101
|
Surya VN, Michalaki E, Fuller GG, Dunn AR. Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress. Mol Biol Cell 2019; 30:923-931. [PMID: 30811261 PMCID: PMC6589782 DOI: 10.1091/mbc.e18-10-0618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytosolic calcium (Ca2+) is a ubiquitous second messenger that influences numerous aspects of cellular function. In many cell types, cytosolic Ca2+ concentrations are characterized by periodic pulses, whose dynamics can influence downstream signal transduction. Here, we examine the general question of how cells use Ca2+ pulses to encode input stimuli in the context of the response of lymphatic endothelial cells (LECs) to fluid flow. Previous work shows that fluid flow regulates Ca2+ dynamics in LECs and that Ca2+-dependent signaling plays a key role in regulating lymphatic valve formation during embryonic development. However, how fluid flow might influence the Ca2+ pulse dynamics of individual LECs has remained, to our knowledge, little explored. We used live-cell imaging to characterize Ca2+ pulse dynamics in LECs exposed to fluid flow in an in vitro flow device that generates spatial gradients in wall shear stress (WSS), such as are found at sites of valve formation. We found that the frequency of Ca2+ pulses was sensitive to the magnitude of WSS, while the duration of individual Ca2+ pulses increased in the presence of spatial gradients in WSS. These observations provide an example of how cells can separately modulate Ca2+ pulse frequency and duration to encode distinct forms of information, a phenomenon that could extend to other cell types.
Collapse
Affiliation(s)
- Vinay N Surya
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | | | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
102
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
103
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002" and 2*3*8=6*8 and "tkbp"="tkbp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
104
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002' and 2*3*8=6*8 and 'gakc'='gakc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
105
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
106
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
107
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002%' and 2*3*8=6*8 and 'htng'!='htng%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
108
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 DOI: 10.1016/j.jcmgh.2018.12.002mueybbdd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 01/29/2024]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
109
|
Cifarelli V, Eichmann A. The Intestinal Lymphatic System: Functions and Metabolic Implications. Cell Mol Gastroenterol Hepatol 2018; 7:503-513. [PMID: 30557701 PMCID: PMC6396433 DOI: 10.1016/j.jcmgh.2018.12.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022]
Abstract
The lymphatic system of the gut plays important roles in the transport of dietary lipids, as well as in immunosurveillance and removal of interstitial fluid. Historically, despite its crucial functions in intestinal homeostasis, the lymphatic system has been poorly studied. In the last 2 decades, identification of specific molecular mediators of lymphatic endothelial cells (LECs) growth together with novel genetic approaches and intravital imaging techniques, have advanced our understanding of the mechanisms regulating intestinal lymphatic physiology in health and disease. As its metabolic implications are gaining recognition, intestinal lymphatic biology is currently experiencing a surge in interest. This review describes current knowledge related to molecular control of intestinal lymphatic vessel structure and function. We discuss regulation of chylomicron entry into lymphatic vessels by vascular endothelial growth factors (VEGFs), hormones, transcription factors and the specific signaling pathways involved. The information covered supports the emerging role of intestinal lymphatics in etiology of the metabolic syndrome and their potential as a therapeutic target.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri,Correspondence Address correspondence to: Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus box 8031, 660 Euclid Avenue, St. Louis, Missouri 63110. fax: (314) 362-8230.
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
110
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
111
|
Urner S, Planas-Paz L, Hilger LS, Henning C, Branopolski A, Kelly-Goss M, Stanczuk L, Pitter B, Montanez E, Peirce SM, Mäkinen T, Lammert E. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J 2018; 38:embj.201899322. [PMID: 30518533 PMCID: PMC6331728 DOI: 10.15252/embj.201899322] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor receptor‐3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell‐specific depletion of integrin‐linked kinase (ILK) in mouse embryos hyper‐activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)‐specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and β1 integrin in vitro and in vivo, and endothelial cell‐specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and β1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with β1 integrin and thus ensures proper development of lymphatic vessels.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Sophie Hilger
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carina Henning
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Branopolski
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bettina Pitter
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eloi Montanez
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany .,Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
112
|
Semyachkina-Glushkovskaya O, Postnov D, Kurths J. Blood⁻Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne's Thread in Labyrinths of Hypotheses. Int J Mol Sci 2018; 19:ijms19123818. [PMID: 30513598 PMCID: PMC6320935 DOI: 10.3390/ijms19123818] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022] Open
Abstract
The peripheral lymphatic system plays a crucial role in the recovery mechanisms after many pathological changes, such as infection, trauma, vascular, or metabolic diseases. The lymphatic clearance of different tissues from waste products, viruses, bacteria, and toxic proteins significantly contributes to the correspondent recovery processes. However, understanding of the cerebral lymphatic functions is a challenging problem. The exploration of mechanisms of lymphatic communication with brain fluids as well as the role of the lymphatic system in brain drainage, clearance, and recovery is still in its infancy. Here we review novel concepts on the anatomy and physiology of the lymphatics in the brain, which warrant a substantial revision of our knowledge about the role of lymphatics in the rehabilitation of the brain functions after neural pathologies. We discuss a new vision on the connective bridge between the opening of a blood–brain barrier and activation of the meningeal lymphatic clearance. The ability to stimulate the lymph flow in the brain, is likely to play an important role in developing future innovative strategies in neurorehabilitation therapy.
Collapse
Affiliation(s)
| | - Dmitry Postnov
- Department of Optics and Biophotonics, Saratov State University, 83 Astrakhanskaya str., 410012 Saratov, Russia.
| | - Jürgen Kurths
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany.
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany.
