101
|
Fukuhara S, Zhang J, Yuge S, Ando K, Wakayama Y, Sakaue-Sawano A, Miyawaki A, Mochizuki N. Visualizing the cell-cycle progression of endothelial cells in zebrafish. Dev Biol 2014; 393:10-23. [PMID: 24975012 DOI: 10.1016/j.ydbio.2014.06.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
The formation of vascular structures requires precisely controlled proliferation of endothelial cells (ECs), which occurs through strict regulation of the cell cycle. However, the mechanism by which EC proliferation is coordinated during vascular formation remains largely unknown, since a method of analyzing cell-cycle progression of ECs in living animals has been lacking. Thus, we devised a novel system allowing the cell-cycle progression of ECs to be visualized in vivo. To achieve this aim, we generated a transgenic zebrafish line that expresses zFucci (zebrafish fluorescent ubiquitination-based cell cycle indicator) specifically in ECs (an EC-zFucci Tg line). We first assessed whether this system works by labeling the S phase ECs with EdU, then performing time-lapse imaging analyses and, finally, examining the effects of cell-cycle inhibitors. Employing the EC-zFucci Tg line, we analyzed the cell-cycle progression of ECs during vascular development in different regions and at different time points and found that ECs proliferate actively in the developing vasculature. The proliferation of ECs also contributes to the elongation of newly formed blood vessels. While ECs divide during elongation in intersegmental vessels, ECs proliferate in the primordial hindbrain channel to serve as an EC reservoir and migrate into basilar and central arteries, thereby contributing to new blood vessel formation. Furthermore, while EC proliferation is not essential for the formation of the basic framework structures of intersegmental and caudal vessels, it appears to be required for full maturation of these vessels. In addition, venous ECs mainly proliferate in the late stage of vascular development, whereas arterial ECs become quiescent at this stage. Thus, we anticipate that the EC-zFucci Tg line can serve as a tool for detailed studies of the proliferation of ECs in various forms of vascular development in vivo.
Collapse
Affiliation(s)
- Shigetomo Fukuhara
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan.
| | - Jianghui Zhang
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Shinya Yuge
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Yuki Wakayama
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan; Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan; Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako City, Saitama 351-0198, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Fujishirodai 5-7-1, Suita, Osaka 565-8565, Japan; JST-CREST, Tokyo, Japan.
| |
Collapse
|
102
|
Chen X, Chen J, Liu X, Guo Z, Sun X, Zhang J. The real-time dynamic monitoring of microRNA function in cholangiocarcinoma. PLoS One 2014; 9:e99431. [PMID: 24918778 PMCID: PMC4053425 DOI: 10.1371/journal.pone.0099431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/11/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although many studies have confirmed a relationship between microRNAs (miRNAs) and cholangiocarcinoma (CCA), the real-time dynamics of miRNA function have not been examined. METHODS miRNA reporter constructs were generated using a recombinant adeno-associated virus vector, which contained complementary sequences for six miRNAs (miR-200a, miR-200b, miR-21, miR-146a, miR-155, and miR-221), along with two independent expression cassettes encoding the fluorescent reporter genes Fluc and Gluc. The spatio-temporal function of each miRNA was monitored both in CCA and control tissues. RESULTS All miRNAs participated in CCA development, with distinct patterns of expression over time. The activity of miR-21 was significantly lower in female T3N0M0 CCA tissue relative to controls at three time points, yet was higher in two male T3N1M0 CCA tissues. The difference in miR-200b function between two male T3N1M0 CCA tissues and their corresponding controls peaked at 24 h, while function in a female T3N0M0 CCA was detected only at 72 h. The four remaining miRNAs (miR-200a, miR146a, miR-155, and miR-221) displayed patient-specific activity patterns in both CCA and control tissues. CONCLUSION Significant variability was observed in the temporal function of all six miRNAs, which may play an important role in the development of CCA.
Collapse
Affiliation(s)
- Xue Chen
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jing Chen
- Department of Gastroenterology, Beijing Tong Ren Hospital, Capital Medical University, Beijing, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zihao Guo
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoxin Sun
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Gastroenterology, Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
103
|
Jovanović I, Zivković M, Jovanović J, Djurić T, Stanković A. The co-inertia approach in identification of specific microRNA in early and advanced atherosclerosis plaque. Med Hypotheses 2014; 83:11-5. [PMID: 24815336 DOI: 10.1016/j.mehy.2014.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/07/2014] [Accepted: 04/12/2014] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRs) are short, non-coding RNAs that regulate gene expression by absolute or partial binding to mRNA, which results in transcript degradation and translation blocking. Atherosclerosis, as a complex and progressive disease, represents one of the main causes of cardiovascular clinical complications and even death. We applied co-inertia analysis (CIA) as a novel computation method, to determine which miRs are potentially associated with differences in gene expression levels originating from microarray data of early and advanced atherosclerotic plaque. As the CIA has not been applied in the field of atherosclerosis yet, we hypothesized that using CIA we can get novel information about the miRs that have significant role in early phase of disease or in severe phase of disease. The characteristic split in the data along the axes of performed CIA showed the difference in the gene expression pattern between early atherosclerosis and advanced atherosclerotic plaque. The advanced atherosclerotic plaques showed more homogenous gene expression pattern than early atherosclerosis samples. In early carotid lesions five out of five algorithms predicted miR-24, four out of five predicted miR-155, miR-145, and miR-100 as early active miRs. These miRs could be "protective" in plaque evolution context because they were not active in advanced plaques according to our results. They were reported previously as atheroprotective, which in a way represents confirmation of CIA application in atherosclerosis. We detected 13 new miRs which could be active in early plaque phenotype according to CIA prediction. In the advanced plaques we predicted miR-221, miR-222, miR-127 and miR-146 which were previously revealed to have atherogenic properties. In addition to miRs that have literature support, we also found new 8 miRs that, with described function so far, could present a novelty in research of atherosclerotic plaque evolution. All of these examples show that CIA results have a great potential to be of interest in future research in atherosclerotic plaque progression. We validated the applicability of CIA in the field of atherosclerosis, but we also found new interesting miR competitors that have strong potential to serve as markers and plaque development factors. These results should be experimentally confirmed in further research with ultimate goal to discover new mediators and blood markers, which could improve the prevention and therapy of this complex disease.
