101
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|
102
|
Lu L, Hong W. From endosomes to the trans-Golgi network. Semin Cell Dev Biol 2014; 31:30-9. [PMID: 24769370 DOI: 10.1016/j.semcdb.2014.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
Abstract
The retrograde trafficking from endosomes to the trans-Golgi network (TGN) is one of the major endocytic pathways to divert proteins and lipids away from lysosomal degradation. Retrograde transported cargos enter the TGN via two itineraries from either the early endosome/recycling endosome or the late endosome and involve various machinery components such as retromer, sorting nexins, clathrin, small GTPases, tethering factors and SNAREs. Recently, the pathway has been recognized for its role in signal transduction, physiology and pathogenesis of human diseases.
Collapse
Affiliation(s)
- Lei Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; School of Pharmaceutical Sciences, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
103
|
Jaremko KM, Thompson NL, Reyes BAS, Jin J, Ebersole B, Jenney CB, Grigson PS, Levenson R, Berrettini WH, Van Bockstaele EJ. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:53-65. [PMID: 24333843 PMCID: PMC3928604 DOI: 10.1016/j.pnpbp.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Opiate addiction is a devastating health problem, with approximately 2million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the LC-NE system is important for cognition as well as decisions underlying substance abuse, adaptations in WLS trafficking and expression may play a role in modulating MOR function in the LC and contribute to the negative sequelae of opiate exposure on executive function.
Collapse
Affiliation(s)
- Kellie M Jaremko
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Nicholas L Thompson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Jay Jin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Brittany Ebersole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Christopher B Jenney
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
104
|
Abstract
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling.
Collapse
Affiliation(s)
- Christian Bökel
- Center for Regenerative Therapies Dresden and Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | |
Collapse
|
105
|
Goodnough LH, DiNuoscio GJ, Ferguson JW, Williams T, Lang RA, Atit RP. Distinct requirements for cranial ectoderm and mesenchyme-derived wnts in specification and differentiation of osteoblast and dermal progenitors. PLoS Genet 2014; 10:e1004152. [PMID: 24586192 PMCID: PMC3930509 DOI: 10.1371/journal.pgen.1004152] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022] Open
Abstract
The cranial bones and dermis differentiate from mesenchyme beneath the surface ectoderm. Fate selection in cranial mesenchyme requires the canonical Wnt effector molecule β-catenin, but the relative contribution of Wnt ligand sources in this process remains unknown. Here we show Wnt ligands are expressed in cranial surface ectoderm and underlying supraorbital mesenchyme during dermal and osteoblast fate selection. Using conditional genetics, we eliminate secretion of all Wnt ligands from cranial surface ectoderm or undifferentiated mesenchyme, to uncover distinct roles for ectoderm- and mesenchyme-derived Wnts. Ectoderm Wnt ligands induce osteoblast and dermal fibroblast progenitor specification while initiating expression of a subset of mesenchymal Wnts. Mesenchyme Wnt ligands are subsequently essential during differentiation of dermal and osteoblast progenitors. Finally, ectoderm-derived Wnt ligands provide an inductive cue to the cranial mesenchyme for the fate selection of dermal fibroblast and osteoblast lineages. Thus two sources of Wnt ligands perform distinct functions during osteoblast and dermal fibroblast formation. Craniofacial abnormalities are relatively common congenital birth defects, and the Wnt signaling pathway and its effectors have key roles in craniofacial development. Wntless/Gpr177 is required for the efficient secretion of all Wnt ligands and maps to a region that contains SNPs strongly associated with reduced bone mass, and heterozygous deletion is associated with facial dysmorphology. Here we test the role of specific sources of secreted Wnt proteins during early stages of craniofacial development and obtained dramatic craniofacial anomalies. We found that the overlying cranial surface ectoderm Wnts generate an instructive cue of Wnt signaling for skull bone and skin cell fate selection and transcription of additional Wnts in the underlying mesenchyme. Once initiated, mesenchymal Wnts may maintain Wnt signal transduction and function in an autocrine manner during differentiation of skull bones and skin. These results highlight how Wnt ligands from two specific tissue sources are integrated for normal craniofacial patterning and can contribute to complex craniofacial abnormalities.
Collapse
Affiliation(s)
- L. Henry Goodnough
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Gregg J. DiNuoscio
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James W. Ferguson
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, Colorado, United States of America
| | - Richard A. Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Dermatology Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
106
|
BMP signaling requires retromer-dependent recycling of the type I receptor. Proc Natl Acad Sci U S A 2014; 111:2578-83. [PMID: 24550286 DOI: 10.1073/pnas.1319947111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transforming growth factor β (TGFβ) superfamily of signaling pathways, including the bone morphogenetic protein (BMP) subfamily of ligands and receptors, controls a myriad of developmental processes across metazoan biology. Transport of the receptors from the plasma membrane to endosomes has been proposed to promote TGFβ signal transduction and shape BMP-signaling gradients throughout development. However, how postendocytic trafficking of BMP receptors contributes to the regulation of signal transduction has remained enigmatic. Here we report that the intracellular domain of Caenorhabditis elegans BMP type I receptor SMA-6 (small-6) binds to the retromer complex, and in retromer mutants, SMA-6 is degraded because of its missorting to lysosomes. Surprisingly, we find that the type II BMP receptor, DAF-4 (dauer formation-defective-4), is retromer-independent and recycles via a distinct pathway mediated by ARF-6 (ADP-ribosylation factor-6). Importantly, we find that loss of retromer blocks BMP signaling in multiple tissues. Taken together, our results indicate a mechanism that separates the type I and type II receptors during receptor recycling, potentially terminating signaling while preserving both receptors for further rounds of activation.
Collapse
|
107
|
Abstract
The endosomal network comprises an interconnected network of membranous compartments whose primary function is to receive, dissociate, and sort cargo that originates from the plasma membrane and the biosynthetic pathway. A major challenge in cell biology is to achieve a thorough molecular description of how this network operates, and in so doing, how defects contribute to the etiology and pathology of human disease. We discuss the increasing body of evidence that implicates an ancient evolutionary conserved complex, termed "retromer," as a master conductor in the complex orchestration of multiple cargo-sorting events within the endosomal network.
