101
|
Ghosh S, Paez-Cortez JR, Boppidi K, Vasconcelos M, Roy M, Cardoso W, Ai X, Fine A. Activation dynamics and signaling properties of Notch3 receptor in the developing pulmonary artery. J Biol Chem 2011; 286:22678-87. [PMID: 21536678 PMCID: PMC3121411 DOI: 10.1074/jbc.m111.241224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/20/2011] [Indexed: 11/06/2022] Open
Abstract
Notch3 signaling is fundamental for arterial specification of systemic vascular smooth muscle cells (VSMCs). However, the developmental role and signaling properties of the Notch3 receptor in the mouse pulmonary artery remain unknown. Here, we demonstrate that Notch3 is expressed selectively in pulmonary artery VSMCs, is activated from late fetal to early postnatal life, and is required to maintain the morphological characteristics and smooth muscle gene expression profile of the pulmonary artery after birth. Using a conditional knock-out mouse model, we show that Notch3 receptor activation in VSMCs is Jagged1-dependent. In vitro VSMC lentivirus-mediated Jagged1 knockdown, confocal localization analysis, and co-culture experiments revealed that Notch3 activation is cell-autonomous and occurs through the physical engagement of Notch3 and VSMC-derived Jagged1 in the interior of the same cell. Although the current models of mammalian Notch signaling involve a two-cell system composed of a signal-receiving cell that expresses a Notch receptor on its surface and a neighboring signal-sending cell that provides membrane-bound activating ligand, our data suggest that pulmonary artery VSMC Notch3 activation is cell-autonomous. This unique mechanism of Notch activation may play an important role in the maturation of the pulmonary artery during the transition to air breathing.
Collapse
Affiliation(s)
- Shamik Ghosh
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Jesus R. Paez-Cortez
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Karthik Boppidi
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Michelle Vasconcelos
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Monideepa Roy
- the Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Wellington Cardoso
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Xingbin Ai
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| | - Alan Fine
- From the Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, and
| |
Collapse
|
102
|
Gupta-Rossi N, Ortica S, Meas-Yedid V, Heuss S, Moretti J, Olivo-Marin JC, Israël A. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. J Biol Chem 2011; 286:18720-30. [PMID: 21464124 PMCID: PMC3099689 DOI: 10.1074/jbc.m110.190769] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/04/2011] [Indexed: 11/06/2022] Open
Abstract
The Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity. γ-Secretase processing of Notch has been shown to depend upon monoubiquitination as well as clathrin-mediated endocytosis (CME). We show here that AAK1, the adaptor-associated kinase 1, directly interacts with the membrane-tethered active form of Notch released by metalloprotease cleavage. Active AAK1 acts upstream of the γ-secretase cleavage by stabilizing both the membrane-tethered activated form of Notch and its monoubiquitinated counterpart. We propose that AAK1 acts as an adaptor for Notch interaction with components of the clathrin-mediated pathway such as Eps15b. Moreover, transfected AAK1 increases the localization of activated Notch to Rab5-positive endocytic vesicles, while AAK1 depletion or overexpression of Numb, an inhibitor of the pathway, interferes with this localization. These results suggest that after ligand-induced activation of Notch, the membrane-tethered form can be directed to different endocytic pathways leading to distinct fates.
Collapse
Affiliation(s)
- Neetu Gupta-Rossi
- Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, CNRS URA 2582, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
103
|
Abstract
The Notch pathway is prominent among those known to regulate neural development in vertebrates. Notch receptor activation can inhibit neurogenesis, maintain neural progenitor character, and in some contexts promote gliogenesis and drive binary fate choices. Recently, a wave of exciting studies has emerged, which has both solidified previously held assertions and expanded our understanding of Notch function during neurogenesis and in the adult brain. These studies have examined pathway regulators and interactions, as well as pathway dynamics, with respect to both gene expression and cell-cell signaling. Here, focusing primarily on vertebrates, we review the current literature on Notch signaling in the nervous system, and highlight numerous recent studies that have generated interesting and unexpected advances.