| |
Collapse
|
113
|
Capuano A, Pivetta E, Baldissera F, Bosisio G, Wassermann B, Bucciotti F, Colombatti A, Sabatelli P, Doliana R, Spessotto P. Integrin binding site within the gC1q domain orchestrates EMILIN-1-induced lymphangiogenesis. Matrix Biol 2018; 81:34-49. [PMID: 30408617 DOI: 10.1016/j.matbio.2018.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/10/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
Lymphatic vessels (LVs) play a pivotal role in the control of tissue homeostasis and also have emerged as important regulators of immunity, inflammation and tumor metastasis. EMILIN-1 is the first ECM protein identified as a structural modulator of the growth and maintenance of LV; accordingly, Emilin1-/- mice display lymphatic morphological alterations leading to functional defects as mild lymphedema, leakage and compromised lymph drainage. Many EMILIN-1 functions are exerted by the binding of its gC1q domain with the E933 residue of α4 and α9β1 integrins. To investigate the specific regulatory role of this domain on lymphangiogenesis, we generated a transgenic mouse model expressing an E933A-mutated EMILIN-1 (E1-E933A), unable to interact with α4 or α9 integrin. The mutant resulted in abnormal LV architecture with dense, tortuous and irregular networks; moreover, the number of anchoring filaments was reduced and collector valves had aberrant narrowed structures. E933A mutation also affected lymphatic function in lymphangiography assays and made the transgenic mice more prone to lymph node metastases. The finding that the gC1q/integrin interaction is crucial for a correct lymphangiogenesis response was confirmed and reinforced by functional in vitro tubulogenesis assays. In addition, ex vivo thoracic-duct ring assays revealed that E1-E933A-derived lymphatic endothelial cells had a severe reduction in sprouting capacity and were unable to organize into capillary-like structures. All these data provide evidence that the novel "regulatory structural" role of EMILIN-1 in the lymphangiogenic process is played by the integrin binding site within its gC1q domain.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesca Baldissera
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giulia Bosisio
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Bruna Wassermann
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Francesco Bucciotti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Patrizia Sabatelli
- Institute of Molecular Genetics, National Research Council of Italy, Bologna, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
114
|
Hägerling R, Hoppe E, Dierkes C, Stehling M, Makinen T, Butz S, Vestweber D, Kiefer F. Distinct roles of VE-cadherin for development and maintenance of specific lymph vessel beds. EMBO J 2018; 37:embj.201798271. [PMID: 30297530 DOI: 10.15252/embj.201798271] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 08/19/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Endothelial cells line blood and lymphatic vessels and form intercellular junctions, which preserve vessel structure and integrity. The vascular endothelial cadherin, VE-cadherin, mediates endothelial adhesion and is indispensible for blood vessel development and permeability regulation. However, its requirement for lymphatic vessels has not been addressed. During development, VE-cadherin deletion in lymphatic endothelial cells resulted in abortive lymphangiogenesis, edema, and prenatal death. Unexpectedly, inducible postnatal or adult deletion elicited vessel bed-specific responses. Mature dermal lymph vessels resisted VE-cadherin loss and maintained button junctions, which was associated with an upregulation of junctional molecules. Very different, mesenteric lymphatic collectors deteriorated and formed a strongly hyperplastic layer of lymphatic endothelial cells on the mesothelium. This massive hyperproliferation may have been favored by high mesenteric VEGF-C expression and was associated with VEGFR-3 phosphorylation and upregulation of the transcriptional activator TAZ Finally, intestinal lacteals fragmented into cysts or became highly distended possibly as a consequence of the mesenteric defects. Taken together, we demonstrate here the importance of VE-cadherin for lymphatic vessel development and maintenance, which is however remarkably vessel bed-specific.
Collapse
Affiliation(s)
- René Hägerling
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Esther Hoppe
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Cathrin Dierkes
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Stefan Butz
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany .,European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,DFG Cluster of Excellence 1003 "CiM - Cells in Motion", Münster, Germany
| |
Collapse
|
115
|
Roles of the TGF-β⁻VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int J Mol Sci 2018; 19:ijms19092487. [PMID: 30142879 PMCID: PMC6163754 DOI: 10.3390/ijms19092487] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/16/2018] [Accepted: 08/18/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphatic vessels drain excess tissue fluids to maintain the interstitial environment. Lymphatic capillaries develop during the progression of tissue fibrosis in various clinical and pathological situations, such as chronic kidney disease, peritoneal injury during peritoneal dialysis, tissue inflammation, and tumor progression. The role of fibrosis-related lymphangiogenesis appears to vary based on organ specificity and etiology. Signaling via vascular endothelial growth factor (VEGF)-C, VEGF-D, and VEGF receptor (VEGFR)-3 is a central molecular mechanism for lymphangiogenesis. Transforming growth factor-β (TGF-β) is a key player in tissue fibrosis. TGF-β induces peritoneal fibrosis in association with peritoneal dialysis, and also induces peritoneal neoangiogenesis through interaction with VEGF-A. On the other hand, TGF-β has a direct inhibitory effect on lymphatic endothelial cell growth. We proposed a possible mechanism of the TGF-β–VEGF-C pathway in which TGF-β promotes VEGF-C production in tubular epithelial cells, macrophages, and mesothelial cells, leading to lymphangiogenesis in renal and peritoneal fibrosis. Connective tissue growth factor (CTGF) is also involved in fibrosis-associated renal lymphangiogenesis through interaction with VEGF-C, in part by mediating TGF-β signaling. Further clarification of the mechanism might lead to the development of new therapeutic strategies to treat fibrotic diseases.
Collapse
|
116
|
Liu X, Gu X, Ma W, Oxendine M, Gil HJ, Davis GE, Cleaver O, Oliver G. Rasip1 controls lymphatic vessel lumen maintenance by regulating endothelial cell junctions. Development 2018; 145:dev165092. [PMID: 30042182 PMCID: PMC6141773 DOI: 10.1242/dev.165092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/11/2018] [Indexed: 01/04/2023]
Abstract
Although major progress in our understanding of the genes and mechanisms that regulate lymphatic vasculature development has been made, we still do not know how lumen formation and maintenance occurs. Here, we identify the Ras-interacting protein Rasip1 as a key player in this process. We show that lymphatic endothelial cell-specific Rasip1-deficient mouse embryos exhibit enlarged and blood-filled lymphatics at embryonic day 14.5. These vessels have patent lumens with disorganized junctions. Later on, as those vessels become fragmented and lumens collapse, cell junctions become irregular. In addition, Rasip1 deletion at later stages impairs lymphatic valve formation. We determined that Rasip1 is essential for lymphatic lumen maintenance during embryonic development by regulating junction integrity, as Rasip1 loss results in reduced levels of junction molecules and defective cytoskeleton organization in vitro and in vivo We determined that Rasip1 regulates Cdc42 activity, as deletion of Cdc42 results in similar phenotypes to those seen following the loss of Rasip1 Furthermore, ectopic Cdc42 expression rescues the phenotypes in Rasip1-deficient lymphatic endothelial cells, supporting the suggestion that Rasip1 regulates Cdc42 activity to regulate cell junctions and cytoskeleton organization, which are both activities required for lymphatic lumen maintenance.