Collapse
Affiliation(s)
- Christopher Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520
| | | |
Collapse
|
108
|
Inhibition of late endosomal maturation restores Wnt secretion in Caenorhabditis elegans vps-29 retromer mutants. Cell Signal 2014; 26:19-31. [DOI: 10.1016/j.cellsig.2013.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/05/2013] [Accepted: 09/13/2013] [Indexed: 01/01/2023]
|
109
|
de Groot REA, Farin HF, Macůrková M, van Es JH, Clevers HC, Korswagen HC. Retromer dependent recycling of the Wnt secretion factor Wls is dispensable for stem cell maintenance in the mammalian intestinal epithelium. PLoS One 2013; 8:e76971. [PMID: 24130821 PMCID: PMC3793972 DOI: 10.1371/journal.pone.0076971] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
In C. elegans and Drosophila, retromer mediated retrograde transport of Wntless (Wls) from endosomes to the trans-Golgi network (TGN) is required for Wnt secretion. When this retrograde transport pathway is blocked, Wls is missorted to lysosomes and degraded, resulting in reduced Wnt secretion and various Wnt related phenotypes. In the mammalian intestine, Wnt signaling is essential to maintain stem cells. This prompted us to ask if retromer mediated Wls recycling is also important for Wnt signaling and stem cell maintenance in this system. To answer this question, we generated a conditional Vps35fl allele. As Vps35 is an essential subunit of the retromer complex, this genetic tool allowed us to inducibly interfere with retromer function in the intestinal epithelium. Using a pan-intestinal epithelial Cre line (Villin-CreERT2), we did not observe defects in crypt or villus morphology after deletion of Vps35 from the intestinal epithelium. Wnt secreted from the mesenchyme of the intestine may compensate for a reduction in epithelial Wnt secretion. To exclude the effect of the mesenchyme, we generated intestinal organoid cultures. Loss of Vps35 in intestinal organoids did not affect the overall morphology of the organoids. We were able to culture Vps35∆/∆ organoids for many passages without Wnt supplementation in the growth medium. However, Wls protein levels were reduced and we observed a subtle growth defect in the Vps35∆/∆ organoids. These results confirm the role of retromer in the retrograde trafficking of Wls in the intestine, but show that retromer mediated Wls recycling is not essential to maintain Wnt signaling or stem cell proliferation in the intestinal epithelium.
Collapse
Affiliation(s)
- Reinoud E. A. de Groot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henner F. Farin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marie Macůrková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johan H. van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hans C. Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
110
|
Gross JC, Boutros M. Secretion and extracellular space travel of Wnt proteins. Curr Opin Genet Dev 2013; 23:385-90. [DOI: 10.1016/j.gde.2013.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/31/2022]
|
111
|
Dong B, Kakihara K, Otani T, Wada H, Hayashi S. Rab9 and retromer regulate retrograde trafficking of luminal protein required for epithelial tube length control. Nat Commun 2013; 4:1358. [PMID: 23322046 PMCID: PMC3562448 DOI: 10.1038/ncomms2347] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/30/2012] [Indexed: 01/30/2023] Open
Abstract
Apical extracellular matrix filling the lumen controls the morphology and geometry of epithelial tubes during development, yet the regulation of luminal protein composition and its role in tube morphogenesis are not well understood. Here we show that an endosomal-retrieval machinery consisting of Rab9, retromer and actin nucleator WASH (Wiskott–Aldrich Syndrome Protein and SCAR Homolog) regulates selective recycling of the luminal protein Serpentine in the Drosophila trachea. Secreted Serpentine is endocytosed and sorted into the late endosome. Vps35, WASH and actin filaments differentially localize at the Rab9-enriched subdomains of the endosomal membrane, where Serpentine containing vesicles bud off. In Rab9, Vps35 and WASH mutants, Serpentine was secreted normally into the tracheal lumen, but the luminal quantities were depleted at later stages, resulting in excessively elongated tubes. In contrast, secretion of many luminal proteins was unaffected, suggesting that retrograde trafficking of a specific class of luminal proteins is a pivotal rate-limiting mechanism for continuous tube length regulation. The development of biological tubes is regulated by mutual interactions between cells and luminal extracellular matrix. Dong et al. show that retrograde recycling of luminal chitin deacetylase regulates Drosophila tracheal tubule geometry by restricting length independently of diameter.
Collapse
Affiliation(s)
- Bo Dong
- Laboratory for Morphogenetic Signaling, Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Hyogo, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
112
|
Transmembrane protein MIG-13 links the Wnt signaling and Hox genes to the cell polarity in neuronal migration. Proc Natl Acad Sci U S A 2013; 110:11175-80. [PMID: 23784779 DOI: 10.1073/pnas.1301849110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Directional cell migration is a fundamental process in neural development. In Caenorhabditis elegans, Q neuroblasts on the left (QL) and right (QR) sides of the animal generate cells that migrate in opposite directions along the anteroposterior body axis. The homeobox (Hox) gene lin-39 promotes the anterior migration of QR descendants (QR.x), whereas the canonical Wnt signaling pathway activates another Hox gene, mab-5, to ensure the QL descendants' (QL.x) posterior migration. However, the regulatory targets of LIN-39 and MAB-5 remain elusive. Here, we showed that MIG-13, an evolutionarily conserved transmembrane protein, cell-autonomously regulates the asymmetric distribution of the actin cytoskeleton in the leading migratory edge. We identified mig-13 as a cellular target of LIN-39 and MAB-5. LIN-39 establishes QR.x anterior polarity by binding to the mig-13 promoter and promoting mig-13 expression, whereas MAB-5 inhibits QL.x anterior polarity by associating with the lin-39 promoter and downregulating lin-39 and mig-13 expression. Thus, MIG-13 links the Wnt signaling and Hox genes that guide migrations, to the actin cytoskeleton, which executes the motility response in neuronal migration.