Collapse
|
104
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 PMCID: PMC3055956 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
105
|
Yamada K, Fuwa TJ, Ayukawa T, Tanaka T, Nakamura A, Wilkin MB, Baron M, Matsuno K. Roles of Drosophila deltex in Notch receptor endocytic trafficking and activation. Genes Cells 2011; 16:261-72. [PMID: 21299753 DOI: 10.1111/j.1365-2443.2011.01488.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell signaling mediated by the Notch receptor (N) regulates many cell-fate decisions and is partly controlled by the endocytic trafficking of N. Drosophila deltex (dx) encodes an evolutionarily conserved regulator of N signaling, an E3-ubiquitin ligase, which ubiquitinates N's intracellular domain. Although Dx was shown to function in N endocytosis in studies of dx over-expression, the roles of endogenous Dx have remained hidden. Here, we investigated N endocytosis in a dx-null Drosophila mutant and found that endogenous Dx is required for at least two steps of N trafficking: the incorporation of N into endocytic vesicles from the plasma membrane and the transport of N from early endosomes to lysosomes. In the absence of Dx functions, N was stabilized in unknown endocytic compartments, where it was probably insulated from transport to lysosomes. We also found that canonical N signaling and Dx-mediated N signaling are activated in two different endocytic compartments, before N is incorporated into multivesicular body (MVB) interluminal vesicles and after N is transported from MVBs, respectively. The endocytic compartment in which Dx-mediated N signaling is activated appears to coincide with the activity of endogenous Dx in N trafficking. These findings extend our understanding of how N's trafficking and activation are correlated.
Collapse
Affiliation(s)
- Kenta Yamada
- Department of Biological Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Cho B, Fischer JA. Ral GTPase promotes asymmetric Notch activation in the Drosophila eye in response to Frizzled/PCP signaling by repressing ligand-independent receptor activation. Development 2011; 138:1349-59. [PMID: 21350007 DOI: 10.1242/dev.056002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ral is a small Ras-like GTPase that regulates membrane trafficking and signaling. Here, we show that in response to planar cell polarity (PCP) signals, Ral modulates asymmetric Notch signaling in the Drosophila eye. Specification of the initially equivalent R3/R4 photoreceptor precursor cells in each developing ommatidium occurs in response to a gradient of Frizzled (Fz) signaling. The cell with the most Fz signal (R3) activates the Notch receptor in the adjacent cell (R4) via the ligand Delta, resulting in R3/R4 cell determination and their asymmetric positions within the ommatidium. Two mechanisms have been proposed for ensuring that the cell with the most Fz activation sends the Delta signal: Fz-dependent transcriptional upregulation in R3 of genes that promote Delta signaling, and direct blockage of Notch receptor activation in R3 by localization of an activated Fz/Disheveled protein complex to the side of the plasma membrane adjacent to R4. Here, we discover a distinct mechanism for biasing the direction of Notch signaling that depends on Ral. Using genetic experiments in vivo, we show that, in direct response to Fz signaling, Ral transcription is upregulated in R3, and Ral represses ligand-independent activation of Notch in R3. Thus, prevention of ligand-independent Notch activation is not simply a constitutive process, but is a target for regulation by Ral during cell fate specification and pattern formation.
