract
The alterations of integrin glycosylation play a crucial role in tumor metastasis. Our previous studies indicated that caveolin-1 promoted the expression of the key α2,6-sialytransferase ST6Gal-I and fibronectin-mediated adhesion of mouse hepatocarcinoma cell. Herein, we investigated the role of α2,6-sialylated α5-integrin in the adhesion of mouse hepatocarcinoma H22 cell. We demonstrated that caveolin-1 up-regulated cell surface α2,6-linked sialic acid via stimulating ST6Gal-I transcription. Cell surface α2,6-sialylation was required for integrin α5β1-dependent cell adhesion to fibronectin, and an increase in α2,6-linked sialic acid on α5-subunit facilitated fibronectin-mediated focal adhesion kinase phosphorylations, suggesting that α2,6-sialylated α5-subunit promoted integrin α5β1-dependent cell adhesion.
Collapse
|
146
|
Kim I, Pan W, Jones SA, Zhang Y, Zhuang X, Wu D. Clathrin and AP2 are required for PtdIns(4,5)P2-mediated formation of LRP6 signalosomes. ACTA ACUST UNITED AC 2013; 200:419-28. [PMID: 23400998 PMCID: PMC3575536 DOI: 10.1083/jcb.201206096] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes at the cell surface via the recruitment of AP2 and clathrin. Canonical Wnt signaling is initiated by the binding of Wnt proteins to their receptors, low-density lipoprotein-related protein 5 and 6 (LRP5/6) and frizzled proteins, leading to phosphatidylinositol (4,5)bisphosphate (PtdIns(4,5)P2) production, signalosome formation, and LRP phosphorylation. However, the mechanism by which PtdIns(4,5)P2 regulates the signalosome formation remains unclear. Here we show that clathrin and adaptor protein 2 (AP2) were part of the LRP6 signalosomes. The presence of clathrin and AP2 in the LRP6 signalosomes depended on PtdIns(4,5)P2, and both clathrin and AP2 were required for the formation of LRP6 signalosomes. In addition, WNT3A-induced LRP6 signalosomes were primarily localized at cell surfaces, and WNT3A did not induce marked LRP6 internalization. However, rapid PtdIns(4,5)P2 hydrolysis induced artificially after WNT3A stimulation could lead to marked LRP6 internalization. Moreover, we observed WNT3A-induced LRP6 and clathrin clustering at cell surfaces using super-resolution fluorescence microscopy. Therefore, we conclude that PtdIns(4,5)P2 promotes the assembly of LRP6 signalosomes via the recruitment of AP2 and clathrin and that LRP6 internalization may not be a prerequisite for Wnt signaling to β-catenin stabilization.
Collapse
Affiliation(s)
- Ingyu Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
147
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
148
|
Smolders LA, Meij BP, Onis D, Riemers FM, Bergknut N, Wubbolts R, Grinwis GCM, Houweling M, Groot Koerkamp MJA, van Leenen D, Holstege FCP, Hazewinkel HAW, Creemers LB, Penning LC, Tryfonidou MA. Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies. Arthritis Res Ther 2013; 15:R23. [PMID: 23360510 PMCID: PMC3672710 DOI: 10.1186/ar4157] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/10/2013] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS Early IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.
Collapse
|
149
|
Tahir SA, Yang G, Goltsov A, Song KD, Ren C, Wang J, Chang W, Thompson TC. Caveolin-1-LRP6 signaling module stimulates aerobic glycolysis in prostate cancer. Cancer Res 2013; 73:1900-11. [PMID: 23302227 DOI: 10.1158/0008-5472.can-12-3040] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Caveolin 1 (Cav-1) is a plasma membrane-associated protein with the capacity to modulate signaling activities in a context-dependent fashion. Interactions between Cav-1 and low-density lipoprotein receptor-related protein 6 (LRP6) were reported to be important for the regulation of Wnt-β-catenin (β-cat) signaling. Cav-1 also interacts with insulin and IGF-I receptors (IGF-IR/IR) and can stimulate IR kinase activities. We found positive correlation between Cav-1 and LRP6 expression in both human primary prostate cancer and metastasis tissues and in PC-3 cells. Cav-1 stimulation of Wnt-β-cat signaling and c-Myc levels was positively associated with LRP6 expression in LNCaP, PC-3, and DU145 prostate cancer cells. Importantly, LRP6 and, to a lesser extent, Cav-1 were found to stimulate aerobic glycolysis. These activities were positively associated with the expression of HK2 and Glut3 and shown to be dependent on Akt signaling by both gene knockdown and chemical inhibition methods. We further showed that Cav-1 and LRP6 exert their effects on Akt and glycolytic activities by stimulating IGF-IR/IR signaling. Overall, our results show that Cav-1 interacts with LRP6 to generate an integrated signaling module that leads to the activation of IGF-IR/IR and results in stimulation of Akt-mTORC1 signaling and aerobic glycolysis in prostate cancer.
Collapse
Affiliation(s)
- Salahaldin A Tahir
- Department of Genitourinary Medical Oncology-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Yamamoto H, Awada C, Hanaki H, Sakane H, Tsujimoto I, Takahashi Y, Takao T, Kikuchi A. Apicobasal secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by distinct mechanisms. J Cell Sci 2013; 126:2931-43. [DOI: 10.1242/jcs.126052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wnts are glycan- and lipid-modified morphogens that are important for cellular responses, but how Wnt is secreted in polarized epithelial cells remains unclear. Although Wntless (Wls) has been shown to interact with Wnts and support their secretion, the role of Wls in the sorting of Wnts to the final destination in polarized epithelial cells have not been clarified. Glycosylation was shown to be important for the sorting of some transmembrane and secreted proteins, but glycan profiles and their roles in the polarized secretion of Wnts are not known. Here we show the apicobasal secretion of Wnts is regulated by different mechanisms. Wnt11 and Wnt3a were secreted apically and basolaterally, respectively, in polarized epithelial cells. Wls was localized to the basolateral membrane. Mass-spectrometric analyses revealed that Wnt11 is modified with complex/hybrid-(Asn40), high-mannose-(Asn90), and high-mannose/hybrid-(Asn300) type glycans and that Wnt3a is modified with two high-mannose-type glycans (Asn87 and Asn298). Glycosylation processing at Asn40 and galectin-3 were required for the apical secretion of Wnt11, while clathrin and adaptor protein-1 were required for the basolateral secretion of Wnt3a. By the fusion of the Asn40 glycosylation site of Wnt11, Wnt3a was secreted apically. The recycling of Wls by AP-2 was necessary for the basolateral secretion of Wnt3a but not for the apical secretion of Wnt11. These results suggest that Wls has different roles on the polarized secretion of Wnt11 and Wnt3a and that glycosylation processing of Wnts decides their secretory routes.
Collapse
|