Collapse
|
113
|
Xia WF, Tang FL, Xiong L, Xiong S, Jung JU, Lee DH, Li XS, Feng X, Mei L, Xiong WC. Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling. ACTA ACUST UNITED AC 2013; 200:821-37. [PMID: 23509071 PMCID: PMC3601351 DOI: 10.1083/jcb.201207154] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)-induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits.
Collapse
Affiliation(s)
- Wen-Fang Xia
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Deng H, Gao K, Jankovic J. The VPS35 gene and Parkinson's disease. Mov Disord 2013; 28:569-75. [PMID: 23536430 DOI: 10.1002/mds.25430] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/21/2013] [Accepted: 02/07/2013] [Indexed: 02/01/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-related neurodegenerative disease, is characterized by loss of dopaminergic and nondopaminergic neurons, leading to a variety of motor and nonmotor symptoms. In addition to environmental factors, genetic predisposition and specific gene mutations have been shown to play an important role in the pathogenesis of this disorder. Recently, the identification of the vacuolar protein sorting 35 homolog gene (VPS35), linked to autosomal dominant late-onset PD, has provided new clues to the pathogenesis of PD. Here we discuss the VPS35 gene, its protein function, and various pathways involved in Wnt/β-catenin signaling and in the role of DMT1 mediating the uptake of iron and iron translocation from endosomes to the cytoplasm. Further understanding of these mechanisms will undoubtedly provide new insights into the pathogenic mechanisms of PD and may lead to prevention and better treatment of the disorder.
Collapse
Affiliation(s)
- Hao Deng
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
| | | | | |
Collapse
|
115
|
Raiborg C, Schink KO, Stenmark H. Class III phosphatidylinositol 3-kinase and its catalytic product PtdIns3P in regulation of endocytic membrane traffic. FEBS J 2013; 280:2730-42. [PMID: 23289851 DOI: 10.1111/febs.12116] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 01/01/2023]
Abstract
Endocytosis and subsequent membrane traffic through endosomes are cellular processes that are integral to eukaryotic evolution, and numerous human diseases are associated with their dysfunction. Consequently, it is important to untangle the molecular machineries that regulate membrane dynamics and protein flow in the endocytic pathway. Central in this context is class III phosphatidylinositol 3-kinase, an evolutionarily conserved enzyme complex that phosphorylates phosphatidylinositol into phosphatidylinositol 3-phosphate. Phosphatidylinositol 3-phosphate recruits specific effector proteins, most of which contain FYVE or PX domains, to promote endocytosis, endosome fusion, endosome motility and endosome maturation, as well as cargo sorting to lysosomes, the biosynthetic pathway or the plasma membrane. Here we review the functions of key phosphatidylinositol 3-phosphate effectors in regulation of endocytic membrane dynamics and protein sorting.
Collapse
Affiliation(s)
- Camilla Raiborg
- Centre for Cancer Biomedicine, Faculty of Medicine, Oslo University Hospital, Montebello, Norway
| | | | | |
Collapse
|
116
|
Abstract
The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a "futile cycle" of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.
Collapse
Affiliation(s)
- Kenyi Saito-Diaz
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-8240, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Nguyen N, Kozer-Gorevich N, Gliddon BL, Smolka AJ, Clayton AH, Gleeson PA, van Driel IR. Independent trafficking of the KCNQ1 K+ channel and H+-K+-ATPase in gastric parietal cells from mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G157-66. [PMID: 23154976 DOI: 10.1152/ajpgi.00346.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastric acid secretion by the H(+)-K(+)-ATPase at the apical surface of activated parietal cells requires luminal K(+) provided by the KCNQ1/KCNE2 K(+) channel. However, little is known about the trafficking and relative spatial distribution of KCNQ1 and H(+)-K(+)-ATPase in resting and activated parietal cells and the capacity of KCNQ1 to control acid secretion. Here we show that inhibition of KCNQ1 activity quickly curtails gastric acid secretion in vivo, even when the H(+)-K(+)-ATPase is permanently anchored in the apical membrane, demonstrating a key role of the K(+) channel in controlling acid secretion. Three-dimensional imaging analysis of isolated mouse gastric units revealed that the majority of KCNQ1 resides in an intracytoplasmic, Rab11-positive compartment in resting parietal cells, distinct from H(+)-K(+)-ATPase-enriched tubulovesicles. Upon activation, there was a significant redistribution of H(+)-K(+)-ATPase and KCNQ1 from intracytoplasmic compartments to the apical secretory canaliculi. Significantly, high Förster resonance energy transfer was detected between H(+)-K(+)-ATPase and KCNQ1 in activated, but not resting, parietal cells. These findings demonstrate that H(+)-K(+)-ATPase and KCNQ1 reside in independent intracytoplasmic membrane compartments, or membrane domains, and upon activation of parietal cells, both membrane proteins are transported, possibly via Rab11-positive recycling endosomes, to apical membranes, where the two molecules are closely physically opposed. In addition, these studies indicate that acid secretion is regulated by independent trafficking of KCNQ1 and H(+)-K(+)-ATPase.
Collapse
Affiliation(s)
- Nhung Nguyen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
118
|
Yamamoto H, Awada C, Hanaki H, Sakane H, Tsujimoto I, Takahashi Y, Takao T, Kikuchi A. Apicobasal secretion of Wnt11 and Wnt3a in polarized epithelial cells is regulated by distinct mechanisms. J Cell Sci 2013; 126:2931-43. [DOI: 10.1242/jcs.126052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wnts are glycan- and lipid-modified morphogens that are important for cellular responses, but how Wnt is secreted in polarized epithelial cells remains unclear. Although Wntless (Wls) has been shown to interact with Wnts and support their secretion, the role of Wls in the sorting of Wnts to the final destination in polarized epithelial cells have not been clarified. Glycosylation was shown to be important for the sorting of some transmembrane and secreted proteins, but glycan profiles and their roles in the polarized secretion of Wnts are not known. Here we show the apicobasal secretion of Wnts is regulated by different mechanisms. Wnt11 and Wnt3a were secreted apically and basolaterally, respectively, in polarized epithelial cells. Wls was localized to the basolateral membrane. Mass-spectrometric analyses revealed that Wnt11 is modified with complex/hybrid-(Asn40), high-mannose-(Asn90), and high-mannose/hybrid-(Asn300) type glycans and that Wnt3a is modified with two high-mannose-type glycans (Asn87 and Asn298). Glycosylation processing at Asn40 and galectin-3 were required for the apical secretion of Wnt11, while clathrin and adaptor protein-1 were required for the basolateral secretion of Wnt3a. By the fusion of the Asn40 glycosylation site of Wnt11, Wnt3a was secreted apically. The recycling of Wls by AP-2 was necessary for the basolateral secretion of Wnt3a but not for the apical secretion of Wnt11. These results suggest that Wls has different roles on the polarized secretion of Wnt11 and Wnt3a and that glycosylation processing of Wnts decides their secretory routes.
