101
|
Grönholdt‐Klein M, Altun M, Becklén M, Dickman Kahm E, Fahlström A, Rullman E, Ulfhake B. Muscle atrophy and regeneration associated with behavioural loss and recovery of function after sciatic nerve crush. Acta Physiol (Oxf) 2019; 227:e13335. [PMID: 31199566 DOI: 10.1111/apha.13335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
AIM To resolve timing and coordination of denervation atrophy and the re-innervation recovery process to discern correlations indicative of common programs governing these processes. METHODS Female Sprague-Dawley (SD) rats had a unilateral sciatic nerve crush. Based on longitudinal behavioural observations, the triceps surae muscle was analysed at different time points post-lesion. RESULTS Crush results in a loss of muscle function and mass (-30%) followed by a recovery to almost pre-lesion status at 30 days post-crush (dpc). There was no loss of fibres nor any significant change in the number of nuclei per fibre but a shift in fibres expressing myosins I and II that reverted back to control levels at 30 dpc. A residual was the persistence of hybrid fibres. Early on a CHNR -ε to -γ switch and a re-expression of embryonic MyHC showed as signs of denervation. Foxo1, Smad3, Fbxo32 and Trim63 transcripts were upregulated but not Myostatin, InhibinA and ActivinR2B. Combined this suggests that the mechanism instigating atrophy provides a selectivity of pathway(s) activated. The myogenic differentiation factors (MDFs: Myog, Myod1 and Myf6) were upregulated early on suggesting a role also in the initial atrophy. The regulation of these transcripts returned towards baseline at 30 dpc. The examined genes showed a strong baseline covariance in transcript levels which dissolved in the response to crush driven mainly by the MDFs. At 30 dpc the naïve expression pattern was re-established. CONCLUSION Peripheral nerve crush offers an excellent model to assess and interfere with muscle adaptions to denervation and re-innervation.
Collapse
Affiliation(s)
| | - Mikael Altun
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Meneca Becklén
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| | | | - Andreas Fahlström
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
- Department of Neuroscience, Neurosurgery Uppsala University Uppsala Sweden
| | - Eric Rullman
- Department of Laboratory Medicine Karolinska Institutet Huddinge Sweden
| | - Brun Ulfhake
- Department of Neuroscience Karolinska Institutet Stockholm Sweden
| |
Collapse
|
102
|
Tarczewska A, Greb-Markiewicz B. The Significance of the Intrinsically Disordered Regions for the Functions of the bHLH Transcription Factors. Int J Mol Sci 2019; 20:E5306. [PMID: 31653121 PMCID: PMC6862971 DOI: 10.3390/ijms20215306] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The bHLH proteins are a family of eukaryotic transcription factors regulating expression of a wide range of genes involved in cell differentiation and development. They contain the Helix-Loop-Helix (HLH) domain, preceded by a stretch of basic residues, which are responsible for dimerization and binding to E-box sequences. In addition to the well-preserved DNA-binding bHLH domain, these proteins may contain various additional domains determining the specificity of performed transcriptional regulation. According to this, the family has been divided into distinct classes. Our aim was to emphasize the significance of existing disordered regions within the bHLH transcription factors for their functionality. Flexible, intrinsically disordered regions containing various motives and specific sequences allow for multiple interactions with transcription co-regulators. Also, based on in silico analysis and previous studies, we hypothesize that the bHLH proteins have a general ability to undergo spontaneous phase separation, forming or participating into liquid condensates which constitute functional centers involved in transcription regulation. We shortly introduce recent findings on the crucial role of the thermodynamically liquid-liquid driven phase separation in transcription regulation by disordered regions of regulatory proteins. We believe that further experimental studies should be performed in this field for better understanding of the mechanism of gene expression regulation (among others regarding oncogenes) by important and linked to many diseases the bHLH transcription factors.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
103
|
Dall'Agnese A, Caputo L, Nicoletti C, di Iulio J, Schmitt A, Gatto S, Diao Y, Ye Z, Forcato M, Perera R, Bicciato S, Telenti A, Ren B, Puri PL. Transcription Factor-Directed Re-wiring of Chromatin Architecture for Somatic Cell Nuclear Reprogramming toward trans-Differentiation. Mol Cell 2019; 76:453-472.e8. [PMID: 31519520 DOI: 10.1016/j.molcel.2019.07.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/20/2019] [Accepted: 07/25/2019] [Indexed: 12/25/2022]
Abstract
MYOD-directed fibroblast trans-differentiation into skeletal muscle provides a unique model to investigate how one transcription factor (TF) reconfigures the three-dimensional chromatin architecture to control gene expression, which is otherwise achieved by the combinatorial activities of multiple TFs. Integrative analysis of genome-wide high-resolution chromatin interactions, MYOD and CTCF DNA-binding profile, and gene expression, revealed that MYOD directs extensive re-wiring of interactions involving cis-regulatory and structural genomic elements, including promoters, enhancers, and insulated neighborhoods (INs). Re-configured INs were hot-spots of differential interactions, whereby MYOD binding to highly constrained sequences at IN boundaries and/or inside INs led to alterations of promoter-enhancer interactions to repress cell-of-origin genes and to activate muscle-specific genes. Functional evidence shows that MYOD-directed re-configuration of chromatin interactions temporally preceded the effect on gene expression and was mediated by direct MYOD-DNA binding. These data illustrate a model whereby a single TF alters multi-loop hubs to drive somatic cell trans-differentiation.
Collapse
Affiliation(s)
- Alessandra Dall'Agnese
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Luca Caputo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Anthony Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Sole Gatto
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yarui Diao
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Zhen Ye
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | | | - Bing Ren
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
104
|
Sueda R, Kageyama R. Regulation of active and quiescent somatic stem cells by Notch signaling. Dev Growth Differ 2019; 62:59-66. [PMID: 31489617 PMCID: PMC7027910 DOI: 10.1111/dgd.12626] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Somatic stem/progenitor cells actively proliferate and give rise to different types of mature cells (active state) in embryonic tissues while they are mostly dormant (quiescent state) in many adult tissues. Notch signaling is known to regulate both active and quiescent states of somatic stem cells, but how it regulates these different states is unknown. Recent studies revealed that the Notch effector Hes1 is expressed differently during the active and quiescent states during neurogenesis and myogenesis: high in the quiescent state and oscillatory in the active state. When the Hes1 expression level is high, both Ascl1 and MyoD expression are continuously suppressed. By contrast, when Hes1 expression oscillates, it periodically represses expression of the neurogenic factor Ascl1 and the myogenic factor MyoD, thereby driving Ascl1 and MyoD oscillations. High levels of Hes1 and the resultant Ascl1 suppression promote the quiescent state of neural stem cells, while Hes1 oscillation-dependent Ascl1 oscillations regulate their active state. Similarly, in satellite cells of muscles, known adult muscle stem cells, high levels of Hes1 and the resultant MyoD suppression seem to promote their quiescent state, while Hes1 oscillation-dependent MyoD oscillations activate their proliferation and differentiation. Therefore, the expression dynamics of Hes1 is a key regulatory mechanism of generating and maintaining active/quiescent stem cell states.
Collapse
Affiliation(s)
- Risa Sueda
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Kyoto University Graduate School of Biostudies, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Kyoto University Graduate School of Biostudies, Kyoto, Japan.,Kyoto University Graduate School of Medicine, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
105
|
Sun H, Tian A, Zhang J, Liao X, Zhang N. Epithelial-mesenchymal transition induced by MyoD inhibits growth of high metastatic colorectal cancer. Med Hypotheses 2019; 130:109285. [DOI: 10.1016/j.mehy.2019.109285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 06/23/2019] [Indexed: 10/26/2022]
|
106
|
Kuang Z, Ji Z, Boeke JD, Ji H. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes. Nucleic Acids Res 2019; 46:e2. [PMID: 29325176 PMCID: PMC5758894 DOI: 10.1093/nar/gkx905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes.