Collapse
Affiliation(s)
- Ivan Jovanović
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Maja Zivković
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | | | - Tamara Djurić
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stanković
- VINČA Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
104
|
Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem 2014; 5:1-11. [PMID: 24600510 PMCID: PMC3942538 DOI: 10.4331/wjbc.v5.i1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Ischemic retinopathies are clinically well-defined chronic microvascular complications characterized by gradually progressive alterations in the retinal microvasculature and a compensatory aberrant neovascularization of the eye. The subsequent metabolic deficiencies result in structural and functional alterations in the retina which is highly susceptible to injurious stimuli such as diabetes, trauma, hyperoxia, inflammation, aging and dysplipidemia. Emerging evidence indicates that an effective therapy may require targeting multiple components of the angiogenic pathway. Conceptually, mircoRNA (miRNA)-based therapy provides the rationale basis for an effective antiangiogenic treatment. miRNAs are an evolutionarily conserved family of short RNAs, each regulating the expression of multiple protein-coding genes. The activity of specific miRNAs is important for vascular cell signaling and blood vessel formation and function. Recently, important progress has been made in mapping the miRNA-gene target network and miRNA-mediated gene expression control. Here we highlight the latest findings on angiogenic and antiangiogenic miRNAs and their targets as well as potential implications in ocular neovascular diseases. Emphasis is placed on how specific vascular-enriched miRNAs regulate cell responses to various cues by targeting several factors, receptors and/or signaling molecules in order to maintain either vascular function or dysfunction. Further improvement of our knowledge in not only miRNA specificity, turnover, and transport but also how miRNA sequences and functions can be altered will enhance the therapeutic utility of such molecules.
Collapse
|
105
|
Marcelo KL, Sills TM, Coskun S, Vasavada H, Sanglikar S, Goldie LC, Hirschi KK. Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control. Dev Cell 2014; 27:504-15. [PMID: 24331925 DOI: 10.1016/j.devcel.2013.11.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 09/01/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023]
Abstract
Delineating the mechanism or mechanisms that regulate the specification of hemogenic endothelial cells from primordial endothelium is critical for optimizing their derivation from human stem cells for clinical therapies. We previously determined that retinoic acid (RA) is required for hemogenic specification, as well as cell-cycle control, of endothelium during embryogenesis. Herein, we define the molecular signals downstream of RA that regulate hemogenic endothelial cell development and demonstrate that cell-cycle control is required for this process. We found that re-expression of c-Kit in RA-deficient (Raldh2(-/-)) primordial endothelium induced Notch signaling and p27 expression, which restored cell-cycle control and rescued hemogenic endothelial cell specification and function. Re-expression of p27 in RA-deficient and Notch-inactivated primordial endothelial cells was sufficient to correct their defects in cell-cycle regulation and hemogenic endothelial cell development. Thus, RA regulation of hemogenic endothelial cell specification requires c-Kit, notch signaling, and p27-mediated cell-cycle control.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tiffany M Sills
- Interdisciplinary Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Suleyman Coskun
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Hema Vasavada
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Supriya Sanglikar
- Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Lauren C Goldie
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Karen K Hirschi
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Interdisciplinary Program in Cell and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Yale Cardiovascular Research Center and Yale Stem Cell Center, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| |
Collapse
|
106
|
Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 2014; 141:1239-49. [PMID: 24523457 DOI: 10.1242/dev.100495] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The VEGFC/VEGFR3 signaling pathway is essential for lymphangiogenesis (the formation of lymphatic vessels from pre-existing vasculature) during embryonic development, tissue regeneration and tumor progression. The recently identified secreted protein CCBE1 is indispensible for lymphangiogenesis during development. The role of CCBE1 orthologs is highly conserved in zebrafish, mice and humans with mutations in CCBE1 causing generalized lymphatic dysplasia and lymphedema (Hennekam syndrome). To date, the mechanism by which CCBE1 acts remains unknown. Here, we find that ccbe1 genetically interacts with both vegfc and vegfr3 in zebrafish. In the embryo, phenotypes driven by increased Vegfc are suppressed in the absence of Ccbe1, and Vegfc-driven sprouting is enhanced by local Ccbe1 overexpression. Moreover, Vegfc- and Vegfr3-dependent Erk signaling is impaired in the absence of Ccbe1. Finally, CCBE1 is capable of upregulating the levels of fully processed, mature VEGFC in vitro and the overexpression of mature VEGFC rescues ccbe1 loss-of-function phenotypes in zebrafish. Taken together, these data identify Ccbe1 as a crucial component of the Vegfc/Vegfr3 pathway in the embryo.
