101
|
Xiao X, Ni Y, Yu C, Li L, Mao B, Yang Y, Zheng D, Silvestrini B, Cheng CY. Src family kinases (SFKs) and cell polarity in the testis. Semin Cell Dev Biol 2018; 81:46-53. [PMID: 29174914 PMCID: PMC5988912 DOI: 10.1016/j.semcdb.2017.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
Abstract
Non-receptor Src family kinases (SFKs), most notably c-Src and c-Yes, are recently shown to be expressed by Sertoli and/or germ cells in adult rat testes. Studies have shown that SFKs are involved in modulating the cell cytoskeletal function, and involved in endocytic vesicle-mediated protein endocytosis, transcytosis and/or recycling as well as intracellular protein degradation events. Furthermore, a knockdown to SFKs, in particular c-Yes, has shown to induce defects in spermatid polarity. These findings, coupled with emerging evidence in the field, thus prompt us to critically evaluate them to put forth a developing concept regarding the role of SFKs and cell polarity, which will become a basis to design experiments for future investigations.
Collapse
Affiliation(s)
- Xiang Xiao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| | - Ya Ni
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Chenhuan Yu
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Yue Yang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Dongwang Zheng
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| |
Collapse
|
102
|
Smith LC, Moreno S, Robertson L, Robinson S, Gant K, Bryant AJ, Sabo-Attwood T. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respir Res 2018; 19:160. [PMID: 30165855 PMCID: PMC6117929 DOI: 10.1186/s12931-018-0861-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023] Open
Abstract
Background Sex differences in idiopathic pulmonary fibrosis (IPF) suggest a protective role for estrogen (E2); however, mechanistic studies in animal models have produced mixed results. Reports using cell lines have investigated molecular interactions between transforming growth factor beta1 (TGF-β1) and estrogen receptor (ESR) pathways in breast, prostate, and skin cells, but no such interactions have been described in human lung cells. To address this gap in the literature, we investigated a role for E2 in modulating TGF-β1-induced signaling mechanisms and identified novel pathways impacted by estrogen in bronchial epithelial cells. Methods We investigated a role for E2 in modulating TGF-β1-induced epithelial to mesenchymal transition (EMT) in bronchial epithelial cells (BEAS-2Bs) and characterized the effect of TGF-β1 on ESR mRNA and protein expression in BEAS-2Bs. We also quantified mRNA expression of ESRs in lung tissue from individuals with IPF and identified potential downstream targets of E2 signaling in BEAS-2Bs using RNA-Seq and gene set enrichment analysis. Results E2 negligibly modulated TGF-β1-induced EMT; however, we report the novel observation that TGF-β1 repressed ESR expression, most notably estrogen receptor alpha (ESR1). Results of the RNA-Seq analysis showed that TGF-β1 and E2 inversely modulated the expression of several genes involved in processes such as extracellular matrix (ECM) turnover, airway smooth muscle cell contraction, and calcium flux regulation. We also report that E2 specifically modulated the expression of genes involved in chromatin remodeling pathways and that this regulation was absent in the presence of TGF-β1. Conclusions Collectively, these results suggest that E2 influences unexplored pathways that may be relevant to pulmonary disease and highlights potential roles for E2 in the lung that may contribute to sex-specific differences. Electronic supplementary material The online version of this article (10.1186/s12931-018-0861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Cody Smith
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.,Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Santiago Moreno
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Lauren Robertson
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Sarah Robinson
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Kristal Gant
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA.,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - Andrew J Bryant
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Tara Sabo-Attwood
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA. .,Department of Environmental and Global Health, Center for Environmental and Human Toxicology, University of Florida, Box 110885, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
103
|
Abstract
Hypoxia, a common condition of the tumor microenvironment, induces changes in the proteome of cancer cells, mainly via HIF-1, a transcription factor conformed by a constitutively expressed β-subunit and an oxygen-regulated α-subunit. In hypoxia, HIF-1α stabilizes, forms the heterodimeric complex with HIF-1β, and binds to Hypoxia Response Elements (HRE), activating gene expression to promote metabolic adaptation, cell invasion and metastasis. Furthermore, the focal adhesion kinase, FAK, is activated in hypoxia, promoting cell migration by mechanisms that remain unclear. In this context, integrins, which are glycoproteins required for cell migration, are possibly involved in hypoxia-induced FAK activation. Evidence suggests that cancer cells have an altered glycosylation metabolism, mostly by the expression of glycosyltransferases, however the relevance of glycosylation is poorly explored in the context of hypoxia. Here, we discuss the role of hypoxia in cancer, and its effects on protein glycosylation, with emphasis on integrins and cell migration.
Collapse
Affiliation(s)
- Cecilia Arriagada
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,b School of Pedagogy in Physical Education, Sports and Recreation , Universidad Bernardo O'Higgins , Santiago , Chile
| | - Patricio Silva
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,c Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile , Santiago , Chile.,d Faculty of Health Sciences , Universidad Central de Chile , Santiago , Chile
| | - Vicente A Torres
- a Institute for Research in Dental Sciences, Faculty of Dentistry , Universidad de Chile , Santiago , Chile.,c Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile , Santiago , Chile.,d Faculty of Health Sciences , Universidad Central de Chile , Santiago , Chile
| |
Collapse
|
104
|
Sampayo RG, Toscani AM, Rubashkin MG, Thi K, Masullo LA, Violi IL, Lakins JN, Cáceres A, Hines WC, Coluccio Leskow F, Stefani FD, Chialvo DR, Bissell MJ, Weaver VM, Simian M. Fibronectin rescues estrogen receptor α from lysosomal degradation in breast cancer cells. J Cell Biol 2018; 217:2777-2798. [PMID: 29980625 PMCID: PMC6080927 DOI: 10.1083/jcb.201703037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with β1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with β1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.
Collapse
Affiliation(s)
- Rocío G Sampayo
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigación, Buenos Aires, Argentina .,Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología y Biología Molecular y Celular, Ciudad Universitaria, Buenos Aires, Argentina.,Universidad Nacional de San Martín, Instituto de Nanosistemas, Campus Miguelete, San Martín, Argentina
| | - Andrés M Toscani
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, IQUIBICEN UBA-CONICET y Universidad Nacional de Luján, Departamento de Ciencias Básicas, Buenos Aires, Argentina
| | - Matthew G Rubashkin
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Kate Thi
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Luciano A Masullo
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ianina L Violi
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Jonathon N Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Alfredo Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | - William C Hines
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Federico Coluccio Leskow
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, IQUIBICEN UBA-CONICET y Universidad Nacional de Luján, Departamento de Ciencias Básicas, Buenos Aires, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante R Chialvo
- Center for Complex Systems and Brain Sciences, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Tecnológicas, San Martín, Argentina
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Marina Simian
- Universidad de Buenos Aires, Instituto de Oncología "Ángel H. Roffo", Área Investigación, Buenos Aires, Argentina .,Universidad Nacional de San Martín, Instituto de Nanosistemas, Campus Miguelete, San Martín, Argentina
| |
Collapse
|
105
|
Wittkowski KM, Dadurian C, Seybold MP, Kim HS, Hoshino A, Lyden D. Complex polymorphisms in endocytosis genes suggest alpha-cyclodextrin as a treatment for breast cancer. PLoS One 2018; 13:e0199012. [PMID: 29965997 PMCID: PMC6028090 DOI: 10.1371/journal.pone.0199012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023] Open
Abstract
Most breast cancer deaths are caused by metastasis and treatment options beyond radiation and cytotoxic drugs, which have severe side effects, and hormonal treatments, which are or become ineffective for many patients, are urgently needed. This study reanalyzed existing data from three genome-wide association studies (GWAS) using a novel computational biostatistics approach (muGWAS), which had been validated in studies of 600-2000 subjects in epilepsy and autism. MuGWAS jointly analyzes several neighboring single nucleotide polymorphisms while incorporating knowledge about genetics of heritable diseases into the statistical method and about GWAS into the rules for determining adaptive genome-wide significance. Results from three independent GWAS of 1000-2000 subjects each, which were made available under the National Institute of Health's "Up For A Challenge" (U4C) project, not only confirmed cell-cycle control and receptor/AKT signaling, but, for the first time in breast cancer GWAS, also consistently identified many genes involved in endo-/exocytosis (EEC), most of which had already been observed in functional and expression studies of breast cancer. In particular, the findings include genes that translocate (ATP8A1, ATP8B1, ANO4, ABCA1) and metabolize (AGPAT3, AGPAT4, DGKQ, LPPR1) phospholipids entering the phosphatidylinositol cycle, which controls EEC. These novel findings suggest scavenging phospholipids as a novel intervention to control local spread of cancer, packaging of exosomes (which prepare distant microenvironment for organ-specific metastases), and endocytosis of β1 integrins (which are required for spread of metastatic phenotype and mesenchymal migration of tumor cells). Beta-cyclodextrins (βCD) have already been shown to be effective in in vitro and animal studies of breast cancer, but exhibits cholesterol-related ototoxicity. The smaller alpha-cyclodextrins (αCD) also scavenges phospholipids, but cannot fit cholesterol. An in-vitro study presented here confirms hydroxypropyl (HP)-αCD to be twice as effective as HPβCD against migration of human cells of both receptor negative and estrogen-receptor positive breast cancer. If the previous successful animal studies with βCDs are replicated with the safer and more effective αCDs, clinical trials of adjuvant treatment with αCDs are warranted. Ultimately, all breast cancer are expected to benefit from treatment with HPαCD, but women with triple-negative breast cancer (TNBC) will benefit most, because they have fewer treatment options and their cancer advances more aggressively.