Collapse
Affiliation(s)
- Zheng Kuang
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Medical Center, New York City, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
107
|
Ninfali C, Siles L, Darling DS, Postigo A. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3. Nucleic Acids Res 2019; 46:10697-10708. [PMID: 30304480 PMCID: PMC6237734 DOI: 10.1093/nar/gky835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple physiopathological and clinical conditions trigger skeletal muscle atrophy through the induction of a group of proteins (atrogenes) that includes components of the ubiquitin–proteasome and autophagy-lysosomal systems. Atrogenes are induced by FOXO transcription factors, but their regulation is still not fully understood. Here, we showed that the transcription factor ZEB1, best known for promoting tumor progression, inhibits muscle atrophy and atrogene expression by antagonizing FOXO3-mediated induction of atrogenes. Compared to wild-type counterparts, hindlimb immobilization in Zeb1-deficient mice resulted in enhanced muscle atrophy and higher expression of a number of atrogenes, including Atrogin-1/Fbxo32, MuRF1/Trim63, Ctsl, 4ebp1, Gabarapl1, Psma1 and Nrf2. Likewise, in the C2C12 myogenic cell model, ZEB1 knockdown augmented both myotube diameter reduction and atrogene upregulation in response to nutrient deprivation. Mechanistically, ZEB1 directly represses in vitro and in vivo Fbxo32 and Trim63 promoter transcription in a stage-dependent manner and in a reverse pattern with MYOD1. ZEB1 bound to the Fbxo32 promoter in undifferentiated myoblasts and atrophic myotubes, but not in non-atrophic myotubes, where it is displaced by MYOD1. ZEB1 repressed both promoters through CtBP-mediated inhibition of FOXO3 transcriptional activity. These results set ZEB1 as a new target in therapeutic approaches to clinical conditions causing muscle mass loss.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Douglas S Darling
- Center for Genetics and Molecular Medicine and Department of Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain.,Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY 40202, USA.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
108
|
Soleimani VD, Nguyen D, Ramachandran P, Palidwor GA, Porter CJ, Yin H, Perkins TJ, Rudnicki MA. Cis-regulatory determinants of MyoD function. Nucleic Acids Res 2019; 46:7221-7235. [PMID: 30016497 PMCID: PMC6101602 DOI: 10.1093/nar/gky388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/30/2018] [Indexed: 01/06/2023] Open
Abstract
Muscle-specific transcription factor MyoD orchestrates the myogenic gene expression program by binding to short DNA motifs called E-boxes within myogenic cis-regulatory elements (CREs). Genome-wide analyses of MyoD cistrome by chromatin immnunoprecipitation sequencing shows that MyoD-bound CREs contain multiple E-boxes of various sequences. However, how E-box numbers, sequences and their spatial arrangement within CREs collectively regulate the binding affinity and transcriptional activity of MyoD remain largely unknown. Here, by an integrative analysis of MyoD cistrome combined with genome-wide analysis of key regulatory histones and gene expression data we show that the affinity landscape of MyoD is driven by multiple E-boxes, and that the overall binding affinity—and associated nucleosome positioning and epigenetic features of the CREs—crucially depend on the variant sequences and positioning of the E-boxes within the CREs. By comparative genomic analysis of single nucleotide polymorphism (SNPs) across publicly available data from 17 strains of laboratory mice, we show that variant sequences within the MyoD-bound motifs, but not their genome-wide counterparts, are under selection. At last, we show that the quantitative regulatory effect of MyoD binding on the nearby genes can, in part, be predicted by the motif composition of the CREs to which it binds. Taken together, our data suggest that motif numbers, sequences and their spatial arrangement within the myogenic CREs are important determinants of the cis-regulatory code of myogenic CREs.
Collapse
Affiliation(s)
- Vahab D Soleimani
- Department of Human Genetics, McGill University, Montréal, QC H3A 1B1, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Duy Nguyen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Parameswaran Ramachandran
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Gareth A Palidwor
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Christopher J Porter
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Hang Yin
- Center for Molecular Medicine, Department of Biochemistry and Molecular Biology, University of Georgia, GA 30602, USA
| | - Theodore J Perkins
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Michael A Rudnicki
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
109
|
Yucel N, Wang YX, Mai T, Porpiglia E, Lund PJ, Markov G, Garcia BA, Bendall SC, Angelo M, Blau HM. Glucose Metabolism Drives Histone Acetylation Landscape Transitions that Dictate Muscle Stem Cell Function. Cell Rep 2019; 27:3939-3955.e6. [PMID: 31242425 PMCID: PMC6788807 DOI: 10.1016/j.celrep.2019.05.092] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
The impact of glucose metabolism on muscle regeneration remains unresolved. We identify glucose metabolism as a crucial driver of histone acetylation and myogenic cell fate. We use single-cell mass cytometry (CyTOF) and flow cytometry to characterize the histone acetylation and metabolic states of quiescent, activated, and differentiating muscle stem cells (MuSCs). We find glucose is dispensable for mitochondrial respiration in proliferating MuSCs, so that glucose becomes available for maintaining high histone acetylation via acetyl-CoA. Conversely, quiescent and differentiating MuSCs increase glucose utilization for respiration and have consequently reduced acetylation. Pyruvate dehydrogenase (PDH) activity serves as a rheostat for histone acetylation and must be controlled for muscle regeneration. Increased PDH activity in proliferation increases histone acetylation and chromatin accessibility at genes that must be silenced for differentiation to proceed, and thus promotes self-renewal. These results highlight metabolism as a determinant of MuSC histone acetylation, fate, and function during muscle regeneration.
Collapse
Affiliation(s)
- Nora Yucel
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu Xin Wang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thach Mai
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peder J Lund
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Glenn Markov
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin A Garcia
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
110
|
Saleh A, Subramaniam G, Raychaudhuri S, Dhawan J. Cytoplasmic sequestration of the RhoA effector mDiaphanous1 by Prohibitin2 promotes muscle differentiation. Sci Rep 2019; 9:8302. [PMID: 31165762 PMCID: PMC6549159 DOI: 10.1038/s41598-019-44749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Muscle differentiation is controlled by adhesion and growth factor-dependent signalling through common effectors that regulate muscle-specific transcriptional programs. Here we report that mDiaphanous1, an effector of adhesion-dependent RhoA-signalling, negatively regulates myogenesis at the level of Myogenin expression. In myotubes, over-expression of mDia1ΔN3, a RhoA-independent mutant, suppresses Myogenin promoter activity and expression. We investigated mDia1-interacting proteins that may counteract mDia1 to permit Myogenin expression and timely differentiation. Using yeast two-hybrid and mass-spectrometric analysis, we report that mDia1 has a stage-specific interactome, including Prohibitin2, MyoD, Akt2, and β-Catenin, along with a number of proteosomal and mitochondrial components. Of these interacting partners, Prohibitin2 colocalises with mDia1 in cytoplasmic punctae in myotubes. We mapped the interacting domains of mDia1 and Phb2, and used interacting (mDia1ΔN3/Phb2 FL or mDia1ΔN3/Phb2-Carboxy) and non-interacting pairs (mDia1H + P/Phb2 FL or mDia1ΔN3/Phb2-Amino) to dissect the functional consequences of this partnership on Myogenin promoter activity. Co-expression of full-length as well as mDia1-interacting domains of Prohibitin2 reverse the anti-myogenic effects of mDia1ΔN3, while non-interacting regions do not. Our results suggest that Prohibitin2 sequesters mDia1, dampens its anti-myogenic activity and fine-tunes RhoA-mDia1 signalling to promote differentiation. Overall, we report that mDia1 is multi-functional signalling effector whose anti-myogenic activity is modulated by a differentiation-dependent interactome. The data have been deposited to the ProteomeXchange with identifier PXD012257.
Collapse
Affiliation(s)
- Amena Saleh
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gunasekaran Subramaniam
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Swasti Raychaudhuri
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Science & Regenerative Medicine, Bangalore, Karnataka, 560065, India.
