101
|
SiouNing AS, Seong TS, Kondo H, Bhassu S. MicroRNA Regulation in Infectious Diseases and Its Potential as a Biosensor in Future Aquaculture Industry: A Review. Molecules 2023; 28:molecules28114357. [PMID: 37298833 DOI: 10.3390/molecules28114357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
Collapse
Affiliation(s)
- Aileen See SiouNing
- Animal Genomic and Genetics Evolutionary Laboratory, Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Tang Swee Seong
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur 50603, Malaysia
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Subha Bhassu
- Animal Genomic and Genetics Evolutionary Laboratory, Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Terra Aqua Laboratory, Centre for Research in Biotechnology for Agriculture (CEBAR), Research Management and Innovation Complex, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
102
|
Sum H, Brewer AC. Epigenetic modifications as therapeutic targets in atherosclerosis: a focus on DNA methylation and non-coding RNAs. Front Cardiovasc Med 2023; 10:1183181. [PMID: 37304954 PMCID: PMC10248074 DOI: 10.3389/fcvm.2023.1183181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Significant progress in the diagnosis and treatment of cardiovascular disease (CVD) has been made in the past decade, yet it remains a leading cause of morbidity and mortality globally, claiming an estimated 17.9 million deaths per year. Although encompassing any condition that affects the circulatory system, including thrombotic blockage, stenosis, aneurysms, blood clots and arteriosclerosis (general hardening of the arteries), the most prevalent underlying hallmark of CVD is atherosclerosis; the plaque-associated arterial thickening. Further, distinct CVD conditions have overlapping dysregulated molecular and cellular characteristics which underlie their development and progression, suggesting some common aetiology. The identification of heritable genetic mutations associated with the development of atherosclerotic vascular disease (AVD), in particular resulting from Genome Wide Association Studies (GWAS) studies has significantly improved the ability to identify individuals at risk. However, it is increasingly recognised that environmentally-acquired, epigenetic changes are key factors associated with atherosclerosis development. Increasing evidence suggests that these epigenetic changes, most notably DNA methylation and the misexpression of non-coding, microRNAs (miRNAs) are potentially both predictive and causal in AVD development. This, together with their reversible nature, makes them both useful biomarkers for disease and attractive therapeutic targets potentially to reverse AVD progression. We consider here the association of aberrant DNA methylation and dysregulated miRNA expression with the aetiology and progression of atherosclerosis, and the potential development of novel cell-based strategies to target these epigenetic changes therapeutically.
Collapse
|
103
|
Grieb A, Schmitt A, Fragasso A, Widmann M, Mattioni Maturana F, Burgstahler C, Erz G, Schellhorn P, Nieß AM, Munz B. Skeletal Muscle MicroRNA Patterns in Response to a Single Bout of Exercise in Females: Biomarkers for Subsequent Training Adaptation? Biomolecules 2023; 13:884. [PMID: 37371465 DOI: 10.3390/biom13060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
microRNAs (miRs) have been proposed as a promising new class of biomarkers in the context of training adaptation. Using microarray analysis, we studied skeletal muscle miR patterns in sedentary young healthy females (n = 6) before and after a single submaximal bout of endurance exercise ('reference training'). Subsequently, participants were subjected to a structured training program, consisting of six weeks of moderate-intensity continuous endurance training (MICT) and six weeks of high-intensity interval training (HIIT) in randomized order. In vastus lateralis muscle, we found significant downregulation of myomiRs, specifically miR-1, 133a-3p, and -5p, -133b, and -499a-5p. Similarly, exercise-associated miRs-23a-3p, -378a-5p, -128-3p, -21-5p, -107, -27a-3p, -126-3p, and -152-3p were significantly downregulated, whereas miR-23a-5p was upregulated. Furthermore, in an untargeted approach for differential expression in response to acute exercise, we identified n = 35 miRs that were downregulated and n = 20 miRs that were upregulated by factor 4.5 or more. Remarkably, KEGG pathway analysis indicated central involvement of this set of miRs in fatty acid metabolism. To reproduce these data in a larger cohort of all-female subjects (n = 29), qPCR analysis was carried out on n = 15 miRs selected from the microarray, which confirmed their differential expression. Furthermore, the acute response, i.e., the difference between miR concentrations before and after the reference training, was correlated with changes in maximum oxygen uptake (V̇O2max) in response to the training program. Here, we found that miRs-199a-3p and -19b-3p might be suitable acute-response candidates that correlate with individual degrees of training adaptation in females.
Collapse
Affiliation(s)
- Alexandra Grieb
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Angelika Schmitt
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Annunziata Fragasso
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Manuel Widmann
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Felipe Mattioni Maturana
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Christof Burgstahler
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Gunnar Erz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Philipp Schellhorn
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Andreas M Nieß
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| | - Barbara Munz
- Medical Clinic, Department of Sports Medicine, University Hospital Tübingen, Hoppe-Seyler-Str. 6, D-72076 Tübingen, Germany
- Interfaculty Research Institute for Sports and Physical Activity, Eberhard Karls University of Tübingen, D-72074 Tübingen, Germany
| |
Collapse
|
104
|
Cheng X, Jian D, Xing J, Liu C, Liu Y, Cui C, Li Z, Wang S, Li R, Ma X, Wang Y, Gu X, Ge Z, Tang H, Liu L. Circulating cardiac MicroRNAs safeguard against dilated cardiomyopathy. Clin Transl Med 2023; 13:e1258. [PMID: 37138538 PMCID: PMC10157268 DOI: 10.1002/ctm2.1258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Cardiac-resident or -enriched microRNAs (miRNAs) could be released into the bloodstream becoming circulating cardiac miRNAs, which are increasingly recognized as non-invasive and accessible biomarkers of multiple heart diseases. However, dilated cardiomyopathy (DCM)-associated circulating miRNAs (DACMs) and their roles in DCM pathogenesis remain largely unexplored. METHODS Two human cohorts, consisting of healthy individuals and DCM patients, were enrolled for serum miRNA sequencing (10 vs. 10) and quantitative polymerase chain reaction validation (46 vs. 54), respectively. Rigorous screening strategy was enacted to define DACMs and their potentials for diagnosis. DCM mouse model, different sources of cardiomyocytes, adeno-associated virus 9 (AAV9), gene knockout, RNAscope miRNA in situ hybridization, mRFP-GFP-LC3B reporter, echocardiography and transmission electron microscopy were adopted for mechanistic explorations. RESULTS Serum miRNA sequencing revealed a unique expression pattern for DCM circulating miRNAs. DACMs miR-26a-5p, miR-30c-5p, miR-126-5p and miR-126-3p were found to be depleted in DCM circulation as well as heart tissues. Their expressions in circulation and heart tissues were proven to be correlated significantly, and a combination of these miRNAs was suggested potential values for DCM diagnosis. FOXO3, a predicted common target, was experimentally demonstrated to be co-repressed within cardiomyocytes by these DACMs except miR-26a-5p. Delivery of a combination of miR-30c-5p, miR-126-5p and miR-126-3p into the murine myocardium via AAV9 carrying an expression cassette driven by cTnT promoter, or cardiac-specific knockout of FOXO3 (Myh6-CreERT2 , FOXO3 flox+/+ ) dramatically attenuated cardiac apoptosis and autophagy involved in DCM progression. Moreover, competitively disrupting the interplay between DACMs and FOXO3 mRNA by specifically introducing their interacting regions into murine myocardium crippled the cardioprotection of DACMs against DCM. CONCLUSIONS Circulating cardiac miRNA-FOXO3 axis plays a pivotal role in safeguarding against myocardial apoptosis and excessive autophagy in DCM development, which may provide serological cues for DCM non-invasive diagnosis and shed light on DCM pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Xiaolei Cheng
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
| | - Dongdong Jian
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory of Protein Posttranslational Modifications and Cell FunctionSchool of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Henan Key Laboratory of Chronic Disease ManagementDepartment of Health Management CenterHenan Provincial People's HospitalDepartment of Health Management Center of Central China Fuwai HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Cihang Liu
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
- Department of Biochemistry and Molecular BiologyBeijing Key Laboratory of Protein Posttranslational Modifications and Cell FunctionSchool of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yong Liu
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Cunying Cui
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Shixing Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Ran Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Xiaohan Ma
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Xiaoping Gu
- Department of AnesthesiologyAffiliated Drum Tower Hospital of Medical School of Nanjing UniversityNanjingChina
| | - Zhenwei Ge
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
- Henan Key Laboratory of Chronic Disease ManagementDepartment of Health Management CenterHenan Provincial People's HospitalDepartment of Health Management Center of Central China Fuwai HospitalCentral China Fuwai Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Liu
- National Health Commission Key Laboratory of Cardiovascular Regenerative MedicineHeart Center of Henan Provincial People's HospitalCentral China Fuwai Hospital of Zhengzhou UniversityFuwai Central China Cardiovascular Hospital and Central China Branch of National Center for Cardiovascular DiseasesZhengzhouChina
| |
Collapse
|
105
|
Jenike AE, Jenike KM, Peterson KJ, Fromm B, Halushka MK. Direct observation of the evolution of cell-type-specific microRNA expression signatures supports the hematopoietic origin model of endothelial cells. Evol Dev 2023; 25:226-239. [PMID: 37157156 PMCID: PMC10302300 DOI: 10.1111/ede.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.