Collapse
Affiliation(s)
- Ludovic Le Guen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4073, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci 2013; 14:19987-20018. [PMID: 24113581 PMCID: PMC3821599 DOI: 10.3390/ijms141019987] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 12/17/2022] Open
Abstract
Large-scale analyses of mammalian transcriptomes have identified a significant number of different RNA molecules that are not translated into protein. In fact, the use of new sequencing technologies has identified that most of the genome is transcribed, producing a heterogeneous population of RNAs which do not encode for proteins (ncRNAs). Emerging data suggest that these transcripts influence the development of cardiovascular disease. The best characterized non-coding RNA family is represented by short highly conserved RNA molecules, termed microRNAs (miRNAs), which mediate a process of mRNA silencing through transcript degradation or translational repression. These microRNAs (miRNAs) are expressed in cardiovascular tissues and play key roles in many cardiovascular pathologies, such as coronary artery disease (CAD) and heart failure (HF). Potential links between other ncRNAs, like long non-coding RNA, and cardiovascular disease are intriguing but the functions of these transcripts are largely unknown. Thus, the functional characterization of ncRNAs is essential to improve the overall understanding of cellular processes involved in cardiovascular diseases in order to define new therapeutic strategies. This review outlines the current knowledge of the different ncRNA classes and summarizes their role in cardiovascular development and disease.
Collapse
|
108
|
Salajegheh A, Pakneshan S, Rahman A, Dolan-Evans E, Zhang S, Kwong E, Gopalan V, Lo CY, Smith RA, Lam AKY. Co-regulatory potential of vascular endothelial growth factor–A and vascular endothelial growth factor–C in thyroid carcinoma. Hum Pathol 2013; 44:2204-12. [DOI: 10.1016/j.humpath.2013.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 12/14/2022]
|
109
|
Moore JC, Sheppard-Tindell S, Shestopalov IA, Yamazoe S, Chen JK, Lawson ND. Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Dev Biol 2013; 384:128-40. [PMID: 24036310 DOI: 10.1016/j.ydbio.2013.08.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 08/05/2013] [Accepted: 08/30/2013] [Indexed: 01/08/2023]
Abstract
etv2 is an endothelial-specific ETS transcription factor that is essential for vascular differentiation and morphogenesis in vertebrates. While recent data suggest that Etv2 is dynamically regulated during vascular development, little is known about the mechanisms involved in this process. Here, we find that etv2 transcript and protein expression are highly dynamic during zebrafish vascular development, with both apparent during early somitogenesis and subsequently down-regulated as development proceeds. Inducible knockdown of Etv2 in zebrafish embryos prior to mid-somitogenesis stages, but not later, caused severe vascular defects, suggesting a specific role in early commitment of lateral mesoderm to the endothelial linage. Accordingly, Etv2-overexpressing cells showed an enhanced ability to commit to endothelial lineages in mosaic embryos. We further find that the etv2 3' untranslated region (UTR) is capable of repressing an endothelial autonomous transgene and contains binding sites for members of the let-7 family of microRNAs. Ectopic expression of let-7a could repress the etv2 3'UTR in sensor assays and was also able to block endogenous Etv2 protein expression, leading to concomitant reduction of endothelial genes. Finally, we observed that Etv2 protein levels persisted in maternal-zygotic dicer1 mutant embryos, suggesting that microRNAs contribute to its repression during vascular development. Taken together, our results suggest that etv2 acts during early development to specify endothelial lineages and is then down-regulated, in part through post-transcriptional repression by microRNAs, to allow normal vascular development.
Collapse
Affiliation(s)
- John C Moore
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | | | | | |
Collapse
|
110
|
Wang Z, Bao Z, Yan W, You G, Wang Y, Li X, Zhang W. Isocitrate dehydrogenase 1 (IDH1) mutation-specific microRNA signature predicts favorable prognosis in glioblastoma patients with IDH1 wild type. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:59. [PMID: 23988086 PMCID: PMC3847806 DOI: 10.1186/1756-9966-32-59] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/13/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND To date, no prognostic microRNAs (miRNAs) for isocitrate dehydrogenase 1 (IDH1) wild-type glioblastoma multiformes (GBM) have been reported. The aim of the present study was to identify a miRNA signature of prognostic value for IDH1 wild-type GBM patients using miRNA expression dataset from the The Cancer Genome Atlas (TCGA). METHODS Differential expression profiling analysis of miRNAs was performed on samples from 187 GBM patients, comprising 17 mutant-type IDH1 and 170 wild-type IDH1 samples. RESULTS A 23-micoRNA signature which was specific to the IDH1 mutation was revealed. Survival data was available for 140 of the GBM patients with wild-type IDH1. Using these data, the samples were characterized as high-risk or low-risk group according to the ranked protective scores for each of the 23 miRNAs in the 23-miRNA signature. Then, the 23 IDH1 mutation-specific miRNAs were classified as risky group and protective group miRNAs based on the significance analysis of microarrays d-score (SAM d-value) (positive value or negative value). The risky group miRNAs were found to be expressed more in the high-risk samples while the protective group miRNAs were expressed more in the low-risk samples. Patients with high protective scores had longer survival times than those with low protective scores. CONCLUSION These findings show that IDH1 mutation-specific miRNA signature is a marker for favorable prognosis in primary GBM patients with the IDH1 wild type.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No, 6 Tiantan Xili, Dongcheng District, Beijing 100050, China.
| | | | | | | | | | | | | |
Collapse
|
111
|
Chou J, Shahi P, Werb Z. microRNA-mediated regulation of the tumor microenvironment. Cell Cycle 2013; 12:3262-71. [PMID: 24036551 DOI: 10.4161/cc.26087] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment includes cells such as fibroblasts, immune cells, endothelial cells, as well as extracellular matrix (ECM), proteases, and cytokines. Together, these components participate in a complex crosstalk with neoplastic tumor cells that affects growth, angiogenesis, and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs involved in post-transcriptional regulation of gene expression and have recently emerged as important players involved in regulating multiple aspects of cancer biology and the tumor microenvironment. Differential miRNA expression in both the epithelial and stromal compartments of tumors compared with normal tissue suggests that miRNAs are important drivers of tumorigenesis and metastasis. This review article summarizes our current understanding of the diverse roles of miRNAs involved in tumor microenvironment regulation and underscores the importance of miRNAs within multiple cell types that contribute to the hallmarks of cancer.