Collapse
Affiliation(s)
- Xiaolei Liu
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xiaowu Gu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanshu Ma
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Oxendine
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hyea Jin Gil
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
117
|
Lokmic Z. Utilizing lymphatic cell markers to visualize human lymphatic abnormalities. JOURNAL OF BIOPHOTONICS 2018; 11:e201700117. [PMID: 28869350 DOI: 10.1002/jbio.201700117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
In vivo visualization of the human lymphatic system is limited by the mode of delivery of tracing agents, depth of field and size of the area examined, and specificity of the cell markers used to distinguish lymphatic endothelium from the blood vessels and the surrounding tissues. These limitations are particularly problematic when imaging human lymphatic abnormalities. First, limited understanding of the lymphatic disease aetiology exists with respect to genetic causes and phenotypic presentations. Second, the ability of a tracer to reach the entire lymphatic network within the diseased tissue is suboptimal. Third, what is known about the expression of lymphatic endothelial cell (LEC) markers, such as podoplanin, lymphatic vessel endothelial hyaluronan receptor, Drosophila melanogaster homeobox gene prospero-1 and vascular endothelial growth factor receptor-3 in rodent lymphatic vessels and healthy human LECs may not necessarily apply in human lymphatic disease settings. The aim of this review is to highlight challenges in visualizing lymphatic vessels in human lymphatic abnormalities with respect to distribution patterns of the cellular markers currently employed to visualize abnormal human lymphatic vessels in experimental settings. Allowing for these limitations within new diagnostic visualization technologies is likely to improve our ability to image human lymphatic diseases.
Collapse
Affiliation(s)
- Zerina Lokmic
- Department of General Medicine, The Royal Children's Hospital, Melbourne, Victoria, Australia
- School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
118
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
119
|
Frye M, Taddei A, Dierkes C, Martinez-Corral I, Fielden M, Ortsäter H, Kazenwadel J, Calado DP, Ostergaard P, Salminen M, He L, Harvey NL, Kiefer F, Mäkinen T. Matrix stiffness controls lymphatic vessel formation through regulation of a GATA2-dependent transcriptional program. Nat Commun 2018; 9:1511. [PMID: 29666442 PMCID: PMC5904183 DOI: 10.1038/s41467-018-03959-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
Tissue and vessel wall stiffening alters endothelial cell properties and contributes to vascular dysfunction. However, whether extracellular matrix (ECM) stiffness impacts vascular development is not known. Here we show that matrix stiffness controls lymphatic vascular morphogenesis. Atomic force microscopy measurements in mouse embryos reveal that venous lymphatic endothelial cell (LEC) progenitors experience a decrease in substrate stiffness upon migration out of the cardinal vein, which induces a GATA2-dependent transcriptional program required to form the first lymphatic vessels. Transcriptome analysis shows that LECs grown on a soft matrix exhibit increased GATA2 expression and a GATA2-dependent upregulation of genes involved in cell migration and lymphangiogenesis, including VEGFR3. Analyses of mouse models demonstrate a cell-autonomous function of GATA2 in regulating LEC responsiveness to VEGF-C and in controlling LEC migration and sprouting in vivo. Our study thus uncovers a mechanism by which ECM stiffness dictates the migratory behavior of LECs during early lymphatic development.
Collapse
Affiliation(s)
- Maike Frye
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Andrea Taddei
- Immunity and Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, NW11AT, London, UK
| | - Cathrin Dierkes
- Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Matthew Fielden
- Department of Applied Physics, KTH Royal Institute of Technology, Albanova University Center, 106 91, Stockholm, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology, SA5000, Adelaide, South Australia, Australia
| | - Dinis P Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, NW11AT, London, UK
| | - Pia Ostergaard
- Lymphovascular Research Unit, Molecular and Clinical Sciences Institute, St George's University of London, SW170RE, London, UK
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Liqun He
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, SA5000, Adelaide, South Australia, Australia
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
120
|
Kowalczuk O, Laudanski J, Laudanski W, Niklinska WE, Kozlowski M, Niklinski J. Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer. Oncol Lett 2018; 15:6752-6762. [PMID: 29849784 DOI: 10.3892/ol.2018.8159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 10/17/2017] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to verify a possibility of ongoing lymphangiogenesis in non-small cell lung cancer (NSCLC) via examination of mRNA levels of a number of lymphangiogenesis-associated genes in tumors. It was hypothesized that transcriptional activation of these genes would occur in tumors that stimulate new lymphatic vessel formation. The study was performed on 140 pairs of fresh-frozen surgical specimens of cancer and unaffected lung tissues derived from NSCLC stage I-IIIA patients. mRNA levels were evaluated with the reverse transcription-quantitative polymerase chain reaction method and expressed as fold change differences between the tumor and normal tissues. Possible associations between expression and patient clinicopathological characteristics and survival were analyzed. In the NSCLC tissue samples, vascular endothelial growth factor (VEGF) C, VEGFD, VEGFR3, VEGFR2, VEGFR1, lymphatic vessel endothelial hyaluronan receptor 1, integrin subunit α 9, FOX2, neuropilin 2, fibroblast growth factor 2 genes were significantly downregulated (P<0.001 for all) compared with matched normal lung tissues, whereas mRNA levels for VEGFA, spleen associated tyrosine kinase, podoplanin, and prospero homeobox 1 genes were similar in both tissues. Neither lymph node status, nor disease pathological stage influenced expression, whereas more profound suppression of gene activities appeared to occur in squamous cell carcinomas compared with adenocarcinomas. The VEGFR1 mRNA expression level was significantly connected with patient survival in the univariate analysis, and was an independent prognostic factor for overall survival in the multivariate Cox's proportional hazards model (HR 2.103; 95% confidence interval: 1.005-4.401; P=0.049). The results support a hypothesis of absence of new lymphatic vessel formation inside growing NSCLC tumor mass, however do not exclude a possibility of lymphangiogenesis in narrow marginal tumor parts.
Collapse
Affiliation(s)
- Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jerzy Laudanski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wojciech Laudanski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Wieslawa Ewa Niklinska
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
121
|
Sabine A, Davis MJ, Bovay E, Petrova TV. Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function. Methods Mol Biol 2018; 1846:97-129. [PMID: 30242755 DOI: 10.1007/978-1-4939-8712-2_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intraluminal valves of collecting lymphatic vessels ensure unidirectional lymph transport against hydrostatic pressure gradient. Mouse mesentery harbors up to 800 valves and represents a convenient model for lymphatic valve quantification, high resolution imaging of different stages of valve development as well as for analysis of valve function. The protocol describes embryonic and postnatal mesenteric lymphatic vessel preparation for whole-mount immunofluorescent staining and visualization of valve organization, quantification of main morphological parameters such as valve size and leaflet length, and the quantitative assessment of functional properties of adult valves using back-leak and closure tests.