Collapse
Affiliation(s)
- Ana E. Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Katharine M. Jenike
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| | - Kevin J. Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT-The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc K. Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205 USA
| |
Collapse
|
106
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
107
|
Park AJ, Fandl HK, Garcia VP, Coombs GB, DeSouza NM, Greiner JJ, Barak OF, Mijacika T, Dujic Z, Ainslie PN, DeSouza CA. Differential Expression of Vascular-Related MicroRNA in Circulating Endothelial Microvesicles in Adults With Spinal Cord Injury: A Pilot Study. Top Spinal Cord Inj Rehabil 2023; 29:34-42. [PMID: 37235195 PMCID: PMC10208256 DOI: 10.46292/sci22-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.
Collapse
Affiliation(s)
- Andrew J Park
- Rocky Mountain Regional Spinal Injury System, Craig Hospital, Englewood, Colorado
- University of Colorado, Department of Physical Medicine and Rehabilitation, Aurora, Colorado
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Geoff B Coombs
- University of Western Ontario, School of Kinesiology, London, Ontario, Canada
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Otto F Barak
- Department of Sports Medicine, University of Novi Sad, Serbia
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Tanja Mijacika
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Zeljko Dujic
- Department of Integrative Physiology, University of Split School of Medicine, Split, Croatia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|
108
|
Alehossein P, Taheri M, Tayefeh Ghahremani P, Dakhlallah D, Brown CM, Ishrat T, Nasoohi S. Transplantation of Exercise-Induced Extracellular Vesicles as a Promising Therapeutic Approach in Ischemic Stroke. Transl Stroke Res 2023; 14:211-237. [PMID: 35596116 DOI: 10.1007/s12975-022-01025-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.
Collapse
Affiliation(s)
- Parsa Alehossein
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
- Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Pargol Tayefeh Ghahremani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran
| | - Duaa Dakhlallah
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, Cairo, Egypt
| | - Candice M Brown
- Department of Neuroscience, School of Medicine, and Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, School of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Daneshjoo Blvd., Chamran Hwy., PO: 19615-1178, Tehran, Iran.
| |
Collapse
|
109
|
Ghaneh T, Zeinali F, Babini H, Astaraki S, Hassan-Zadeh V. An increase in the expression of circulating miR30d-5p and miR126-3p is associated with intermediate hyperglycaemia in Iranian population. Arch Physiol Biochem 2023; 129:489-496. [PMID: 33113334 DOI: 10.1080/13813455.2020.1839105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Type 2 diabetes is the most prevalent metabolic disease worldwide. The disease is characterised by high blood glucose levels and recently it has been shown that changes in the plasma levels of several miRNAs (miRNA) are associated with the disease. Interestingly, alterations in circulating miRNAs occur years before the onset of the disease and demonstrate predictive power. In this study, we carried out RT-qPCR to examine the plasma levels of two type 2 diabetes specific miRNAs, miR-30d-5p and miR-126-3p in an Iranian population of non-diabetic control individuals, subjects with intermediate hyperglycaemia and type 2 diabetic individuals with hyperglycaemia. We found that the plasma levels of miR-30d and miR-126 increase by 3.1 and 11.16 times, respectively, in individuals with intermediate hyperglycaemia compared to non-diabetic controls. However, no significant changes in the expression of these two miRNAs have been observed between type 2 diabetic individuals and non-diabetic subjects. Our results confirm that alterations in the plasma levels of miR-30d-5p and miR-126-3p could be used as diagnostic markers of type 2 diabetes in the Iranian population as well.
Collapse
Affiliation(s)
- Taravat Ghaneh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Zeinali
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hosna Babini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahideh Hassan-Zadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
110
|
Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2023; 56:16-24. [PMID: 36267005 PMCID: PMC9989784 DOI: 10.5115/acb.22.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/27/2022] Open
Abstract
Endothelial cells (EC) are the anatomical boundaries between the intravascular and extravascular space. Damage to ECs is catastrophic and induces endothelial cell dysfunction. The pathogenesis is multifactorial and involves dysregulation in the signaling pathways, membrane lipids ratio disturbance, cell-cell adhesion disturbance, unfolded protein response, lysosomal and mitochondrial stress, autophagy dysregulation, and oxidative stress. Autophagy is a lysosomal-dependent turnover of intracellular components. Autophagy was recognized early in the pathogenesis of endothelial dysfunction. Autophagy is a remarkable patho (physiological) process in the cell homeostasis regulation including EC. Regulation of autophagy rate is disease-dependent and impaired with aging. Up-regulation of autophagy induces endothelial cell regeneration/differentiation and improves the function of impaired ones. The paper scrutinizes the molecular mechanisms and triggers of EC dysregulation and current perspectives for future therapeutic strategies by autophagy targeting.
Collapse
|
111
|
Shou X, Wang Y, Jiang Q, Chen J, Liu Q. miR-126 promotes M1 to M2 macrophage phenotype switching via VEGFA and KLF4. PeerJ 2023; 11:e15180. [PMID: 37020848 PMCID: PMC10069419 DOI: 10.7717/peerj.15180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Background
Macrophage polarization and microRNA play crucial roles in the development of atherosclerosis (AS). The M1 macrophage phenotype contributes to the formation of plaques, while the M2 macrophage phenotype resolves inflammation and promotes tissue repair. MiR-126 has been found to play a role in regulating macrophage polarization in the context of AS. However, the exact mechanism of miR-126 requires further research.
Methods
The foam cell model was established by stimulating THP-1 with oxidized low-density lipoprotein (ox-LDL). We transfected foam cells with miR-126 mimic and its negative control. The transfection of miR-126 was implemented by riboFECT CP transfection kit. The levels of miR-126 and M1/M2 associated genes in foam cells were quantified using reverse transcription-quantitative PCR (RT-qPCR). Additionally, the expressions of CD86+ and CD206+ cells in foam cells were determined by flow cytometry. Western blotting and RT-qPCR were used to determine the protein and mRNA levels of the vascular endothelial growth factor A (VEGFA) and the transcriptional regulator Krüppel-like factor 4 (KLF4), respectively. Additionally, we detected endothelial cell migration after co-culturing endothelial cells and macrophages. MG-132 was used to indirectly activate the expression of VEGFA, and the expression of KLF4 was also evaluated.
Results
The activation of apoptosis and production of foam cells were boosted by the addition of ox-LDL. We transfected foam cells with miR-126 mimic and its negative control and observed that miR-126 greatly suppressed foam cell development and inhibited phagocytosis. Moreover, it caused pro-inflammatory M1 macrophages to switch to the anti-inflammatory M2 phenotype. This was reflected by the increase in anti-inflammatory gene expression and the decrease in pro-inflammatory gene expression. Additionally, miR-126 dramatically decreased the expressions of VEGFA and KLF4. The protein-protein interaction network analysis showed a significantly high correlation between miR-126, VEGFA, and KLF4. MiR-126 may also promote EC migration by activating macrophage PPAR γ expression and effectively suppressing macrophage inflammation. MG-132 indirectly activated the expression of VEGFA, and the expression of KLF4 also significantly increased, which indicates a direct or indirect relationship between VEGFA and KLF4.
Conclusion
Our study shows that miR-126 can reverse ox-LDL-mediated phagocytosis and apoptosis in macrophages. Consequently, the potential role of miR-126 was manifested in regulating macrophage function and promoting vascular endothelial migration.
Collapse
Affiliation(s)
- Xinyang Shou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yimin Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingyu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Liu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
112
|
Reiss AB, Ahmed S, Johnson M, Saeedullah U, De Leon J. Exosomes in Cardiovascular Disease: From Mechanism to Therapeutic Target. Metabolites 2023; 13:479. [PMID: 37110138 PMCID: PMC10142472 DOI: 10.3390/metabo13040479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | |
Collapse
|
113
|
Wang W, Ge L, Zhang LL, Wang LR, Lu YY, Gou L, Gou RQ, Xu TY, Ma XL, Zhang XH. Mechanism of human chorionic gonadotropin in endometrial receptivity via the miR-126-3p/PI3K/Akt/eNOS axis. Kaohsiung J Med Sci 2023; 39:468-477. [PMID: 36912344 DOI: 10.1002/kjm2.12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 03/14/2023] Open
Abstract
Human chorionic gonadotropin (hCG) might affect endometrial receptivity, exerting integral roles in embryo implantation. This study explored the action of hCG in endometrial receptivity via the miR-126-3p/PIK3R2/PI3K/Akt/eNOS axis. The embryo implantation dysfunction (EID) mouse models were established by administrating mifepristone and human endometrial epithelial cells (EECs) were used for in vivo experiments, both followed by hCG treatment. Expression level of CD105 and protein levels of cadherin CD144 and CD146 in mice were determined by immunohistochemistry and Western blot. The levels of miR-126-3p and PIK3R2 mRNA and PIK3R2, p-PI3K p85 α, PI3K p110 α, p-Akt, Akt, p-eNOS, and eNOS protein levels were measured. Cell proliferation was evaluated by CCK-8 and EdU assays. The binding sites of miR-126-3p and PIK3R2 were predicted and verified. hCG-treated EECs were further transfected with miR-126-inhibitor for functional rescue experiments. hCG ameliorated endometrial receptivity in EID mice. Moreover, hCG promoted miR-126-3p and suppressed PIK3R2 in EID mice and EECs. miR-126-3p targeted PIK3R2. EEC proliferation was enhanced after hCG treatment but inhibited by miR-126-3p downregulation. Both in vivo and in vitro experiments validated that hCG activated the PI3K/Akt/eNOS pathway through the miR-126-3p/PIK3R2 axis. Collectively, hCG improves endometrial receptivity by activating the PI3K/Akt/eNOS pathway via regulating miR-126-3p/PIK3R2.