Collapse
Affiliation(s)
- Bomsoo Cho
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, The University of Texas at Austin, 1 University Station A4800, Austin, TX 78712, USA
| | | |
Collapse
|
107
|
Djiane A, Shimizu H, Wilkin M, Mazleyrat S, Jennings MD, Avis J, Bray S, Baron M. Su(dx) E3 ubiquitin ligase-dependent and -independent functions of polychaetoid, the Drosophila ZO-1 homologue. J Cell Biol 2011; 192:189-200. [PMID: 21200027 PMCID: PMC3019562 DOI: 10.1083/jcb.201007023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/05/2010] [Indexed: 01/19/2023] Open
Abstract
Zona occludens (ZO) proteins are molecular scaffolds localized to cell junctions, which regulate epithelial integrity in mammals. Using newly generated null alleles, we demonstrate that polychaetoid (pyd), the unique Drosophila melanogaster ZO homologue, regulates accumulation of adherens junction-localized receptors, such as Notch, although it is dispensable for epithelial polarization. Pyd positively regulates Notch signaling during sensory organ development but acts negatively on Notch to restrict the ovary germline stem cell niche. In both contexts, we identify a core antagonistic interaction between Pyd and the WW domain E3 ubiquitin ligase Su(dx). Pyd binds Su(dx) directly, in part through a noncanonical WW-binding motif. Pyd also restricts epithelial wing cell numbers to control adult wing shape, a function associated with the FERM protein Expanded and independent of Su(dx). As both Su(dx) and Expanded regulate trafficking, we propose that a conserved role of ZO proteins is to coordinate receptor trafficking and signaling with junctional organization.
Collapse
Affiliation(s)
- Alexandre Djiane
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Hideyuki Shimizu
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| | - Marian Wilkin
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| | - Sabine Mazleyrat
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| | - Martin D. Jennings
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| | - Johanna Avis
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| | - Sarah Bray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | - Martin Baron
- Faculty of Life Sciences and Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M13 9PT, England, UK
| |
Collapse
|
108
|
Pece S, Confalonieri S, R Romano P, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1815:26-43. [PMID: 20940030 DOI: 10.1016/j.bbcan.2010.10.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 02/07/2023]
Abstract
The protein Numb does not live up to its name. This passive-sounding protein is anything but spent. Originally identified as a cell-fate determinant in Drosophila development, Numb received a good deal of attention as an inhibitor of the Notch receptor signaling pathway. It turns out, however, that Numb does a lot more than simply regulate Notch. It has been implicated in a variety of biochemical pathways connected with signaling (it regulates Notch-, Hedgehog- and TP53-activated pathways), endocytosis (it is involved in cargo internalization and recycling), determination of polarity (it interacts with the PAR complex, and regulates adherens and tight junctions), and ubiquitination (it exploits this mechanism to regulate protein function and stability). This complex biochemical network lies at the heart of Numb's involvement in diverse cellular phenotypes, including cell fate developmental decisions, maintenance of stem cell compartments, regulation of cell polarity and adhesion, and migration. Considering its multifaceted role in cellular homeostasis, it is not surprising that Numb has been implicated in cancer as a tumor suppressor. Our major goal here is to explain the cancer-related role of Numb based on our understanding of its role in cell physiology. We will attempt to do this by reviewing the present knowledge of Numb at the biochemical and functional level, and by integrating its apparently heterogeneous functions into a unifying scenario, based on our recently proposed concept of the "endocytic matrix". Finally, we will discuss the role of Numb in the maintenance of the normal stem cell compartment, as a starting point to interpret the tumor suppressor function of Numb in the context of the cancer stem cell hypothesis.
Collapse
Affiliation(s)
- Salvatore Pece
- Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139, Milan, Italy
| | | | | | | |
Collapse
|
109
|
Abstract
Early genetics in flies revealed that Notch is a complex pleiotropic locus. We now know that Notch is a receptor that plays prominent roles during development and functions locally in many tissues to instruct cell fate decisions. Drosophila has been an excellent model to identify genetically the elements that contribute to the canonical Notch signaling transduction machinery defined as DSL-Notch-CSL-MAML axis. This core pathway is required in many biological events in all animals. Though the canonical Notch pathway is relatively simple, and as the steps of the events are now more deeply understood, an increasing number of reports in the last decade show that many other molecules can influence Notch signaling, some by competing with a given element of the cascade. This may occur at any step bringing more diversity and plasticity to the Notch pathway. Most of these regulatory molecules act in a context-specific manner and/or are themselves key regulators in other pathways, providing increasing examples of how connections among distinct pathway modulate each other ("cross talk"). The noncanonical signals discussed in this chapter are broadly defined and correspond to the following: DSL-independent activations, interactions with non-DSL ligands, CSL-independent signaling, signal transduction without cleavage, differential posttranslational modifications, competition/protection for a cofactor, and cross talk with other signaling pathways [Wnt, bone morphogenic protein (BMP), NF-kappaB, etc.]. Though some deemed controversial, these events may impact human diseases. Understanding the molecular nature of these events will allow avoidance of adverse effects during possible clinical treatments. In this review, we will focus on some noncanonical Notch activities and their in vivo significance during developmental and pathological processes.