- Council of Scientific & Industrial Research -Centre for Cellular & Molecular Biology, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
111
|
Li S, Chen K, Zhang Y, Barnes SD, Jaichander P, Zheng Y, Hassan M, Malladi VS, Skapek SX, Xu L, Bassel-Duby R, Olson EN, Liu N. Twist2 amplification in rhabdomyosarcoma represses myogenesis and promotes oncogenesis by redirecting MyoD DNA binding. Genes Dev 2019; 33:626-640. [PMID: 30975722 PMCID: PMC6546057 DOI: 10.1101/gad.324467.119] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 01/07/2023]
Abstract
Li et al. show that TWIST2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Rhabdomyosarcoma (RMS) is an aggressive pediatric cancer composed of myoblast-like cells. Recently, we discovered a unique muscle progenitor marked by the expression of the Twist2 transcription factor. Genomic analyses of 258 RMS patient tumors uncovered prevalent copy number amplification events and increased expression of TWIST2 in fusion-negative RMS. Knockdown of TWIST2 in RMS cells results in up-regulation of MYOGENIN and a decrease in proliferation, implicating TWIST2 as an oncogene in RMS. Through an inducible Twist2 expression system, we identified Twist2 as a reversible inhibitor of myogenic differentiation with the remarkable ability to promote myotube dedifferentiation in vitro. Integrated analysis of genome-wide ChIP-seq and RNA-seq data revealed the first dynamic chromatin and transcriptional landscape of Twist2 binding during myogenic differentiation. During differentiation, Twist2 competes with MyoD at shared DNA motifs to direct global gene transcription and repression of the myogenic program. Additionally, Twist2 shapes the epigenetic landscape to drive chromatin opening at oncogenic loci and chromatin closing at myogenic loci. These epigenetic changes redirect MyoD binding from myogenic genes toward oncogenic, metabolic, and growth genes. Our study reveals the dynamic interplay between two opposing transcriptional regulators that control the fate of RMS and provides insight into the molecular etiology of this aggressive form of cancer.
Collapse
Affiliation(s)
- Stephen Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yichi Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Spencer D Barnes
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Priscilla Jaichander
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yanbin Zheng
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mohammed Hassan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Venkat S Malladi
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lin Xu
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
112
|
Alexandre PA, Naval-Sanchez M, Porto-Neto LR, Ferraz JBS, Reverter A, Fukumasu H. Systems Biology Reveals NR2F6 and TGFB1 as Key Regulators of Feed Efficiency in Beef Cattle. Front Genet 2019; 10:230. [PMID: 30967894 PMCID: PMC6439317 DOI: 10.3389/fgene.2019.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/04/2019] [Indexed: 11/20/2022] Open
Abstract
Systems biology approaches are used as strategy to uncover tissue-specific perturbations and regulatory genes related to complex phenotypes. We applied this approach to study feed efficiency (FE) in beef cattle, an important trait both economically and environmentally. Poly-A selected RNA of five tissues (adrenal gland, hypothalamus, liver, skeletal muscle and pituitary) of eighteen young bulls, selected for high and low FE, were sequenced (Illumina HiSeq 2500, 100 bp, pared-end). From the 17,354 expressed genes considering all tissues, 1,335 were prioritized by five selection categories (differentially expressed, harboring SNPs associated with FE, tissue-specific, secreted in plasma and key regulators) and used for network construction. NR2F6 and TGFB1 were identified and validated by motif discovery as key regulators of hepatic inflammatory response and muscle tissue development, respectively, two biological processes demonstrated to be associated with FE. Moreover, we indicated potential biomarkers of FE, which are related to hormonal control of metabolism and sexual maturity. By using robust methodologies and validation strategies, we confirmed the main biological processes related to FE in Bos indicus and indicated candidate genes as regulators or biomarkers of superior animals.
Collapse
Affiliation(s)
- Pâmela A. Alexandre
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Marina Naval-Sanchez
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Laercio R. Porto-Neto
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Antonio Reverter
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Brisbane, QLD, Australia
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| |
Collapse
|
113
|
Hodge BA, Zhang X, Gutierrez-Monreal MA, Cao Y, Hammers DW, Yao Z, Wolff CA, Du P, Kemler D, Judge AR, Esser KA. MYOD1 functions as a clock amplifier as well as a critical co-factor for downstream circadian gene expression in muscle. eLife 2019; 8:e43017. [PMID: 30789342 PMCID: PMC6398978 DOI: 10.7554/elife.43017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/20/2019] [Indexed: 01/13/2023] Open
Abstract
In the present study we show that the master myogenic regulatory factor, MYOD1, is a positive modulator of molecular clock amplitude and functions with the core clock factors for expression of clock-controlled genes in skeletal muscle. We demonstrate that MYOD1 directly regulates the expression and circadian amplitude of the positive core clock factor Bmal1. We identify a non-canonical E-box element in Bmal1 and demonstrate that is required for full MYOD1-responsiveness. Bimolecular fluorescence complementation assays demonstrate that MYOD1 colocalizes with both BMAL1 and CLOCK throughout myonuclei. We demonstrate that MYOD1 and BMAL1:CLOCK work in a synergistic fashion through a tandem E-box to regulate the expression and amplitude of the muscle specific clock-controlled gene, Titin-cap (Tcap). In conclusion, these findings reveal mechanistic roles for the muscle specific transcription factor MYOD1 in the regulation of molecular clock amplitude as well as synergistic regulation of clock-controlled genes in skeletal muscle.
Collapse
Affiliation(s)
- Brian A Hodge
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Xiping Zhang
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | | | - Yi Cao
- Department of Bioinformatics and Computational BiologyGenentech IncSouth San FranciscoUnited States
| | - David W Hammers
- Department of Pharmacology and TherapeuticsUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Zizhen Yao
- Allen Institute for Brain ScienceSeattleUnited States
| | - Christopher A Wolff
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Ping Du
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Denise Kemler
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| | - Andrew R Judge
- Department of Physical TherapyUniversity of Florida Health Science CenterGainesvilleUnited States
| | - Karyn A Esser
- Department of Physiology and Functional GenomicsUniversity of FloridaGainesvilleUnited States
| |
Collapse
|
114
|
Okado H. Regulation of brain development and brain function by the transcriptional repressor RP58. Brain Res 2019; 1705:15-23. [PMID: 29501651 DOI: 10.1016/j.brainres.2018.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 12/16/2022]
Abstract
The mechanisms regulating the formation of the cerebral cortex have been well studied. In the developing cortex, (also known Znf238, Zfp238, and Zbtb18), which encodes a sequence-specific transcriptional repressor, is expressed in glutamatergic projection neurons and progenitor cells. Targeted deletion of Rp58 leads to dysplasia of the neocortex and hippocampus, a reduction in the number of mature cortical neurons, and defects in laminar organization due to abnormal neuronal migration within the cortical plate. During late embryogenesis, Rp58-deficient mice have larger numbers of progenitor cells due to a delay in cell cycle exit. RP58 represses all four Id genes (Id1-Id4), which regulate cell cycle exit in the developing cerebral cortex, and is essential for transcriptional repression of Ngn2 and Rnd2, which regulate the multipolar-to-bipolar transition during neuronal migration independently of its role in cell cycle exit.
Collapse
Affiliation(s)
- Haruo Okado
- Tokyo Metropolitan Institute of Medical Science, Brain Development and Neural Degeneration, Neural Development Project, Japan.
| |
Collapse
|
115
|
Gasiūnienė M, Zentelytė A, Treigytė G, Baronaitė S, Savickienė J, Utkus A, Navakauskienė R. Epigenetic alterations in amniotic fluid mesenchymal stem cells derived from normal and fetus-affected gestations: A focus on myogenic and neural differentiations. Cell Biol Int 2019; 43:299-312. [PMID: 30635962 DOI: 10.1002/cbin.11099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/05/2019] [Indexed: 12/21/2022]
Abstract
Amniotic fluid-derived mesenchymal stem cells (AF-MSCs) are autologous to the fetus and represent a potential alternative source for the regenerative medicine and treatment of perinatal disorders. To date, AF-MSCs differentiation capacity to non-mesodermal lineages and epigenetic regulation are still poorly characterized. The present study investigated the differentiation potential of AF-MSCs toward neural-like cells in comparison to the mesodermal myogenic lineage and assessed epigenetic factors involved in tissue-specific differentiation. Myogenic and neural differentiation assays were performed by the incubation with specific induction media. Typical MSCs markers were determined by flow cytometry, the expression of lineage-specific genes, microRNAs and chromatin modifying proteins were examined by RT-qPCR and Western blot, respectively. AF-MSCs of normal and fetus-affected gestations had similar stem cells characteristics and two-lineage potential, as characterized by cell morphology and the expression of myogenic and neural markers. Two-lineage differentiation process was associated with the down-regulation of miR-17 and miR-21, the up-regulation of miR-34a, miR-146a and DNMT3a/DNMT3b along with the gradual decrease in the levels of DNMT1, HDAC1, active marks of chromatin (H4hyperAc, H3K9ac, H3K4me3) and the repressive H3K9me3 mark. Differentiation was accompanied by the down-regulation of PRC1/2 proteins (BMI1/SUZ12, EZH2) and the retention of the repressive H3K27me3 mark. We report that both AF-MSCs of normal and fetus-affected gestations possess differentiation capacity toward myogenic and neural lineages through rather similar epigenetic mechanisms that may provide potential applications for further investigation of the molecular basis of prenatal diseases and for the future autologous therapy.