Collapse
Affiliation(s)
- Wei Wang
- The Reproductive Medicine Center of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Liang Ge
- Department of Anesthesiology, Gansu Province Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Li-Li Zhang
- The Reproductive Medicine Center of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Li-Rong Wang
- The Reproductive Medicine Center of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Yong-Yan Lu
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Li Gou
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Rui-Qiang Gou
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Tong-Yu Xu
- Department of Clinical Medicine, The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao-Ling Ma
- The Reproductive Medicine Center of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| | - Xue-Hong Zhang
- The Reproductive Medicine Center of the First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, Gansu, China
| |
Collapse
|
114
|
Exosomal miRNA-155 and miRNA-146a are promising prognostic biomarkers of the severity of hemorrhagic fever with renal syndrome. Noncoding RNA Res 2023; 8:75-82. [DOI: 10.1016/j.ncrna.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/14/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
|
115
|
Xia H, Yu Z, Zhang L, Liu S, Zhao Y, Huang J, Fu D, Xie Q, Liu H, Zhang Z, Zhao Y, Wu M, Zhang W, Pang D, Chen G. Real-Time Dissection of the Transportation and miRNA-Release Dynamics of Small Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205566. [PMID: 36599707 PMCID: PMC9982592 DOI: 10.1002/advs.202205566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed structures that deliver biomolecules for intercellular communication. Developing visualization methods to elucidate the spatiotemporal dynamics of EVs' behaviors will facilitate their understanding and translation. With a quantum dot (QD) labeling strategy, a single particle tracking (SPT) platform is proposed here for dissecting the dynamic behaviors of EVs. The interplays between tumor cell-derived small EVs (T-sEVs) and endothelial cells (ECs) are specifically investigated based on this platform. It is revealed that, following a clathrin-mediated endocytosis by ECs, T-sEVs are transported to the perinuclear region in a typical three-stage pattern. Importantly, T-sEVs frequently interact with and finally enter lysosomes, followed by quick release of their carried miRNAs. This study, for the first time, reports the entire process and detailed dynamics of T-sEV transportation and cargo-release in ECs, leading to better understanding of their proangiogenic functions. Additionally, the QD-based SPT technique will help uncover more secrets of sEV-mediated cell-cell communication.
Collapse
Affiliation(s)
- Hou‐Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zi‐Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Li‐Juan Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Shu‐Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Yi Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of ProsthodonticsSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Jue Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dan‐Dan Fu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Qi‐Hui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Hai‐Ming Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Zhi‐Ling Zhang
- College of Chemistry and Molecular SciencesWuhan UniversityWuhan430072P. R. China
| | - Yi‐Fang Zhao
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
| | - Dai‐Wen Pang
- State Key Laboratory of Medicinal Chemical BiologyTianjin Key Laboratory of Biosensing and Molecular RecognitionResearch Center for Analytical Sciencesand College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- Department of Oral and Maxillofacial SurgerySchool and Hospital of StomatologyWuhan UniversityWuhan430079P. R. China
- TaiKang Center for Life and Medical SciencesWuhan UniversityWuhan430071P. R. China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071P. R. China
| |
Collapse
|
116
|
Škrlec I. Circadian system microRNAs - Role in the development of cardiovascular diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:225-267. [PMID: 37709378 DOI: 10.1016/bs.apcsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Circadian rhythm regulates numerous physiological processes, and disruption of the circadian clock can lead to cardiovascular disease. Cardiovascular disease is the leading cause of morbidity and mortality worldwide. Small non-coding RNAs, microRNAs (miRNAs), are involved in regulating gene expression, both those important for the cardiovascular system and key circadian clock genes. Epigenetic mechanisms based on miRNAs are essential for fine-tuning circadian physiology. Indeed, some miRNAs depend on circadian periodicity, others are under the influence of light, and still others are under the influence of core clock genes. Dysregulation of miRNAs involved in circadian rhythm modulation has been associated with inflammatory conditions of the endothelium and atherosclerosis, which can lead to coronary heart disease and myocardial infarction. Epigenetic processes are reversible through their association with environmental factors, enabling innovative preventive and therapeutic strategies for cardiovascular disease. Here, is a review of recent findings on how miRNAs modulate circadian rhythm desynchronization in cardiovascular disease. In the era of personalized medicine, the possibility of treatment with miRNA antagomirs should be time-dependent to correspond to chronotherapy and achieve the most significant efficacy.
Collapse
Affiliation(s)
- Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| |
Collapse
|
117
|
Pediatric Diabetic Nephropathy: Novel Insights from microRNAs. J Clin Med 2023; 12:jcm12041447. [PMID: 36835983 PMCID: PMC9961327 DOI: 10.3390/jcm12041447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Diabetic nephropathy (DN) represents the most common microvascular complication in patients with diabetes. This progressive kidney disease has been recognized as the major cause of end-stage renal disease with higher morbidity and mortality. However, its tangled pathophysiology is still not fully known. Due to the serious health burden of DN, novel potential biomarkers have been proposed to improve early identification of the disease. In this complex landscape, several lines of evidence supported a critical role of microRNAs (miRNAs) in regulating posttranscriptional levels of protein-coding genes involved in DN pathophysiology. Indeed, intriguing data showed that deregulation of certain miRNAs (e.g., miRNAs 21, -25, -92, -210, -126, -216, and -377) were pathogenically linked to the onset and the progression of DN, suggesting not only a role as early biomarkers but also as potential therapeutic targets. To date, these regulatory biomolecules represent the most promising diagnostic and therapeutic options for DN in adult patients, while similar pediatric evidence is still limited. More, findings from these elegant studies, although promising, need to be deeper investigated in larger validation studies. In an attempt to provide a comprehensive pediatric overview in the field, we aimed to summarize the most recent evidence on the emerging role of miRNAs in pediatric DN pathophysiology.
Collapse
|
118
|
Sun J, Ge Y, Chao T, Bai R, Wang C. The Role of miRNA in the Regulation of Angiogenesis in Ischemic Heart Disease. Curr Probl Cardiol 2023; 48:101637. [PMID: 36773949 DOI: 10.1016/j.cpcardiol.2023.101637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Despite continued improvements in primary prevention and treatment, ischemic heart disease (IHD) is the most common cause of mortality in both developing and developed countries. Promoting angiogenesis and reconstructing vascular network in ischemic myocardium are critical process of postischemic tissue repair. Effective strategies to promote survival and avoid apoptosis of endothelial cells in the ischemic myocardium can help to achieve long-term cardiac angiogenesis. Therefore, it is of great importance to investigate the molecular pathophysiology of angiogenesis in-depth and to find the key targets that promote angiogenesis. Recently years, many studies have found that microRNAs play important regulatory roles in almost all process of angiogenesis, including vascular sprouting, proliferation, survival and migration of vascular endothelial cells, recruitment of vascular progenitor cells, and control of angiopoietin expression. This review presents detailed information about the regulatory role of miRNAs in the angiogenesis of IHD in recent years, and provides new therapeutic ideas for the treatment of IHD.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaru Ge
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
119
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Akiash N, Assareh AR, Anbiyaee O, Antosik P, Dzięgiel P, Farzaneh M, Kempisty B. Potential roles of endothelial cells-related non-coding RNAs in cardiovascular diseases. Pathol Res Pract 2023; 242:154330. [PMID: 36696805 DOI: 10.1016/j.prp.2023.154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Endothelial dysfunction is identified by a conversion of the endothelium toward decreased vasodilation and prothrombic features and is known as a primary pathogenic incident in cardiovascular diseases. An insight based on particular and promising biomarkers of endothelial dysfunction may possess vital clinical significances. Currently, non-coding RNAs due to their participation in critical cardiovascular processes like initiation and progression have gained much attention as possible diagnostic as well as prognostic biomarkers in cardiovascular diseases. Emerging line of proof has demonstrated that abnormal expression of non-coding RNAs is nearly correlated with the pathogenesis of cardiovascular diseases. In the present review, we focus on the expression and functional effects of various kinds of non-coding RNAs in cardiovascular diseases and negotiate their possible clinical implications as diagnostic or prognostic biomarkers and curative targets.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Nehzat Akiash
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paweł Antosik
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland; North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC 27695, USA.
| |
Collapse
|
120
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Gaitas A, Fang X, Jin Y, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.522907. [PMID: 36712112 PMCID: PMC9881928 DOI: 10.1101/2023.01.06.522907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into rickettsia-infected, endothelial cell-derived exosomes ( R -ECExos). Yet, the mechanism remains unknown. The number of cases of spotted fever rickettsioses has been increasing in recent years, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the aim of the present study is to continue to dissect the molecular mechanism underlying R -ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Rickettsiae are transmitted to human hosts by the bite of an infected tick into the skin. In the present study we demonstrate that treatment with R -ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. Similarly, we did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R -ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a single, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R -ECExos.