Collapse
Affiliation(s)
- Jonathan Chou
- Department of Anatomy; University of California, San Francisco; San Francisco, CA USA; Biomedical Sciences Program; University of California, San Francisco; San Francisco, CA USA
| | | | | |
Collapse
|
112
|
Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun 2013; 437:625-31. [DOI: 10.1016/j.bbrc.2013.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 01/07/2023]
|
113
|
Ehling M, Adams S, Benedito R, Adams RH. Notch controls retinal blood vessel maturation and quiescence. Development 2013; 140:3051-61. [DOI: 10.1242/dev.093351] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blood vessels form a hierarchically organized network of arteries, capillaries and veins, which develops through a series of growth, pruning and maturation processes. In contrast to the rapidly increasing insight into the processes controlling vascular growth and, in particular, endothelial sprouting and proliferation, the conversion of immature vessels into a fully functional, quiescent vasculature remains little understood. Here we used inducible, cell type-specific genetic approaches to show that endothelial Notch signaling is crucial for the remodeling of veins and the perivenous capillary plexus, which occurs after the completion of the initial angiogenic growth phase in the retina of adolescent mice. Mutant vessels showed ectopic proliferation and sprouting, defective recruitment of supporting mural cells, and failed to downregulate the expression of VEGF receptors. Surprisingly, by contrast Notch was dispensable in the endothelium of remodeling postnatal arteries. Taken together, our results identify key processes contributing to vessel remodeling, maturation and the acquisition of a quiescent phenotype in the final stage of developmental angiogenesis.
Collapse
Affiliation(s)
- Manuel Ehling
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Susanne Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Rui Benedito
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| | - Ralf H. Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, D-48149 Münster, Germany
| |
Collapse
|
114
|
Jiang Q, Lagos-Quintana M, Liu D, Shi Y, Helker C, Herzog W, le Noble F. miR-30a regulates endothelial tip cell formation and arteriolar branching. Hypertension 2013; 62:592-8. [PMID: 23817492 DOI: 10.1161/hypertensionaha.113.01767] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microvascular rarefaction increases vascular resistance and pressure in systemic arteries and is a hallmark of fixed essential hypertension. Preventing rarefaction by activation of angiogenic processes could lower blood pressure. Endothelial tip cells in angiogenic sprouts direct branching of microvascular networks; the process is regulated by microRNAs, particularly the miR-30 family. We investigated the contribution of miR-30 family members in arteriolar branching morphogenesis via delta-like 4 (Dll4)-Notch signaling in a zebrafish model. The miR-30 family consists of 5 members (miR-30a-e). Loss-of-function experiments showed that only miR-30a reduced growth of intersegmental arterioles involving impaired tip cell function. Overexpression of miR-30a stimulated tip cell behavior resulting in augmented branching of intersegmental arterioles. In vitro and in vivo reporter assays showed that miR-30a directly targets the Notch ligand Dll4, a key inhibitor of tip cell formation. Coadministration of a Dll4 targeting morpholino in miR-30a morphants rescued the branching defects. Conversely, conditional overexpression of Notch intracellular domain restored arteriolar branching in miR-30a gain-of-function embryos. In human endothelial cells, loss of miR-30a increased DLL4 protein levels, activated Notch signaling as indicated in Notch reporter assays, and augmented Notch downstream effector, HEY2 and EFNB2 (ephrin-B2), expression. In spheroid assays, miR-30a loss- and gain-of-function affected tip cell behavior, consistent with miR-30a targeting Dll4. Our data suggest that miR-30a stimulates arteriolar branching by downregulating endothelial Dll4 expression, thereby controlling endothelial tip cell behavior. These findings could have relevance to the rarefaction process and, therefore, to hypertension.
Collapse
Affiliation(s)
- Qiu Jiang
- Department of Angiogenesis and Cardiovascular Pathology, Max Delbrück Center for Molecular Medicine, Robert Roessle Strasse 10, D13125 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
115
|
Gays D, Santoro MM. The admiR-able advances in cardiovascular biology through the zebrafish model system. Cell Mol Life Sci 2013; 70:2489-503. [PMID: 23069988 PMCID: PMC11113687 DOI: 10.1007/s00018-012-1181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
MicroRNAs are small non-coding RNAs endogenously expressed by all tissues during development and adulthood. They regulate gene expression by controlling the stability of targeted messenger RNA. In cardiovascular tissues microRNAs play a role by modulating essential genes involved in heart and blood vessel development and homeostasis. The zebrafish (Danio rerio) system is a recognized vertebrate model system useful to study cardiovascular biology; recently, it has been used to investigate microRNA functions during natural and pathological states. In this review, we will illustrate the advantages of the zebrafish model in the study of microRNAs in heart and vascular cells, providing an update on recent discoveries using the zebrafish to identify new microRNAs and their targeted genes in cardiovascular tissues. Lastly, we will provide evidence that the zebrafish is an optimal model system to undercover new microRNA functions in vertebrates and to improve microRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Dafne Gays
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| | - Massimo Mattia Santoro
- Department of Biology, Biochemistry and Genetics, Molecular Biotechnology Center, University of Turin, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
116
|
Abstract
The circulatory system is the first organ system to develop in the vertebrate embryo and is critical throughout gestation for the delivery of oxygen and nutrients to, as well as removal of metabolic waste products from, growing tissues. Endothelial cells, which constitute the luminal layer of all blood and lymphatic vessels, emerge de novo from the mesoderm in a process known as vasculogenesis. The vascular plexus that is initially formed is then remodeled and refined via proliferation, migration, and sprouting of endothelial cells to form new vessels from preexisting ones during angiogenesis. Mural cells are also recruited by endothelial cells to form the surrounding vessel wall. During this vascular remodeling process, primordial endothelial cells are specialized to acquire arterial, venous, and blood-forming hemogenic phenotypes and functions. A subset of venous endothelium is also specialized to become lymphatic endothelium later in development. The specialization of all endothelial cell subtypes requires extrinsic signals and intrinsic regulatory events, which will be discussed in this review.