Collapse
Affiliation(s)
- Pascal Heitzler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
110
|
Le Bras S, Loyer N, Le Borgne R. The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 2010; 12:149-61. [PMID: 21029288 DOI: 10.1111/j.1600-0854.2010.01126.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Notch signaling pathway regulates numerous aspects of metazoan development and tissue renewal. Deregulation or loss of Notch signaling is associated with a wide range of human disorders from developmental syndromes to cancer. Notch receptors and their ligands are widely expressed throughout development, yet Notch activation is robustly controlled in a spatio-temporal manner. Within the past decades, genetic screens and biochemical approaches led to the identification of more than 10 E3 ubiquitin ligases and deubiquitinating enzymes implicated in the regulation of the Notch pathway. In this review, we highlight the recent studies in Notch signaling that reveal how ubiquitination of components of the Notch pathway, ranging from degradation to regulation of membrane trafficking, impacts on the developmental control of the signaling activities of both Notch receptors and their ligands.
Collapse
Affiliation(s)
- Stéphanie Le Bras
- CNRS UMR 6061-Institut de Génétique et Développement de Rennes, 2 av du Pr. Bernard, 35000 Rennes, Université de Rennes 1, France
| | | | | |
Collapse
|
111
|
Dalton HE, Denton D, Foot NJ, Ho K, Mills K, Brou C, Kumar S. Drosophila Ndfip is a novel regulator of Notch signaling. Cell Death Differ 2010; 18:1150-60. [PMID: 20966964 DOI: 10.1038/cdd.2010.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the Drosophila wing, the Nedd4 ubiquitin ligases (E3s), dNedd4 and Su(dx), are important negative regulators of Notch signaling; they ubiquitinate Notch, promoting its endocytosis and turnover. Here, we show that Drosophila Nedd4 family interacting protein (dNdfip) interacts with the Drosophila Nedd4-like E3s. dNdfip expression dramatically enhances dNedd4 and Su(dx)-mediated wing phenotypes and further disrupts Notch signaling. dNdfip colocalizes with Notch in wing imaginal discs and with the late endosomal marker Rab7 in cultured cells. In addition, dNdfip expression in the wing leads to ectopic Notch signaling. Supporting this, expression of dNdfip suppressed Notch(+/-) wing phenotype and knockdown of dNdfip enhanced the Notch(+/-) wing phenotype. The increase in Notch activity by dNdfip is ligand independent as dNdfip expression also suppressed deltex RNAi and Serrate(+/-) wing phenotypes. The opposing effects of dNdfip expression on Notch signaling and its late endosomal localization support a model whereby dNdfip promotes localization of Notch to the limiting membrane of late endosomes allowing for activation, similar to the model previously shown with ectopic Deltex expression. When dNedd4 or Su(dx) are also present, dNdfip promotes their activity in Notch ubiquitination and internalization to the lysosomal lumen for degradation.
Collapse
Affiliation(s)
- H E Dalton
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
112
|
Shivas JM, Morrison HA, Bilder D, Skop AR. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol 2010; 20:445-52. [PMID: 20493706 PMCID: PMC2917511 DOI: 10.1016/j.tcb.2010.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 10/19/2022]
Abstract
The establishment and maintenance of polarized plasma membrane domains is essential for cellular function and proper development of organisms. The molecules and pathways involved in determining cell polarity are remarkably well conserved between animal species. Historically, exocytic mechanisms have received primary emphasis among trafficking routes responsible for cell polarization. Accumulating evidence now reveals that endocytosis plays an equally important role in the proper localization of key polarity proteins. Intriguingly, some polarity proteins can also regulate the endocytic machinery. Here, we review emerging evidence for the reciprocal regulation between polarity proteins and endocytic pathways, and discuss possible models for how these distinct processes could interact to create separate cellular domains.