Collapse
Affiliation(s)
- Knut M. Wittkowski
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Christina Dadurian
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, United States of America
| | - Martin P. Seybold
- Institut für Formale Methoden der Informatik, Universität Stuttgart, Stuttgart, Germany
| | - Han Sang Kim
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - Ayuko Hoshino
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| | - David Lyden
- Department of Pediatrics, and Cell and Developmental Biology Weill Medical College of Cornell University, New York, New York, United States of America
| |
Collapse
|
106
|
MacDonald E, Brown L, Selvais A, Liu H, Waring T, Newman D, Bithell J, Grimes D, Urbé S, Clague MJ, Zech T. HRS-WASH axis governs actin-mediated endosomal recycling and cell invasion. J Cell Biol 2018; 217:2549-2564. [PMID: 29891722 PMCID: PMC6028553 DOI: 10.1083/jcb.201710051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/29/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
Transmembrane proteins in the sorting endosome are either recycled to their point of origin or destined for lysosomal degradation. Lysosomal sorting is mediated by interaction of ubiquitylated transmembrane proteins with the endosomal sorting complex required for transport (ESCRT) machinery. In this study, we uncover an alternative role for the ESCRT-0 component hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) in promoting the constitutive recycling of transmembrane proteins. We find that endosomal localization of the actin nucleating factor Wiscott-Aldrich syndrome protein and SCAR homologue (WASH) requires HRS, which occupies adjacent endosomal subdomains. Depletion of HRS results in defective constitutive recycling of epidermal growth factor receptor and the matrix metalloproteinase MT1-MMP, leading to their accumulation in internal compartments. We show that direct interactions with endosomal actin are required for efficient recycling and use a model system of chimeric transferrin receptor trafficking to show that an actin-binding motif can counteract an ubiquitin signal for lysosomal sorting. Directed receptor recycling is used by cancer cells to achieve invasive migration. Accordingly, abrogating HRS- and actin-dependent MT1-MMP recycling results in defective matrix degradation and invasion of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Ewan MacDonald
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Louise Brown
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Arnaud Selvais
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Thomas Waring
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Daniel Newman
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Jessica Bithell
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Douglas Grimes
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Sylvie Urbé
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Michael J Clague
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| | - Tobias Zech
- Institute of Translational Medicine, Cellular and Molecular Physiology, University of Liverpool, Liverpool, England, UK
| |
Collapse
|
107
|
Dower CM, Wills CA, Frisch SM, Wang HG. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy 2018; 14:1110-1128. [PMID: 29863947 DOI: 10.1080/15548627.2018.1450020] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.
Collapse
Affiliation(s)
- Christopher M Dower
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Carson A Wills
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Steven M Frisch
- b WVU Cancer Institute, Department of Biochemistry , West Virginia University , Morgantown , WV USA
| | - Hong-Gang Wang
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| |
Collapse
|
108
|
Hor CH, Tang BL, Goh EL. Rab23 and developmental disorders. Rev Neurosci 2018; 29:849-860. [DOI: 10.1515/revneuro-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.
Collapse
Affiliation(s)
- Catherine H.H. Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
| | - Bor Luen Tang
- Department of Biochemistry , Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Medical Drive , Singapore 117456 , Singapore
| | - Eyleen L.K. Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
- Department of Physiology , Yong Loo Lin School of Medicine , National University of Singapore , 8 Medical Drive , Singapore 117597 , Singapore
- KK Research Center, KK Women’s and Children’s Hospital , Singapore 229899 , Singapore
| |
Collapse
|
109
|
Rainero E. Extracellular matrix internalization links nutrient signalling to invasive migration. Int J Exp Pathol 2018; 99:4-9. [PMID: 29573490 DOI: 10.1111/iep.12265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Integrins are the key mediators of cell-extracellular matrix (ECM) interaction, linking the ECM to the actin cytoskeleton. Besides localizing at the cell surface, they can be internalized and transported back to the plasma membrane (recycled) or delivered to the late endosomes/lysosomes for degradation. We and others have shown that integrin can be endocytosed together with their ECM ligands. In this short review, I will highlight how extracellular protein (including ECM) endocytosis impinges on the activation of the mechanistic target of rapamycin (mTOR) pathway, a master regulator of cell metabolism and growth. This supports the intriguing hypothesis that ECM components may be considered as nutrient sources, primarily under soluble nutrient-depleted conditions.
Collapse
Affiliation(s)
- Elena Rainero
- Biomedical Science Department, The University of Sheffield, Sheffield, UK
| |
Collapse
|
110
|
Sun Q, Kanehira K, Taniguchi A. PEGylated TiO 2 nanoparticles mediated inhibition of cell migration via integrin beta 1. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:271-281. [PMID: 29707067 PMCID: PMC5917434 DOI: 10.1080/14686996.2018.1444318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 05/25/2023]
Abstract
Nanoparticles (NPs) elicit various physiological responses in cellular environment, and the effect of NPs on cell migration is of high interest. In this work, the effects of NPs on cell migration and their possible mechanisms were studied. Here, we showed that after exposure to pegylated titanium dioxide nanoparticles (TiO2-PEG NPs, where PEG stands for the polyethylene glycol), NCI-H292 cells exhibited slower migration than control cells. Furthermore, larger NPs inhibited cell migration much stronger than smaller NPs. Following NP exposure, the cells showed decreased expression of integrin beta 1 and phosphorylated focal adhesion kinase (pFAK), and disrupted F-actin structures. We demonstrated that a possible mechanism involved NP-mediated promotion of the lysosomal degradation of integrin beta 1, thus leading to reduced expression of pFAK and cytoskeletal disruption and inhibited cell migration. Therefore, our results showed that inhibition of NCI-H292 cell migration by NPs is mediated through integrin beta 1, which provides useful information for the application of NPs in cancer therapy and related fields.
Collapse
Affiliation(s)
- Qingqing Sun
- Cellular Functional Nanobiomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koki Kanehira
- Biotechnology Group, TOTO Ltd. Research Institute, Chigasaki, Japan
| | - Akiyoshi Taniguchi
- Cellular Functional Nanobiomaterials Group, Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
111
|
Diggins NL, Kang H, Weaver A, Webb DJ. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J Cell Sci 2018; 131:jcs.207019. [PMID: 29361527 DOI: 10.1242/jcs.207019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5β1 integrin, leading to higher levels of α5β1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
112
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
113
|
Jonker CTH, Galmes R, Veenendaal T, Ten Brink C, van der Welle REN, Liv N, de Rooij J, Peden AA, van der Sluijs P, Margadant C, Klumperman J. Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nat Commun 2018; 9:792. [PMID: 29476049 PMCID: PMC5824891 DOI: 10.1038/s41467-018-03226-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Recycling endosomes maintain plasma membrane homeostasis and are important for cell polarity, migration, and cytokinesis. Yet, the molecular machineries that drive endocytic recycling remain largely unclear. The CORVET complex is a multi-subunit tether required for fusion between early endosomes. Here we show that the CORVET-specific subunits Vps3 and Vps8 also regulate vesicular transport from early to recycling endosomes. Vps3 and Vps8 localise to Rab4-positive recycling vesicles and co-localise with the CHEVI complex on Rab11-positive recycling endosomes. Depletion of Vps3 or Vps8 does not affect transferrin recycling, but delays the delivery of internalised integrins to recycling endosomes and their subsequent return to the plasma membrane. Consequently, Vps3/8 depletion results in defects in integrin-dependent cell adhesion and spreading, focal adhesion formation, and cell migration. These data reveal a role for Vps3 and Vps8 in a specialised recycling pathway important for integrin trafficking.