Collapse
Affiliation(s)
- Amélie Sabine
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Michael J Davis
- Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Esther Bovay
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
- Swiss Institute for Cancer Research, EPFL, Lausanne, Switzerland.
| |
Collapse
|
122
|
Abstract
Congenital pulmonary lymphangiectasia (CPL) is a rare but fatal disease, usually having an onset from the first few hours to days after birth. Inconsistent nomenclatures were used for CPL in the past decades. Patients often present with intractable respiratory failure, hydrops fetalis and even sudden death. The etiologies of CPL remain unclear. Previous hypotheses suggested that CPL might be caused by conditions preventing normal regression of the lymphatics after the 18th-20th week of gestation. Up-to-date biological studies on lymphatic development, lymphatic valve formation and occurrence of hydrops fetalis revealed possible causative relations with mutations of genes of the vascular endothelial growth factor receptor (VEGFR), RAS/MAPK, PI3K/AKT and NF-κB signaling pathways. Lung biopsy with subsequent histological and immunohistochemical studies is a gold standard of CPL diagnosis. Apart from symptomatic and supportive treatments, novel regimens including sirolimus, a mammalian target of rapamycin (mTOR) inhibitor, one of the inhibitors of the pertinent signaling pathways and ethiodized oil lymphatic embolization under ultrasound-guided intranodal lymphangiography have shown encouraging short-term therapeutic effects for lymphatic anomalies. Surgical operations (lobectomy or pneumonectomy) can be the treatment of choice for patients with CPL confined to one lobe or one lung. Patients with CPL usually have a poor prognosis and often die during the neonatal period. Their prognoses are expected to improve with the development of modern therapeutic agents.
Collapse
|
123
|
Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, Li L, Lütke-Enking S, Zarbock A, Stadtmann A, Striewski P, Wirth B, Kuzmanov I, Wiendl H, Schulte D, Vestweber D, Sorokin L. Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Rep 2017; 18:1256-1269. [PMID: 28147279 DOI: 10.1016/j.celrep.2016.12.092] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 12/02/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022] Open
Abstract
Endothelial basement membranes constitute barriers to extravasating leukocytes during inflammation, a process where laminin isoforms define sites of leukocyte exit; however, how this occurs is poorly understood. In addition to a direct effect on leukocyte transmigration, we show that laminin 511 affects endothelial barrier function by stabilizing VE-cadherin at junctions and downregulating expression of CD99L2, correlating with reduced neutrophil extravasation. Binding of endothelial cells to laminin 511, but not laminin 411 or non-endothelial laminin 111, enhanced transendothelial cell electrical resistance (TEER) and inhibited neutrophil transmigration. Data suggest that endothelial adhesion to laminin 511 via β1 and β3 integrins mediates RhoA-induced VE-cadherin localization to cell-cell borders, and while CD99L2 downregulation requires integrin β1, it is RhoA-independent. Our data demonstrate that molecular information provided by basement membrane laminin 511 affects leukocyte extravasation both directly and indirectly by modulating endothelial barrier properties.
Collapse
Affiliation(s)
- Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Xueli Zhang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Konrad Buscher
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Ying Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Huiyu Wang
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Stefan Lütke-Enking
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Alexander Zarbock
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Anika Stadtmann
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Anesthesiology and Intensive Care Medicine, University of Muenster, 48149 Muenster, Germany
| | - Paul Striewski
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Benedikt Wirth
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Institute for Computational and Applied Mathematics, University of Muenster, 48149 Muenster, Germany
| | - Ivan Kuzmanov
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Department of Neurology, University Hospital of Muenster, University of Muenster, 48149 Muenster, Germany
| | - Dörte Schulte
- Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Dietmar Vestweber
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany; Max-Planck Institute of Molecular Biomedicine, 48149 Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany; Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany.
| |
Collapse
|
124
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
125
|
Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev 2017; 31:1615-1634. [PMID: 28947496 PMCID: PMC5647933 DOI: 10.1101/gad.303776.117] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review by Vaahtomeri et al. discusses the mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges. It describes how the lymphatic vasculature network is controlled by an intricate balance of growth factors and biomechanical cues. Lymphatic vessels are important for tissue fluid homeostasis, lipid absorption, and immune cell trafficking and are involved in the pathogenesis of several human diseases. The mechanisms by which the lymphatic vasculature network is formed, remodeled, and adapted to physiological and pathological challenges are controlled by an intricate balance of growth factor and biomechanical cues. These transduce signals for the readjustment of gene expression and lymphatic endothelial migration, proliferation, and differentiation. In this review, we describe several of these cues and how they are integrated for the generation of functional lymphatic vessel networks.
Collapse
Affiliation(s)
- Kari Vaahtomeri
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Sinem Karaman
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
126
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
127
|
Escobedo N, Oliver G. The Lymphatic Vasculature: Its Role in Adipose Metabolism and Obesity. Cell Metab 2017; 26:598-609. [PMID: 28844882 PMCID: PMC5629116 DOI: 10.1016/j.cmet.2017.07.020] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/22/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Obesity is a key risk factor for metabolic and cardiovascular diseases, and although we understand the mechanisms regulating weight and energy balance, the causes of some forms of obesity remain enigmatic. Despite the well-established connections between lymphatics and lipids, and the fact that intestinal lacteals play key roles in dietary fat absorption, the function of the lymphatic vasculature in adipose metabolism has only recently been recognized. It is well established that angiogenesis is tightly associated with the outgrowth of adipose tissue, as expanding adipose tissue requires increased nutrient supply from blood vessels. Results supporting a crosstalk between lymphatic vessels and adipose tissue, and linking lymphatic function with metabolic diseases, obesity, and adipose tissue, also started to accumulate in the last years. Here we review our current knowledge of the mechanisms by which defective lymphatics contribute to obesity and fat accumulation in mouse models, as well as our understanding of the lymphatic-adipose tissue relationship.