Collapse
|
119
|
Abstract
We have developed a chemical biology strategy to identify proteins that follow the retrograde transport route from the plasma membrane to the Golgi apparatus, via endosomes. The general principle is the following: plasma membrane proteins are covalently tagged with a first probe. Only the ones that are then transported to trans-Golgi/TGN membranes are covalently bound to a capture reagent that has been engineered into this compartment. Specifically, the first probe is benzylguanine (BG) that is conjugated onto primary amino groups of plasma-membrane proteins. The capture reagent includes an O(6)-alkylguanine-DNA alkyltransferase-derived fragment, the SNAP-tag, which forms a covalent linkage with BG. The SNAP-tag is fused to the GFP-tagged Golgi membrane anchor from galactosyl transferase for proper targeting to trans-Golgi/TGN membranes. Cell-surface BG-tagged proteins that are transported to trans-Golgi/TGN membranes (i.e., that are retrograde cargoes) are thereby covalently captured by the SNAP-tag fusion protein. For identification, the latter is immunopurified using GFP-Trap, and associated retrograde cargo proteins are identified by mass spectrometry. We here provide a step-by-step protocol of this method.
Collapse
|
120
|
Beckett K, Monier S, Palmer L, Alexandre C, Green H, Bonneil E, Raposo G, Thibault P, Le Borgne R, Vincent JP. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 2013; 14:82-96. [PMID: 23035643 PMCID: PMC4337976 DOI: 10.1111/tra.12016] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 10/01/2012] [Accepted: 10/05/2012] [Indexed: 11/28/2022]
Abstract
Wingless acts as a morphogen in Drosophila wing discs, where it specifies cell fates and controls growth several cell diameters away from its site of expression. Thus, despite being acylated and membrane associated, Wingless spreads in the extracellular space. Recent studies have focussed on identifying the route that Wingless follows in the secretory pathway and determining how it is packaged for release. We have found that, in medium conditioned by Wingless-expressing Drosophila S2 cells, Wingless is present on exosome-like vesicles and that this fraction activates signal transduction. Proteomic analysis shows that Wingless-containing exosome-like structures contain many Drosophila proteins that are homologous to mammalian exosome proteins. In addition, Evi, a multipass transmembrane protein, is also present on exosome-like vesicles. Using these exosome markers and a cell-based RNAi assay, we found that the small GTPase Rab11 contributes significantly to exosome production. This finding allows us to conclude from in vivo Rab11 knockdown experiments, that exosomes are unlikely to contribute to Wingless secretion and gradient formation in wing discs. Consistent with this conclusion, extracellularly tagged Evi expressed from a Bacterial Artificial Chromosome is not released from imaginal disc Wingless-expressing cells.
Collapse
Affiliation(s)
- Karen Beckett
- Division of Developmental Biology, MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Yang PT, Anastas JN, Toroni RA, Shinohara MM, Goodson JM, Bosserhoff AK, Chien AJ, Moon RT. WLS inhibits melanoma cell proliferation through the β-catenin signalling pathway and induces spontaneous metastasis. EMBO Mol Med 2012; 4:1294-307. [PMID: 23129487 PMCID: PMC3531604 DOI: 10.1002/emmm.201201486] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 12/20/2022] Open
Abstract
Elevated levels of nuclear β-catenin are associated with higher rates of survival in patients with melanoma, raising questions as to how ß-catenin is regulated in this context. In the present study, we investigated the formal possibility that the secretion of WNT ligands that stabilize ß-catenin may be regulated in melanoma and thus contributes to differences in ß-catenin levels. We find that WLS, a conserved transmembrane protein necessary for WNT secretion, is decreased in both melanoma cell lines and in patient tumours relative to skin and to benign nevi. Unexpectedly, reducing endogenous WLS with shRNAs in human melanoma cell lines promotes spontaneous lung metastasis in xenografts in mice and promotes cell proliferation in vitro. Conversely, overexpression of WLS inhibits cell proliferation in vitro. Activating β-catenin downstream of WNT secretion blocks the increased cell migration and proliferation observed in the presence of WLS shRNAs, while inhibiting WNT signalling rescues the growth defects induced by excess WLS. These data suggest that WLS functions as a negative regulator of melanoma proliferation and spontaneous metastasis by activating WNT/β-catenin signalling.
Collapse
Affiliation(s)
- Pei-Tzu Yang
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington School of MedicineSeattle, WA, USA
| | - Jamie N Anastas
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington School of MedicineSeattle, WA, USA
| | - Rachel A Toroni
- Division of Dermatology, Department of Medicine, University of Washington School of MedicineSeattle, WA, USA
| | - Michi M Shinohara
- Division of Dermatology, Department of Medicine, University of Washington School of MedicineSeattle, WA, USA
| | - Jamie M Goodson
- Department of Biology, University of WashingtonSeattle, WA, USA
| | - Anja K Bosserhoff
- Department of Pathology, University of RegensburgRegensburg, Germany
| | - Andy J Chien
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington School of MedicineSeattle, WA, USA
- Division of Dermatology, Department of Medicine, University of Washington School of MedicineSeattle, WA, USA
| | - Randall T Moon
- Department of Pharmacology, Howard Hughes Medical Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington School of MedicineSeattle, WA, USA
| |
Collapse
|
122
|
Abstract
The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.