Collapse
Affiliation(s)
- Kathrina L Marcelo
- Interdepartmental Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|
117
|
Chauvet S, Burk K, Mann F. Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell Mol Life Sci 2013; 70:1685-703. [PMID: 23475066 PMCID: PMC11113827 DOI: 10.1007/s00018-013-1278-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Katja Burk
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| |
Collapse
|
118
|
Matejuk A, Collet G, Nadim M, Grillon C, Kieda C. MicroRNAs and tumor vasculature normalization: impact on anti-tumor immune response. Arch Immunol Ther Exp (Warsz) 2013; 61:285-99. [PMID: 23575964 DOI: 10.1007/s00005-013-0231-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
Inefficient immune response is a major glitch during tumor growth and progression. Chaotic and leaky blood vessels created in the process of angiogenesis allow tumor cells to escape and extricate anti-cancer immunity. Proangiogenic characteristics of hypoxic tumor microenvironment maintained by low oxygen tension attract endothelial progenitor cells, drive expansion of cancer stem cells, and deviantly differentiate monocyte descendants. Such cellular milieu further boosts immune tolerance and eventually appoint immunity for cancer advantage. Blood vessel normalization strategies that equilibrate oxygen levels within tumor and fix abnormal vasculature bring exciting promises to future anticancer therapies especially when combined with conventional chemotherapy. Recently, a new group of microRNAs (miRs) engaged in angiogenesis, called angiomiRs and hypoxamiRs, emerged as new therapeutic targets in cancer. Some of those miRs were found to efficiently regulate cancer immunity and their dysregulation efficiently programs aberrant angiogenesis and cancer metastasis. The present review highlights new findings in the field of miRs proficiency to normalize aberrant angiogenesis and to restore anti-tumor immune responses.
Collapse
Affiliation(s)
- Agata Matejuk
- Centre de Biophysique Moléculaire, CNRS UPR 4301, rue Charles Sadron, 45071 Orléans, France.
| | | | | | | | | |
Collapse
|
119
|
Dang LTH, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development. Arterioscler Thromb Vasc Biol 2013; 33:193-200. [PMID: 23325476 DOI: 10.1161/atvbaha.112.300142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulated response of endothelial cells to signals in their environment is not only critical for the de novo formation of primordial vascular networks during early development (ie, vasculogenesis), but is also required for the subsequent growth and remodeling of new blood vessels from preexisting ones (ie, angiogenesis). Vascular endothelial growth factors (Vegfs) and their endothelial cell-specific receptors play a crucial role in nearly all aspects of blood vessel growth. How the outputs from these pathways affect and coordinate endothelial behavior is an area of intense research. Recently, numerous studies have highlighted roles for microRNAs in modulating Vegf signaling output in several different contexts. In this review, we will provide an overview of how small RNAs regulate multiple aspects of the Vegf signaling pathway. In particular, we highlight areas where identification of microRNAs and their targets has provided new insight into the role of downstream effectors in modulating Vegf output during development. As Vegf plays a broad role in multiple aspects of endothelial biology and has become a target for therapeutic manipulation of pathological blood vessel growth, microRNAs that affect Vegf signaling output will undoubtedly be major targets of clinical value.
Collapse
Affiliation(s)
- Lan T H Dang
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
120
|
Graupera M, Potente M. Regulation of angiogenesis by PI3K signaling networks. Exp Cell Res 2013; 319:1348-55. [PMID: 23500680 DOI: 10.1016/j.yexcr.2013.02.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/24/2013] [Accepted: 02/27/2013] [Indexed: 11/19/2022]
Abstract
Phosphoinositide 3-kinases (PI3Ks) are an evolutionary conserved family of lipid kinases that control cell growth, metabolism and survival. By generating lipid second messengers that interact with specialized lipid-binding domains found in a wide spectrum of signaling molecules, PI3Ks instigate signaling through a network of downstream effector pathways. Genetic studies in zebrafish and mice revealed the critical importance of intact PI3K signaling in the endothelium and provided first insights into how individual PI3K isoforms are utilized to control vascular development and function. Here, we review the myriad roles of PI3Ks in the endothelium and the mechanisms through which they couple environmental signals with specific steps of angiogenic vessel growth.