Collapse
Affiliation(s)
- Noelia Escobedo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
128
|
Schiano C, Rienzo M, Casamassimi A, Soricelli A, Napoli C. Splicing regulators in endothelial cell differentiation. J Cardiovasc Med (Hagerstown) 2017; 18:742-749. [PMID: 28661931 DOI: 10.2459/jcm.0000000000000536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AIMS Alternative splicing represents a key mechanism of gene regulation. Despite its role in regulating cell pluripotency and differentiation being well known, the underlining mechanisms are still poorly studied. Here, we investigated the possible involvement of splicing regulators during the different steps of endothelial cell differentiation through expression studies on human circulating progenitors. METHODS Total RNAs were extracted from all cells and reverse-transcribed. Semiquantitative and real-time RT-PCR was performed using selective oligonucleotides. Differences between group means were considered significant at P value less than 0.05 and more significant at P value less than 0.01. Protein extracts were incubated with an antibody directed against MED23. Immunoprecipitation of supernatants and pellets was probed with both anti-Muscleblind-like splicing regulator (MBNL)1 and anti-MBNL2 antibodies. RESULTS Several clinical trials demonstrated the safety and efficacy of progenitor cells in regenerative therapy of the cardiovascular system. Particularly, we analyzed the expression of genes belonging to muscleblind family members and MED complex subunits, which are known to be involved during differentiation in other models. This study shows that MED23, MBNL1 and MBNL2 were all expressed at high levels only in differentiated cells. Moreover, immunoprecipitation assays indicated that MED23 is able to bind MBNLs in endothelial cells. CONCLUSION Our data suggest that MED23, MBNL1 and MBNL2 could regulate alternative splicing events activated during differentiation through a common mechanism. Hence, these observations corroborate previous evidence that splicing regulators may have an essential role in the basic apparatus required for cell pluripotency and reprogramming, allowing identification of novel biomarkers to use for early diagnosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Concetta Schiano
- aIRCCS SDN bDepartment of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania 'Luigi Vanvitelli' cDepartment of Diagnostic Imaging, University of Naples "Parthenope" dU.O.C. Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Department of Medical, Surgical, Neurological, Metabolic and Geriatric Sciences, Università degli Studi della Campania 'Luigi Vanvitelli', Naples, Italy
| | | | | | | | | |
Collapse
|
129
|
Retrograde Lymph Flow Leads to Chylothorax in Transgenic Mice with Lymphatic Malformations. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1984-1997. [PMID: 28683257 DOI: 10.1016/j.ajpath.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 01/08/2023]
Abstract
Chylous pleural effusion (chylothorax) frequently accompanies lymphatic vessel malformations and other conditions with lymphatic defects. Although retrograde flow of chyle from the thoracic duct is considered a potential mechanism underlying chylothorax in patients and mouse models, the path chyle takes to reach the thoracic cavity is unclear. Herein, we use a novel transgenic mouse model, where doxycycline-induced overexpression of vascular endothelial growth factor (VEGF)-C was driven by the adipocyte-specific promoter adiponectin (ADN), to determine how chylothorax forms. Surprisingly, 100% of adult ADN-VEGF-C mice developed chylothorax within 7 days. Rapid, consistent appearance of chylothorax enabled us to examine the step-by-step development in otherwise normal adult mice. Dynamic imaging with a fluorescent tracer revealed that lymph in the thoracic duct of these mice could enter the thoracic cavity by retrograde flow into enlarged paravertebral lymphatics and subpleural lymphatic plexuses that had incompetent lymphatic valves. Pleural mesothelium overlying the lymphatic plexuses underwent exfoliation that increased during doxycycline exposure. Together, the findings indicate that chylothorax in ADN-VEGF-C mice results from retrograde flow of chyle from the thoracic duct into lymphatic tributaries with defective valves. Chyle extravasates from these plexuses and enters the thoracic cavity through exfoliated regions of the pleural mesothelium.
Collapse
|
130
|
Kang GJ, Truong T, Huang E, Su V, Ge S, Chen L. Integrin Alpha 9 Blockade Suppresses Lymphatic Valve Formation and Promotes Transplant Survival. Invest Ophthalmol Vis Sci 2017; 57:5935-5939. [PMID: 27806381 PMCID: PMC5096415 DOI: 10.1167/iovs.16-20130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The lymphatic pathway mediates transplant rejection. We recently reported that lymphatic vessels develop luminal valves in the cornea during lymphangiogenesis, and these valves express integrin alpha 9 (Itga-9) and play a critical role in directing lymph flow. In this study, we used an allogeneic corneal transplantation model to investigate whether Itga-9 blockade could suppress valvulogenesis after transplantation, and how this effect would influence the outcomes of the transplants. Methods Orthotopic corneal transplantation was performed between fully mismatched C57BL/6 (donor) and BALB/c (recipient) mice. The recipients were randomized to receive subconjunctival injections of either Itga-9 blocking antibody or isotype control twice a week for 8 weeks. Corneal grafts were assessed in vivo by ophthalmic slit-lamp biomicroscopy and analyzed using Kaplan-Meier survival curves. Additionally, whole-mount full-thickness corneas were evaluated ex vivo by immunofluorescent microscopy on both lymphatic vessels and valves. Results Anti–Itga-9 treatment suppressed lymphatic valvulogenesis after transplantation. Our treatment did not affect lymphatic vessel formation or their nasal polarized distribution in the cornea. More importantly, Itga-9 blockade led to a significant promotion of graft survival. Conclusions Lymphatic valvulogenesis is critically involved in transplant rejection. Itga-9 targeting may offer a new and effective strategy to interfere with the immune responses and promote graft survival.
Collapse
Affiliation(s)
- Gyeong Jin Kang
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Tan Truong
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Eric Huang
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Valerie Su
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Shaokui Ge
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| | - Lu Chen
- Vision Science Graduate Group, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, California, United States
| |
Collapse
|
131
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 425] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
132
|
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ, King PD. RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 2017; 127:2569-2585. [PMID: 28530642 DOI: 10.1172/jci89607] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood and lymphatic vessel (LV) disorder that is caused by inherited inactivating mutations of the RASA1 gene, which encodes p120 RasGAP (RASA1), a negative regulator of the Ras small GTP-binding protein. How RASA1 mutations lead to the LV leakage defects that occur in CM-AVM is not understood. Here, we report that disruption of the Rasa1 gene in adult mice resulted in loss of LV endothelial cells (LECs) specifically from the leaflets of intraluminal valves in collecting LVs. As a result, valves were unable to prevent fluid backflow and the vessels were ineffective pumps. Furthermore, disruption of Rasa1 in midgestation resulted in LEC apoptosis in developing LV valves and consequently failed LV valvulogenesis. Similar phenotypes were observed in induced RASA1-deficient adult mice and embryos expressing a catalytically inactive RASA1R780Q mutation. Thus, RASA1 catalytic activity is essential for the function and development of LV valves. These data provide a partial explanation for LV leakage defects and potentially other LV abnormalities observed in CM-AVM.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
133
|
Lawson ND. A New Conserved Player in Lymphatic Morphogenesis. Circ Res 2017; 120:1216-1218. [PMID: 28408443 PMCID: PMC5455057 DOI: 10.1161/circresaha.117.310861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nathan D Lawson
- From the Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester.
| |
Collapse
|
134
|
Yee D, Coles MC, Lagos D. microRNAs in the Lymphatic Endothelium: Master Regulators of Lineage Plasticity and Inflammation. Front Immunol 2017; 8:104. [PMID: 28232833 PMCID: PMC5298995 DOI: 10.3389/fimmu.2017.00104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 01/08/2023] Open
Abstract
microRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expression at the posttranscriptional level. They have crucial roles in organismal development, homeostasis, and cellular responses to pathological stress. The lymphatic system is a large vascular network that actively regulates the immune response through antigen trafficking, cytokine secretion, and inducing peripheral tolerance. Here, we review the role of miRNAs in the lymphatic endothelium with a particular focus on their role in lymphatic endothelial cell (LEC) plasticity, inflammation, and regulatory function. We highlight the lineage plasticity of LECs during inflammation and the importance of understanding the regulatory role of miRNAs in these processes. We propose that targeting miRNA expression in lymphatic endothelium can be a novel strategy in treating human pathologies associated with lymphatic dysfunction.