Collapse
Affiliation(s)
- C T H Jonker
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Ophthalmology, Weill Cornell Medicine, 1300 York Ave, New York, NY, 10065, USA
| | - R Galmes
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - T Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - C Ten Brink
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - R E N van der Welle
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - N Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - J de Rooij
- Section Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht Universty, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - A A Peden
- Department of Biomedical Science, The University of Sheffield, Sheffield, S10 2TN, UK
| | - P van der Sluijs
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, CH Utrecht, The Netherlands
| | - C Margadant
- Department of Molecular Cell Biology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - J Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
114
|
Goud B, Louvard D. [Cell complexity should be placed at the heart of cancer research]. Med Sci (Paris) 2018; 34:63-71. [PMID: 29384098 DOI: 10.1051/medsci/20183401015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetic and most likely epigenetic alterations occurring during tumor progression and metastatic process lead to a broad deregulation of major cellular functions. However, the molecular mechanisms involved are still poorly understood. To understand them, the cell, the basic unit of life, remains more than ever the essential level to integrate the functional impact of genetics and epigenetics processes in the light of the global economy of the normal and cancerous cell, and of its interactions with its microenvironment.
Collapse
Affiliation(s)
- Bruno Goud
- Institut Curie, université de recherche Paris sciences et lettres (PSL), CNRS, UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Daniel Louvard
- Institut Curie, université de recherche Paris sciences et lettres (PSL), CNRS, UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
115
|
Rab25 augments cancer cell invasiveness through a β1 integrin/EGFR/VEGF-A/Snail signaling axis and expression of fascin. Exp Mol Med 2018; 50:e435. [PMID: 29371698 PMCID: PMC5799805 DOI: 10.1038/emm.2017.248] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 01/12/2023] Open
Abstract
The small GTP-binding protein Rab25 is associated with tumor formation and progression. However, recent studies have shown discordant effects of Rab25 on cancer cell progression depending on cell lineage. In the present study, we elucidate the underlying mechanisms by which Rab25 induces cellular invasion. We demonstrate that Rab25 increases β1 integrin levels and subsequent activation of EGFR and upregulation of VEGF-A expression, leading to increased Snail expression, epithelial-to-mesenchymal transition and cancer cell invasiveness. Strikingly, we identify that Snail mediates Rab25-induced cancer cell invasiveness through fascin expression and that ectopic expression of Rab25 aggravates metastasis of ovarian cancer cells to the lung. We thus demonstrate a novel role of a β1 integrin/EGFR/VEGF-A/Snail signaling cascade in Rab25-induced cancer cell aggressiveness through induction of fascin expression, thus providing novel biomarkers and potential therapeutic targets for Rab25-expressing cancer cells.
Collapse
|
116
|
Rab25 acts as an oncogene in luminal B breast cancer and is causally associated with Snail driven EMT. Oncotarget 2018; 7:40252-40265. [PMID: 27259233 PMCID: PMC5130006 DOI: 10.18632/oncotarget.9730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
The Rab GTPases regulate vesicular trafficking machinery that transports and delivers a diverse pool of cargo, including growth factor receptors, integrins, nutrient receptors and junction proteins to specific intracellular sites. The trafficking machinery is indeed a major posttranslational modifier and is critical for cellular homeostasis. Deregulation of this stringently controlled system leads to a wide spectrum of disorders including cancer. Herein we demonstrate that Rab25, a key GTPase, mostly decorating the apical recycling endosome, is a dichotomous variable in breast cancer cell lines with higher mRNA and protein expression in Estrogen Receptor positive (ER+ve) lines. Rab25 and its effector, Rab Coupling Protein (RCP) are frequently coamplified and coordinately elevated in ER+ve breast cancers. In contrast, Rab25 levels are decreased in basal-like and almost completely lost in claudin-low tumors. This dichotomy exists despite the presence of the 1q amplicon that hosts Rab25 across breast cancer subtypes and is likely due to differential methylation of the Rab25 promoter. Functionally, elevated levels of Rab25 drive major hallmarks of cancer including indefinite growth and metastasis but in case of luminal B breast cancer only. Importantly, in such ER+ve tumors, coexpression of Rab25 and its effector, RCP is significantly associated with a markedly worsened clinical outcome. Importantly, in claudin-low cell lines, exogenous Rab25 markedly inhibits cell migration. Similarly, during Snail-induced epithelial to mesenchymal transition (EMT) exogenous Rab25 potently reverses Snail-driven invasion. Overall, this study substantiates a striking context dependent role of Rab25 in breast cancer where Rab25 is amplified and enhances aggressiveness in luminal B cancers while in claudin-low tumors, Rab25 is lost indicating possible anti-tumor functions.
Collapse
|
117
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
118
|
Kaukonen R, Jacquemet G, Hamidi H, Ivaska J. Cell-derived matrices for studying cell proliferation and directional migration in a complex 3D microenvironment. Nat Protoc 2017; 12:2376-2390. [PMID: 29048422 DOI: 10.1038/nprot.2017.107] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2D surfaces offer simple analysis of cells in culture, yet these often yield different cell morphologies and responses from those observed in vivo. Considerable effort has therefore been expended on the generation of more tissue-like environments for the study of cell behavior in vitro. Purified matrix proteins provide a 3D scaffold that better mimics the in vivo situation; however, these are far removed from the complex tissue composition seen in vivo. Cell-derived matrices (CDMs) offer a more physiologically relevant alternative for studying in vivo-like cell behavior in vitro. In the protocol described here, fibroblasts cultured on gelatin-coated surfaces are maintained in the presence of ascorbic acid to strengthen matrix deposition over 1-3 weeks. The resulting fibrillar CDMs are denuded of cells, and other cells are subsequently cultured on them, after which their behavior is monitored. We also demonstrate how to use CDMs as an in vivo-relevant reductionist model for studying tumor-stroma-induced changes in carcinoma cell proliferation and migration.
Collapse
Affiliation(s)
- Riina Kaukonen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Guillaume Jacquemet
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biochemistry, University of Turku, Turku, Finland
| |
Collapse
|
119
|
Norman J, Zanivan S. Chloride intracellular channel 3: A secreted pro-invasive oxidoreductase. Cell Cycle 2017; 16:1993-1994. [PMID: 28933594 PMCID: PMC5731412 DOI: 10.1080/15384101.2017.1377031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/15/2017] [Accepted: 08/30/2017] [Indexed: 10/29/2022] Open
Affiliation(s)
- Jim Norman
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Sara Zanivan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
120
|
Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer. Nat Commun 2017; 8:660. [PMID: 28939823 PMCID: PMC5610242 DOI: 10.1038/s41467-017-00888-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence has established a role for the small GTPase RAB25, as well as related effector proteins, in enacting both pro-oncogenic and anti-oncogenic phenotypes in specific cellular contexts. Here we report the development of all-hydrocarbon stabilized peptides derived from the RAB-binding FIP-family of proteins to target RAB25. Relative to unmodified peptides, optimized stapled peptides exhibit increased structural stability, binding affinity, cell permeability, and inhibition of RAB25:FIP complex formation. Treatment of cancer cell lines in which RAB25 is pro-oncogenic with an optimized stapled peptide, RFP14, inhibits migration, and proliferation in a RAB25-dependent manner. In contrast, RFP14 treatment augments these phenotypes in breast cancer cells in which RAB25 is tumor suppressive. Transcriptional profiling identified significantly altered transcripts in response to RAB25 expression, and treatment with RFP14 opposes this expression profile. These data validate the first cell-active chemical probes targeting RAB-family proteins and support the role of RAB25 in regulating context-specific oncogenic phenotypes. The Ras-family small GTPase RAB25 can exert both pro- and anti-oncogenic functions. Here, the authors develop all-hydrocarbon stabilized peptides targeting RAB25 and influencing the context-specificity phenotypes in cancer cell lines.
Collapse
|
121
|
Huet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat Commun 2017; 8:570. [PMID: 28924207 PMCID: PMC5603536 DOI: 10.1038/s41467-017-00646-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 07/16/2017] [Indexed: 12/22/2022] Open
Abstract
Integrins are abundant heterodimeric cell-surface adhesion receptors essential in multicellular organisms. Integrin function is dynamically modulated by endo-exocytic trafficking, however, major mysteries remain about where, when, and how this occurs in living cells. To address this, here we report the generation of functional recombinant β1 integrins with traceable tags inserted in an extracellular loop. We demonstrate that these ‘ecto-tagged’ integrins are cell-surface expressed, localize to adhesions, exhibit normal integrin activation, and restore adhesion in β1 integrin knockout fibroblasts. Importantly, β1 integrins containing an extracellular pH-sensitive pHluorin tag allow direct visualization of integrin exocytosis in live cells and revealed targeted delivery of integrin vesicles to focal adhesions. Further, using β1 integrins containing a HaloTag in combination with membrane-permeant and -impermeant Halo dyes allows imaging of integrin endocytosis and recycling. Thus, ecto-tagged integrins provide novel powerful tools to characterize integrin function and trafficking. Integrins are cell-surface adhesion receptors that are modulated by endo-exocytic trafficking, but existing tools to study this process can interfere with function. Here the authors develop β1 integrins carrying traceable tags in the extracellular domain; a pH-sensitive pHlourin tag or a HaloTag to facilitate dye attachment.