Collapse
Affiliation(s)
- Jessica M. Shivas
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Holly A. Morrison
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ahna R. Skop
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
113
|
Zhang P, Yang Y, Nolo R, Zweidler-McKay PA, Hughes DPM. Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene 2010; 29:2916-26. [PMID: 20208568 PMCID: PMC2874642 DOI: 10.1038/onc.2010.62] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 01/27/2010] [Accepted: 02/01/2010] [Indexed: 11/09/2022]
Abstract
The highly conserved NOTCH signaling pathway has many essential functions in the development of diverse cells, tissues and organs from Drosophila to humans, and dysregulated NOTCH signaling contributes to several disorders, including vascular and bone defects, as well as several cancers. Here we describe a novel mechanism of NOTCH regulation by reciprocal inhibition of two NOTCH downstream effectors: Deltex1 and HES1. This mechanism appears to regulate invasion of osteosarcoma cells, as Deltex1 blocks osteosarcoma invasiveness by downregulating NOTCH/HES1 signaling. The inhibitory effect of endogenous Deltex1 on NOTCH signaling is mediated through binding with the intracellular domain of NOTCH and ubiquitination and degradation of NOTCH receptors. Conversely, we show that the NOTCH target gene HES1 causes transcriptional inhibition of Deltex1 by directly binding to the promoter of Deltex1. An HES1 binding site is identified 400 bp upstream of the transcription start site of Deltex1. HES1-mediated repression of Deltex1 requires the C-terminal H3/H4 and WRPW domains of HES1, which associate with the TLE/Groucho corepressors. Taken together, we define a molecular mechanism regulating NOTCH signaling by reciprocal inhibition of the NOTCH target genes HES1 and Deltex1 in mammalian cells. This mechanism may have important clinical implications for targeting NOTCH signaling in osteosarcoma and other cancers.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Yanwen Yang
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Riitta Nolo
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Patrick A Zweidler-McKay
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| | - Dennis P M Hughes
- Department of Pediatrics Research, Children's Cancer Hospital, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 176, Houston, TX 77030
| |
Collapse
|
114
|
Kawahashi K, Hayashi S. Dynamic intracellular distribution of Notch during activation and asymmetric cell division revealed by functional fluorescent fusion proteins. Genes Cells 2010; 15:749-59. [DOI: 10.1111/j.1365-2443.2010.01412.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
115
|
Cullinane AR, Straatman-Iwanowska A, Zaucker A, Wakabayashi Y, Bruce CK, Luo G, Rahman F, Gürakan F, Utine E, Ozkan TB, Denecke J, Vukovic J, Di Rocco M, Mandel H, Cangul H, Matthews RP, Thomas SG, Rappoport JZ, Arias IM, Wolburg H, Knisely AS, Kelly DA, Müller F, Maher ER, Gissen P. Mutations in VIPAR cause an arthrogryposis, renal dysfunction and cholestasis syndrome phenotype with defects in epithelial polarization. Nat Genet 2010; 42:303-12. [PMID: 20190753 PMCID: PMC5308204 DOI: 10.1038/ng.538] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/25/2010] [Indexed: 02/06/2023]
Abstract
Arthrogryposis, renal dysfunction and cholestasis syndrome (ARC) is a multisystem disorder associated with abnormalities in polarized liver and kidney cells. Mutations in VPS33B account for most cases of ARC. We identified mutations in VIPAR (also called C14ORF133) in individuals with ARC without VPS33B defects. We show that VIPAR forms a functional complex with VPS33B that interacts with RAB11A. Knockdown of vipar in zebrafish resulted in biliary excretion and E-cadherin defects similar to those in individuals with ARC. Vipar- and Vps33b-deficient mouse inner medullary collecting duct (mIMDC-3) cells expressed membrane proteins abnormally and had structural and functional tight junction defects. Abnormal Ceacam5 expression was due to mis-sorting toward lysosomal degradation, but reduced E-cadherin levels were associated with transcriptional downregulation. The VPS33B-VIPAR complex thus has diverse functions in the pathways regulating apical-basolateral polarity in the liver and kidney.