Collapse
Affiliation(s)
- Mariona Graupera
- Vascular Signalling Lab, Angiogenesis Unit, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 3a planta-Gran Via de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain.
| | | |
Collapse
|
121
|
Villefranc JA, Nicoli S, Bentley K, Jeltsch M, Zarkada G, Moore JC, Gerhardt H, Alitalo K, Lawson ND. A truncation allele in vascular endothelial growth factor c reveals distinct modes of signaling during lymphatic and vascular development. Development 2013; 140:1497-506. [PMID: 23462469 DOI: 10.1242/dev.084152] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis.
Collapse
Affiliation(s)
- Jacques A Villefranc
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Siekmann AF, Affolter M, Belting HG. The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 2013; 319:1255-63. [PMID: 23419245 DOI: 10.1016/j.yexcr.2013.01.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 01/24/2023]
Affiliation(s)
- Arndt F Siekmann
- Max Planck Institute for Molecular Biomedicine, D-48149 Muenster, Germany.
| | | | | |
Collapse
|
123
|
Mujahid S, Nielsen HC, Volpe MV. MiR-221 and miR-130a regulate lung airway and vascular development. PLoS One 2013; 8:e55911. [PMID: 23409087 PMCID: PMC3568032 DOI: 10.1371/journal.pone.0055911] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
Epithelial-mesenchymal interactions play a crucial role in branching morphogenesis, but very little is known about how endothelial cells contribute to this process. Here, we examined how anti-angiogenic miR-221 and pro-angiogenic miR-130a affect airway and vascular development in the fetal lungs. Lung-specific effects of miR-130a and miR-221 were studied in mouse E14 whole lungs cultured for 48 hours with anti-miRs or mimics to miR-130a and miR-221. Anti-miR 221 treated lungs had more distal branch generations with increased Hoxb5 and VEGFR2 around airways. Conversely, mimic 221 treated lungs had reduced airway branching, dilated airway tips and decreased Hoxb5 and VEGFR2 in mesenchyme. Anti-miR 130a treatment led to reduced airway branching with increased Hoxa5 and decreased VEGFR2 in the mesenchyme. Conversely, mimic 130a treated lungs had numerous finely arborized branches extending into central lung regions with diffusely localized Hoxa5 and increased VEGFR2 in the mesenchyme. Vascular morphology was analyzed by GSL-B4 (endothelial cell-specific lectin) immunofluorescence. Observed changes in airway morphology following miR-221 inhibition and miR-130a enhancement were mirrored by changes in vascular plexus formation around the terminal airways. Mouse fetal lung endothelial cells (MFLM-91U) were used to study microvascular cell behavior. Mimic 221 treatment resulted in reduced tube formation and cell migration, where as the reverse was observed with mimic 130a treatment. From these data, we conclude that miR-221 and miR-130a have opposing effects on airway and vascular morphogenesis of the developing lung.
Collapse
Affiliation(s)
- Sana Mujahid
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Heber C. Nielsen
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Anatomy and Cell Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, United States of America
| | - MaryAnn V. Volpe
- Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
124
|
Zhao G, Cai C, Yang T, Qiu X, Liao B, Li W, Ji Z, Zhao J, Zhao H, Guo M, Ma Q, Xiao C, Fan Q, Ma B. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One 2013; 8:e53906. [PMID: 23372675 PMCID: PMC3553141 DOI: 10.1371/journal.pone.0053906] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/04/2012] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs are short regulatory RNAs that negatively modulate protein expression at a post-transcriptional and/or translational level and are deeply involved in the pathogenesis of several types of cancers. Specifically, microRNA-221 (miR-221) is overexpressed in many human cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-221 in human osteosarcoma has not been totally elucidated. In the present study, the effects of miR-221 on osteosarcoma and the possible mechanism by which miR-221 affected the survival, apoptosis, and cisplatin resistance of osteosarcoma were investigated. Methodology/Principal Findings Real-time quantitative PCR analysis revealed miR-221 was significantly upregulated in osteosarcoma cell lines than in osteoblasts. Both human osteosarcoma cell lines SOSP-9607 and MG63 were transfected with miR-221 mimic or inhibitor to regulate miR-221 expression. The effects of miR-221 were then assessed by cell viability, cell cycle analysis, apoptosis assay, and cisplatin resistance assay. In both cells, upregulation of miR-221 induced cell survival and cisplatin resistance and reduced cell apoptosis. In addition, knockdown of miR-221 inhibited cell growth and cisplatin resistance and induced cell apoptosis. Potential target genes of miR-221 were predicted using bioinformatics. Moreover, luciferase reporter assay and western blot confirmed that PTEN was a direct target of miR-221. Furthermore, introduction of PTEN cDNA lacking 3′-UTR or PI3K inhibitor LY294002 abrogated miR-221-induced cisplatin resistance. Finally, both miR-221 and PTEN expression levels in osteosarcoma samples were examined by using real-time quantitative PCR and immunohistochemistry. High miR-221 expression level and inverse correlation between miR-221 and PTEN levels were revealed in osteosarcoma tissues. Conclusions/Significance These results for the first time demonstrate that upregulation of miR-221 induces the malignant phenotype of human osteosarcoma whereas knockdown of miR-221 reverses this phenotype, suggesting that miR-221 could be a potential target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Guangyi Zhao
- Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Circadian rhythms control multiple physiological and pathological processes, including embryonic development in mammals and development of various human diseases. We have recently, in a developing zebrafish embryonic model, discovered that the circadian oscillation controls developmental angiogenesis. Disruption of crucial circadian regulatory genes, including Bmal1 and Period2, results in marked impairment or enhancement of vascular development in zebrafish. At the molecular level, we show that the circadian regulator Bmal1 directly targets the promoter region of the vegf gene in zebrafish, leading to an elevated expression of VEGF. These findings can reasonably be extended to developmental angiogenesis in mammals and even pathological angiogenesis in humans. Thus, our findings, for the first time, shed new light on mechanisms that underlie circadian clock-regulated angiogenesis.