Collapse
Affiliation(s)
- Clotilde Huet-Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Daniel V Iwamoto
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Emil B Kromann
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,Department of Biomedical Engineering, Yale University, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA. .,Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
122
|
Liang J, Shaulov Y, Savage-Dunn C, Boissinot S, Hoque T. Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS One 2017; 12:e0184308. [PMID: 28886120 PMCID: PMC5590911 DOI: 10.1371/journal.pone.0184308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Chloride intracellular channel proteins (CLICs) are multi-functional proteins that are expressed in various cell types and differ in their subcellular location. Two CLIC homologs, EXL-1 (excretory canal abnormal like-1) and EXC-4 (excretory canal abnormal- 4), are encoded in the Caenorhabditis elegans genome, providing an excellent model to study the functional diversification of CLIC proteins. EXC-4 functions in excretory canal formation during normal animal development. However, to date, the physiological function of EXL-1 remains largely unknown. In this study, we demonstrate that EXL-1 responds specifically to heat stress and translocates from the cytoplasm to the nucleus in intestinal cells and body wall muscle cells under heat shock. In contrast, we do not observe EXC-4 nuclear translocation under heat shock. Full protein sequence analysis shows that EXL-1 bears a non-classic nuclear localization signal (NLS) that EXC-4 is lacking. All mammalian CLIC members have a nuclear localization signal, with the exception of CLIC3. Our phylogenetic analysis of the CLIC gene families across various animal species demonstrates that the duplication of CLICs in protostomes and deuterostomes occurred independently and that the NLS was subsequently lost in amniotes and nematodes, suggesting convergent evolution. We also observe that EXL-1 nuclear translocation occurs in a timely ordered manner in the intestine, from posterior to anterior regions. Finally, we find that exl-1 loss of function mutants are more susceptible to heat stress than wild-type animals, demonstrating functional relevance of the nuclear translocation. This research provides the first link between CLICs and environmental heat stress. We propose that C. elegans CLICs evolved to achieve different physiological functions through subcellular localization change and spatial separation in response to external or internal signals.
Collapse
Affiliation(s)
- Jun Liang
- Department of Science, Borough of Manhattan Community College / CUNY, New York, New York, United States of America
- * E-mail:
| | - Yakov Shaulov
- Department of Biology, Queens College, CUNY, Flushing, New York, United States of America
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, Flushing, New York, United States of America
- Biology PhD Program and Biochemistry PhD Program, the Graduate Center, New York, New York, United States of America
| | - Stephane Boissinot
- New York University Abu Dhabi, Saadiyat Island campus, Abu Dhabi, United Arab Emirates
| | - Tasmia Hoque
- Department of Science, Borough of Manhattan Community College / CUNY, New York, New York, United States of America
| |
Collapse
|
123
|
Igarashi T, Araki K, Yokobori T, Altan B, Yamanaka T, Ishii N, Tsukagoshi M, Watanabe A, Kubo N, Handa T, Hosouchi Y, Nishiyama M, Oyama T, Shirabe K, Kuwano H. Association of RAB5 overexpression in pancreatic cancer with cancer progression and poor prognosis via E-cadherin suppression. Oncotarget 2017; 8:12290-12300. [PMID: 28103577 PMCID: PMC5355344 DOI: 10.18632/oncotarget.14703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is a common type of cancer with poor prognosis worldwide. Postoperative survival depends on the existence of metastasis. Elucidation of the mechanism underlying cancer progression is important to improve prognosis. The RAS-associated protein RAB5 activates intracellular membrane trafficking, and RAB5 expression is correlated to progression and epithelial mesenchymal transition in various cancers. The expression of RAB5 and E-cadherin in 111 pancreatic cancer samples was investigated by immunohistochemical staining, and the relationship among RAB5 expression, clinicopathological factors, and E-cadherin expression was assessed. Furthermore, RAB5 suppression analysis by siRNA was performed to determine the roles of RAB5 in morphological change, proliferation potency, cell migration ability, and invasiveness of the pancreatic cancer cell line. High RAB5 expression correlated with the presence of lymphatic invasion and venous invasion and low E-cadherin expression. Patients with high RAB5 expression had a poorer prognosis than those with low RAB5 expression. RAB5 suppression in pancreatic cancer cells enhanced E-cadherin expression; changed cell morphology from spindle to round; and inhibited proliferation, invasion, and cell migration. RAB5 contributes to poor prognosis and progression in pancreatic cancer patients. It may be a promising candidate for individualized therapy in refractory pancreatic cancer.
Collapse
Affiliation(s)
- Takamichi Igarashi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Kenichiro Araki
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Bolag Altan
- Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Takahiro Yamanaka
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Norihiro Ishii
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Mariko Tsukagoshi
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Akira Watanabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Norio Kubo
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Tadashi Handa
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yasuo Hosouchi
- Department of Surgery and Laparoscopic Surgery, Gunma Prefecture Saiseikai-Maebashi Hospital, Maebashi, Gunma, Japan
| | - Masahiko Nishiyama
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| | - Hiroyuki Kuwano
- Integrative Center of General Surgery, Gunma University Hospital, Maebashi, Gunma, Japan
| |
Collapse
|
124
|
Theret L, Jeanne A, Langlois B, Hachet C, David M, Khrestchatisky M, Devy J, Hervé E, Almagro S, Dedieu S. Identification of LRP-1 as an endocytosis and recycling receptor for β1-integrin in thyroid cancer cells. Oncotarget 2017; 8:78614-78632. [PMID: 29108253 PMCID: PMC5667986 DOI: 10.18632/oncotarget.20201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022] Open
Abstract
LRP-1 is a large endocytic receptor mediating the clearance of various molecules from the extracellular matrix. LRP-1 was reported to control focal adhesion turnover to optimize the adhesion-deadhesion balance to support invasion. To better understand how LRP-1 coordinates cell-extracellular matrix interface, we explored its ability to regulate cell surface integrins in thyroid carcinomas. Using an antibody approach, we demonstrated that β1-integrin levels were increased at the plasma membrane under LRP1 silencing or upon RAP treatment, used as LRP-1 antagonist. Our data revealed that LRP-1 binds with both inactive and active β1-integrin conformations and identified the extracellular ligand-binding domains II or IV of LRP-1 as sufficient to bind β1-integrin. Using a recombinant β1-integrin, we demonstrated that LRP-1 acts as a regulator of β1-integrin intracellular traffic. Moreover, RAP or LRP-1 blocking antibodies decreased up to 36% the number of β1-integrin-containing endosomes. LRP-1 blockade did not significantly affect the levels of β1-integrin-containing lysosomes while decreasing localization of β1-integrin within Rab-11 positive vesicles. Overall, we identified an original molecular process in which LRP-1 acts as a main regulator of β1-integrin internalization and recycling in thyroid cancer cells.
Collapse
Affiliation(s)
- Louis Theret
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Albin Jeanne
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France.,SATT Nord, Lille, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Cathy Hachet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Marion David
- VECT-HORUS SAS, Faculté de Médecine Secteur Nord, Marseille, France
| | | | - Jérôme Devy
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Emonard Hervé
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Sébastien Almagro
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
125
|
Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W, Zhou R. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun 2017; 8:202. [PMID: 28779175 PMCID: PMC5544706 DOI: 10.1038/s41467-017-00227-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 06/11/2017] [Indexed: 12/30/2022] Open
Abstract
The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.
Collapse
Affiliation(s)
- Tiantian Tang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.,Innovation Center for Cell Signalling Network, University of Science and Technology of China, Hefei, 230027, China.,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027, China
| | - Xueting Lang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Congfei Xu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaqiong Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Gong
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Yanqing Yang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li Bai
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Jun Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Wei Jiang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signalling Network, University of Science and Technology of China, Hefei, 230027, China.