Collapse
|
121
|
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 64:5852-5877. [PMID: 36591787 DOI: 10.1080/10408398.2022.2159317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) is a global health issue in the twenty-first century, and there are numerous challenges in preventing and alleviating its chronic complications. The herb Epimedium has beneficial therapeutic effects on various human diseases, including DM. Its major flavonoid component, icariin, has significant anti-DM activity and may help improve pancreatic β-cell dysfunction and insulin resistance. Furthermore, preclinical evidence has shown that icariin and its in vivo bioactive form, icariside II, have preventive and therapeutic effects on several diabetic complications, including diabetic cardiomyopathy, diabetic vascular endothelial disorder, diabetic nephropathy, and diabetic erectile dysfunction. In this review, we present the general and toxicological information concerning icariin and icariside II and review the anti-DM effects of icariin from a molecular perspective. Additionally, we discuss the potential benefits of icariin and icariside II on the important pathological mechanisms of various diabetic complications. Despite positive preclinical evidence, additional investigations are needed before relevant clinical studies can be conducted. Therefore, we conclude with suggestions for future research. Hopefully, this review will provide a comprehensive molecular perspective for future research and product development related to icariin and icariside II in treating DM and diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
122
|
Hu F, Liu L, Liu Z, Cao M, Li G, Zhang X. Meta-analysis of the characteristic expression of circulating microRNA in type 2 diabetes mellitus with acute ischemic cerebrovascular disease. Front Endocrinol (Lausanne) 2023; 14:1129860. [PMID: 36864836 PMCID: PMC9971585 DOI: 10.3389/fendo.2023.1129860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE To comprehensively evaluate the characteristics of the circulating microRNA expression profile in type 2 diabetic patients with acute ischemic cerebrovascular disease by systematic evaluation and meta-analysis. METHODS The literatures up to March 2022 related to circulating microRNA and acute ischemic cerebrovascular disease in type 2 diabetes mellitus were searched and screened from multiple databases. The NOS quality assessment scale was used to evaluate methodological quality. Heterogeneity tests and statistical analyses of all data were performed by Stata 16.0. The differences in microRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). RESULTS A total of 49 studies on 12 circulating miRNAs were included in this study, including 486 cases of type 2 diabetes complicated with acute ischemic cerebrovascular disease and 855 controls. Compared with the control group (T2DM group), miR-200a, miR-144, and miR-503 were upregulated and positively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients. Their comprehensive SMD and 95% CI were 2.71 (1.64~3.77), 5.77 (4.28~7.26) and 0.73 (0.27~1.19), respectively. MiR-126 was downregulated and negatively correlated with acute ischemic cerebrovascular disease in type 2 diabetes mellitus patients, its comprehensive SMD and 95% CI were -3.64 (-5.56~-1.72). CONCLUSION In type 2 diabetes mellitus patients with acute ischemic cerebrovascular disease, the expression of serum miR-200a, miR-503, plasma and platelet miR-144 was upregulated and the expression of serum miR-126 was downregulated. It may have diagnostic value in the early identification of type 2 diabetes mellitus with acute ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Feifei Hu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Lei Liu
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Zhijian Liu
- The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Guanghong Li
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| | - Xinhuan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
- *Correspondence: Xinhuan Zhang, ; Guanghong Li,
| |
Collapse
|
123
|
Zeng J, Peng Y, Wang D, Ayesha K, Chen S. The interaction between osteosarcoma and other cells in the bone microenvironment: From mechanism to clinical applications. Front Cell Dev Biol 2023; 11:1123065. [PMID: 37206921 PMCID: PMC10189553 DOI: 10.3389/fcell.2023.1123065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Osteosarcoma is a primary bone tumor with a high mortality rate. The event-free survival rate has not improved significantly in the past 30 years, which brings a heavy burden to patients and society. The high heterogeneity of osteosarcoma leads to the lack of specific targets and poor therapeutic effect. Tumor microenvironment is the focus of current research, and osteosarcoma is closely related to bone microenvironment. Many soluble factors and extracellular matrix secreted by many cells in the bone microenvironment have been shown to affect the occurrence, proliferation, invasion and metastasis of osteosarcoma through a variety of signaling pathways. Therefore, targeting other cells in the bone microenvironment may improve the prognosis of osteosarcoma. The mechanism by which osteosarcoma interacts with other cells in the bone microenvironment has been extensively investigated, but currently developed drugs targeting the bone microenvironment have poor efficacy. Therefore, we review the regulatory effects of major cells and physical and chemical properties in the bone microenvironment on osteosarcoma, focusing on their complex interactions, potential therapeutic strategies and clinical applications, to deepen our understanding of osteosarcoma and the bone microenvironment and provide reference for future treatment. Targeting other cells in the bone microenvironment may provide potential targets for the development of clinical drugs for osteosarcoma and may improve the prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Jin Zeng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yi Peng
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong Wang
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Khan Ayesha
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Shijie Chen,
| |
Collapse
|
124
|
Noone S, Schubert R, Fichtlscherer S, Hilberg T, Alesci S, Miesbach W, Klophaus N, Wehmeier UF. Endothelial dysfunction and atherosclerosis related miRNA-expression in patients with haemophilia. Haemophilia 2023; 29:61-71. [PMID: 36112753 DOI: 10.1111/hae.14658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Elevated markers of endothelial dysfunction and inflammation indicate worse endothelial function in the aging haemophilia population. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally. Several miRNAs have been shown to be involved in the process of endothelial dysfunction and atherosclerosis. AIM The aim of this study was to determine the underlying molecular pathways of endothelial dysfunction and inflammation in haemophilia patients. METHODS A total of 25 patients with severe or moderate haemophilia A (20 patients) or B (5 patients), 14 controls and 18 patients with coronary artery disease (CAD) after myocardial infarction were included in this study. Expression of miRNA-126, -155, -222, -1, -let7a, -21 and -197 were analysed using a real time polymerase chain reaction. Network-based visualisation and analysis of the miRNA-target interactions were performed using the MicroRNA ENrichment TURned NETwork (MIENTURNET). RESULTS Expression of miRNA-126 (p < .05) and miRNA-let7a (p < .05) were significantly higher in CAD patients compared to haemophilia patients and controls. MiRNA-21 (p < .05) was significantly elevated in CAD patients compared to controls. MiRNA-155 (p < .05), miRNA-1 (p < .05) and miRNA-197 (p < .05) were significantly higher expressed in CAD and haemophilia patients compared to controls and showed a strong correlation with increased levels of interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1). The network analysis revealed interactions in the cytokine signalling, focal adhesion and VEGFA-VEGFR2 pathway (Vascular endothelial growth factor, -receptor). CONCLUSION This study characterises miRNA expression in haemophilia patients in comparison to CAD patients and healthy controls. The results imply comparable biological processes in CAD and haemophilia patients.
Collapse
Affiliation(s)
- Stephanie Noone
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany.,Division of Haemostaseology, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Ralf Schubert
- Division of Allergology, Pulmonology and Cystic Fibrosis, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Stephan Fichtlscherer
- Division of Cardiology, Department of Internal Medicine III, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Sonja Alesci
- IMD Blood Coagulation Centre, Bad Homburg, Germany
| | - Wolfgang Miesbach
- Division of Haemostaseology, Department of Internal Medicine II, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Nils Klophaus
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| | - Udo F Wehmeier
- Department of Sports Medicine, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
125
|
Xuan C, Yang E, Zhao S, Xu J, Li P, Zhang Y, Jiang Z, Ding X. Regulation of LncRNAs and microRNAs in neuronal development and disease. PeerJ 2023; 11:e15197. [PMID: 37038472 PMCID: PMC10082570 DOI: 10.7717/peerj.15197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but play important roles in regulating cellular processes. Multiple studies over the past decade have demonstrated the role of microRNAs (miRNAs) in cancer, in which some miRNAs can act as biomarkers or provide therapy target. Accumulating evidence also points to the importance of long non-coding RNAs (lncRNAs) in regulating miRNA-mRNA networks. An increasing number of ncRNAs have been shown to be involved in the regulation of cellular processes, and dysregulation of ncRNAs often heralds disease. As the population ages, the incidence of neurodegenerative diseases is increasing, placing enormous pressure on global health systems. Given the excellent performance of ncRNAs in early cancer screening and treatment, here we attempted to aggregate and analyze the regulatory functions of ncRNAs in neuronal development and disease. In this review, we summarize current knowledge on ncRNA taxonomy, biogenesis, and function, and discuss current research progress on ncRNAs in relation to neuronal development, differentiation, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Enyu Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Shuo Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Juan Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Peihang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| | - Yaping Zhang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou, Zhejiang Province, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
126
|
Machado HC, Bispo S, Dallagiovanna B. miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinform Biol Insights 2023; 17:11779322231161918. [PMID: 37020502 PMCID: PMC10069004 DOI: 10.1177/11779322231161918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.
Collapse
Affiliation(s)
- Hellen Cristine Machado
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
| | - Saloe Bispo
- Laboratory of Molecular and Systems
Biology of Trypanosomatids, Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba,
Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
- Bruno Dallagiovanna, Laboratory of Basic
Stem-Cell Biology, Instituto Carlos Chagas – FIOCRUZ-PR, Rua Professor Algacyr
Munhoz Mader, 3775, Curitiba 81350-010, Brazil.
| |
Collapse
|
127
|
da Silva ND, Andrade-Lima A, Chehuen MR, Leicht AS, Brum PC, Oliveira EM, Wolosker N, Pelozin BRA, Fernandes T, Forjaz CLM. Walking Training Increases microRNA-126 Expression and Muscle Capillarization in Patients with Peripheral Artery Disease. Genes (Basel) 2022; 14:genes14010101. [PMID: 36672843 PMCID: PMC9858623 DOI: 10.3390/genes14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Patients with peripheral artery disease (PAD) have reduced muscle capillary density. Walking training (WT) is recommended for PAD patients. The goal of the study was to verify whether WT promotes angiogenesis in PAD-affected muscle and to investigate the possible role of miRNA-126 and the vascular endothelium growth factor (VEGF) angiogenic pathways on this adaptation. Thirty-two men with PAD were randomly allocated to two groups: WT (n = 16, 2 sessions/week) and control (CO, n = 16). Maximal treadmill tests and gastrocnemius biopsies were performed at baseline and after 12 weeks. Histological and molecular analyses were performed by blinded researchers. Maximal walking capacity increased by 65% with WT. WT increased the gastrocnemius capillary-fiber ratio (WT = 109 ± 13 vs. 164 ± 21 and CO = 100 ± 8 vs. 106 ± 6%, p < 0.001). Muscular expression of miRNA-126 and VEGF increased with WT (WT = 101 ± 13 vs. 130 ± 5 and CO = 100 ± 14 vs. 77 ± 20%, p < 0.001; WT = 103 ± 28 vs. 153 ± 59 and CO = 100 ± 36 vs. 84 ± 41%, p = 0.001, respectively), while expression of PI3KR2 decreased (WT = 97 ± 23 vs. 75 ± 21 and CO = 100 ± 29 vs. 105 ± 39%, p = 0.021). WT promoted angiogenesis in the muscle affected by PAD, and miRNA-126 may have a role in this adaptation by inhibiting PI3KR2, enabling the progression of the VEGF signaling pathway.