Collapse
Affiliation(s)
- Andrew R Cullinane
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Endocytosis has long been thought of as simply a way for cells to internalize nutrients and membrane-associated molecules. But an explosive growth in knowledge has given a new dimension to our understanding of this process. It now seems that endocytosis is a master organizer of signalling circuits, with one of its main roles being the resolution of signals in space and time. Many of the functions of endocytosis that are emerging from recent research cannot yet be reconciled with the canonical view of intracellular trafficking but, instead, point to endocytosis being integrated at a deeper level in the cellular 'master plan' (the cellular network of signalling circuits that lie at the base of the cell's make-up). Deconvolution of this level, which we call the 'endocytic matrix', might uncover a fundamental aspect of how a cell is built.
Collapse
|
117
|
Abstract
Notch signaling occurs through direct interaction between Notch, the receptor, and its ligands, presented on the surface of neighboring cells. Endocytosis has been shown to be essential for Notch signal activation in both signal-sending and signal-receiving cells, and numerous genes involved in vesicle trafficking have recently been shown to act as key regulators of the pathway. Defects in vesicle trafficking can lead to gain- or loss-of-function defects in a context-dependent manner. Here, we discuss how endocytosis and vesicle trafficking regulate Notch signaling in both signal-sending and signal-receiving cells. We will introduce the key players in different trafficking steps, and further illustrate how they impact the signal outcome. Some of these players act as general factors and modulate Notch signaling in all contexts, whereas others modulate signaling in a context-specific fashion. We also discuss Notch signaling during mechanosensory organ development in the fly to exemplify how endocytosis and vesicle trafficking are effectively used to determine correct cell fates. In summary, endocytosis plays an essential role in Notch signaling, whereas intracellular vesicle trafficking often plays a context-dependent or regulatory role, leading to divergent outcomes in different developmental contexts.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Wu-Lin Charng
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
118
|
McCray BA, Skordalakes E, Taylor JP. Disease mutations in Rab7 result in unregulated nucleotide exchange and inappropriate activation. Hum Mol Genet 2009; 19:1033-47. [PMID: 20028791 PMCID: PMC2830827 DOI: 10.1093/hmg/ddp567] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 Å crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.
Collapse
Affiliation(s)
- Brett A McCray
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | | | | |
Collapse
|
119
|
Abstract
Cell signalling and endocytic membrane trafficking have traditionally been viewed as distinct processes. Although our present understanding is incomplete and there are still great controversies, it is now recognized that these processes are intimately and bidirectionally linked in animal cells. Indeed, many recent examples illustrate how endocytosis regulates receptor signalling (including signalling from receptor tyrosine kinases and G protein-coupled receptors) and, conversely, how signalling regulates the endocytic pathway. The mechanistic and functional principles that underlie the relationship between signalling and endocytosis in cell biology are becoming increasingly evident across many systems.
Collapse
|
120
|
Jia L, Yu G, Zhang Y, Wang MM. Lysosome-dependent degradation of Notch3. Int J Biochem Cell Biol 2009; 41:2594-8. [PMID: 19735738 DOI: 10.1016/j.biocel.2009.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/13/2009] [Accepted: 08/31/2009] [Indexed: 12/27/2022]
Abstract
Notch signaling plays an essential role in diverse biological processes during development and in pathogenesis of diseases ranging from cancer to cerebrovascular disorders. Precise regulation of Notch signaling is essential for normal function and requires both timely activation and inactivation of the intracellular domain (ICD) of Notch receptors. In addition, inappropriate buildup of Notch3 ectodomain is a hallmark pathological feature of the stroke and dementia disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch function. Previous studies showed that the degradation of ICDs of Notch1 and Notch4 is controlled by the ubiquitin-proteasome system (UPS), though more recent work demonstrated that Notch1 ICD is also controlled by lysosomal degradation. The mechanism of degradation of Notch3 has not yet been identified. Here we report that the degradation of ICD of Notch3 (N3-ICD) is mediated by lysosomes. Lysosome inhibitors chloroquine and NH(4)Cl led to the accumulation of transfected N3-ICD in 293 cells and endogenous N3-ICD in C2C12, H460, and HeLa cell lines; in addition, inhibition of lysosome function by chloroquine and NH(4)Cl delayed the degradation of N3-ICD. In contrast, N3-ICD was not affected by proteasome inhibitors MG132 and lactacystin. Furthermore, we find that the Notch3 extracellular domain (N3-ECD) is also subjected to lysosome-dependent degradation. In sum, our experiments demonstrate a critical role for lysosomes in the degradation of Notch3, which distinguishes it from Notch1 and Notch4.