Collapse
Affiliation(s)
- Daniel Yee
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| | - Mark C Coles
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| | - Dimitris Lagos
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York , York , UK
| |
Collapse
|
135
|
Karpanen T, Padberg Y, van de Pavert SA, Dierkes C, Morooka N, Peterson-Maduro J, van de Hoek G, Adrian M, Mochizuki N, Sekiguchi K, Kiefer F, Schulte D, Schulte-Merker S. An Evolutionarily Conserved Role for Polydom/Svep1 During Lymphatic Vessel Formation. Circ Res 2017; 120:1263-1275. [PMID: 28179432 PMCID: PMC5389596 DOI: 10.1161/circresaha.116.308813] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text. Rationale: Lymphatic vessel formation and function constitutes a physiologically and pathophysiologically important process, but its genetic control is not well understood. Objective: Here, we identify the secreted Polydom/Svep1 protein as essential for the formation of the lymphatic vasculature. We analyzed mutants in mice and zebrafish to gain insight into the role of Polydom/Svep1 in the lymphangiogenic process. Methods and Results: Phenotypic analysis of zebrafish polydom/svep1 mutants showed a decrease in venous and lymphovenous sprouting, which leads to an increased number of intersegmental arteries. A reduced number of primordial lymphatic cells populated the horizontal myoseptum region but failed to migrate dorsally or ventrally, resulting in severe reduction of the lymphatic trunk vasculature. Corresponding mutants in the mouse Polydom/Svep1 gene showed normal egression of Prox-1+ cells from the cardinal vein at E10.5, but at E12.5, the tight association between the cardinal vein and lymphatic endothelial cells at the first lymphovenous contact site was abnormal. Furthermore, mesenteric lymphatic structures at E18.5 failed to undergo remodeling events in mutants and lacked lymphatic valves. In both fish and mouse embryos, the expression of the gene suggests a nonendothelial and noncell autonomous mechanism. Conclusions: Our data identify zebrafish and mouse Polydom/Svep1 as essential extracellular factors for lymphangiogenesis. Expression of the respective genes by mesenchymal cells in intimate proximity with venous and lymphatic endothelial cells is required for sprouting and migratory events in zebrafish and for remodeling events of the lymphatic intraluminal valves in mouse embryos.
Collapse
Affiliation(s)
- Terhi Karpanen
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.).
| | - Yvonne Padberg
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Serge A van de Pavert
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Cathrin Dierkes
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Nanami Morooka
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Josi Peterson-Maduro
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Glenn van de Hoek
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Max Adrian
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Naoki Mochizuki
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Kiyotoshi Sekiguchi
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Friedemann Kiefer
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Dörte Schulte
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.)
| | - Stefan Schulte-Merker
- From the Hubrecht Institute, KNAW and UMC Utrecht, Utrecht, the Netherlands (T.K., S.A.v.d.P., J.P.-M., G.v.d.H., M.A., S.S.-M.); Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Germany (Y.P., D.S., S.S.-M.); CiM Cluster of Excellence (EXC 1003-CiM), Münster, Germany (Y.P., D.S., S.S.-M.); Max Planck Institute for Molecular Biomedicine, Münster, Germany (C.D., F.K.); Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Japan (N.M., K.S.); and Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan (N.M.).
| |
Collapse
|
136
|
Morooka N, Futaki S, Sato-Nishiuchi R, Nishino M, Totani Y, Shimono C, Nakano I, Nakajima H, Mochizuki N, Sekiguchi K. Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling. Circ Res 2017; 120:1276-1288. [PMID: 28179430 DOI: 10.1161/circresaha.116.308825] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/19/2017] [Accepted: 02/07/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Lymphatic vasculature constitutes a second vascular system essential for immune surveillance and tissue fluid homeostasis. Maturation of the hierarchical vascular structure, with a highly branched network of capillaries and ducts, is crucial for its function. Environmental cues mediate the remodeling process, but the mechanism that underlies this process is largely unknown. OBJECTIVE Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin α9β1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development. METHODS AND RESULTS We generated Polydom-deficient mice. Polydom-/- mice showed severe edema and died immediately after birth because of respiratory failure. We found that although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom-/- embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2 (forkhead box protein c2), a transcription factor involved in lymphatic remodeling, was decreased in Polydom-/- mice. Polydom bound to the lymphangiogenic factor Ang-2 (angiopoietin-2), which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for angiopoietins were also decreased in Polydom-/- mice. CONCLUSIONS Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system.
Collapse
Affiliation(s)
- Nanami Morooka
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Sugiko Futaki
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Ryoko Sato-Nishiuchi
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Masafumi Nishino
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuta Totani
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Chisei Shimono
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Itsuko Nakano
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Hiroyuki Nakajima
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Naoki Mochizuki
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- From the Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan (N. Morooka, S.F., R.S.-N., M.N., Y.T., C.S., I.N., K.S.); Laboratory of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan (S.F.); Department of Cell Biology (M.N., H.N., N. Mochizuki) and AMED-CREST (N. Mochizuki), National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
137
|
The role of fatty acid β-oxidation in lymphangiogenesis. Nature 2016; 542:49-54. [PMID: 28024299 DOI: 10.1038/nature21028] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
Lymphatic vessels are lined by lymphatic endothelial cells (LECs), and are critical for health. However, the role of metabolism in lymphatic development has not yet been elucidated. Here we report that in transgenic mouse models, LEC-specific loss of CPT1A, a rate-controlling enzyme in fatty acid β-oxidation, impairs lymphatic development. LECs use fatty acid β-oxidation to proliferate and for epigenetic regulation of lymphatic marker expression during LEC differentiation. Mechanistically, the transcription factor PROX1 upregulates CPT1A expression, which increases acetyl coenzyme A production dependent on fatty acid β-oxidation. Acetyl coenzyme A is used by the histone acetyltransferase p300 to acetylate histones at lymphangiogenic genes. PROX1-p300 interaction facilitates preferential histone acetylation at PROX1-target genes. Through this metabolism-dependent mechanism, PROX1 mediates epigenetic changes that promote lymphangiogenesis. Notably, blockade of CPT1 enzymes inhibits injury-induced lymphangiogenesis, and replenishing acetyl coenzyme A by supplementing acetate rescues this process in vivo.