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS center for Excellence in Molecular Cell Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signalling Network, University of Science and Technology of China, Hefei, 230027, China. .,Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
126
|
Argenzio E, Moolenaar WH. Emerging biological roles of Cl- intracellular channel proteins. J Cell Sci 2017; 129:4165-4174. [PMID: 27852828 DOI: 10.1242/jcs.189795] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cl- intracellular channels (CLICs) are a family of six evolutionary conserved cytosolic proteins that exist in both soluble and membrane-associated forms; however, their functions have long been elusive. Soluble CLICs adopt a glutathione S-transferase (GST)-fold, can induce ion currents in artificial membranes and show oxidoreductase activity in vitro, but there is no convincing evidence of CLICs having such activities in vivo. Recent studies have revealed a role for CLIC proteins in Rho-regulated cortical actin dynamics as well as vesicular trafficking and integrin recycling, the latter of which are under the control of Rab GTPases. In this Commentary, we discuss the emerging roles of CLIC proteins in these processes and the lessons learned from gene-targeting studies. We also highlight outstanding questions regarding the molecular function(s) of these important but still poorly understood proteins.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
127
|
Wang S, Hu C, Wu F, He S. Rab25 GTPase: Functional roles in cancer. Oncotarget 2017; 8:64591-64599. [PMID: 28969096 PMCID: PMC5610028 DOI: 10.18632/oncotarget.19571] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Rab25, a small GTPase belongs to the Rab protein family, has a pivotal role in cancer pathophysiology. Rab25 governs cell-surface receptors recycling and cellular signaling pathways activation, allowing it to control a diverse range of cellular functions, including cell proliferation, cell motility and cell death. Aberrant expression of Rab25 was linked to cancer development. Majority of research findings revealed that Rab25 is an oncogene. Elevated expression of Rab25 was correlated with poor prognosis and aggressiveness of renal, lung, breast, ovarian and other cancers. However, tumor suppressor function of Rab25 was reported in several cancers, such as colorectal cancer, indicating the tumor type-specific function of Rab25. In this review, we recapitulate the current knowledge of Rab25 in cancer development and therapy.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shasha He
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
128
|
Extracellular matrix endocytosis in controlling matrix turnover and beyond: emerging roles in cancer. Biochem Soc Trans 2017; 44:1347-1354. [PMID: 27911717 DOI: 10.1042/bst20160159] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a network of secreted proteins that, beyond providing support for tissues and organs, is involved in the regulation of a variety of cell functions, including cell proliferation, polarity, migration and oncogenic transformation. ECM homeostasis is maintained through a tightly controlled balance between synthesis, deposition and degradation. While the role of metalloproteases in ECM degradation is widely recognised, the contribution of ECM internalisation and intracellular degradation to ECM maintenance has been mostly overlooked. In this review, I will summarise what is known about the molecular mechanisms mediating ECM endocytosis and how this process impacts on diseases, such as fibrosis and cancer.
Collapse
|
129
|
Wu PH, Onodera Y, Ichikawa Y, Rankin EB, Giaccia AJ, Watanabe Y, Qian W, Hashimoto T, Shirato H, Nam JM. Targeting integrins with RGD-conjugated gold nanoparticles in radiotherapy decreases the invasive activity of breast cancer cells. Int J Nanomedicine 2017; 12:5069-5085. [PMID: 28860745 PMCID: PMC5560413 DOI: 10.2147/ijn.s137833] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles (AuNPs) have recently attracted attention as clinical agents for enhancing the effect of radiotherapy in various cancers. Although radiotherapy is a standard treatment for cancers, invasive recurrence and metastasis are significant clinical problems. Several studies have suggested that radiation promotes the invasion of cancer cells by activating molecular mechanisms involving integrin and fibronectin (FN). In this study, polyethylene-glycolylated AuNPs (P-AuNPs) were conjugated with Arg–Gly–Asp (RGD) peptides (RGD/P-AuNPs) to target cancer cells expressing RGD-binding integrins such as α5- and αv-integrins. RGD/P-AuNPs were internalized more efficiently and colocalized with integrins in the late endosomes and lysosomes of MDA-MB-231 cells. A combination of RGD/P-AuNPs and radiation reduced cancer cell viability and increased DNA damage compared to radiation alone in MDA-MB-231 cells. Moreover, the invasive activity of breast cancer cell lines after radiation treatment was significantly inhibited in the presence of RGD/P-AuNPs. Microarray analyses revealed that the expression of FN in irradiated cells was suppressed by combined use of RGD/P-AuNPs. Reduction of FN and downstream signaling may be involved in suppressing radiation-induced invasive activity by RGD/P-AuNPs. Our study suggests that RGD/P-AuNPs can target integrin-overexpressing cancer cells to improve radiation therapy by suppressing invasive activity in addition to sensitization. Thus, these findings provide a possible clinical strategy for using AuNPs to treat invasive breast cancer following radiotherapy.
Collapse
Affiliation(s)
| | - Yasuhito Onodera
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Hokkaido
| | - Yuki Ichikawa
- Innovation Center, Aisin Seiki Co., Ltd., Aichi, Japan.,IMRA America, Inc., Ann Arbor, MI
| | - Erinn B Rankin
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University Medical Center, Stanford, CA, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University Medical Center, Stanford, CA, USA
| | - Yuko Watanabe
- Innovation Center, Aisin Seiki Co., Ltd., Aichi, Japan
| | - Wei Qian
- IMRA America, Inc., Ann Arbor, MI
| | | | - Hiroki Shirato
- Department of Radiation Medicine.,Research Center for Cooperative Projects, Graduate School of Medicine.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan
| | - Jin-Min Nam
- Department of Radiation Medicine.,Research Center for Cooperative Projects, Graduate School of Medicine.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
130
|
Tolomelli A, Galletti P, Baiula M, Giacomini D. Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators. Cancers (Basel) 2017; 9:cancers9070078. [PMID: 28678151 PMCID: PMC5532614 DOI: 10.3390/cancers9070078] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022] Open
Abstract
The ability of integrins to activate and integrate intracellular communication illustrates the potential of these receptors to serve as functional distribution hubs in a bi-directional signal transfer outside-in and inside-out of the cells. Tight regulation of the integrin signaling is paramount for normal physiological functions such as migration, proliferation, and differentiation, and misregulated integrin activity could be associated with several pathological conditions. Because of the important roles of integrins and their ligands in biological development, immune responses, leukocyte traffic, haemostasis, and cancer, their potential as therapeutic tools is now widely recognized. Nowadays extensive efforts have been made to discover and develop small molecule ligands as integrin antagonists, whereas less attention has been payed to agonists. In recent years, it has been recognized that integrin agonists could open up novel opportunities for therapeutics, which gain benefits to increase rather than decrease integrin-dependent adhesion and transductional events. For instance, a significant factor in chemo-resistance in melanoma is a loss of integrin-mediated adhesion; in this case, stimulation of integrin signaling by agonists significantly improved the response to chemotherapy. In this review, we overview results about small molecules which revealed an activating action on some integrins, especially those involved in cancer, and examine from a medicinal chemistry point of view, their structure and behavior.
Collapse
Affiliation(s)
- Alessandra Tolomelli
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Paola Galletti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Monica Baiula
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Daria Giacomini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
131
|
Xiong J, Li S, Zeng X. High Rab25 expression associates with Ki67/TP53/CD133/VEGFR expression predicts poor prognosis in gastric cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:7792-7800. [PMID: 31966627 PMCID: PMC6965299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 06/10/2023]
Abstract
Rab25 belongs to Rab GTPases which regulating vesicle trafficking of various extracellular and intracellular resources. Aberrant high Rab25 expression is closely linked to cancer development including gastric cancer. However, the underlying mechanism of Ras25 in gastric cancer is still unclear. In this study, we determined to investigate the potential association between Rab25 and four tumor markers, including Ki67 (a well-known hallmarker of tumor proliferation), TP53 (tumor p53, a master tumor regulator associated with cell apoptosis), CD133 (a common cancer stem cell marker) and VEGFR (Vascular endothelial growth factor receptor, an efficient therapy target for gastric cancer). The results indicated that Rab25 expression in both cytoplasm and nucleus was significantly higher in gastric cancer tissues than para-carcinoma tissues. High Rab25 nucleus expression was positively associated with distant metastasis (M stage) and clinical (cTNM) stage, while Rab25 nucleus expression correlated with M stage, cTNM stage and regional lymph metastasis stage (N stage). Survival analysis revealed that high Rab25 cytoplasm/nucleus expression predicted shorter overall survival time of patients with gastric cancer. Rab25 expression was significantly associated with Ki67 expression, TP53 expression, CD133 expressionand VEGFR expression in gastric cancer. In conclusion, our results indicated that Rab25 behaved as an oncogene in gastric cancer related to Ki67/TP53/CD133/VEGFR expression and suggested Rab25 to be a prognostic marker.