Collapse
Affiliation(s)
- Lijun Jia
- Departments of Neurology and Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-0622, USA
| | | | | | | |
Collapse
|
121
|
Vaccari T, Bilder D. At the crossroads of polarity, proliferation and apoptosis: the use of Drosophila to unravel the multifaceted role of endocytosis in tumor suppression. Mol Oncol 2009; 3:354-65. [PMID: 19560990 PMCID: PMC2755045 DOI: 10.1016/j.molonc.2009.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 05/25/2009] [Indexed: 11/27/2022] Open
Abstract
Endocytosis is an important regulator of cell-cell signaling and endocytic trafficking has been increasingly implicated in control of tumor suppression. Recent insights from Drosophila indicate that impairment of multiple trafficking steps which lead to receptor degradation can cause tumor formation in epithelial organs. These tumors are characterized by sustained activation of a number of mitogenic signaling pathways, and by subversion of epithelial polarity and the apoptotic response. Cooperation between such alterations, as well as tumor-host interactions, is also observed. The recapitulation of several hallmarks of human cancers in fly tumors provides a framework to understand the role of defective endocytosis in cancer.
Collapse
Affiliation(s)
- Thomas Vaccari
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
122
|
Abstract
Endocytosis and endosomal trafficking have emerged as important cell biological steps in the Notch developmental signaling pathway. Ligand endocytosis helps generate the physical forces needed to dissociate and activate the receptor, and activated receptors enter endosomes to signal productively. Endosomal trafficking is also responsible for downregulating Notch receptors that have not been activated by ligand. Recent studies have provided new insights into these Notch trafficking steps, and have uncovered additional endosomal mechanisms that contribute to asymmetric Notch activation and ligand-independent Notch signaling.
Collapse
Affiliation(s)
- Mark E Fortini
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 830 Bluemle Life Sciences Building, 233 South 10th Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
123
|
Nickerson DP, Brett CL, Merz AJ. Vps-C complexes: gatekeepers of endolysosomal traffic. Curr Opin Cell Biol 2009; 21:543-51. [PMID: 19577915 PMCID: PMC2807627 DOI: 10.1016/j.ceb.2009.05.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 12/30/2022]
Abstract
Genetic studies in yeast, plants, insects, and mammals have identified four universally conserved proteins, together called Vps Class C, that are essential for late endosome and lysosome assembly and for numerous endolysosomal trafficking pathways, including the terminal stages of autophagy. Two Vps-C complexes, HOPS and CORVET, incorporate diverse biochemical functions: they tether membranes, stimulate Rab nucleotide exchange, guide SNARE assembly to drive membrane fusion, and possibly act as ubiquitin ligases. Recent studies offer new insight into the complex relationships between Vps-C complexes and their cognate Rab small GTP-binding (G-)proteins at endosomes and lysosomes. Accumulating evidence supports the view that Vps-C complexes implement a regulatory logic that governs endomembrane identity and dynamics.