Collapse
|
138
|
Betterman KL, Harvey NL. The lymphatic vasculature: development and role in shaping immunity. Immunol Rev 2016; 271:276-92. [PMID: 27088921 DOI: 10.1111/imr.12413] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
139
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
140
|
Sackey-Aboagye B, Olsen AL, Mukherjee SM, Ventriglia A, Yokosaki Y, Greenbaum LE, Lee GY, Naga H, Wells RG. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy. PLoS One 2016; 11:e0163737. [PMID: 27741254 PMCID: PMC5065221 DOI: 10.1371/journal.pone.0163737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.
Collapse
Affiliation(s)
- Bridget Sackey-Aboagye
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abby L. Olsen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarmistha M. Mukherjee
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander Ventriglia
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Gi Yun Lee
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hani Naga
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
141
|
Louveau A, Da Mesquita S, Kipnis J. Lymphatics in Neurological Disorders: A Neuro-Lympho-Vascular Component of Multiple Sclerosis and Alzheimer's Disease? Neuron 2016; 91:957-973. [PMID: 27608759 PMCID: PMC5019121 DOI: 10.1016/j.neuron.2016.08.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lymphatic vasculature drains interstitial fluids, which contain the tissue's waste products, and ensures immune surveillance of the tissues, allowing immune cell recirculation. Until recently, the CNS was considered to be devoid of a conventional lymphatic vasculature. The recent discovery in the meninges of a lymphatic network that drains the CNS calls into question classic models for the drainage of macromolecules and immune cells from the CNS. In the context of neurological disorders, the presence of a lymphatic system draining the CNS potentially offers a new player and a new avenue for therapy. In this review, we will attempt to integrate the known primary functions of the tissue lymphatic vasculature that exists in peripheral organs with the proposed function of meningeal lymphatic vessels in neurological disorders, specifically multiple sclerosis and Alzheimer's disease. We propose that these (and potentially other) neurological afflictions can be viewed as diseases with a neuro-lympho-vascular component and should be therapeutically targeted as such.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Sandro Da Mesquita
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
142
|
Sabine A, Saygili Demir C, Petrova TV. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels. Antioxid Redox Signal 2016; 25:451-65. [PMID: 27099026 DOI: 10.1089/ars.2016.6685] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SIGNIFICANCE Lymphatic vessels are important components of the cardiovascular and immune systems. They contribute both to the maintenance of normal homeostasis and to many pathological conditions, such as cancer and inflammation. The lymphatic vasculature is subjected to a variety of biomechanical forces, including fluid shear stress and vessel circumferential stretch. RECENT ADVANCES This review will discuss recent advances in our understanding of biomechanical forces in lymphatic vessels and their role in mammalian lymphatic vascular development and function. CRITICAL ISSUES We will highlight the importance of fluid shear stress generated by lymph flow in organizing the lymphatic vascular network. We will also describe how mutations in mechanosensitive genes lead to lymphatic vascular dysfunction. FUTURE DIRECTIONS Better understanding of how biomechanical and biochemical stimuli are perceived and interpreted by lymphatic endothelial cells is important for targeting regulation of lymphatic function in health and disease. Important remaining critical issues and future directions in the field will be discussed in this review. Antioxid. Redox Signal. 25, 451-465.
Collapse
Affiliation(s)
- Amélie Sabine
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Cansaran Saygili Demir
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Tatiana V Petrova
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland .,2 Division of Experimental Pathology, Institute of Pathology , CHUV, Lausanne, Switzerland .,3 Swiss Institute for Experimental Cancer Research , EPFL, Switzerland
| |
Collapse
|
143
|
Venero Galanternik M, Stratman AN, Jung HM, Butler MG, Weinstein BM. Building the drains: the lymphatic vasculature in health and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:689-710. [PMID: 27576003 DOI: 10.1002/wdev.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023]
Abstract
The lymphatic vasculature is comprised of a network of endothelial vessels found in close proximity to but separated from the blood vasculature. An essential tissue component of all vertebrates, lymphatics are responsible for the maintenance of fluid homeostasis, dissemination of immune cells, and lipid reabsorption under healthy conditions. When lymphatic vessels are impaired due to invasive surgery, genetic disorders, or parasitic infections, severe fluid build-up accumulates in the affected tissues causing a condition known as lymphedema. Malignant tumors can also directly activate lymphangiogenesis and use these vessels to promote the spread of metastatic cells. Although their first description goes back to the times of Hippocrates, with subsequent anatomical characterization at the beginning of the 20th-century, the lack of identifying molecular markers and tools to visualize these translucent vessels meant that investigation of lymphatic vessels fell well behind research of blood vessels. However, after years under the shadow of the blood vasculature, recent advances in imaging technologies and new genetic and molecular tools have accelerated the pace of research on lymphatic vessel development. These new tools have facilitated both work in classical mammalian models and the emergence of new powerful vertebrate models like zebrafish, quickly driving the field of lymphatic development back into the spotlight. In this review, we summarize the highlights of recent research on the development and function of the lymphatic vascular network in health and disease. WIREs Dev Biol 2016, 5:689-710. doi: 10.1002/wdev.246 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Amber N Stratman
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Min Jung
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew G Butler
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Brant M Weinstein
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
144
|
Bernier-Latmani J, Petrova TV. High-resolution 3D analysis of mouse small-intestinal stroma. Nat Protoc 2016; 11:1617-29. [PMID: 27560169 DOI: 10.1038/nprot.2016.092] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences. Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
145
|
Kidwai F, Edwards J, Zou L, Kaufman DS. Fibrinogen Induces RUNX2 Activity and Osteogenic Development from Human Pluripotent Stem Cells. Stem Cells 2016; 34:2079-89. [PMID: 27331788 PMCID: PMC5097445 DOI: 10.1002/stem.2427] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/18/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells, both human embryonic stem cells (hESC) and induced pluripotent stem cells (iPSC), provide an important resource to produce specialized cells such as osteogenic cells for therapeutic applications such as repair or replacement of injured, diseased or damaged bone. hESCs and iPSCs can also be used to better define basic cellular and genetic mechanisms that regulate the earliest stages of human bone development. However, current strategies to mediate osteogenic differentiation of hESC and iPSC are typically limited by the use of xenogeneic components such as fetal bovine serum (FBS) that make defining specific agents that mediate human osteogenesis difficult. Runt-related transcription factor 2 (RUNX2) is a key regulator required for osteogenic differentiation. Here, we used a RUNX2-YFP reporter system to characterize the novel ability of fibrinogen to mediate human osteogenic development from hESC and iPSC in defined (serum-free) conditions. These studies demonstrate that fibrinogen mediates significant osteo-induction potential. Specifically, fibrinogen binds to the surface integrin (α9β1) to mediate RUNX2 gene expression through the SMAD1/5/8 signaling pathway. Additional studies characterize the fibrinogen-induced hESC/iPSC-derived osteogenic cells to demonstrate these osteogenic cells retain the capacity to express typical mature osteoblastic markers. Together, these studies define a novel fibrinogen-α9β1-SMAD1/5/8-RUNX2 signaling axis can efficiently induce osteogenic differentiation from hESCs and iPSCs. Stem Cells 2016;34:2079-2089.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Restorative Sciences, School of Dentistry, University of Minnesota, Minnesota Dental Research Center for Biomaterials and Biomechanics, Minneapolis, Minnesota 55455, USA