Collapse
Affiliation(s)
- Jixian Xiong
- Institute of Molecular Medicine, School of Medicine, Shenzhen UniversityShenzhen, Guangdong, China
| | - Shuiming Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen UniversityShenzhen, Guangdong, China
| | - Xiandong Zeng
- Department of Physical and Chemical Analysis, Shenzhen Nanshan Center for Disease Control and PreventionShenzhen, Guangdong, China
| |
Collapse
|
132
|
Brum AM, van der Leije CS, Schreuders-Koedam M, Verhoeven J, Janssen M, Dekkers DH, Demmers JA, Eijken M, van de Peppel J, van Leeuwen JP, van der Eerden BC. Identification of Chloride Intracellular Channel Protein 3 as a Novel Gene Affecting Human Bone Formation. JBMR Plus 2017; 1:16-26. [PMID: 30283877 PMCID: PMC6124162 DOI: 10.1002/jbm4.10003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a common skeletal disorder characterized by low bone mass leading to increased bone fragility and fracture susceptibility. The bone building cells, osteoblasts, are derived from mesenchymal stromal cells (MSCs); however, with increasing age osteogenic differentiation is diminished and more adipocytes are seen in the bone marrow, suggesting a shift in MSC lineage commitment. Identification of specific factors that stimulate osteoblast differentiation from human MSCs may deliver therapeutic targets to treat osteoporosis. The aim of this study was to identify novel genes involved in osteoblast differentiation of human bone marrow–derived MSCs (hMSCs). We identified the gene chloride intracellular channel protein 3 (CLIC3) to be strongly upregulated during MSC‐derived osteoblast differentiation. Lentiviral overexpression of CLIC3 in hMSCs caused a 60% increase of matrix mineralization. Conversely, knockdown of CLIC3 in hMSCs using two short‐hairpin RNAs (shRNAs) against CLIC3 resulted in a 69% to 76% reduction in CLIC3 mRNA expression, 53% to 37% less alkaline phosphatase (ALP) activity, and 78% to 88% less matrix mineralization compared to scrambled control. Next, we used an in vivo human bone formation model in which hMSCs lentivirally transduced with the CLIC3 overexpression construct were loaded onto a scaffold (hydroxyapatite‐tricalcium‐phosphate), implanted under the skin of NOD‐SCID mice, and analyzed for bone formation 8 weeks later. CLIC3 overexpression led to a 15‐fold increase in bone formation (0.33% versus 5.05% bone area relative to scaffold). Using a Clic3‐His‐tagged pull‐down assay and liquid chromatography–mass spectrometry (LS/MS)‐based proteomics analysis in lysates of osteogenically differentiated hMSCs, we showed that CLIC3 interacts with NIMA‐related kinase 9 (NEK9) and phosphatidylserine synthase 1 (PTDSS1) in vitro, and this finding was supported by immunofluorescent analysis. In addition, inhibition of NEK9 or PTDSS1 gene expression by shRNAs inhibited osteoblast differentiation and mineralization. In conclusion, we successfully identified CLIC3 to be a lineage‐specific gene regulating osteoblast differentiation and bone formation through its interaction with NEK9 and PTDSS1. © The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrea M Brum
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | - Cindy S van der Leije
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | - Marijke Schreuders-Koedam
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | - Jeroen Verhoeven
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | | | - Dick Hw Dekkers
- Proteomics Center Erasmus University Medical Center Rotterdam The Netherlands
| | - Jeroen Aa Demmers
- Proteomics Center Erasmus University Medical Center Rotterdam The Netherlands
| | | | - Jeroen van de Peppel
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | - Johannes Ptm van Leeuwen
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| | - Bram Cj van der Eerden
- Department of Internal Medicine School of Molecular Medicine Erasmus University Medical Center Rotterdam the Netherlands
| |
Collapse
|
133
|
Lanzetti L, Di Fiore PP. Behind the Scenes: Endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res 2017; 77:1813-1817. [PMID: 28373181 DOI: 10.1158/0008-5472.can-16-3403] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/01/2017] [Indexed: 11/16/2022]
Abstract
Alterations of endo/exocytic proteins have long been associated with malignant transformation, and genes encoding membrane trafficking proteins have been identified as bona fide drivers of tumorigenesis. Focusing on the mechanisms underlying the impact of endo/exocytic proteins in cancer, a scenario emerges in which altered trafficking routes/networks appear to be preferentially involved in the acquisition of prometastatic traits. This involvement in metastasis frequently occurs through the integration of programs leading to migratory/invasive phenotypes, survival and resistance to environmental stresses, epithelial-to-mesenchymal transition, and the emergence of cancer stem cells. These findings might have important implications in the clinical setting for the development of metastasis-specific drugs and for patient stratification to optimize the use of available therapies. Cancer Res; 77(8); 1813-7. ©2017 AACR.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Membrane Trafficking Laboratory at Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Italy. .,Department of Oncology, University of Turin Medical School, Turin, Italy
| | - Pier Paolo Di Fiore
- IFOM, The FIRC Institute for Molecular Oncology Foundation, Milan, Italy. .,DIPO, Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Molecular Medicine Program, European Institute of Oncology, Milan, Italy
| |
Collapse
|
134
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
135
|
Hernandez-Fernaud JR, Ruengeler E, Casazza A, Neilson LJ, Pulleine E, Santi A, Ismail S, Lilla S, Dhayade S, MacPherson IR, McNeish I, Ennis D, Ali H, Kugeratski FG, Al Khamici H, van den Biggelaar M, van den Berghe PV, Cloix C, McDonald L, Millan D, Hoyle A, Kuchnio A, Carmeliet P, Valenzuela SM, Blyth K, Yin H, Mazzone M, Norman JC, Zanivan S. Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity. Nat Commun 2017; 8:14206. [PMID: 28198360 PMCID: PMC5316871 DOI: 10.1038/ncomms14206] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.
Collapse
Affiliation(s)
| | | | - Andrea Casazza
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | | | - Ellie Pulleine
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Alice Santi
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Shehab Ismail
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sergio Lilla
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | | | - Iain R. MacPherson
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Iain McNeish
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Darren Ennis
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Hala Ali
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | - Heba Al Khamici
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | | | | | | | - Laura McDonald
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - David Millan
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Aoisha Hoyle
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Anna Kuchnio
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Vesalius Research Center, VIB, B-3000 Leuven, Belgium
| | - Stella M. Valenzuela
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Centre for Health Technologies, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Huabing Yin
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Massimiliano Mazzone
- Laboratory of Molecular Oncology and Angiogenesis, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Jim C. Norman
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
| |
Collapse
|
136
|
Diaz-Vera J, Palmer S, Hernandez-Fernaud JR, Dornier E, Mitchell LE, Macpherson I, Edwards J, Zanivan S, Norman JC. A proteomic approach to identify endosomal cargoes controlling cancer invasiveness. J Cell Sci 2017; 130:697-711. [PMID: 28062852 PMCID: PMC5339883 DOI: 10.1242/jcs.190835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022] Open
Abstract
We have previously shown that Rab17, a small GTPase associated with epithelial polarity, is specifically suppressed by ERK2 (also known as MAPK1) signalling to promote an invasive phenotype. However, the mechanisms through which Rab17 loss permits invasiveness, and the endosomal cargoes that are responsible for mediating this, are unknown. Using quantitative mass spectrometry-based proteomics, we have found that knockdown of Rab17 leads to a highly selective reduction in the cellular levels of a v-SNARE (Vamp8). Moreover, proteomics and immunofluorescence indicate that Vamp8 is associated with Rab17 at late endosomes. Reduced levels of Vamp8 promote transition between ductal carcinoma in situ (DCIS) and a more invasive phenotype. We developed an unbiased proteomic approach to elucidate the complement of receptors that redistributes between endosomes and the plasma membrane, and have pin-pointed neuropilin-2 (NRP2) as a key pro-invasive cargo of Rab17- and Vamp8-regulated trafficking. Indeed, reduced Rab17 or Vamp8 levels lead to increased mobilisation of NRP2-containing late endosomes and upregulated cell surface expression of NRP2. Finally, we show that NRP2 is required for the basement membrane disruption that accompanies the transition between DCIS and a more invasive phenotype.
Collapse
Affiliation(s)
- Jesica Diaz-Vera
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Sarah Palmer
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | | | - Emmanuel Dornier
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Louise E Mitchell
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
| | - Iain Macpherson
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sara Zanivan
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Jim C Norman
- Beatson Institute for Cancer Research, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
137
|
Kong Y, Zhang X, Zhao Y, Xue Y, Zhang Y. Uptake of DNA by cancer cells without a transfection reagent. Biol Res 2017; 50:2. [PMID: 28109303 PMCID: PMC5251232 DOI: 10.1186/s40659-017-0107-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/14/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. METHODS A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). RESULTS The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. CONCLUSIONS In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting reagent.