Collapse
Affiliation(s)
- Daniel P. Nickerson
- Department of Biochemistry University of Washington Seattle, WA 98195-7350, USA
| | | | - Alexey J. Merz
- Department of Biochemistry University of Washington Seattle, WA 98195-7350, USA
| |
Collapse
|
124
|
McGill MA, Dho SE, Weinmaster G, McGlade CJ. Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem 2009; 284:26427-38. [PMID: 19567869 DOI: 10.1074/jbc.m109.014845] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Notch is a transmembrane receptor that controls cell fate decisions during development and tissue homeostasis. Both activation and attenuation of the Notch signal are tightly regulated by endocytosis. The adaptor protein Numb acts as an inhibitor of Notch and is known to function within the intracellular trafficking pathways. However, a role for Numb in regulating Notch trafficking has not been defined. Here we show that mammalian Notch1 is constitutively internalized and trafficked to both recycling and late endosomal compartments, and we demonstrate that changes in Numb expression alter the dynamics of Notch1 trafficking. Overexpression of Numb promotes sorting of Notch1 through late endosomes for degradation, whereas depletion of Numb facilitates Notch1 recycling. Numb mutants that do not interact with the ubiquitin-protein isopeptide ligase, Itch, or that lack motifs important for interaction with endocytic proteins fail to promote Notch1 degradation. Our data suggest that Numb inhibits Notch1 activity by regulating post-endocytic sorting events that lead to Notch1 degradation.
Collapse
Affiliation(s)
- Melanie A McGill
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
125
|
Abstract
Notch signaling controls numerous cell-fate specification events in multicellular organisms, and dysregulated Notch signaling causes several diseases with underlying developmental defects. A key step in Notch receptor activation is its intramembrane proteolysis, which releases an intracellular fragment that participates directly in transcriptional regulation of nuclear target genes. Despite the apparent simplicity of this mechanism, a host of posttranslational processes regulate Notch activity during its synthesis and secretion, ligand-dependent activation at the surface, endocytic trafficking, and degradation. This review describes the core developmental logic of Notch signaling and how regulatory mechanisms tailor Notch pathway outputs to specific developmental scenarios.
Collapse
Affiliation(s)
- Mark E Fortini
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
126
|
Dell'Angelica EC. AP-3-dependent trafficking and disease: the first decade. Curr Opin Cell Biol 2009; 21:552-9. [PMID: 19497727 DOI: 10.1016/j.ceb.2009.04.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/28/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
The adaptor protein (AP)-3 complex defines a pathway for the intracellular trafficking of membrane-associated proteins in most eukaryotic cells. Ten years ago, genetic defects in AP-3 were linked to a human Mendelian disease, named Hermansky-Pudlak syndrome, characterized by abnormal biogenesis and function of lysosome-related organelles such as melanosomes and platelet dense granules. During recent years, research on this trafficking pathway has significantly expanded its horizons to include evolutionarily divergent eukaryotic models and to embrace functional genomics and proteomics approaches. These studies have brought into focus ideas about the specific roles of this pathway in protein trafficking and organelle biogenesis within the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Esteban C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7088, USA.
| |
Collapse
|
127
|
|
128
|
Abstract
Cell–cell signaling mediated by the Notch receptor is iteratively involved in numerous developmental contexts, and its dysregulation has been associated with inherited genetic disorders and cancers. The core components of the signaling pathway have been identified for some time, but the study of the modulation of the pathway in different cellular contexts has revealed many layers of regulation. These include complex sugar modifications in the extracellular domain as well as transit of Notch through defined cellular compartments, including specific endosomes.
Collapse
Affiliation(s)
- An-Chi Tien
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
129
|
Great expectations for PIP: phosphoinositides as regulators of signaling during development and disease. Dev Cell 2009; 16:12-20. [PMID: 19154715 DOI: 10.1016/j.devcel.2008.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phosphoinositides function as signaling precursors as well as regulators and scaffolds of signaling molecules required for important cellular processes such as membrane trafficking. Although a picture of the biochemical and cell biological functions of phosphoinositides is emerging, less is known about how these functions impact signaling on a broader scale during development. This review summarizes recent work on the role of phosphoinositides in developmental signaling and in a number of diseases and developmental disorders.
Collapse
|