Collapse
|
123
|
Wang CL, Tang FL, Peng Y, Shen CY, Mei L, Xiong WC. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 2012; 1:1248-57. [PMID: 23259059 PMCID: PMC3522886 DOI: 10.1242/bio.20122451] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase) and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.
Collapse
Affiliation(s)
- Chun-Lei Wang
- Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University , Augusta, GA 30912 , USA
| | | | | | | | | | | |
Collapse
|
124
|
Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol 2012; 14:1036-1045. [PMID: 22983114 DOI: 10.1038/ncb2574] [Citation(s) in RCA: 762] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/08/2012] [Indexed: 12/16/2022]
Abstract
Wnt signalling has important roles during development and in many diseases. As morphogens, hydrophobic Wnt proteins exert their function over a distance to induce patterning and cell differentiation decisions. Recent studies have identified several factors that are required for the secretion of Wnt proteins; however, how Wnts travel in the extracellular space remains a largely unresolved question. Here we show that Wnts are secreted on exosomes both during Drosophila development and in human cells. We demonstrate that exosomes carry Wnts on their surface to induce Wnt signalling activity in target cells. Together with the cargo receptor Evi/WIs, Wnts are transported through endosomal compartments onto exosomes, a process that requires the R-SNARE Ykt6. Our study demonstrates an evolutionarily conserved functional role of extracellular vesicular transport of Wnt proteins.
Collapse
Affiliation(s)
- Julia Christina Gross
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department for Cell and Molecular Biology, Medical Faculty Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
125
|
Abstract
Wnt proteins comprise a major family of signaling molecules that orchestrate and influence a myriad of cell biological and developmental processes. Although our understanding of the role of Wnt signaling in regulating development and affecting disease, such as cancer, has been ever increasing, the study of the Wnt proteins themselves has been painstaking and slow moving. Despite advances in the biochemical characterization of Wnt proteins, many mysteries remain unsolved. In contrast to other developmental signaling molecules, such as fibroblast growth factors (FGF), transforming growth factors (TGFβ), and Sonic hedgehog (Shh), Wnt proteins have not conformed to many standard methods of protein production, such as bacterial overexpression, and analysis, such as ligand-receptor binding assays. The reasons for their recalcitrant nature are likely a consequence of the complex set of posttranslational modifications involving several highly specialized and poorly characterized processing enzymes. With the recent description of the first Wnt protein structure, the time is ripe to uncover and possibly resolve many of the remaining issues surrounding Wnt proteins and their interactions. Here we describe the process of maturation of Wnt from its initial translation to its eventual release from a cell and interactions in the extracellular environment.
Collapse
Affiliation(s)
- Karl Willert
- Department of Cellular and Molecular Medicine, University of California, San Diego, California 92093, USA.
| | | |
Collapse
|
126
|
Abstract
The WNT signal transduction cascade controls myriad biological phenomena throughout development and adult life of all animals. In parallel, aberrant Wnt signaling underlies a wide range of pathologies in humans. In this Review, we provide an update of the core Wnt/β-catenin signaling pathway, discuss how its various components contribute to disease, and pose outstanding questions to be addressed in the future.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, KNAW and University Medical Center Utrecht, The Netherlands.
| | | |
Collapse
|
127
|
Jackson BM, Eisenmann DM. β-catenin-dependent Wnt signaling in C. elegans: teaching an old dog a new trick. Cold Spring Harb Perspect Biol 2012; 4:a007948. [PMID: 22745286 PMCID: PMC3405868 DOI: 10.1101/cshperspect.a007948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans.
Collapse
Affiliation(s)
- Belinda M Jackson
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
128
|
Sun L, Liu O, Desai J, Karbassi F, Sylvain MA, Shi A, Zhou Z, Rocheleau CE, Grant BD. CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2. PLoS Genet 2012; 8:e1002785. [PMID: 22807685 PMCID: PMC3395619 DOI: 10.1371/journal.pgen.1002785] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/10/2012] [Indexed: 12/03/2022] Open
Abstract
Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L) also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.
Collapse
Affiliation(s)
- Lin Sun
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ou Liu
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Jigar Desai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Farhad Karbassi
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Marc-André Sylvain
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Anbing Shi
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Christian E. Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
129
|
Yin W, Liu D, Liu N, Xu L, Li S, Lin S, Shu X, Pei D. SNX17 regulates Notch pathway and pancreas development through the retromer-dependent recycling of Jag1. CELL REGENERATION 2012; 1:4. [PMID: 25408867 DOI: 10.1186/2045-9769-1-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Notch is one of the most important signaling pathways involved in cell fate determination. Activation of the Notch pathway requires the binding of a membrane-bound ligand to the Notch receptor in the adjacent cell which induces proteolytic cleavages and the activation of the receptor. A unique feature of the Notch signaling is that processes such as modification, endocytosis or recycling of the ligand have been reported to play critical roles during Notch signaling, however, the underlying molecular mechanism appears context-dependent and often controversial. RESULTS Here we identified SNX17 as a novel regulator of the Notch pathway. SNX17 is a sorting nexin family protein implicated in vesicular trafficking and we find it is specifically required in the ligand-expressing cells for Notch signaling. Mechanistically, SNX17 regulates the protein level of Jag1a on plasma membrane by binding to Jag1a and facilitating the retromer-dependent recycling of the ligand. In zebrafish, inhibition of this SNX17-mediated Notch signaling pathway results in defects in neurogenesis as well as pancreas development. CONCLUSIONS Our results reveal that SNX17, by acting as a cargo-specific adaptor, promotes the retromer dependent recycling of Jag1a and Notch signaling and this pathway is involved in cell fate determination during zebrafish neurogenesis and pancreas development.