Collapse
Affiliation(s)
- Monika Gasiūnienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Aistė Zentelytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Gražina Treigytė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Sandra Baronaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Jūratė Savickienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Faculty of Medicine, Vilnius University, M. K. Ciurlionio st. 21, Vilnius, LT-03101, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
116
|
Abstract
Chromatin immunoprecipitation (ChIP) is a powerful and sensitive technique that is widely used to study DNA-protein interactions. It enables an unbiased genome-wide analysis of transcriptional changes during several biological processes including cellular differentiation. Here, we describe a step-by-step protocol to identify histone modifications, transcription factor, and co-factor binding to chromatin in skeletal myoblasts. We discuss critical steps during cell harvesting, sonication, and immunoprecipitation and provide notes to evade common pitfalls.
Collapse
Affiliation(s)
- Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
117
|
Hwang SY, Sung B, Kim ND. Roles of folate in skeletal muscle cell development and functions. Arch Pharm Res 2019; 42:319-325. [DOI: 10.1007/s12272-018-1100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/11/2018] [Indexed: 01/24/2023]
|
118
|
Mademtzoglou D, Asakura Y, Borok MJ, Alonso-Martin S, Mourikis P, Kodaka Y, Mohan A, Asakura A, Relaix F. Cellular localization of the cell cycle inhibitor Cdkn1c controls growth arrest of adult skeletal muscle stem cells. eLife 2018; 7:33337. [PMID: 30284969 PMCID: PMC6172026 DOI: 10.7554/elife.33337] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.
Collapse
Affiliation(s)
- Despoina Mademtzoglou
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yoko Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Matthew J Borok
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Sonia Alonso-Martin
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Philippos Mourikis
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France
| | - Yusaku Kodaka
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Amrudha Mohan
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Atsushi Asakura
- Stem Cell Institute, Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, United States
| | - Frederic Relaix
- Inserm, IMRB U955-E10, F-94010, Créteil, France.,Ecole Nationale Veterinaire d'Alfort, Faculté de medecine, F-94000, Université Paris-Est Creteil, Maison Alfort, France.,Etablissement Français du Sang, Créteil, France.,APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, Créteil, France
| |
Collapse
|
119
|
Pliner HA, Packer JS, McFaline-Figueroa JL, Cusanovich DA, Daza RM, Aghamirzaie D, Srivatsan S, Qiu X, Jackson D, Minkina A, Adey AC, Steemers FJ, Shendure J, Trapnell C. Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. Mol Cell 2018; 71:858-871.e8. [PMID: 30078726 PMCID: PMC6582963 DOI: 10.1016/j.molcel.2018.06.044] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022]
Abstract
Linking regulatory DNA elements to their target genes, which may be located hundreds of kilobases away, remains challenging. Here, we introduce Cicero, an algorithm that identifies co-accessible pairs of DNA elements using single-cell chromatin accessibility data and so connects regulatory elements to their putative target genes. We apply Cicero to investigate how dynamically accessible elements orchestrate gene regulation in differentiating myoblasts. Groups of Cicero-linked regulatory elements meet criteria of "chromatin hubs"-they are enriched for physical proximity, interact with a common set of transcription factors, and undergo coordinated changes in histone marks that are predictive of changes in gene expression. Pseudotemporal analysis revealed that most DNA elements remain in chromatin hubs throughout differentiation. A subset of elements bound by MYOD1 in myoblasts exhibit early opening in a PBX1- and MEIS1-dependent manner. Our strategy can be applied to dissect the architecture, sequence determinants, and mechanisms of cis-regulation on a genome-wide scale.
Collapse
Affiliation(s)
- Hannah A Pliner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Delasa Aghamirzaie
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Dana Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anna Minkina
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
120
|
Khilji S, Hamed M, Chen J, Li Q. Loci-specific histone acetylation profiles associated with transcriptional coactivator p300 during early myoblast differentiation. Epigenetics 2018; 13:642-654. [PMID: 29927685 PMCID: PMC6140897 DOI: 10.1080/15592294.2018.1489659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Molecular regulation of stem cell differentiation is exerted through both genetic and epigenetic determinants over distal regulatory or enhancer regions. Understanding the mechanistic action of active or poised enhancers is therefore imperative for control of stem cell differentiation. Based on the genome-wide co-occurrence of different epigenetic marks in committed proliferating myoblasts, we have previously generated a 14-state chromatin state model to profile rexinoid-responsive histone acetylation in early myoblast differentiation. Here, we delineate the functional mode of transcription regulators during early myogenic differentiation using genome-wide chromatin state association. We define a role of transcriptional coactivator p300, when recruited by muscle master regulator MyoD, in the establishment and regulation of myogenic loci at the onset of myoblast differentiation. In addition, we reveal an enrichment of loci-specific histone acetylation at p300 associated active or poised enhancers, particularly when enlisted by MyoD. We provide novel molecular insights into the regulation of myogenic enhancers by p300 in concert with MyoD. Our studies present a valuable aptitude for driving condition-specific chromatin state or enhancers pharmacologically to treat muscle-related diseases and for the identification of additional myogenic targets and molecular interactions for therapeutic development. Abbreviations: MRF: Muscle regulatory factor; HAT: Histone acetyltransferase; CBP: CREB-binding protein; ES: Embryonic stem; ATCC: American type culture collection; DM: Differentiation medium; DMEM: Dulbecco’s Modified Eagle Medium; GM: Growth medium; GO: Gene ontology; GREAT: Genomic regions enrichment of annotations tool; FPKM: Fragments per kilobase of transcript per million; GEO: Gene expression omnibus; MACS: Model-based analysis for ChIP-seq
Collapse
Affiliation(s)
- Saadia Khilji
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Munerah Hamed
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Jihong Chen
- b Department of Pathology and Laboratory Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Qiao Li
- a Department of Cellular and Molecular Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada.,b Department of Pathology and Laboratory Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
121
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
122
|
The muscle regulatory transcription factor MyoD participates with p53 to directly increase the expression of the pro-apoptotic Bcl2 family member PUMA. Apoptosis 2018; 22:1532-1542. [PMID: 28918507 DOI: 10.1007/s10495-017-1423-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The muscle regulatory transcription factor MyoD is a master regulator of skeletal myoblast differentiation. We have previously reported that MyoD is also necessary for the elevated expression of the pro-apoptotic Bcl2 family member PUMA, and the ensuing apoptosis, that occurs in a subset of myoblasts induced to differentiate. Herein, we report the identification of a functional MyoD binding site within the extended PUMA promoter. In silico analysis of the murine PUMA extended promoter revealed three potential MyoD binding sites within 2 kb of the transcription start site. Expression from a luciferase reporter construct containing this 2 kb fragment was enhanced by activation of MyoD in both myoblasts and fibroblasts and diminished by silencing of MyoD in myoblasts. Experiments utilizing truncated versions of this promoter region revealed that the potential binding site at position - 857 was necessary for expression. Chromatin immunoprecipitation (ChIP) analysis confirmed binding of MyoD to the DNA region encompassing position - 857. The increase in MyoD binding to the PUMA promoter as a consequence of culture in differentiation media (DM) was comparable to the increase in MyoD binding at the myogenin promoter and was diminished in myoblasts silenced for MyoD expression. Finally, ChIP analysis using an antibody specific for the transcription factor p53 demonstrated that, in myoblasts silenced for MyoD expression, p53 binding to the PUMA promoter was diminished in response to culture in DM. These data indicate that MyoD plays a direct role in regulating PUMA expression and reveal functional consequences of MyoD expression on p53 mediated transcription of PUMA.