Collapse
Affiliation(s)
- Natan D. da Silva
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
- Correspondence: ; Tel.: +55-1130918792
| | - Aluisio Andrade-Lima
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Marcel R. Chehuen
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Anthony S. Leicht
- Sport & Exercise Science, James Cook University, Townsville, QLD 4811, Australia
| | - Patricia C. Brum
- Cellular Molecular Exercise Physiology Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Edilamar M. Oliveira
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Nelson Wolosker
- Albert Einstein Israelite Hospital, São Paulo 05652-900, Brazil
| | - Bruno R. A. Pelozin
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Tiago Fernandes
- Laboratory of the Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| | - Cláudia L. M. Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
128
|
Xiang J, Shen J, Zhang L, Tang B. Identification and validation of senescence-related genes in circulating endothelial cells of patients with acute myocardial infarction. Front Cardiovasc Med 2022; 9:1057985. [PMID: 36582740 PMCID: PMC9792765 DOI: 10.3389/fcvm.2022.1057985] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is the main clinical cause of death and cardiovascular disease and thus has high rates of morbidity and mortality. The increase in cardiovascular disease with aging is partly the result of vascular endothelial cell senescence and associated vascular dysfunction. This study was performed to identify potential key cellular senescence-related genes (SRGs) as biomarkers for the diagnosis of AMI using bioinformatics. Methods Using the CellAge database, we identified cellular SRGs. GSE66360 and GSE48060 for AMI patients and healthy controls and GSE19322 for mice were downloaded from the Gene Expression Omnibus (GEO) database. The GSE66360 dataset was divided into a training set and a validation set. The GSE48060 dataset was used as another validation set. The GSE19322 dataset was used to explore the evolution of the screened diagnostic markers in the dynamic process of AMI. Differentially expressed genes (DEGs) of AMI were identified from the GSE66360 training set. Differentially expressed senescence-related genes (DESRGs) selected from SRGs and DEGs were analyzed using Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed and targeted drug prediction was performed. Results A total of 520 DEGs were screened from the GSE66360 training set, and 279 SRGs were identified from the CellAge database. The overlapping DEGs and SRGs constituted 14 DESRGs, including 4 senescence suppressor genes and 10 senescence inducible genes. The top 10 hub genes, including FOS, MMP9, CEBPB, CDKN1A, CXCL1, ETS2, BCL6, SGK1, ZFP36, and IGFBP3, were screened. Furthermore, three diagnostic genes were identified: MMP9, ETS2, and BCL6. The ROC analysis showed that the respective area under the curves (AUCs) of MMP9, ETS2, and BCL6 were 0.786, 0.848, and 0.852 in the GSE66360 validation set and 0.708, 0.791, and 0.727 in the GSE48060 dataset. In the GSE19322 dataset, MMP9 (AUC, 0.888) and ETS2 (AUC, 0.929) had very high diagnostic values in the early stage of AMI. Finally, based on these three diagnostic genes, we found that drugs such as acetylcysteine and genistein may be targeted for the treatment of age-related AMI. Conclusion The results of this study suggest that cellular SRGs might play an important role in AMI. MMP9, ETS2, and BCL6 have potential as specific biomarkers for the early diagnosis of AMI.
Collapse
Affiliation(s)
- Jie Xiang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Ling Zhang,
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,Department of Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, China,*Correspondence: Baopeng Tang,
| |
Collapse
|
129
|
A dissected LMO2 functional analysis and clinical relevance in brain gliomas. Biochem Biophys Rep 2022; 33:101406. [PMID: 36545566 PMCID: PMC9761381 DOI: 10.1016/j.bbrep.2022.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Brain glioma is one of the cancer types with worst prognosis, and LMO2 has been reported to play oncogenic functions in brain gliomas. Herein, analysis of datasets from The Cancer Genome Atlas (TCGA) indicated that higher LMO2 level in patient samples indicated worse prognosis in lower grade gliomas (LGG) but not glioblastoma multiforme (GBM). Further, in tumor tissues consisting of a variety of cell types, LMO2 level indicated intratumoral endothelium and pattern recognition receptor (PRR) response in both LGGs and GBMs, and additionally indicated cytotoxic T-lymphocyte, M2 macrophage infiltration and fibroblast specifically in LGGs. Moreover, only in LGGs these aspects were significantly associated with patient survival, in either risky or protective manner, and these dissected associations can give a better prediction on patient prognosis than LMO2 alone. This study not only provided more detailed understandings of LMO2 functional representatives in brain gliomas but also demonstrated that dealing with certain gene (LMO2 in this study) in transcriptome data with the Weighted Gene Co-Expression Network Analysis (WGCNA) method was a robust strategy for dissecting exact and reasonable gene functions/associations in a complicated tumor environment.
Collapse
|
130
|
Wang M, Peng Y. Advances in brain-heart syndrome: Attention to cardiac complications after ischemic stroke. Front Mol Neurosci 2022; 15:1053478. [PMID: 36504682 PMCID: PMC9729265 DOI: 10.3389/fnmol.2022.1053478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Neurocardiology is an emerging field that studies the interaction between the brain and the heart, namely the effects of heart injury on the brain and the effects of brain damage on the heart. Acute ischemic stroke has long been known to induce heart damage. Most post-stroke deaths are attributed to nerve damage, and cardiac complications are the second leading cause of death after stroke. In clinical practice, the proper interpretation and optimal treatment for the patients with heart injury complicated by acute ischemic stroke, recently described as stroke-heart syndrome (SHS), are still unclear. Here, We describe a wide range of clinical features and potential mechanisms of cardiac complications after ischemic stroke. Autonomic dysfunction, microvascular dysfunction and coronary ischemia process are interdependent and play an important role in the process of cardiac complications caused by stroke. As a unique comprehensive view, SHS can provide theoretical basis for research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Ya Peng,
| |
Collapse
|
131
|
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr 2022; 14:169. [PMID: 36376958 PMCID: PMC9661802 DOI: 10.1186/s13098-022-00942-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Although physical activity is widely recommended for preventing and treating cardiovascular complications of type 2 diabetes mellitus (T2DM), the underlying mechanisms remain unknown. MicroRNA-126 (miR-126) is an angiogenetic regulator abundant in endothelial cells (ECs) and endothelial progenitor cells (EPCs). It is primarily involved in angiogenesis, inflammation and apoptosis for cardiovascular protection. According to recent studies, the levels of miR-126 in the myocardium and circulation are affected by exercise protocol. High-intensity interval training (HIIT) or moderate-and high-intensity aerobic exercise, whether acute or chronic, can increase circulating miR-126 in healthy adults. Chronic aerobic exercise can effectively rescue the reduction of myocardial and circulating miR-126 and vascular endothelial growth factor (VEGF) in diabetic mice against diabetic vascular injury. Resistance exercise can raise circulating VEGF levels, but it may have a little influence on circulating miR-126. The Several targets of miR-126 have been suggested for cardiovascular fitness, such as sprouty-related EVH1 domain-containing protein 1 (SPRED1), phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), vascular cell adhesion molecule 1 (VCAM1), high-mobility group box 1 (HMGB1), and tumor necrosis factor receptor-associated factor 7 (TRAF7). Here, we present a comprehensive review of the roles of miR-126 and its downstream proteins as exercise mechanisms, and propose that miR-126 can be applied as an exercise indicator for cardiovascular prescriptions and as a preventive or therapeutic target for cardiovascular complications in T2DM.