Collapse
Affiliation(s)
- Yanping Kong
- Department of Endocrinology, Dartmouth-Hitchcock Manchester, 100 Hitchcock Way, Manchester, New Hampshire 03104 USA
| | - Xianbo Zhang
- Department of Surgery/Oncology, First Hospital of Shijiazhuang, 36 Fanxi Road, Shijiazhuang, 050011 Hebei China
| | - Yongliang Zhao
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, 1 Beichen West Road, Beijing, 10029 China
| | - Yanfang Xue
- Department of Pharmacology, Hebei Medical University, 361 Zhongshan E Rd, Shijiazhuang, 050056 Hebei China
| | - Ye Zhang
- National Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongdan Santiao, Beijing, 100005 China
| |
Collapse
|
138
|
Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int J Mol Sci 2017; 18:ijms18010189. [PMID: 28106780 PMCID: PMC5297821 DOI: 10.3390/ijms18010189] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Integrins are important regulators of cell survival, proliferation, adhesion and migration. Once activated, integrins establish a regulated link between the extracellular matrix and the cytoskeleton. Integrins have well-established functions in cancer, such as in controlling cell survival by engagement of many specific intracellular signaling pathways and in facilitating metastasis. Integrins and associated proteins are regulated by control of transcription, membrane traffic, and degradation, as well as by a number of post-translational modifications including glycosylation, allowing integrin function to be modulated to conform to various cellular needs and environmental conditions. In this review, we examine the control of integrin function by cell metabolism, and the impact of this regulation in cancer. Within this context, nutrient sufficiency or deprivation is sensed by a number of metabolic signaling pathways such as AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) 1, which collectively control integrin function by a number of mechanisms. Moreover, metabolic flux through specific pathways also controls integrins, such as by control of integrin glycosylation, thus impacting integrin-dependent cell adhesion and migration. Integrins also control various metabolic signals and pathways, establishing the reciprocity of this regulation. As cancer cells exhibit substantial changes in metabolism, such as a shift to aerobic glycolysis, enhanced glucose utilization and a heightened dependence on specific amino acids, the reciprocal regulation of integrins and metabolism may provide important clues for more effective treatment of various cancers.
Collapse
|
139
|
Storck H, Hild B, Schimmelpfennig S, Sargin S, Nielsen N, Zaccagnino A, Budde T, Novak I, Kalthoff H, Schwab A. Ion channels in control of pancreatic stellate cell migration. Oncotarget 2017; 8:769-784. [PMID: 27903970 PMCID: PMC5352195 DOI: 10.18632/oncotarget.13647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a critical role in the progression of pancreatic ductal adenocarcinoma (PDAC). Once activated, PSCs support proliferation and metastasis of carcinoma cells. PSCs even co-metastasise with carcinoma cells. This requires the ability of PSCs to migrate. In recent years, it has been established that almost all "hallmarks of cancer" such as proliferation or migration/invasion also rely on the expression and function of ion channels. So far, there is only very limited information about the function of ion channels in PSCs. Yet, there is growing evidence that ion channels in stromal cells also contribute to tumor progression. Here we investigated the function of KCa3.1 channels in PSCs. KCa3.1 channels are also found in many tumor cells of different origin. We revealed the functional expression of KCa3.1 channels by means of Western blot, immunofluorescence and patch clamp analysis. The impact of KCa3.1 channel activity on PSC function was determined with live-cell imaging and by measuring the intracellular Ca2+ concentration ([Ca2+]i). KCa3.1 channel blockade or knockout prevents the stimulation of PSC migration and chemotaxis by reducing the [Ca2+]i and calpain activity. KCa3.1 channels functionally cooperate with TRPC3 channels that are upregulated in PDAC stroma. Knockdown of TRPC3 channels largely abolishes the impact of KCa3.1 channels on PSC migration. In summary, our results clearly show that ion channels are crucial players in PSC physiology and pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Sarah Sargin
- Institut für Physiologie II, 48149 Münster, Gemany
| | | | - Angela Zaccagnino
- UKSH, Campus Kiel, Institut für Experimentelle Tumorforschung (IET), Sektion Molekulare Onkologie, D-24105 Kiel, Germany
| | - Thomas Budde
- Institut für Physiologie I, 48149 Münster, Gemany
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, DK 2100 Copenhagen, Denmark
| | - Holger Kalthoff
- UKSH, Campus Kiel, Institut für Experimentelle Tumorforschung (IET), Sektion Molekulare Onkologie, D-24105 Kiel, Germany
| | | |
Collapse
|
140
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
141
|
Smith AJ, Wen YA, Stevens PD, Liu J, Wang C, Gao T. PHLPP negatively regulates cell motility through inhibition of Akt activity and integrin expression in pancreatic cancer cells. Oncotarget 2016; 7:7801-15. [PMID: 26760962 PMCID: PMC4884955 DOI: 10.18632/oncotarget.6848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/01/2016] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma is currently the fourth leading cause for cancer-related mortality. Malignant progression of pancreatic cancer depends not only on rapid proliferation of tumor cells but also on increased cell motility. In this study, we showed that increased PHLPP expression significantly reduced the rate of migration in pancreatic ductal adenocarcinoma (PDAC) cells whereas knockdown of PHLPP had the opposite effect. In addition, cell motility at the individual cell level was negatively regulated by PHLPP as determined using time-lapse imaging. Interestingly, the expression of β1 and β4 integrin proteins were decreased in PHLPP overexpressing cells and increased in PHLPP knockdown cells whereas the mRNA levels of integrin were not altered by changes in PHLPP expression. In determining the molecular mechanism underlying PHLPP-mediated regulation of integrin expression, we found that inhibition of lysosome activity rescued integrin expression in PHLPP overexpressing cells, thus suggesting that PHLPP negatively controls cell motility by inhibiting Akt activity to promote lysosome-dependent degradation of integrins. Functionally, the increased cell migration observed in PHLPP knockdown cells was effectively blocked by the neutralizing antibodies against β1 or β4 integrin. Taken together, our study identified a tumor suppressor role of PHLPP in suppressing cell motility by negatively regulating integrin expression in pancreatic cancer cells.
Collapse
Affiliation(s)
- Alena J Smith
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yang-An Wen
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Payton D Stevens
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jingpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
142
|
Margiotta A, Progida C, Bakke O, Bucci C. Rab7a regulates cell migration through Rac1 and vimentin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:367-381. [PMID: 27888097 DOI: 10.1016/j.bbamcr.2016.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 01/17/2023]
Abstract
Rab7a, a small GTPase of the Rab family, is localized to late endosomes and controls late endocytic trafficking. The discovery of several Rab7a interacting proteins revealed that Rab7a function is closely connected to cytoskeletal elements. Indeed, Rab7a recruits on vesicles RILP and FYCO that are responsible for the movement of Rab7a-positive vesicles and/or organelles on microtubule tracks, but also directly interacts with Rac1, a fundamental regulator of actin cytoskeleton, and with peripherin and vimentin, two intermediate filament proteins. Considering all these interactions and, in particular, the fact that Rac1 and vimentin are key factors for cellular motility, we investigated a possible role of Rab7a in cell migration. We show here that Rab7a is needed for cell migration as Rab7a depletion causes slower migration of NCI H1299 cells affecting cell velocity and directness. Rab7a depletion negatively affects adhesion and spreading onto fibronectin substrates, altering β1-integrin activation, localization and intracellular trafficking, and myosin X localization. In fact, Rab7a-depleted cells show 40% less filopodia and active integrin accumulates at the leading edge of migrating cells. Furthermore, Rab7a depletion decreases the amount of active Rac1 but not its abundance and reduces the number of cells with vimentin filaments facing the wound, indicating that Rab7a has a role in the orientation of vimentin filaments during migration. In conclusion, our results demonstrate a key role of Rab7a in the regulation of different aspects of cell migration.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy; Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, (DiSTeBA) University of Salento, Via Provinciale Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
143
|
Mana G, Clapero F, Panieri E, Panero V, Böttcher RT, Tseng HY, Saltarin F, Astanina E, Wolanska KI, Morgan MR, Humphries MJ, Santoro MM, Serini G, Valdembri D. PPFIA1 drives active α5β1 integrin recycling and controls fibronectin fibrillogenesis and vascular morphogenesis. Nat Commun 2016; 7:13546. [PMID: 27876801 PMCID: PMC5122980 DOI: 10.1038/ncomms13546] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/13/2016] [Indexed: 01/16/2023] Open
Abstract
Basolateral polymerization of cellular fibronectin (FN) into a meshwork drives endothelial cell (EC) polarity and vascular remodelling. However, mechanisms coordinating α5β1 integrin-mediated extracellular FN endocytosis and exocytosis of newly synthesized FN remain elusive. Here we show that, on Rab21-elicited internalization, FN-bound/active α5β1 is recycled to the EC surface. We identify a pathway, comprising the regulators of post-Golgi carrier formation PI4KB and AP-1A, the small GTPase Rab11B, the surface tyrosine phosphatase receptor PTPRF and its adaptor PPFIA1, which we propose acts as a funnel combining FN secretion and recycling of active α5β1 integrin from the trans-Golgi network (TGN) to the EC surface, thus allowing FN fibrillogenesis. In this framework, PPFIA1 interacts with active α5β1 integrin and localizes close to EC adhesions where post-Golgi carriers are targeted. We show that PPFIA1 is required for FN polymerization-dependent vascular morphogenesis, both in vitro and in the developing zebrafish embryo.