Collapse
|
123
|
Yohe ME, Gryder BE, Shern JF, Song YK, Chou HC, Sindiri S, Mendoza A, Patidar R, Zhang X, Guha R, Butcher D, Isanogle KA, Robinson CM, Luo X, Chen JQ, Walton A, Awasthi P, Edmondson EF, Difilippantonio S, Wei JS, Zhao K, Ferrer M, Thomas CJ, Khan J. MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med 2018; 10:eaan4470. [PMID: 29973406 PMCID: PMC8054766 DOI: 10.1126/scitranslmed.aan4470] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
The RAS isoforms are frequently mutated in many types of human cancers, including PAX3/PAX7 fusion-negative rhabdomyosarcoma. Pediatric RMS arises from skeletal muscle progenitor cells that have failed to differentiate normally. The role of mutant RAS in this differentiation blockade is incompletely understood. We demonstrate that oncogenic RAS, acting through the RAF-MEK [mitogen-activated protein kinase (MAPK) kinase]-ERK (extracellular signal-regulated kinase) MAPK effector pathway, inhibits myogenic differentiation in rhabdomyosarcoma by repressing the expression of the prodifferentiation myogenic transcription factor, MYOG. This repression is mediated by ERK2-dependent promoter-proximal stalling of RNA polymerase II at the MYOG locus. Small-molecule screening with a library of mechanistically defined inhibitors showed that RAS-driven RMS is vulnerable to MEK inhibition. MEK inhibition with trametinib leads to the loss of ERK2 at the MYOG promoter and releases the transcriptional stalling of MYOG expression. MYOG subsequently opens chromatin and establishes super-enhancers at genes required for late myogenic differentiation. Furthermore, trametinib, in combination with an inhibitor of IGF1R, potently decreases rhabdomyosarcoma cell viability and slows tumor growth in xenograft models. Therefore, this combination represents a potential therapeutic for RAS-mutated rhabdomyosarcoma.
Collapse
Affiliation(s)
- Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Hsien-Chao Chou
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Arnulfo Mendoza
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Patidar
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Rajarashi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Kristine A Isanogle
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Christina M Robinson
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ashley Walton
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Elijah F Edmondson
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Keji Zhao
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
124
|
Sartorelli V, Puri PL. Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 2018; 71:375-388. [PMID: 29887393 DOI: 10.1016/j.molcel.2018.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
Abstract
Since its discovery as a skeletal muscle-specific transcription factor able to reprogram somatic cells into differentiated myofibers, MyoD has provided an instructive model to understand how transcription factors regulate gene expression. Reciprocally, studies of other transcriptional regulators have provided testable hypotheses to further understand how MyoD activates transcription. Using MyoD as a reference, in this review, we discuss the similarities and differences in the regulatory mechanisms employed by tissue-specific transcription factors to access DNA and regulate gene expression by cooperatively shaping the chromatin landscape within the context of cellular differentiation.
Collapse
Affiliation(s)
- Vittorio Sartorelli
- Laboratory of Muscle Stem Cells & Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA.
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA; Epigenetics and Regenerative Medicine, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
125
|
Han SK, Qi X, Sugihara K, Dang JH, Endo TA, Miller KL, Kim ED, Miura T, Torii KU. MUTE Directly Orchestrates Cell-State Switch and the Single Symmetric Division to Create Stomata. Dev Cell 2018; 45:303-315.e5. [PMID: 29738710 DOI: 10.1016/j.devcel.2018.04.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Precise cell division control is critical for developmental patterning. For the differentiation of a functional stoma, a cellular valve for efficient gas exchange, the single symmetric division of an immediate precursor is absolutely essential. Yet, the mechanism governing this event remains unclear. Here we report comprehensive inventories of gene expression by the Arabidopsis bHLH protein MUTE, a potent inducer of stomatal differentiation. MUTE switches the gene expression program initiated by SPEECHLESS. MUTE directly induces a suite of cell-cycle genes, including CYCD5;1, in which introduced expression triggers the symmetric divisions of arrested precursor cells in mute, and their transcriptional repressors, FAMA and FOUR LIPS. The regulatory network initiated by MUTE represents an incoherent type 1 feed-forward loop. Our mathematical modeling and experimental perturbations support a notion that MUTE orchestrates a transcriptional cascade leading to a tightly restricted pulse of cell-cycle gene expression, thereby ensuring the single cell division to create functional stomata.
Collapse
Affiliation(s)
- Soon-Ki Han
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Xingyun Qi
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Jonathan H Dang
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kristen L Miller
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Eun-Deok Kim
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Keiko U Torii
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
126
|
Kudou K, Komatsu T, Nogami J, Maehara K, Harada A, Saeki H, Oki E, Maehara Y, Ohkawa Y. The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. Open Biol 2018; 7:rsob.170119. [PMID: 28878038 PMCID: PMC5627051 DOI: 10.1098/rsob.170119] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression was reduced at the mRNA level by cell cycle arrest in S and G2 phases, which in turn led to the absence of skeletal muscle differentiation. The reduction of MyoD mRNA was correlated with the reduced expression of factors regulating RNA metabolism, including methyltransferase like 3 (Mettl3), which induces N6-methyladenosine (m6A) modifications of RNA. Knockdown of Mettl3 revealed that MyoD RNA was specifically downregulated and that this was caused by a decrease in processed, but not unprocessed, mRNA. Potential m6A modification sites were profiled by m6A sequencing and identified within the 5' untranslated region (UTR) of MyoD mRNA. Deletion of the 5' UTR revealed that it has a role in MyoD mRNA processing. These data showed that Mettl3 is required for MyoD mRNA expression in proliferative myoblasts.
Collapse
Affiliation(s)
- Kensuke Kudou
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tetsuro Komatsu
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan
| | - Akihito Harada
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, JST-CREST, Fukuoka 812-8582, Japan
| |
Collapse
|
127
|
Takei D, Nishi M, Fukada SI, Doi M, Okamura H, Uezumi A, Zhang L, Yoshida M, Miyazato M, Ichimura A, Takeshima H. Gm7325 is MyoD-dependently expressed in activated muscle satellite cells. Biomed Res 2018. [PMID: 28637957 DOI: 10.2220/biomedres.38.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Gm7325 gene, bioinformatically identified in the mouse genome, encodes a small protein but has not been characterized until recently. Our gene expression analysis revealed that Gm7325 transcription is remarkably upregulated in injured skeletal muscle tissues. Activated satellite cells and immature myotubes were densely decorated with positive signals for Gm7325 mRNA in in situ hybridization analysis, while no obvious signals were observed in quiescent satellite cells and mature myofibers. In the 5'-flanking regions of mouse Gm7325 and its human homologue, conserved E-box motifs for helix-loop-helix transcription factors are repeatedly arranged around the putative promoter regions. Reporter gene assays suggested that MyoD, a master transcription factor for myogenesis, binds to the conserved E-box motifs to activate Gm7325 expression. Therefore, Gm7325, as a novel MyoD-target gene, is specifically induced in activated satellite cells, and may have an important role in skeletal myogenesis.