Collapse
Affiliation(s)
- Wenguang Yin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Dapeng Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Nian Liu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Liangliang Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Song Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen, 518055 China
| | - Shuo Lin
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School of Peking University, Shenzhen, 518055 China ; Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA USA
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
130
|
Abstract
Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell-type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
131
|
Abstract
Throughout the animal kingdom, Wnt-triggered signal transduction pathways play fundamental roles in embryonic development and tissue homeostasis. Wnt proteins are modified as glycolipoproteins and are secreted into the extracellular environment as morphogens. Recent studies on the intracellular trafficking of Wnt proteins demonstrate multiple layers of regulation along its secretory pathway. These findings have propelled a great deal of interest among researchers to further investigate the molecular mechanisms that control the release of Wnts and hence the level of Wnt signaling. This review is dedicated to Wntless, a putative G-protein coupled receptor that transports Wnts intracellularly for secretion. Here, we highlight the conclusions drawn from the most recent cellular, molecular and genetic studies that affirm the role of Wntless in the secretion of Wnt proteins.
Collapse
|
132
|
Chen Q, Takada R, Takada S. Loss of Porcupine impairs convergent extension during gastrulation in zebrafish. J Cell Sci 2012; 125:2224-34. [PMID: 22357957 DOI: 10.1242/jcs.098368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcupine (Porcn), an O-acyltransferase located in the endoplasmic reticulum (ER), is required for lipidation of Wnt proteins to enable their trafficking from the ER in mammalian cell culture. However, it is unclear whether Porcn is required for trafficking of all members of the Wnt family. In this study, we investigated the function of Porcn in zebrafish embryos. We identified two zebrafish homologs of porcupine, porcn and porcupine-like (porcn-l). Zebrafish porcn, but not porcn-l, restores secretion of Wnt proteins in porcn-deficient mouse L cells. Morpholino-mediated knockdown of porcn in zebrafish embryos impairs convergence and extension (CE) during gastrulation without changing embryonic patterning. Moreover, porcn interacts genetically with wnt5b and wnt11 in regulating CE. By contrast, porcn-deficient embryos do not exhibit phenotypes caused by failure in canonical Wnt signaling, which is activated by several Wnt ligands, including Wnt3a. Furthermore, expression of genes regulated by the canonical Wnt signaling pathway is not perturbed in knockdown embryos relative to that in controls. Although the trafficking and lipidation of ectopically expressed zebrafish Wnt5b and mouse Wnt5a are impaired in porcn-deficient embryos, those of ectopically expressed Wnt3a are less or not affected. In addition, the secretion of Wnt5a is inhibited by less Porcn inhibitor than that of Wnt3a in HEK293T cells. Thus, a decrease of Porcn activity does not equivalently affect trafficking and lipidation of different Wnt proteins in zebrafish embryos and in cultured mammalian cells.
Collapse
Affiliation(s)
- Qiuhong Chen
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | | | | |
Collapse
|
133
|
Zhang J, Reiling C, Reinecke JB, Prislan I, Marky LA, Sorgen PL, Naslavsky N, Caplan S. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Traffic 2012; 13:745-57. [PMID: 22284051 DOI: 10.1111/j.1600-0854.2012.01334.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 12/13/2022]
Abstract
Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein, Eps15 homology domain 1 (EHD1). We have demonstrated this interaction by glutathione S-transferase-pulldown, yeast two-hybrid assay, isothermal calorimetry and co-immunoprecipitation, and found that the binding occurs between the EH domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 colocalizes and interacts with components of the retromer complex such as vacuolar protein sorting 26 (Vps26), suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as overexpression of a wild-type Rank-5-small interfering RNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of vesicular stomatitis virus glycoprotein. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Oikonomou G, Perens EA, Lu Y, Shaham S. Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev Biol 2012; 362:42-9. [PMID: 22138055 PMCID: PMC3254776 DOI: 10.1016/j.ydbio.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/31/2011] [Accepted: 11/12/2011] [Indexed: 12/26/2022]
Abstract
The endings of sensory receptor cells often lie within specialized compartments formed by glial cells. The main sensory organ of Caenorhabditis elegans, the amphid, provides a powerful setting for studying glial compartment morphogenesis. Our previous studies showed that amphid compartment size is controlled by opposing activities of the Nemo-like kinase LIT-1, which promotes compartment expansion, and the Patched-related protein DAF-6, which restricts compartment growth. From a genetic screen for mutations able to suppress the bloated sensory compartments of daf-6 mutants, we identified an allele of the sorting nexin gene snx-1. SNX-1 protein is a component of the retromer, a protein complex that facilitates recycling of transmembrane proteins from the endosome to the Golgi network. We find that snx-1 functions cell autonomously within glia to promote sensory compartment growth, and that SNX-1 protein is enriched near the surface of the sensory compartment. snx-1 interacts genetically with lit-1 and another regulator of compartment size, the Dispatched-related gene che-14. Mutations in snx-3 and vps-29, also retromer genes, can suppress daf-6 defects. Surprisingly, however, remaining retromer components seem not to be involved. Our results suggest that a novel assembly of retromer components is important for determining sensory compartment dimensions.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Elliot A. Perens
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
135
|
Roles of N-glycosylation and lipidation in Wg secretion and signaling. Dev Biol 2012; 364:32-41. [PMID: 22285813 DOI: 10.1016/j.ydbio.2012.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 01/12/2012] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
Abstract
Wnt members act as morphogens essential for embryonic patterning and adult homeostasis. Currently, it is still unclear how Wnt secretion and its gradient formation are regulated. In this study, we examined the roles of N-glycosylation and lipidation/acylation in regulating the activities of Wingless (Wg), the main Drosophila Wnt member. We show that Wg mutant devoid of all the N-glycosylations exhibits no major defects in either secretion or signaling, indicating that N-glycosylation is dispensable for Wg activities. We demonstrate that lipid modification at Serine 239 (S239) rather than that at Cysteine 93 (C93) plays a more important role in regulating Wg signaling in multiple developmental contexts. Wg S239 mutant exhibits a reduced ability to bind its receptor, Drosophila Frizzled 2 (dFz2), suggesting that S239 is involved in the formation of a Wg/receptor complex. Importantly, while single Wg C93 or Wg S239 mutants can be secreted, removal of both acyl groups at C93 and S239 renders Wg incapable of reaching the plasma membrane for secretion. These data argue that lipid modifications at C93 and S239 play major roles in Wg secretion. Further experiments demonstrate that two acyl attachment sites in the Wg protein are required for the interaction of Wg with Wntless (Wls, also known as Evi or Srt), the key cargo receptor involved in Wg secretion. Together, our data demonstrate the in vivo roles of N-glycosylation and lipid modification in Wg secretion and signaling.