Collapse
Affiliation(s)
- Giulia Mana
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Fabiana Clapero
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Emiliano Panieri
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Valentina Panero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Ralph T. Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Hui-Yuan Tseng
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Federico Saltarin
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Vascular Oncology, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Katarzyna I. Wolanska
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Mark R. Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Massimo M. Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- Laboratory of Endothelial Molecular Biology, Vesalius Research Center, VIB, Leuven B-3000, Belgium
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Torino 10060, Italy
- Laboratory of Cell Adhesion Dynamics, Candiolo Cancer Institute—Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Candiolo, Torino 10060, Italy
| |
Collapse
|
144
|
Pu J, Guardia CM, Keren-Kaplan T, Bonifacino JS. Mechanisms and functions of lysosome positioning. J Cell Sci 2016; 129:4329-4339. [PMID: 27799357 DOI: 10.1242/jcs.196287] [Citation(s) in RCA: 312] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lysosomes have been classically considered terminal degradative organelles, but in recent years they have been found to participate in many other cellular processes, including killing of intracellular pathogens, antigen presentation, plasma membrane repair, cell adhesion and migration, tumor invasion and metastasis, apoptotic cell death, metabolic signaling and gene regulation. In addition, lysosome dysfunction has been shown to underlie not only rare lysosome storage disorders but also more common diseases, such as cancer and neurodegeneration. The involvement of lysosomes in most of these processes is now known to depend on the ability of lysosomes to move throughout the cytoplasm. Here, we review recent findings on the mechanisms that mediate the motility and positioning of lysosomes, and the importance of lysosome dynamics for cell physiology and pathology.
Collapse
Affiliation(s)
- Jing Pu
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tal Keren-Kaplan
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
145
|
Qu F, Lorenzo DN, King SJ, Brooks R, Bear JE, Bennett V. Ankyrin-B is a PI3P effector that promotes polarized α5β1-integrin recycling via recruiting RabGAP1L to early endosomes. eLife 2016; 5. [PMID: 27718357 PMCID: PMC5089861 DOI: 10.7554/elife.20417] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Endosomal membrane trafficking requires coordination between phosphoinositide lipids, Rab GTPases, and microtubule-based motors to dynamically determine endosome identity and promote long-range organelle transport. Here we report that ankyrin-B (AnkB), through integrating all three systems, functions as a critical node in the protein circuitry underlying polarized recycling of α5β1-integrin in mouse embryonic fibroblasts, which enables persistent fibroblast migration along fibronectin gradients. AnkB associates with phosphatidylinositol 3-phosphate (PI3P)-positive organelles in fibroblasts and binds dynactin to promote their long-range motility. We demonstrate that AnkB binds to Rab GTPase Activating Protein 1-Like (RabGAP1L) and recruits it to PI3P-positive organelles, where RabGAP1L inactivates Rab22A, and promotes polarized trafficking to the leading edge of migrating fibroblasts. We further determine that α5β1-integrin depends on an AnkB/RabGAP1L complex for polarized recycling. Our results reveal AnkB as an unexpected key element in coordinating polarized transport of α5β1-integrin and likely of other specialized endocytic cargos.
Collapse
Affiliation(s)
- Fangfei Qu
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Damaris N Lorenzo
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| | - Samantha J King
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Rebecca Brooks
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - James E Bear
- UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Durham, United States.,Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|
146
|
Abstract
Autophagy, a pathway for lysosomal-mediated cellular degradation, has recently been described as a regulator of cell migration. Although the molecular mechanisms underlying autophagy-dependent motility are only beginning to emerge, new work demonstrates that selective autophagy mediated by the autophagy cargo receptor, NBR1, specifically promotes the dynamic turnover of integrin-based focal adhesion sites during motility. Here, we discuss the detailed mechanisms through which NBR1-dependent selective autophagy supports focal adhesion remodeling, and we describe the interconnections between this pathway and other established regulators of focal adhesion turnover, such as microtubules. We also highlight studies that examine the contribution of autophagy to selective degradation of proteins that mediate cellular tension and to integrin trafficking; these findings hint at further roles for autophagy in supporting adhesion and migration. Given the recently appreciated importance of selective autophagy in diverse cellular processes, we propose that further investigation into autophagy-mediated focal adhesion turnover will not only shed light onto how focal adhesions are regulated but will also unveil new mechanisms regulating selective autophagy.
Collapse
Affiliation(s)
- Candia M Kenific
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, CA 94143, USA
| | - Torsten Wittmann
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
147
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
148
|
Tyrrell BJ, Woodham EF, Spence HJ, Strathdee D, Insall RH, Machesky LM. Loss of strumpellin in the melanocytic lineage impairs the WASH Complex but does not affect coat colour. Pigment Cell Melanoma Res 2016; 29:559-71. [PMID: 27390154 PMCID: PMC5082549 DOI: 10.1111/pcmr.12506] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/02/2016] [Indexed: 12/24/2022]
Abstract
The five-subunit WASH complex generates actin networks that participate in endocytic trafficking, migration and invasion in various cell types. Loss of one of the two subunits WASH or strumpellin in mice is lethal, but little is known about their role in mammals in vivo. We explored the role of strumpellin, which has previously been linked to hereditary spastic paraplegia, in the mouse melanocytic lineage. Strumpellin knockout in melanocytes revealed abnormal endocytic vesicle morphology but no impairment of migration in vitro or in vivo and no change in coat colour. Unexpectedly, WASH and filamentous actin could still localize to vesicles in the absence of strumpellin, although the shape and size of vesicles was altered. Blue native PAGE revealed the presence of two distinct WASH complexes, even in strumpellin knockout cells, revealing that the WASH complex can assemble and localize to endocytic compartments in cells in the absence of strumpellin.
Collapse
Affiliation(s)
- Benjamin J Tyrrell
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heather J Spence
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Douglas Strathdee
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert H Insall
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- Cancer Research UK Beatson Institute, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
149
|
Dykes SS, Gao C, Songock WK, Bigelow RL, Woude GV, Bodily JM, Cardelli JA. Zinc finger E-box binding homeobox-1 (Zeb1) drives anterograde lysosome trafficking and tumor cell invasion via upregulation of Na+/H+ Exchanger-1 (NHE1). Mol Carcinog 2016; 56:722-734. [PMID: 27434882 DOI: 10.1002/mc.22528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 07/11/2016] [Indexed: 01/25/2023]
Abstract
Tumor cell invasion through the extracellular matrix is facilitated by the secretion of lysosome-associated proteases. As a common mechanism for secretion, lysosomes must first traffic to the cell periphery (anterograde trafficking), consistent with invasive cells often containing lysosomes closer to the plasma membrane compared to non-invasive cells. Epithelial to mesenchymal transition (EMT) is a transcriptionally driven program that promotes an invasive phenotype, and Zeb1 is one transcription factor that activates the mesenchymal gene expression program. The role of lysosome trafficking in EMT-driven invasion has not been previously investigated. We found that cells with increased levels of Zeb1 displayed lysosomes located closer to the cell periphery and demonstrated increased protease secretion and invasion in 3-dimensional (3D) cultures compared to their epithelial counterparts. Additionally, preventing anterograde lysosome trafficking via pharmacological inhibition of Na+/H+ exchanger 1 (NHE1) or shRNA depletion of ADP-ribosylation like protein 8b (Arl8b) reversed the invasive phenotype of mesenchymal cells, thus supporting a role for lysosome positioning in EMT-mediated tumor cell invasion. Immunoblot revealed that expression of Na+/H+ exchanger 1 correlated with Zeb1 expression. Furthermore, we found that the transcription factor Zeb1 binds to the Na+/H+ exchanger 1 promoter, suggesting that Zeb1 directly controls Na+/H+ transcription. Collectively, these results provide insight into a novel mechanism regulating Na+/H+ exchanger 1 expression and support a role for anterograde lysosome trafficking in Zeb1-driven cancer progression. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Samantha S Dykes
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - ChongFeng Gao
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - William K Songock
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - Rebecca L Bigelow
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - George Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jason M Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| | - James A Cardelli
- Department of Microbiology and Immunology, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana.,Feist Weiller Cancer Center, Louisiana State University Health Science Center - Shreveport, Shreveport, Louisiana
| |
Collapse
|
150
|
Mahmutefendić H, Blagojević Zagorac G, Grabušić K, Karleuša L, Maćešić S, Momburg F, Lučin P. Late Endosomal Recycling of Open MHC-I Conformers. J Cell Physiol 2016; 232:872-887. [DOI: 10.1002/jcp.25495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Hana Mahmutefendić
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | | | | | - Ljerka Karleuša
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | - Senka Maćešić
- Faculty of Engineering, Department of Mathematics, Physics, Foreign Languages and Kinesiology; University of Rijeka; Rijeka Croatia
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity; German Cancer Research Center; Heidelberg Germany
| | - Pero Lučin
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| |
Collapse
|