Collapse
Affiliation(s)
- Lasse Dahl Jensen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | | |
Collapse
|
126
|
Nakajima Y, Imanaka-Yoshida K. New insights into the developmental mechanisms of coronary vessels and epicardium. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:263-317. [PMID: 23445813 DOI: 10.1016/b978-0-12-407697-6.00007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During heart development, the epicardium, which originates from the proepicardial organ (PE), is a source of coronary vessels. The PE develops from the posterior visceral mesoderm of the pericardial coelom after stimulation with a combination of weak bone morphogenetic protein and strong fibroblast growth factor (FGF) signaling. PE-derived cells migrate across the heart surface to form the epicardial sheet, which subsequently seeds multipotent subepicardial mesenchymal cells via epithelial-mesenchymal transition, which is regulated by several signaling pathways including retinoic acid, FGF, sonic hedgehog, Wnt, transforming growth factor-β, and platelet-derived growth factor. Subepicardial endothelial progenitors eventually generate the coronary vascular plexus, which acquires an arterial or venous phenotype, connects with the sinus venosus and aortic sinuses, and then matures through the recruitment of vascular smooth muscle cells under the regulation of complex growth factor signaling pathways. These developmental programs might be activated in the adult heart after injury and play a role in the regeneration/repair of the myocardium.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | | |
Collapse
|
127
|
Cheng SM, Chang SJ, Tsai TN, Wu CH, Lin WS, Lin WY, Cheng CC. Differential expression of distinct surface markers in early endothelial progenitor cells and monocyte-derived macrophages. Gene Expr 2013; 16:15-24. [PMID: 24397208 PMCID: PMC8750263 DOI: 10.3727/105221613x13776146743307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) play a fundamental role in postnatal angiogenesis. Currently, EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Reports have shown that early EPCs share common properties and surface markers with adherent blood cells, especially CD14+ monocytes. Distinguishing early EPCs from circulating monocytes or monocyte-derived macrophages (MDMs) is therefore crucial to obtaining pure endothelial populations before they can be applied as part of clinical therapies. We compared the gene expression profiles of early EPCs, blood cells (including peripheral blood mononuclear cells, monocytes, and MDMs), and various endothelial lineage cells (including mature endothelial cells, late EPCs, and CD133+ stem cells). We found that early EPCs expressed an mRNA profile that showed the greatest similarity to MDMs than any other cell type tested. The functional significance of this molecular profiling data was explored by Gene Ontology database search. Novel plasma membrane genes that might potentially be novel isolation biomarkers were also pinpointed. Specifically, expression of CLEC5A was high in MDMs, whereas early EPCs expressed abundant SIGLEC8 and KCNE1. These detailed mRNA expression profiles and the identified functional modules will help to develop novel cell isolation approaches that will allow EPCs to be purified; these can then be used to target cardiovascular disease, tumor angiogenesis, and various ischemia-related diseases.
Collapse
Affiliation(s)
- Shu-Meng Cheng
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shing-Jyh Chang
- †Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Tsung-Neng Tsai
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsien Wu
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Shing Lin
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- *Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
128
|
Santoro MM, Nicoli S. miRNAs in endothelial cell signaling: the endomiRNAs. Exp Cell Res 2012; 319:1324-30. [PMID: 23262024 DOI: 10.1016/j.yexcr.2012.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
microRNAs (miRNAs) have a pivotal role during the formation and function of the cardiovascular system. More than 300 miRNAs have been currently found within the mammalian genome, however only few specific miRNAs, named endomiRNAs, showed conseved endothelial cell expression and function. In this review we present an overview of the currently known endomiRNAs, focusing on their genome localization, processing and target gene repression during vasculogenesis and angiogenesis.
Collapse
Affiliation(s)
- Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | | |
Collapse
|
129
|
Johannessen TCA, Wagner M, Straume O, Bjerkvig R, Eikesdal HP. Tumor vasculature: the Achilles' heel of cancer? Expert Opin Ther Targets 2012; 17:7-20. [DOI: 10.1517/14728222.2013.730522] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
130
|
Siemerink MJ, Klaassen I, Van Noorden CJF, Schlingemann RO. Endothelial tip cells in ocular angiogenesis: potential target for anti-angiogenesis therapy. J Histochem Cytochem 2012; 61:101-15. [PMID: 23092791 PMCID: PMC3636692 DOI: 10.1369/0022155412467635] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Endothelial tip cells are leading cells at the tips of vascular sprouts coordinating multiple processes during angiogenesis. In the developing retina, tip cells play a tightly controlled, timely role in angiogenesis. In contrast, excessive numbers of tip cells are a characteristic of the chaotic pathological blood vessels in proliferative retinopathies. Tip cells control adjacent endothelial cells in a hierarchical manner to form the stalk of the sprouting vessel, using, among others, the VEGF-DLL-Notch signaling pathway, and recruit pericytes. Tip cells are guided toward avascular areas by signals from the local extracellular matrix that are released by cells from the neuroretina such as astrocytes. Recently, tip cells were identified in endothelial cell cultures, enabling identification of novel molecular markers and mechanisms involved in tip cell biology. These mechanisms are relevant for understanding proliferative retinopathies. Agents that primarily target tip cells can block pathological angiogenesis in the retina efficiently and safely without adverse effects. A striking example is platelet-derived growth factor, which was recently shown to be an efficacious additional target in the treatment of retinal neovascularization. Here we discuss these and other tip cell-based strategies with respect to their potential to treat patients with ocular diseases dominated by neovascularization.