Collapse
|
136
|
Zhang D, Isack NR, Glodowski DR, Liu J, Chen CCH, Xu XZS, Grant BD, Rongo C. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. ACTA ACUST UNITED AC 2012; 196:85-101. [PMID: 22213799 PMCID: PMC3255976 DOI: 10.1083/jcb.201104141] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RAB-6.2, its effector LIN-10, and the retromer complex maintain synaptic strength by recycling postsynaptic glutamate receptors along the retrograde transport pathway. Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Harterink M, Korswagen HC. Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins. Acta Physiol (Oxf) 2012; 204:8-16. [PMID: 21439025 DOI: 10.1111/j.1748-1716.2011.02287.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Wnt family of signalling proteins has essential functions in development and adult tissue homoeostasis throughout the animal kingdom. Although signalling cascades triggered by Wnt proteins have been extensively studied, much remains to be learned about how Wnts are produced and secreted. Over the past few years, it has become clear that the secretion of Wnt proteins requires a specialized trafficking pathway. As this pathway has been discussed in two recent reviews (Lorenowicz & Korswagen 2009, Port & Basler 2010), we will focus our discussion on the key questions that need to be addressed to gain a more complete understanding of the mechanism and regulation of this essential secretion pathway.
Collapse
Affiliation(s)
- M Harterink
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, The Netherlands
| | | |
Collapse
|
138
|
Abstract
This chapter describes methods for studying membrane traffic and organelle biogenesis in Caenorhabditis elegans. These processes have traditionally been studied with yeast or mammalian cells, but C. elegans is emerging as an attractive alternative model system for cell biologists. C. elegans is well known for the ease of manipulation through classic and molecular genetic techniques. In addition, C. elegans is transparent, so fluorescent proteins can be observed in live animals. These properties have aided the development of functional assays for tracking cell biological processes in situ. Localization results obtained with fluorescent proteins can be validated with immunofluorescence and with biochemical methods, such as subcellular fractionation, adapted from methods developed for other organisms. C. elegans thus combines powerful genetics with a range of cell biological techniques to study subcellular processes in a tractable multicellular organism.
Collapse
Affiliation(s)
- Hanna Fares
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
139
|
Lu N, Zhou Z. Membrane trafficking and phagosome maturation during the clearance of apoptotic cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:269-309. [PMID: 22251564 PMCID: PMC3551535 DOI: 10.1016/b978-0-12-394304-0.00013-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Apoptosis is a cellular suicide process that quietly and efficiently eliminates unwanted or damaged cells. In metazoans, cells that undergo apoptosis are swiftly internalized by phagocytes and subsequently degraded inside phagosomes through phagosome maturation, a process that involves the fusion between phagosomes and multiple kinds of intracellular organelles and the gradual acidification of phagosomal lumen. In recent years, rapid progress has been made, in particular, through studies conducted in the model organism, the nematode Caenorhabditis elegans, in understanding the membrane trafficking events and molecular mechanisms that govern the degradation of apoptotic cells through phagosome maturation. These studies revealed the novel and essential functions of a large number of proteins, including the large GTPase dynamin, multiple Rab small GTPases and their regulatory proteins, the lipid second messenger PtdIns(3)P and its effectors, and unexpectedly, the phagosomal receptors for apoptotic cells, in promoting phagosome maturation. Further, novel signaling pathways essential for phagosome maturation have been delineated. Here, we discuss these exciting new findings, which have significantly deepened and broadened our understanding of the mechanisms that regulate the interaction between intracellular organelles and phagosomes.
Collapse
Affiliation(s)
- Nan Lu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
140
|
Herr P, Basler K. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev Biol 2012; 361:392-402. [DOI: 10.1016/j.ydbio.2011.11.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 11/15/2022]
|
141
|
Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011; 14:29-37. [PMID: 22193161 PMCID: PMC3613977 DOI: 10.1038/ncb2374] [Citation(s) in RCA: 265] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.
Collapse
Affiliation(s)
- Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
142
|
Zhang P, Wu Y, Belenkaya TY, Lin X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 2011; 21:1677-90. [PMID: 22041890 PMCID: PMC3357989 DOI: 10.1038/cr.2011.167] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/19/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
143
|
Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC. VPS35 haploinsufficiency increases Alzheimer's disease neuropathology. ACTA ACUST UNITED AC 2011; 195:765-79. [PMID: 22105352 PMCID: PMC3257571 DOI: 10.1083/jcb.201105109] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The retromer complex component VPS35 prevents activation of the BACE1 and Aβ production and thus plays an essential role in limiting Alzheimer’s disease neuropathology. VPS35, a major component of the retromer complex, is important for endosome-to-Golgi retrieval of membrane proteins. Although implicated in Alzheimer’s disease (AD), how VPS35 regulates AD-associated pathology is unknown. In this paper, we show that hemizygous deletion of Vps35 in the Tg2576 mouse model of AD led to earlier-onset AD-like phenotypes, including cognitive memory deficits, defective long-term potentiation, and impaired postsynaptic glutamatergic neurotransmission in young adult age. These deficits correlated well with an increase of β-amyloid peptide (Aβ) level in the mutant hippocampus. We further demonstrate that VPS35 is predominantly expressed in pyramidal neurons of young adult hippocampus and interacts with BACE1, a protease responsible for Aβ production. Loss of VPS35 function in the mouse hippocampus increased BACE1 activity. Suppression of VPS35 expression in culture decreased BACE1 trans-Golgi localization but enriched it in endosomes. These results demonstrate an essential role for VPS35 in suppression of AD neuropathology and in inhibition of BACE1 activation and Aβ production by promoting BACE1 endosome-to-Golgi retrieval.