Collapse
Affiliation(s)
- Yixiao Ma
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Hua Liu
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yong Wang
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Junjie Xuan
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Xing Gao
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Huixian Ding
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| | - Chunlian Ma
- Laboratory of Physical Fitness Monitoring & Chronic Disease Intervention, Wuhan Sports University, Wuhan, 430079, China
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Yi Yang
- Hubei Key Laboratory of Exercise Training and Monitoring, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
132
|
Zheng SS, Zhao J, Chen JW, Shen XH, Hong XL, Fu GS, Fu JY. Inhibition of neointimal hyperplasia in balloon-induced vascular injuries in a rat model by miR-22 loading Laponite hydrogels. BIOMATERIALS ADVANCES 2022; 142:213140. [PMID: 36228507 DOI: 10.1016/j.bioadv.2022.213140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
Percutaneous coronary intervention (PCI) is the mainstream treatment to widen narrowed or obstructed coronary arteries due to pathological conditions. However, the post-operational neointimal hyperplasia occurs because of endothelium denudation during surgical procedures and the following inflammation. MicroRNAs (miRs) are new therapeutics of great potential for cardiovascular diseases. However, miRs easily degrade in vivo. A vehicle that can maintain their bioactivities and extend their retention at the site of delivery is prerequisite for miRs to play their roles as therapeutic reagents. Here, we reported the use of the Laponite hydrogels to deliver miR-22 that are modulators of phenotypes of smooth muscle cells (SMCs). The Laponite hydrogels allow a homogenous distribution of miR-22 within the gels, which had the capacity to transfect SMCs in vitro. Upon the injection of the miR-22 incorporated in the Laponite hydrogels in vivo, miR-22 could be well retained surrounding arteries for at least 7 days. Moreover, the miR-22 loading Laponite hydrogels inhibited the neointimal formation, reduced the infiltration of the macrophages, and reversed the adverse vascular ECM remodeling after the balloon-induced vascular injuries by upregulation of miR-22 and downregulation of its target genes methyl-CpG binding protein 2 (MECP2). The application of the Laponite hydrogels for miR local delivery may offer a novel strategy to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Si-Si Zheng
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jing Zhao
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Jia-Wen Chen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xiao-Hua Shen
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Xu-Lin Hong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - Guo-Sheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| | - Jia-Yin Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
133
|
Fang J, Zhang Y, Chen D, Zheng Y, Jiang J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int J Nanomedicine 2022; 17:4699-4719. [PMID: 36217495 PMCID: PMC9547598 DOI: 10.2147/ijn.s377479] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Exosomes are a pluripotent group of extracellular nanovesicles secreted by all cells that mediate intercellular communications. The effective information within exosomes is primarily reflected in exosomal cargos, including proteins, lipids, DNAs, and non-coding RNAs (ncRNAs), the most intensively studied molecules. Cardiac resident cells (cardiomyocytes, fibroblasts, and endothelial cells) and foreign cells (infiltrated immune cells, cardiac progenitor cells, cardiosphere-derived cells, and mesenchymal stem cells) are involved in the progress of ventricular remodeling (VR) following myocardial infarction (MI) via transferring exosomes into target cells. Here, we summarize the pathological mechanisms of VR following MI, including cardiac myocyte hypertrophy, cardiac fibrosis, inflammation, pyroptosis, apoptosis, autophagy, angiogenesis, and metabolic disorders, and the roles of exosomal cargos in these processes, with a focus on proteins and ncRNAs. Continued research in this field reveals a novel diagnostic and therapeutic strategy for VR.
Collapse
Affiliation(s)
- Jiacheng Fang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yuxuan Zhang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Delong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Yiyue Zheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China
| | - Jun Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People’s Republic of China,Correspondence: Jun Jiang, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, People’s Republic of China, Tel/Fax +86 135 8870 6891, Email
| |
Collapse
|
134
|
Gholipour A, Shakerian F, Zahedmehr A, Oveisee M, Maleki M, Mowla SJ, Malakootian M. Tenascin-C as a noninvasive biomarker of coronary artery disease. Mol Biol Rep 2022; 49:9267-9273. [PMID: 35941419 DOI: 10.1007/s11033-022-07760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Coronary artery disease (CAD), is the leading cause of mortality and morbidity worldwide. Tenascin-C (TNC) with high expression levels in inflammatory and cardiovascular diseases, leads to the rupture of atherosclerotic plaques. The origin of plaque destabilization can be associated to endothelial dysfunction. Given the high prevalence of CAD, finding valuable biomarkers for its early detection is of great interest. Using serum samples from patients with CAD and individuals without CAD, we assessed the efficacy of TNC expression levels in serum exosomes and during endothelial cell differentiation as a noninvasive biomarker of CAD. METHODS TNC expression was analyzed using the RNA-sequencing data sets of 6 CAD and 6 normal samples of blood exosomes and endothelial differentiation transitions. Additionally, TNC expression was investigated in the serum samples of patients with CAD and individuals without CAD via qRT-PCR. ROC curve analysis was employed to test the suitability of TNC expression alterations as a CAD biomarker. RESULTS TNC exhibited higher expression in the exosomes of the CAD samples than in those of the non-CAD samples. During endothelial differentiation, TNC expression was upregulated and then consistently downregulated in mature endothelial cells. Moreover, TNC was significantly upregulated in the serum of the CAD group (P = 0.02), with an AUC of 0.744 for the expression level (95% confidence interval, 0.582 to 0.907; P = 0.011). Hence its expression level can be discriminated CAD from non-CAD samples. DISCUSSION Our study is the first to confirm that altered TNC expression is associated with pathological CAD conditions in Iranian patients. The expression of TNC is involved in endothelial differentiation and CAD development. Accordingly, TNC can serve as a valuable noninvasive biomarker with potential application in CAD diagnosis.
Collapse
Affiliation(s)
- Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maziar Oveisee
- Orthopedic Department, Bam University of Medical Sciences, Bam, Kerman, Iran
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences, Bam, Kerman, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
135
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
136
|
Jie X, Hu H, Nie B, Zhu L, Jiang H, Liu A. Effects of miR126 Expressing Adipose-Derived Stem Cells on Fat Graft Survival and Angiogenesis. Aesthetic Plast Surg 2022; 47:825-832. [PMID: 36075983 DOI: 10.1007/s00266-022-03077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Fat transplantation supported by supplementation with ASCs has become a reliable procedure for treating soft tissue defects. However, the unpredictable survival rates for grafted fat remains a challenge with post-transplantation ischemia causing tissue loss. MiR126, which regulates VEGF signaling, is an endothelial cell-specific miRNA known to play an essential role in angiogenesis. We hypothesized that increased miR126 expression in grafted ASCs may promote fat survival within an autologous fat transfer model. METHODS Rat adipose-derived stem cells were isolated, expanded ex vivo for three passages and then transduced with miR126. We used PCR to verify lentiviral transduction and ELISA to confirm VEGF expression. We then mixed autologous fat tissues from our rat model with transduced ASCs, augmented with a nonsense control or miR126 expression vector. These mixtures were used in the fat grafting procedure, completed via subcutaneous injection at three paravertebral points in each rat. Fat grafts were then harvested on days 4, 7, 14, and 28 post-transplant and evaluated for survival, neovascularization, and protein expression via western blot. RESULTS VEGF expression levels in ASCs, Con-ASCs, and miR126-ASCs were not significantly different. However, miR126-ASCs experienced significantly improved survival on days 7, 14, and 28 when compared with the other groups. These ASCs also presented with the greatest capillary density on days 7, 14, and 28 post-transplantation as well as increased p-ERK and p-AKT expression when compared to the other groups. CONCLUSION This data suggests that miR126 augmentation of ASCs may help to enhance the survival and angiogenic capacity of transplanted fat tissues, and that this augmentation was not dependent on VEGF but rather the activation of the ERK/AKT pathway. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xiang Jie
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Hao Hu
- Department of Plastic Surgery, School of Medicine, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai, 200120, China
| | - Bing Nie
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Hua Jiang
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Plastic Surgery, School of Medicine, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai, 200120, China.
| | - Antang Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China.
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85/86 Wujin Road, Shanghai, 200080, China.
| |
Collapse
|
137
|
Earle A, Bessonny M, Benito J, Huang K, Parker H, Tyler E, Crawford B, Khan N, Armstrong B, Stamatikos A, Garimella S, Clay-Gilmour A. Urinary Exosomal MicroRNAs as Biomarkers for Obesity-Associated Chronic Kidney Disease. J Clin Med 2022; 11:5271. [PMID: 36142918 PMCID: PMC9502686 DOI: 10.3390/jcm11185271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The early detection of chronic kidney disease (CKD) is key to reducing the burden of disease and rising costs of care. This need has spurred interest in finding new biomarkers for CKD. Ideal bi-omarkers for CKD should be: easy to measure; stable; reliably detected, even when interfering substances are present; site-specific based on the type of injury (tubules vs. glomeruli); and its changes in concentration should correlate with disease risk or outcome. Currently, no single can-didate biomarker fulfills these criteria effectively, and the mechanisms underlying kidney fibrosis are not fully understood; however, there is growing evidence in support of microRNA-mediated pro-cesses. Specifically, urinary exosomal microRNAs may serve as biomarkers for kidney fibrosis. In-creasing incidences of obesity and the recognition of obesity-associated CKD have increased interest in the interplay of obesity and CKD. In this review, we provide: (1) an overview of the current scope of CKD biomarkers within obese individuals to elucidate the genetic pathways unique to obesi-ty-related CKD; (2) a review of microRNA expression in obese individuals with kidney fibrosis in the presence of comorbidities, such as diabetes mellitus and hypertension; (3) a review of thera-peutic processes, such as diet and exercise, that may influence miR-expression in obesity-associated CKD; (4) a review of the technical aspects of urinary exosome isolation; and (5) future areas of research.