Collapse
Affiliation(s)
- Martin J Siemerink
- Ocular Angiogenesis Group, Department of Ophthalmology and Department of Cell Biology and Histology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
131
|
Zebrafish: an emerging model of vascular development and remodelling. Curr Opin Pharmacol 2012; 12:608-14. [DOI: 10.1016/j.coph.2012.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022]
|
132
|
Hassel D, Cheng P, White MP, Ivey KN, Kroll J, Augustin HG, Katus HA, Stainier DYR, Srivastava D. MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling. Circ Res 2012; 111:1421-33. [PMID: 22955733 DOI: 10.1161/circresaha.112.279711] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Formation and remodeling of the vasculature during development and disease involve a highly conserved and precisely regulated network of attractants and repellants. Various signaling pathways control the behavior of endothelial cells, but their posttranscriptional dose titration by microRNAs is poorly understood. OBJECTIVE To identify microRNAs that regulate angiogenesis. METHODS AND RESULTS We show that the highly conserved microRNA family encoding miR-10 regulates the behavior of endothelial cells during angiogenesis by positively titrating proangiogenic signaling. Knockdown of miR-10 led to premature truncation of intersegmental vessel growth in the trunk of zebrafish larvae, whereas overexpression of miR-10 promoted angiogenic behavior in zebrafish and cultured human umbilical venous endothelial cells. We found that miR-10 functions, in part, by directly regulating the level of fms-related tyrosine kinase 1 (FLT1), a cell-surface protein that sequesters vascular endothelial growth factor, and its soluble splice variant sFLT1. The increase in FLT1/sFLT1 protein levels upon miR-10 knockdown in zebrafish and in human umbilical venous endothelial cells inhibited the angiogenic behavior of endothelial cells largely by antagonizing vascular endothelial growth factor receptor 2 signaling. CONCLUSIONS Our study provides insights into how FLT1 and vascular endothelial growth factor receptor 2 signaling is titrated in a microRNA-mediated manner and establishes miR-10 as a potential new target for the selective modulation of angiogenesis.
Collapse
Affiliation(s)
- David Hassel
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Chen LJ, Lim SH, Yeh YT, Lien SC, Chiu JJ. Roles of microRNAs in atherosclerosis and restenosis. J Biomed Sci 2012; 19:79. [PMID: 22931291 PMCID: PMC3438039 DOI: 10.1186/1423-0127-19-79] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/03/2012] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is commonly appreciated to represent a chronic inflammatory response of the vascular wall, and its complications cause high mortality in patients. Angioplasty with stent replacement is commonly performed in patients with atherosclerotic disease. However, the restenosis usually has a high incidence rate in angioplasty patients. Although the pathophysiological mechanisms underlying atherosclerosis and restenosis have been well established, new signaling molecules that control the progress of these pathologies have continuously been discovered. MicroRNAs (miRs) have recently emerged as a novel class of gene regulators that work via transcriptional degradation and translational inhibition or activation. Over 30% of genes in the cell can be directly regulated by miRs. Thus, miRs are recognized as crucial regulators in normal development, physiology and pathogenesis. Alterations of miR expression profiles have been revealed in diverse vascular diseases. A variety of functions of vascular cells, such as cell differentiation, contraction, migration, proliferation and inflammation that are involved in angiogenesis, neointimal formation and lipid metabolism underlying various vascular diseases, have been found to be regulated by miRs. This review summarizes current research progress and knowledge on the roles of miRs in regulating vascular cell function in atherosclerosis and restenosis. These discoveries are expected to present opportunities for clinical diagnostic and therapeutic approaches in vascular diseases resulting from atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Li-Jing Chen
- Division of Medical Engineering Research, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | |
Collapse
|
134
|
Determination of endothelial stalk versus tip cell potential during angiogenesis by H2.0-like homeobox-1. Curr Biol 2012; 22:1789-94. [PMID: 22921365 PMCID: PMC3471071 DOI: 10.1016/j.cub.2012.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/06/2012] [Accepted: 07/14/2012] [Indexed: 11/21/2022]
Abstract
Tissue branching morphogenesis requires the hierarchical organization of sprouting cells into leading “tip” and trailing “stalk” cells [1, 2]. During new blood vessel branching (angiogenesis), endothelial tip cells (TCs) lead sprouting vessels, extend filopodia, and migrate in response to gradients of the secreted ligand, vascular endothelial growth factor (Vegf) [3]. In contrast, adjacent stalk cells (SCs) trail TCs, generate the trunk of new vessels, and critically maintain connectivity with parental vessels. Here, we establish that h2.0-like homeobox-1 (Hlx1) determines SC potential, which is critical for angiogenesis during zebrafish development. By combining a novel pharmacological strategy for the manipulation of angiogenic cell behavior in vivo with transcriptomic analyses of sprouting cells, we identify the uniquely sprouting-associated gene, hlx1. Expression of hlx1 is almost entirely restricted to sprouting endothelial cells and is excluded from adjacent nonangiogenic cells. Furthermore, Hlx1 knockdown reveals its essential role in angiogenesis. Importantly, mosaic analyses uncover a cell-autonomous role for Hlx1 in the maintenance of SC identity in sprouting vessels. Hence, Hlx1-mediated maintenance of SC potential regulates angiogenesis, a finding that may have novel implications for sprouting morphogenesis of other tissues.
Collapse
|
135
|
|