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Jessica Edwards
- Division of Basic Sciences, Department of Diagnostic and Biological Sciences, School of Dentistry, Minneapolis, Minnesota 55455, USA
| | - Li Zou
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Dan S. Kaufman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Medicine, University of California - San Diego, La Jolla, California 92093, USA
| |
Collapse
|
146
|
Martin-Almedina S, Martinez-Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, Petersen K, Simpson MA, Hoischen A, Gilissen C, Jeffery H, Atton G, Karapouliou C, Brice G, Gordon K, Wiseman JW, Wedin M, Rockson SG, Jeffery S, Mortimer PS, Snyder MP, Berland S, Mansour S, Makinen T, Ostergaard P. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest 2016; 126:3080-8. [PMID: 27400125 PMCID: PMC4966301 DOI: 10.1172/jci85794] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/09/2016] [Indexed: 12/20/2022] Open
Abstract
Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rita Holdhus
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Andres Vicente
- Lymphatic Development Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Elisavet Fotiou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Shin Lin
- Division of Cardiovascular Medicine and
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Kjell Petersen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Alexander Hoischen
- Genomics Core Facility, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center and Donders Centre for Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands
| | - Heather Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Giles Atton
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Christina Karapouliou
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Glen Brice
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Kristiana Gordon
- Department of Dermatology, St. George’s University Hospital NHS Foundation Trust, London, UK
| | - John W. Wiseman
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | - Marianne Wedin
- Discovery Sciences, RAD-Transgenics, AstraZeneca R&D, Mölndal, Sweden
| | | | - Steve Jeffery
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Peter S. Mortimer
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| | - Michael P. Snyder
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Siren Berland
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- South West Thames Regional Genetics Unit, St. George’s University of London, London, UK
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pia Ostergaard
- Lymphovascular Research Unit, Cardiovascular and Cell Sciences Institute, St. George’s University of London, London, United Kingdom (UK)
| |
Collapse
|
147
|
Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood 2016; 128:1169-73. [PMID: 27385789 DOI: 10.1182/blood-2016-04-636415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/02/2016] [Indexed: 12/12/2022] Open
Abstract
Aside from the established role for platelets in regulating hemostasis and thrombosis, recent research has revealed a discrete role for platelets in the separation of the blood and lymphatic vascular systems. Platelets are activated by interaction with lymphatic endothelial cells at the lymphovenous junction, the site in the body where the lymphatic system drains into the blood vascular system, resulting in a platelet plug that, with the lymphovenous valve, prevents blood from entering the lymphatic circulation. This process, known as "lymphovenous hemostasis," is mediated by activation of platelet CLEC-2 receptors by the transmembrane ligand podoplanin expressed by lymphatic endothelial cells. Lymphovenous hemostasis is required for normal lymph flow, and mice deficient in lymphovenous hemostasis exhibit lymphedema and sometimes chylothorax phenotypes indicative of lymphatic insufficiency. Unexpectedly, the loss of lymph flow in these mice causes defects in maturation of collecting lymphatic vessels and lymphatic valve formation, uncovering an important role for fluid flow in driving endothelial cell signaling during development of collecting lymphatics. This article summarizes the current understanding of lymphovenous hemostasis and its effect on lymphatic vessel maturation and synthesizes the outstanding questions in the field, with relationship to human disease.
Collapse
|
148
|
Fatima A, Wang Y, Uchida Y, Norden P, Liu T, Culver A, Dietz WH, Culver F, Millay M, Mukouyama YS, Kume T. Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation. J Clin Invest 2016; 126:2437-51. [PMID: 27214551 PMCID: PMC4922698 DOI: 10.1172/jci80465] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/05/2016] [Indexed: 01/12/2023] Open
Abstract
The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell-specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.
Collapse
Affiliation(s)
- Anees Fatima
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Pieter Norden
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Austin Culver
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - William H. Dietz
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ford Culver
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meredith Millay
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
149
|
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Marius R Robciuc
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Sinem Karaman
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Taija Makinen
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Kari Alitalo
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.).
| |
Collapse
|
150
|
Ulvmar MH, Mäkinen T. Heterogeneity in the lymphatic vascular system and its origin. Cardiovasc Res 2016; 111:310-21. [PMID: 27357637 PMCID: PMC4996263 DOI: 10.1093/cvr/cvw175] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessels have historically been viewed as passive conduits for fluid and immune cells, but this perspective is increasingly being revised as new functions of lymphatic vessels are revealed. Emerging evidence shows that lymphatic endothelium takes an active part in immune regulation both by antigen presentation and expression of immunomodulatory genes. In addition, lymphatic vessels play an important role in uptake of dietary fat and clearance of cholesterol from peripheral tissues, and they have been implicated in obesity and arteriosclerosis. Lymphatic vessels within different organs and in different physiological and pathological processes show a remarkable plasticity and heterogeneity, reflecting their functional specialization. In addition, lymphatic endothelial cells (LECs) of different organs were recently shown to have alternative developmental origins, which may contribute to the development of the diverse lymphatic vessel and endothelial functions seen in the adult. Here, we discuss recent developments in the understanding of heterogeneity within the lymphatic system considering the organ-specific functional and molecular specialization of LECs and their developmental origin.
Collapse
Affiliation(s)
- Maria H Ulvmar
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Dag Hammarskjöldsväg 20, 752 85 Uppsala, Sweden
| |
Collapse
|