Collapse
Affiliation(s)
- Angel Earle
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Madison Bessonny
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Josh Benito
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hannah Parker
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Emily Tyler
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Brittany Crawford
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Nabeeha Khan
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Bridget Armstrong
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, College of Agriculture, Forestry & Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Sudha Garimella
- Prisma Health, Pediatric Nephrology, Greenville, SC 29615, USA
| | - Alyssa Clay-Gilmour
- Department of Epidemiology & Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
138
|
Kansakar U, Gambardella J, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Matarese A, Santulli G. miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:10242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
139
|
Zhou X, Liu G, Lai H, Wang C, Li J, Zhu K. Using Molecular Targets to Predict and Treat Aortic Aneurysms. Rev Cardiovasc Med 2022; 23:307. [PMID: 39077712 PMCID: PMC11262374 DOI: 10.31083/j.rcm2309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysms are life-threatening vascular diseases associated with high morbidity, and usually require prophylactic surgical intervention. Current preventative management of aortic aneurysms relies on the diameter and other anatomic parameters of the aorta, but these have been demonstrated to be insufficient predictive factors of disease progression and potential complications. Studies on pathophysiology of aortic aneurysms could fill this need, which already indicated the significance of specific molecules in aortic aneurysms. These molecules provide more accurate prediction, and they also serve as therapeutic targets, some of which are in preclinical stage. In this review, we summarized the inadequacies and achievements of current clinical prediction standards, discussed the molecular targets in prediction and treatment, and especially emphasized the molecules that have shown potentials in early diagnosis, accurate risk assessment and target treatment of aortic aneurysm at early stage.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| |
Collapse
|
140
|
Bai C, Yang H, Zhao L, Liu L, Guo W, Yu J, Li M, Liu M, Lai X, Zhang X, Zhu R, Yang L. The mediating role of plasma microRNAs in the association of phthalates exposure with arterial stiffness: A panel study. ENVIRONMENTAL RESEARCH 2022; 212:113469. [PMID: 35588772 DOI: 10.1016/j.envres.2022.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Phthalates exposure has been reported to be linked with arterial stiffness. However, the biological mechanisms underlying this association remain unclear. We conducted a panel study using 338 paired urine-blood samples by repeated measurements of 123 adults across 3 seasons to assess the potential mediating role of plasma microRNAs (miRNAs) in the association of phthalates exposure with arterial stiffness. We measured 10 urinary phthalate metabolites by gas chromatography-tandem mass spectrometry (GC-MS/MS) and 5 candidate arterial stiffness-related miRNAs (miR-146a, miR-222, miR-125b, miR-126, and miR-21) in plasma by real-time PCR. Arterial stiffness parameters including brachial-ankle pulse wave velocity (baPWV) and ankle-brachial index (ABI) were determined in health examinations during each visit. Linear mixed-effect (LME) models revealed that mono-methyl phthalate (MMP), mono-iso-butyl phthalate (MiBP), mono-n-butyl phthalate (MBP), mono-n-octyl phthalate (MOP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) were significantly associated with one or more of the 5 plasma miRNAs (all PFDR < 0.05). Based on weighted quantile sum (WQS) regression, we found positive associations of phthalate metabolites mixture with miR-146a, miR-125b, and miR-222, and individual MMP and MBP were the major contributors. Additionally, miR-146a was inversely related to ABI. Mediation analysis further indicated that miR-146a mediated 31.6% and 21.3% of the relationships of MMP and MiBP with ABI, respectively. Our findings suggested that certain phthalates exposure was related to plasma miRNAs alterations in a dose-response manner and miR-146a might partly mediate phthalate-associated ABI reduction.
Collapse
Affiliation(s)
- Conghua Bai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linlin Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenting Guo
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Li
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Miao Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Lai
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhu
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Liangle Yang
- Department of Occupational and Environmental Health, Key Laboratory of Environment & Health, Ministry of Education, And State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
141
|
Wang J, Guo X, Jiang R, He J, Zhao T, Peng Y, Zheng Y. Research progress in the prevention and treatment of liver fibrosis in Chinese medicine based on miRNAs molecular regulation of angiogenesis. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 4:100151. [DOI: 10.1016/j.prmcm.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
142
|
Sufianov A, Begliarzade S, Kudriashov V, Nafikova R, Ilyasova T, Liang Y. Role of miRNAs in vascular development. Noncoding RNA Res 2022; 8:1-7. [PMID: 36262425 PMCID: PMC9552023 DOI: 10.1016/j.ncrna.2022.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/27/2022] Open
|
143
|
Xue W, Zhang Q, Chen Y, Zhu Y. Hydrogen Sulfide Improves Angiogenesis by Regulating the Transcription of pri-miR-126 in Diabetic Endothelial Cells. Cells 2022; 11:cells11172651. [PMID: 36078059 PMCID: PMC9455028 DOI: 10.3390/cells11172651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction: Diabetes mellitus results in high rates of cardiovascular disease, such as microcirculation disorder of the lower limbs, with angiogenesis impairment being the main factor. The endothelium functions as a barrier between blood and the vessel wall. Vascular endothelial cell dysfunction caused by hyperglycemia is the main factor leading to angiogenesis impairment. Hydrogen sulfide (H2S) and miR-126-3p are known for their pro-angiogenesis effects; however, little is known about how H2S regulates miR-126-3p to promote angiogenesis under high-glucose conditions. Objectives: The main objective of this research was to explore how H2S regulates the miR-126-3p levels under high-glucose conditions. Methods: We evaluated the pro-angiogenesis effects of H2S in the diabetic hindlimb of an ischemia mice model and in vivo Matrigel plugs. Two microRNA datasets were used to screen microRNAs regulated by both diabetes and H2S. The mRNA and protein levels were detected through real-time PCR and Western blot, respectively. Immunofluorescent staining was also used to assess the capillary density and to evaluate the protein levels in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were used in in vitro experiments. A scratch wound-healing assay was applied to detect the migration ability of endothelial cells. Methylated DNA immunoprecipitation combined with real-time PCR was chosen to identify the DNA methylation level in the HUVECs. Results: Exogenous H2S improved angiogenesis in diabetic mice. miR-126-3p was regulated by both diabetes and H2S. Exogenous H2S up-regulated the miR-126-3p level and recovered the migration rate of endothelial cells via down-regulating the DNMT1 protein level, which was increased by high glucose. Furthermore, DNMT1 upregulation in the HUVECs increased the methylation levels of the gene sequences upstream of miR-126-3p and then inhibited the transcription of primary-miR-126, thus decreasing the miR-126-3p level. CSE overexpression in the HUVECs rescued the miR-126-3p level, by decreasing the methylation level to improve migration. Conclusion: H2S increases the miR-126-3p level through down-regulating the methylation level, by decreasing the DNMT1 protein level induced by high glucose, thus improving the angiogenesis originally impaired by high glucose.
Collapse
Affiliation(s)
- Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Qingqing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| | - Yichun Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
- Correspondence: ; Tel./Fax: +86-21-5423-7098
| |
Collapse
|
144
|
Zheng G, He Z, Lu Y, Zhu Q, Jiang Y, Chen D, Lin S, Zhu C, Schwartz R. SRF-derived miR210 and miR30c both repress beating cardiomyocyte formation in the differentiation system of embryoid body. Biochem Biophys Res Commun 2022; 626:58-65. [PMID: 35970045 DOI: 10.1016/j.bbrc.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/16/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Serum response factor (SRF) cooperates with various co-factors to manage the specification of diverse cell lineages during heart development. Many microRNAs mediate the function of SRF in this process. However, how are miR210 and miR30c involved in the decision of cardiac cell fates remains to be explored. In this study, we found that SRF directly controlled the cardiac expression of miR210. Both miR210 and miR30c blocked the formation of beating cardiomyocyte during embryoid body (EB) differentiation, a cellular model widely used for studying cardiogenesis. Both of anticipated microRNA targets and differentially expressed genes in day8 EBs were systematically determined and enriched with gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and Reactome. Functional enrichments of prediction microRNA targets and down-regulated genes in day8 EBs of miR210 suggested the importance of PI3K-Akt signal and ETS2 in miR210 inhibition of cardiomyocyte differentiation. Similar analyses revealed that miR30c repressed both developmental progress and the adrenergic signaling in cardiomyocytes during the differentiation of EBs. Taken together, SRF directs the expression of miR210 and miR30c, and they repress cardiac development via inhibiting the differentiation of cardiac muscle cell lineage as well as the cell proliferation. Through the regulation of specific microRNAs, the complication of SRF's function in heart development is emphasized.
Collapse
Affiliation(s)
- Guoxing Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA.
| | - Zhuzhen He
- Shenzhen Amcare Maternity Hospital, Shenzhen, Guangdong, 518052, China
| | - Yingsi Lu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qingqing Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yizhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chengming Zhu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Robert Schwartz
- Department of Biology and Biochemistry, The University of Houston, Houston, TX, USA.
| |
Collapse
|
145
|
Bordin A, Chirivì M, Pagano F, Milan M, Iuliano M, Scaccia E, Fortunato O, Mangino G, Dhori X, De Marinis E, D'Amico A, Miglietta S, Picchio V, Rizzi R, Romeo G, Pulcinelli F, Chimenti I, Frati G, De Falco E. Human platelet lysate-derived extracellular vesicles enhance angiogenesis through miR-126. Cell Prolif 2022; 55:e13312. [PMID: 35946052 DOI: 10.1111/cpr.13312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Extracellular vesicles (EVs) are key biological mediators of several physiological functions within the cell microenvironment. Platelets are the most abundant source of EVs in the blood. Similarly, platelet lysate (PL), the best platelet derivative and angiogenic performer for regenerative purposes, is enriched of EVs, but their role is still too poorly discovered to be suitably exploited. Here, we explored the contribution of the EVs in PL, by investigating the angiogenic features extrapolated from that possessed by PL. METHODS We tested angiogenic ability and molecular cargo in 3D bioprinted models and by RNA sequencing analysis of PL-derived EVs. RESULTS A subset of small vesicles is highly represented in PL. The EVs do not retain aggregation ability, preserving a low redox state in human umbilical vein endothelial cells (HUVECs) and increasing the angiogenic tubularly-like structures in 3D endothelial bioprinted constructs. EVs resembled the miRNome profile of PL, mainly enriched with small RNAs and a high amount of miR-126, the most abundant angiogenic miRNA in platelets. The transfer of miR-126 by EVs in HUVEC after the in vitro inhibition of the endogenous form, restored angiogenesis, without involving VEGF as a downstream target in this system. CONCLUSION PL is a biological source of available EVs with angiogenic effects involving a miRNAs-based cargo. These properties can be exploited for targeted molecular/biological manipulation of PL, by potentially developing a product exclusively manufactured of EVs.