Collapse
Affiliation(s)
- Daisuke Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
| | | | - Masao Doi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hitoshi Okamura
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Lidan Zhang
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Mikiya Miyazato
- National Cerebral and Cardiovascular Center Research Institute
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University.,Center for the Promotion of Interdisciplinary Education and Research, Kyoto University
| | | |
Collapse
|
128
|
Casey BH, Kollipara RK, Pozo K, Johnson JE. Intrinsic DNA binding properties demonstrated for lineage-specifying basic helix-loop-helix transcription factors. Genome Res 2018; 28:484-496. [PMID: 29500235 PMCID: PMC5880239 DOI: 10.1101/gr.224360.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
During development, transcription factors select distinct gene programs, providing the necessary regulatory complexity for temporal and tissue-specific gene expression. How related factors retain specificity, especially when they recognize the same DNA motifs, is not understood. We address this paradox using basic helix-loop-helix (bHLH) transcription factors ASCL1, ASCL2, and MYOD1, crucial mediators of lineage specification. In vivo, these factors recognize the same DNA motifs, yet bind largely different genomic sites and regulate distinct transcriptional programs. This suggests that their ability to identify regulatory targets is defined either by the cellular environment of the partially defined lineages in which they are endogenously expressed, or by intrinsic properties of the factors themselves. To distinguish between these mechanisms, we directly compared the chromatin binding properties of this subset of bHLH factors when ectopically expressed in embryonic stem cells, presenting them with a common chromatin landscape and cellular components. We find that these factors retain distinct binding sites; thus, specificity of binding is an intrinsic property not requiring a restricted landscape or lineage-specific cofactors. Although the ASCL factors and MYOD1 have some distinct DNA motif preference, it is not sufficient to explain the extent of the differential binding. All three factors can bind inaccessible chromatin and induce changes in chromatin accessibility and H3K27ac. A reiterated pattern of DNA binding motifs is uniquely enriched in inaccessible chromatin at sites bound by these bHLH factors. These combined properties define a subclass of lineage-specific bHLH factors and provide context for their central roles in development and disease.
Collapse
Affiliation(s)
- Bradford H Casey
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Karine Pozo
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
129
|
HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 2018; 8:3448. [PMID: 29472596 PMCID: PMC5823886 DOI: 10.1038/s41598-018-21835-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7+ cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion.
Collapse
|
130
|
Wei D, Feng L, Zhang W, Ma X, Cheng G, Li S, Wang L, Zhang S, Hong J, Guo H, Wang Y, Ning Y, Zan L. Characterization of the promoter region of bovine SIX4 : Roles of E-box and MyoD in the regulation of basal transcription. Biochem Biophys Res Commun 2018; 496:44-50. [DOI: 10.1016/j.bbrc.2017.12.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/30/2022]
|
131
|
Manandhar D, Song L, Kabadi A, Kwon JB, Edsall LE, Ehrlich M, Tsumagari K, Gersbach CA, Crawford GE, Gordân R. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res 2017; 45:11684-11699. [PMID: 28977539 PMCID: PMC5714206 DOI: 10.1093/nar/gkx773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.
Collapse
Affiliation(s)
- Dinesh Manandhar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Ami Kabadi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Lee E Edsall
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Melanie Ehrlich
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Koji Tsumagari
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham NC 27708, USA
| |
Collapse
|
132
|
Hamed M, Khilji S, Dixon K, Blais A, Ioshikhes I, Chen J, Li Q. Insights into interplay between rexinoid signaling and myogenic regulatory factor-associated chromatin state in myogenic differentiation. Nucleic Acids Res 2017; 45:11236-11248. [PMID: 28981706 PMCID: PMC5737385 DOI: 10.1093/nar/gkx800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the genome-wide impact of rexinoids on myogenic differentiation through integral RNA-seq and ChIP-seq analyses. We found that bexarotene promotes myoblast differentiation through the coordination of exit from the cell cycle and the activation of muscle-related genes. We uncovered a new mechanism of rexinoid action which is mediated by the nuclear receptor and largely reconciled through a direct regulation of MyoD gene expression. In addition, we determined a rexinoid-responsive residue-specific histone acetylation at a distinct chromatin state associated to MyoD and myogenin. Thus, we provide novel molecular insights into the interplay between RXR signaling and chromatin states pertinent to myogenic programs in early myoblast differentiation.
Collapse
Affiliation(s)
- Munerah Hamed
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Katherine Dixon
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alexandre Blais
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,The Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
133
|
MyoD Regulates Skeletal Muscle Oxidative Metabolism Cooperatively with Alternative NF-κB. Cell Rep 2017; 17:514-526. [PMID: 27705798 DOI: 10.1016/j.celrep.2016.09.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
MyoD is a key regulator of skeletal myogenesis that directs contractile protein synthesis, but whether this transcription factor also regulates skeletal muscle metabolism has not been explored. In a genome-wide ChIP-seq analysis of skeletal muscle cells, we unexpectedly observed that MyoD directly binds to numerous metabolic genes, including those associated with mitochondrial biogenesis, fatty acid oxidation, and the electron transport chain. Results in cultured cells and adult skeletal muscle confirmed that MyoD regulates oxidative metabolism through multiple transcriptional targets, including PGC-1β, a master regulator of mitochondrial biogenesis. We find that PGC-1β expression is cooperatively regulated by MyoD and the alternative NF-κB signaling pathway. Bioinformatics evidence suggests that this cooperativity between MyoD and NF-κB extends to other metabolic genes as well. Together, these data identify MyoD as a regulator of the metabolic capacity of mature skeletal muscle to ensure that sufficient energy is available to support muscle contraction.
Collapse
|
134
|
Taylor MV, Hughes SM. Mef2 and the skeletal muscle differentiation program. Semin Cell Dev Biol 2017; 72:33-44. [PMID: 29154822 DOI: 10.1016/j.semcdb.2017.11.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 02/06/2023]
Abstract
Mef2 is a conserved and significant transcription factor in the control of muscle gene expression. In cell culture Mef2 synergises with MyoD-family members in the activation of gene expression and in the conversion of fibroblasts into myoblasts. Amongst its in vivo roles, Mef2 is required for both Drosophila muscle development and mammalian muscle regeneration. Mef2 has functions in other cell-types too, but this review focuses on skeletal muscle and surveys key findings on Mef2 from its discovery, shortly after that of MyoD, up to the present day. In particular, in vivo functions, underpinning mechanisms and areas of uncertainty are highlighted. We describe how Mef2 sits at a nexus in the gene expression network that controls the muscle differentiation program, and how Mef2 activity must be regulated in time and space to orchestrate specific outputs within the different aspects of muscle development. A theme that emerges is that there is much to be learnt about the different Mef2 proteins (from different paralogous genes, spliced transcripts and species) and how the activity of these proteins is controlled.
Collapse
Affiliation(s)
- Michael V Taylor
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL UK
| |
Collapse
|
135
|
Taglietti V, Maroli G, Cermenati S, Monteverde S, Ferrante A, Rossi G, Cossu G, Beltrame M, Messina G. Nfix Induces a Switch in Sox6 Transcriptional Activity to Regulate MyHC-I Expression in Fetal Muscle. Cell Rep 2017; 17:2354-2366. [PMID: 27880909 PMCID: PMC5149531 DOI: 10.1016/j.celrep.2016.10.082] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/08/2016] [Accepted: 10/24/2016] [Indexed: 02/01/2023] Open
Abstract
Sox6 belongs to the Sox gene family and plays a pivotal role in fiber type differentiation, suppressing transcription of slow-fiber-specific genes during fetal development. Here, we show that Sox6 plays opposite roles in MyHC-I regulation, acting as a positive and negative regulator of MyHC-I expression during embryonic and fetal myogenesis, respectively. During embryonic myogenesis, Sox6 positively regulates MyHC-I via transcriptional activation of Mef2C, whereas during fetal myogenesis, Sox6 requires and cooperates with the transcription factor Nfix in repressing MyHC-I expression. Mechanistically, Nfix is necessary for Sox6 binding to the MyHC-I promoter and thus for Sox6 repressive function, revealing a key role for Nfix in driving Sox6 activity. This feature is evolutionarily conserved, since the orthologs Nfixa and Sox6 contribute to repression of the slow-twitch phenotype in zebrafish embryos. These data demonstrate functional cooperation between Sox6 and Nfix in regulating MyHC-I expression during prenatal muscle development. Sox6 has opposite roles in MyHC-I regulation during embryonic and fetal myogenesis In embryonic muscle, Sox6 enhances MyHC-I expression via regulation of Mef2C In fetal muscle, Nfix is required for Sox6-mediated repression of MyHC-I The Sox6 and Nfixa orthologs cooperate in repressing smyhc1 in zebrafish
Collapse
Affiliation(s)
| | - Giovanni Maroli
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Solei Cermenati
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | | | - Andrea Ferrante
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Giuliana Rossi
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Giulio Cossu
- Department of Biosciences, University of Milan, Milan 20133, Italy; Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Oxford Road, M13 9PL Manchester, UK
| | - Monica Beltrame
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | | |
Collapse
|
136
|
Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017; 72:10-18. [PMID: 29127045 DOI: 10.1016/j.semcdb.2017.11.010] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- J Manuel Hernández-Hernández
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Estela G García-González
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Caroline E Brun
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
137
|
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72:19-32. [PMID: 29127046 DOI: 10.1016/j.semcdb.2017.11.011] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Discovery of the myogenic regulatory factor family of transcription factors MYF5, MYOD, Myogenin and MRF4 was a seminal step in understanding specification of the skeletal muscle lineage and control of myogenic differentiation during development. These factors are also involved in specification of the muscle satellite cell lineage, which becomes the resident stem cell compartment inadult skeletal muscle. While MYF5, MYOD, Myogenin and MRF4 have subtle roles in mature muscle, they again play a crucial role in directing satellite cell function to regenerate skeletal muscle: linking the genetic control of developmental and regenerative myogenesis. Here, I review the role of the myogenic regulatory factors in developing and mature skeletal muscle, satellite cell specification and muscle regeneration.