Collapse
Affiliation(s)
- Lei Wen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Gasnereau I, Herr P, Chia PZC, Basler K, Gleeson PA. Identification of an endocytosis motif in an intracellular loop of Wntless protein, essential for its recycling and the control of Wnt protein signaling. J Biol Chem 2011; 286:43324-33. [PMID: 22027831 DOI: 10.1074/jbc.m111.307231] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secretion of Wnt signaling proteins is dependent upon the transmembrane sorting receptor, Wntless (Wls), which recycles between the trans-Golgi network and the cell surface. Loss of Wls results in impairment of Wnt secretion and defects in development and homeostasis in Drosophila, Caenorhabditis elegans, and the mouse. The sorting signals for the internalization and trafficking of Wls have not been defined. Here, we demonstrate that Wls internalization requires clathrin and dynamin I, components of the clathrin-mediated endocytosis pathway. Moreover, we have identified a conserved YXXϕ endocytosis motif in the third intracellular loop of the multipass membrane protein Wls. Mutation of the tyrosine-based motif YEGL to AEGL (Y425A) resulted in the accumulation of human mutant Wls on the cell surface of transfected HeLa cells. The cell surface accumulation of Wls(AEGL) was rescued by the insertion of a classical YXXϕ motif in the cytoplasmic tail. Significantly, a Drosophila Wls(AEGL) mutant displayed a wing notch phenotype, with reduced Wnt secretion and signaling. These findings demonstrate that YXXϕ endocytosis motifs can occur in the intracellular loops of multipass membrane proteins and, moreover, provide direct evidence that the trafficking of Wls is required for efficient secretion of Wnt signaling proteins.
Collapse
Affiliation(s)
- Isabelle Gasnereau
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
145
|
Wildwater M, Sander N, de Vreede G, van den Heuvel S. Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development 2011; 138:4375-85. [DOI: 10.1242/dev.066431] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1 Argonaute mutant with additional and abnormally oriented seam cell divisions. ALG-1 is the main subunit of the microRNA-induced silencing complex (miRISC) and was previously shown to regulate the timing of postembryonic development. Time-lapse fluorescence microscopy of developing larvae revealed that reduced alg-1 function successively interferes with Wnt signaling, cell adhesion, cell shape and the orientation and timing of seam cell division. We found that Wnt inactivation, through mig-14 Wntless mutation, disrupts tissue polarity but not anterior-posterior division. However, combined Wnt inhibition and cell shape alteration resulted in disordered orientation of seam cell division, similar to the alg-1 mutant. Our findings reveal additional alg-1-regulated processes, uncover a previously unknown function of Wnt ligands in seam tissue polarity, and show that Wnt signaling and geometric cues redundantly control the seam cell division axis.
Collapse
Affiliation(s)
- Marjolein Wildwater
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Nicholas Sander
- Department of Genetics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Geert de Vreede
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sander van den Heuvel
- Department of Developmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
146
|
Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 2011; 71:103-16. [PMID: 21745641 DOI: 10.1016/j.neuron.2011.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
Collapse
Affiliation(s)
- Kavita Babu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
147
|
Shi Y, Stefan CJ, Rue SM, Teis D, Emr SD. Two novel WD40 domain-containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway. Mol Biol Cell 2011; 22:4093-107. [PMID: 21880895 PMCID: PMC3204071 DOI: 10.1091/mbc.e11-05-0440] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Regulated responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. Two novel WD40 domain proteins, Ere1 and Ere2 (endosomal recycling proteins), are found to mediate cargo-specific recognition by the retromer pathway. Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway.
Collapse
Affiliation(s)
- Yufeng Shi
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
148
|
Shilo BZ, Schejter ED. Regulation of developmental intercellular signalling by intracellular trafficking. EMBO J 2011; 30:3516-26. [PMID: 21878993 DOI: 10.1038/emboj.2011.269] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/01/2011] [Indexed: 11/09/2022] Open
Abstract
Universal trafficking components within the cell can be recruited to coordinate and regulate the developmental signalling cascades. We will present ways in which the intracellular trafficking machinery is used to affect and modulate the outcome of signal transduction in developmental contexts, thus regulating multicellular development. Each of the signalling components must reach its proper intracellular destination, in a form that is properly folded and modified. In many instances, the ability to bring components together or segregate them into distinct compartments within the cell actually provides the switch mechanism to turn developmental signalling pathways on or off. The review will begin with a focus on the signal-sending cells, and the ways in which ligand trafficking can impinge on the signalling outcome, via processing, endocytosis and recycling. We will then turn to the signal-receiving cell, and discuss mechanisms by which endocytosis can affect the spatial features of the signal, and the compartmentalization of components downstream to the receptor.
Collapse
Affiliation(s)
- Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | | |
Collapse
|
149
|
Abstract
It is becoming clear that intracellular signaling events are intimately linked with the membrane transport processes. In addition to the long known role of endocytosis in downregulating plasma membrane receptors, more recent data uncover several sophisticated modes by which endocytosis affects the type and duration of signals. Particularly striking are various roles of endocytic compartments as membrane platforms for compartmentalized assembly or sequestration of specific signaling complexes. Here we review some recent examples illustrating how endosomes may mediate ligand-stimulated apoptotic signaling and how multivesicular bodies affect Wnt signaling by regulated sequestration of signaling molecules or their secretion in exosomes. We also discuss evidence documenting the involvement of endocytic proteins in the regulation of p53 activity and stability, which suggests a possible cross-talk between endocytic processes and transcriptional responses.
Collapse
Affiliation(s)
- Anna Hupalowska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, 4 Ks. Trojdena Street, Warsaw, Poland
| | | |
Collapse
|
150
|
Abstract
Bidirectional traffic between the Golgi apparatus and the endosomal system sustains the functions of the trans-Golgi network (TGN) in secretion and organelle biogenesis. Export of cargo from the TGN via anterograde trafficking pathways depletes the organelle of sorting receptors, processing proteases, SNARE molecules, and other factors, and these are subsequently retrieved from endosomes via the retrograde pathway. Recent studies indicate that retrograde trafficking is vital to early metazoan development, nutrient homeostasis, and for processes that protect against Alzheimer's and other neurological diseases.
Collapse
Affiliation(s)
- Christopher G Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|