Collapse
Affiliation(s)
- Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maila Chirivì
- Department of Pathophysiology and Transplantation, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Monterotondo, Rome, Italy
| | - Marika Milan
- UOC Neurologia, Fondazione Ca'Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Iuliano
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Eleonora Scaccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, IRCCS Fondazione Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgio Mangino
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Xhulio Dhori
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, Rome, Italy
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Roberto Rizzi
- Istituto Nazionale Genetica Molecolare INGM 'Romeo ed Enrica Invernizzi', Milan, Italy
- Institute of Biomedical Technologies, National Research Council of Italy (ITB-CNR), Milan, Italy
| | - Giovanna Romeo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Fabio Pulcinelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Isotta Chimenti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzili, Italy
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
146
|
Kobayashi M, Ishida N, Hashimoto Y, Negishi J, Saga H, Sasaki Y, Akiyoshi K, Kimura T, Kishida A. Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues. Int J Mol Sci 2022; 23:ijms23168868. [PMID: 36012126 PMCID: PMC9407827 DOI: 10.3390/ijms23168868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022] Open
Abstract
Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Naoki Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Jun Negishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Hideki Saga
- KM Biologics Co., Ltd., 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
- Correspondence: ; Tel.: +81-35-2808028
| |
Collapse
|
147
|
Yu Z, Fang X, Liu W, Sun R, Zhou J, Pu Y, Zhao M, Sun D, Xiang Z, Liu P, Ding Y, Cao L, He C. Microglia Regulate Blood-Brain Barrier Integrity via MiR-126a-5p/MMP9 Axis during Inflammatory Demyelination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105442. [PMID: 35758549 PMCID: PMC9403646 DOI: 10.1002/advs.202105442] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/14/2022] [Indexed: 05/14/2023]
Abstract
Blood-brain barrier (BBB) impairment is an early prevalent feature of multiple sclerosis (MS), and remains vital for MS progression. Microglial activation precedes BBB disruption and cellular infiltrates in the brain of MS patients. However, little is known about the function of microglia in BBB impairment. Here, microglia acts as an important modulator of BBB integrity in inflammatory demyelination. Microglial depletion profoundly ameliorates BBB impairment in experimental autoimmune encephalomyelitis (EAE). Specifically, miR-126a-5p in microglia is positively correlated with BBB integrity in four types of MS plaques. Mechanistically, microglial deletion of miR-126a-5p exacerbates BBB leakage and EAE severity. The protective effect of miR-126a-5p is mimicked and restored by specific inhibition of MMP9 in microglia. Importantly, Auranofin, an FDA-approved drug, is identified to protect BBB integrity and mitigate EAE progression via a microglial miR-126a-5p dependent mechanism. Taken together, microglia can be manipulated to protect BBB integrity and ameliorate inflammatory demyelination. Targeting microglia to regulate BBB permeability merits consideration in therapeutic interventions in MS.
Collapse
Affiliation(s)
- Zhongwang Yu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Xue Fang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
- Department of GastroenterologyChanghai HospitalSMMUShanghai200433China
| | - Weili Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Rui Sun
- Department of NeurologyChanghai HospitalSMMUShanghai200433China
| | - Jintao Zhou
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yingyan Pu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Ming Zhao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Dingya Sun
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Zhenghua Xiang
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Peng Liu
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Yuqiang Ding
- Department of Laboratory Animal Scienceand State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceFudan UniversityShanghai200032China
| | - Li Cao
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| | - Cheng He
- Institute of NeuroscienceKey Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain ScienceSMMUShanghai200433China
| |
Collapse
|
148
|
Relationship Between the MicroRNAs and PI3K/AKT/mTOR Axis: Focus on Non-Small Cell Lung Cancer. Pathol Res Pract 2022; 239:154093. [DOI: 10.1016/j.prp.2022.154093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022]
|
149
|
Qu Q, Liu L, Cui Y, Liu H, Yi J, Bing W, Liu C, Jiang D, Bi Y. miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure. Stem Cell Res Ther 2022; 13:352. [PMID: 35883161 PMCID: PMC9327169 DOI: 10.1186/s13287-022-03056-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
Background In our previous research, we found that overexpression of miR-126-3p in human umbilical cord MSCs (hucMSCs) promoted human umbilical vein endothelial cells angiogenic activities through exosome-mediated mechanisms. The present study aimed to investigate the role of miR-126-3p-modified hucMSCs derived exosomes (miR-126-3p-hucMSCs-exosomes) on the treatment of premature ovarian failure (POF). Methods Primary hucMSCs were isolated from human umbilical cords and identified by differentiation experiments and flow cytometry. miR-126-3p-hucMSCs were obtained by miR-126-3p lentivirus infection. miR-126-3p-hucMSCs-exosomes were purified by ultracentrifugation method and characterized by transmission electron microscopy and western blot analysis. Primary rat ovarian granulosa cells (OGCs) were collected from ovarian tissues and identified by cell immunohistochemistry. The effects of miR-126-3p-hucMSCs-exosomes and miR-126-3p on OGCs function were determined by cell proliferation and apoptosis assays in a cisplatin induced POF cell model. The levels of suitable target genes were analyzed by PCR and Western blot analysis and subsequent Dual-Luciferase reporter assay. The signal pathway was also analyzed by western blot analysis. A cisplatin-induced POF rat model was used to validate the therapeutic effects of miR-126-3p-hucMSCs-exosomes to treat POF. Ovarian function was evaluated by physical, enzyme-linked immunosorbent assay, and histological examinations in chemotherapy-treated rats. The angiogenesis and apoptosis of ovarian tissues were assessed by immunohistochemical staining and Western blots. Results Primary hucMSCs and miR-126-3p-hucMSCs-exosomes and primary rat OGCs were successfully isolated and identified. The cellular uptake experiments indicated that miR-126-3p-hucMSC-exosomes can be internalized into OGCs in vitro. Annexin V-FITC/PI staining and EDU assays revealed that both miR-126-3p-hucMSCs-exosomes and miR-126-3p promoted proliferation and inhibited apoptosis of OGCs damaged by cisplatin. PCR and western blot analysis and subsequent dual-luciferase reporter assay verified that miR-126-3p targets the sequence in the 3' untranslated region of PIK3R2 in OGCs. Further analysis showed that PI3K/AKT/mTOR signaling pathway took part in miR-126-3p/PIK3R2 mediated proliferation and apoptosis in OGCs. In rat POF model, administration of miR-126-3p-hucMSCs-exosomes increased E2 and AMH levels, increased body and reproductive organ weights and follicle counts, and reduced FSH levels. But more importantly, immunohistochemistry results indicated miR-126-3p-hucMSCs-exosomes significantly promoted ovarian angiogenesis and inhabited apoptosis in POF rats. Additionally, the analysis of angiogenic-related factors and apoptosis-related factors showed miR-126-3p-hucMSCs-exosomes had pro-angiogenesis and anti-apoptosis effect in rat ovaries. Conclusions Our findings revealed that hucMSCs-derived exosomes carrying miR-126-3p promote angiogenesis and attenuate OGCs apoptosis in POF, which highlighted the potential of exosomes containing miR-126-3p as an effective therapeutic strategy for POF treatment.
Collapse
Affiliation(s)
- Qingxi Qu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Linghong Liu
- Research Center of Stem Cell and Regenerative Medicine, Shandong University, Jinan, 250012, People's Republic of China. .,Laboratory of Cryomedicine, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China.
| | - Yuqian Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Hongli Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Jingyang Yi
- Otago Medical School, Christchurch Hospital, University of Otago, Christchurch, 8011, New Zealand
| | - Weidong Bing
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Detian Jiang
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| |
Collapse
|
150
|
Saini VM, Liu KR, Surve AS, Gupta S, Gupta A. MicroRNAs as biomarkers for monitoring cardiovascular changes in Type II Diabetes Mellitus (T2DM) and exercise. J Diabetes Metab Disord 2022; 21:1819-1832. [PMID: 35818628 PMCID: PMC9261151 DOI: 10.1007/s40200-022-01066-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/21/2022]
Abstract
Introduction MicroRNAs (miRNAs) have been shown to be altered in both CVD and T2DM and can have an application as diagnostic and prognostic biomarkers. miRNAs are released into circulation when the cardiomyocyte is subjected to injury and damage. Objectives Measuring circulating miRNA levels in human plasma may be of great potential use for measuring the extent of damage to cardiomyocytes and response to exercise. This review is aimed to highlight the potential application of miRNAs as biomarkers of CVD progression in T2DM, and the impact of exercise on recovery. Methods The review aims to examine whether the health improvements following exercise in T2DM patients are reflective of changes in expression of plasma miRNAs. For this purpose, studies were identified from the literature that have established a correlation between diabetes, disease progression and plasma miRNA levels. We also reviewed studies which looked at the effect of exercise on plasma miRNA levels. Results The review identified miRNA signatures that are affected by T2DM and DHD and a subset of these miRNAs that are also affected by different types of exercise. This approach helped us to identify those miRNAs whose expression and function can be altered by regular bouts of exercise. Conclusions miRNAs identified as part of this review can serve as tools to monitor the cardio-protective, anti-inflammatory and metabolic effects of exercise in people suffering from T2DM. Future research should focus on regulation of these miRNAs in T2DM and how they can be altered by appropriate exercise interventions. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01066-4.
Collapse
|