Collapse
Affiliation(s)
- Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, London, SE1 1UL, UK.
| |
Collapse
|
138
|
Peng XL, So KK, He L, Zhao Y, Zhou J, Li Y, Yao M, Xu B, Zhang S, Yao H, Hu P, Sun H, Wang H. MyoD- and FoxO3-mediated hotspot interaction orchestrates super-enhancer activity during myogenic differentiation. Nucleic Acids Res 2017; 45:8785-8805. [PMID: 28575289 PMCID: PMC5587775 DOI: 10.1093/nar/gkx488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements enriching lineage specific key transcription factors (TFs) to form hotspots. A paucity of identification and functional dissection promoted us to investigate SEs during myoblast differentiation. ChIP-seq analysis of histone marks leads to the uncovering of SEs which remodel progressively during the course of differentiation. Further analyses of TF ChIP-seq enable the definition of SE hotspots co-bound by the master TF, MyoD and other TFs, among which we perform in-depth dissection for MyoD/FoxO3 interaction in driving the hotspots formation and SE activation. Furthermore, using Myogenin as a model locus, we elucidate the hierarchical and complex interactions among hotspots during the differentiation, demonstrating SE function is propelled by the physical and functional cooperation among hotspots. Finally, we show MyoD and FoxO3 are key in orchestrating the Myogenin hotspots interaction and activation. Altogether our results identify muscle-specific SEs and provide mechanistic insights into the functionality of SE.
Collapse
Affiliation(s)
- Xianlu L Peng
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Karl K So
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Zhao
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuying Li
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingze Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, China
| | - Bo Xu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Suyang Zhang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, China
| | - Ping Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
139
|
Abstract
Rhabdomyosarcoma is a mesenchymal malignancy associated with the skeletal muscle lineage and is also the most common pediatric soft tissue cancer. Between the two pediatric subtypes, embryonal and alveolar rhabdomyosarcoma, the alveolar subtype is generally more aggressive and high-risk. Despite intensive multimodal therapy, patients with high-risk rhabdomyosarcoma continue to have poor prognosis. In this chapter we address the mechanisms underlying the dysregulation of myogenesis in rhabdomyosarcoma. We specifically focus on recently identified signaling pathways that function to inhibit myogenesis and how similar functions have been shown to overlap in rhabdomyosarcoma, potentially contributing to the disease.
Collapse
Affiliation(s)
- Peter Y Yu
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Denis C Guttridge
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States; The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
140
|
Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 2017; 72:77-86. [PMID: 29079444 DOI: 10.1016/j.semcdb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The MyoD family of closely related, lineage-determining transcription factors directs, largely through targeting to chromatin, a cascade of cooperating transcription factors and enzymes that incorporate or remove variant histones, post-translationally modify histones, and alter nucleosome structure and positioning via energy released by ATP hydrolysis. The coordinated action of these transcription factors and enzymes prevents expression of differentiation-specific genes in myoblasts and facilitates the transition of these genes from transcriptionally repressed to activated during the differentiation process. Regulation is achieved in both a temporal as well as spatial manner, as at least some of these factors and enzymes affect local chromatin structure at myogenic gene regulatory sequences as well as higher-order genome organization. Here we discuss the transition of genes that promote myoblast differentiation from the silenced to the activated state with an emphasis on the changes that occur to individual histones and the chromatin structure present at these loci.
Collapse
|
141
|
Varrault A, Dantec C, Le Digarcher A, Chotard L, Bilanges B, Parrinello H, Dubois E, Rialle S, Severac D, Bouschet T, Journot L. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network. Nucleic Acids Res 2017; 45:10466-10480. [PMID: 28985358 PMCID: PMC5737700 DOI: 10.1093/nar/gkx672] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition.
Collapse
Affiliation(s)
- Annie Varrault
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Christelle Dantec
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Anne Le Digarcher
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laëtitia Chotard
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Benoit Bilanges
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Emeric Dubois
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Stéphanie Rialle
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Dany Severac
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
- Montpellier GenomiX, MGX, BioCampus Montpellier, CNRS, INSERM, Univ. Montpellier, F-34094 Montpellier, France
| |
Collapse
|
142
|
Li G, Luo W, Abdalla BA, Ouyang H, Yu J, Hu F, Nie Q, Zhang X. miRNA-223 upregulated by MYOD inhibits myoblast proliferation by repressing IGF2 and facilitates myoblast differentiation by inhibiting ZEB1. Cell Death Dis 2017; 8:e3094. [PMID: 28981085 PMCID: PMC5682648 DOI: 10.1038/cddis.2017.479] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022]
Abstract
Skeletal muscle differentiation can be regulated by various transcription factors and non-coding RNAs. In our previous work, miR-223 is differentially expressed in the skeletal muscle of chicken with different growth rates, but its role, expression and action mechanism in muscle development still remains unknown. Here, we found that MYOD transcription factor can upregulate miR-223 expression by binding to an E-box region of the gga-miR-223 gene promoter during avian myoblast differentiation. IGF2 and ZEB1 are two target genes of miR-223. The target inhibition of miR-223 on IGF2 and ZEB1 are dynamic from proliferation to differentiation of myoblast. miR-223 inhibits IGF2 expression only in the proliferating myoblast, whereas it inhibits ZEB1 mainly in the differentiating myoblast. The inhibition of IGF2 by miR-223 resulted in the repression of myoblast proliferation. During myoblast differentiation, miR-223 would be upregulated owing to the promoting effect of MYOD, and the upregulation of miR-223 would inhibit ZEB1 to promote myoblast differentiation. These results not only demonstrated that the well-known muscle determination factor MYOD can promote myoblast differentiation by upregulate miR-223 transcription, but also identified that miR-223 can influence myoblast proliferation and differentiation by a dynamic manner regulates the expression of its target genes.
Collapse
Affiliation(s)
- Guihuan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Bahareldin A Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Hongjia Ouyang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Jiao Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Fan Hu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong Province, China
| |
Collapse
|
143
|
An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 2017; 359:145-153. [DOI: 10.1016/j.yexcr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
144
|
Abstract
Skeletal muscle regeneration is an efficient stem cell-based repair system that ensures healthy musculature. For this repair system to function continuously throughout life, muscle stem cells must contribute to the process of myofiber repair as well as repopulation of the stem cell niche. The decision made by the muscle stem cells to commit to the muscle repair or to remain a stem cell depends upon patterns of gene expression, a process regulated at the epigenetic level. Indeed, it is well accepted that dynamic changes in epigenetic landscapes to control DNA accessibility and expression is a critical component during myogenesis for the effective repair of damaged muscle. Changes in the epigenetic landscape are governed by various posttranslational histone tail modifications, nucleosome repositioning, and DNA methylation events which collectively allow the control of changes in transcription networks during transitions of satellite cells from a dormant quiescent state toward terminal differentiation. This chapter focuses upon the specific epigenetic changes that occur during muscle stem cell-mediated regeneration to ensure myofiber repair and continuity of the stem cell compartment. Furthermore, we explore open questions in the field that are expected to be important areas of exploration as we move toward a more thorough understanding of the epigenetic mechanism regulating muscle regeneration.
Collapse
Affiliation(s)
- Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada
| | - Francis J Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
145
|
An Y, Wang G, Diao Y, Long Y, Fu X, Weng M, Zhou L, Sun K, Cheung TH, Ip NY, Sun H, Wang H, Wu Z. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes. Dev Cell 2017; 41:382-391.e5. [PMID: 28535373 DOI: 10.1016/j.devcel.2017.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 02/16/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022]
Abstract
During mouse embryo development, both muscle progenitor cells (MPCs) and brown adipocytes (BAs) are known to derive from the same Pax7+/Myf5+ progenitor cells. However, the underlying mechanisms for the cell fate control remain unclear. In Pax7-null MPCs from young mice, several BA-specific genes, including Prdm16 and Ucp1 and many other adipocyte-related genes, were upregulated with a concomitant reduction of Myod and Myf5, two muscle lineage-determining genes. This suggests a cell fate switch from MPC to BA. Consistently, freshly isolated Pax7-null but not wild-type MPCs formed lipid-droplet-containing UCP1+ BA in culture. Mechanistically, MyoD and Myf5, both known transcription targets of Pax7 in MPC, potently repress Prdm16, a BA-specific lineage-determining gene, via the E2F4/p107/p130 transcription repressor complex. Importantly, inducible Pax7 ablation in developing mouse embryos promoted brown fat development. Thus, the MyoD/Myf5-E2F4/p107/p130 axis functions in both the Pax7+/Myf5+ embryonic progenitor cells and postnatal myoblasts to repress the alternative BA fate.
Collapse
Affiliation(s)
- Yitai An
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Gang Wang
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yarui Diao
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Yanyang Long
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Xinrong Fu
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Mingxi Weng
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Liang Zhou
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kun Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Hao Sun
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, Center for Stem Cell Research, Center of Systems Biology and Human Health, State Key Laboratory in Molecular Neuroscience, Hong Kong University of Science & Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
146
|
MiR-34c represses muscle development by forming a regulatory loop with Notch1. Sci Rep 2017; 7:9346. [PMID: 28839212 PMCID: PMC5571228 DOI: 10.1038/s41598-017-09688-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
Since pork accounts for about 40% of global meat consumption, the pig is an important economic animal for meat production. Pig is also a useful medical model for humans due to its similarity in size and physiology. Understanding the mechanism of muscle development has great implication for animal breeding and human health. Previous studies showed porcine muscle satellite cells (PSCs) are important for postnatal skeletal muscle growth, and Notch1 signaling pathway and miRNAs regulate the skeletal muscle development. Notch1 signal pathway regulates the transcription of certain types of miRNAs which further affects target gene expression. However, the specific relationship between Notch1 and miRNAs during muscle development has not been established. We found miR-34c is decreased in PSCs overexpressed N1ICD. Through the overexpression and inhibition of mi-34c, we demonstrated that miR-34c inhibits PSCs proliferation and promotes PSCs differentiation. Using dual-luciferase reporter assay and Chromatin immunoprecipitation, we demonstrate there is a reciprocal regulatory loop between Notch1 and miR-34c. Furthermore, injection of miR-34c lentivirus into mice caused repression of gastrocnemius muscle development. In summary, our data revealed that miR-34c can form a regulatory loop with Notch1 to repress muscle development, and this result expands our understanding of muscle development mechanism.
Collapse
|
147
|
Jin W, Liu M, Peng J, Jiang S. Function analysis of Mef2c promoter in muscle differentiation. Biotechnol Appl Biochem 2017; 64:647-656. [PMID: 27354201 DOI: 10.1002/bab.1524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/17/2016] [Indexed: 11/11/2022]
Abstract
Regeneration of adult skeletal muscle following injury occurs through the activation of satellite cells that proliferates, differentiates, and fuses with injured myofibers. Myocyte enhancer factor 2 (MEF2) proteins are reported to have the potential contributions to adult muscle regeneration. To further understand Mef2c gene, the promoter of pig Mef2c gene was analyzed in this paper. Quantitative real-time PCR (qRT-PCR) revealed the expression pattern of Mef2c gene in muscle of eight tissues. The Mef2c promoter had the higher transcriptional activity in differentiated C2C12 cells than that in proliferating C2C12 cells, which was accompanied by the upregulation of mRNA expression of Mef2c gene. Function deletion and mutation analyses showed that MyoD and MEF2 binding sites within the Mef2c promoter were responsible for the regulation of Mef2c transcription. MEF2C could upregulate the transcriptional activities of Mef2c promoter constructs, which contained a 3'-end nucleotide sequence with p300 binding site. The electrophoretic mobility shift assays and chromatin immunoprecipitation assays determined the MyoD binding site in Mef2c promoter. These results advanced our knowledge of the promoter of the pig Mef2c gene, and the study of Mef2c promoter regulator elements helped to elucidate the regulation mechanisms of Mef2c in muscle differentiation or muscle repair and regeneration.
Collapse
Affiliation(s)
- Wei Jin
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Min Liu
- Department of Anatomy, Histology and Embryology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.,Key Projects in the Cooperative Innovation Center for Sustainable Pig Production of Wuhan, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
148
|
McQueen C, Pownall ME. An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. Mech Dev 2017; 146:1-9. [DOI: 10.1016/j.mod.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
|
149
|
Roberts TC, Etxaniz U, Dall'Agnese A, Wu SY, Chiang CM, Brennan PE, Wood MJA, Puri PL. BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Sci Rep 2017; 7:6153. [PMID: 28733670 PMCID: PMC5522382 DOI: 10.1038/s41598-017-06483-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022] Open
Abstract
Myogenic differentiation proceeds through a highly coordinated cascade of gene activation that necessitates epigenomic changes in chromatin structure. Using a screen of small molecule epigenetic probes we identified three compounds which inhibited myogenic differentiation in C2C12 myoblasts; (+)-JQ1, PFI-1, and Bromosporine. These molecules target Bromodomain and Extra Terminal domain (BET) proteins, which are epigenetic readers of acetylated histone lysine tail residues. BETi-mediated anti-myogenic effects were also observed in a model of MYOD1-mediated myogenic conversion of human fibroblasts, and in primary mouse and human myoblasts. All three BET proteins BRD2, BRD3 and BRD4 exhibited distinct and dynamic patterns of protein expression over the course of differentiation without concomitant changes in mRNA levels, suggesting that BET proteins are regulated at the post-transcriptional level. Specific BET protein knockdown by RNA interference revealed that BRD4 was required for myogenic differentiation, whereas BRD3 down-regulation resulted in enhanced myogenic differentiation. ChIP experiments revealed a preferential binding of BRD4 to the Myog promoter during C2C12 myoblast differentiation, co-incident with increased levels of H3K27 acetylation. These results have identified an essential role for BET proteins in the regulation of skeletal myogenesis, and assign distinct functions to BRD3 and BRD4.
Collapse
Affiliation(s)
- Thomas C Roberts
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, 92037, USA. .,Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Usue Etxaniz
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, 92037, USA
| | - Alessandra Dall'Agnese
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, 92037, USA
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390, USA
| | - Paul E Brennan
- Structural Genomics Consortium and Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, 92037, USA. .,IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
150
|
Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 2017; 12:e0179464. [PMID: 28609469 PMCID: PMC5469484 DOI: 10.1371/journal.pone.0179464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/29/2017] [Indexed: 11/18/2022] Open
Abstract
Post-translational modifications of histones play a key role in the regulation of gene expression during development and differentiation. Numerous studies have shown the dynamics of combinatorial regulation by transcription factors and histone modifications, in the sense that different combinations lead to distinct expression outcomes. Here, we investigated gene regulation by stable enrichment patterns of histone marks H3K4me2 and H3K4me3 in combination with the chromatin binding of the muscle tissue-specific transcription factor MyoD during myogenic differentiation of C2C12 cells. Using k-means clustering, we found that specific combinations of H3K4me2/3 profiles over and towards the gene body impact on gene expression and marks a subset of genes important for muscle development and differentiation. By further analysis, we found that the muscle key regulator MyoD was significantly enriched on this subset of genes and played a repressive role during myogenic differentiation. Among these genes, we identified the pluripotency gene Patz1, which is repressed during myogenic differentiation through direct binding of MyoD to promoter elements. These results point to the importance of integrating histone modifications and MyoD chromatin binding for coordinated gene activation and repression during myogenic differentiation.
Collapse
|