101
|
Musser JM, Arendt D. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution. Dev Biol 2017; 431:26-35. [DOI: 10.1016/j.ydbio.2017.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 01/09/2023]
|
102
|
Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, Zack DJ, Ashery-Padan R. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol 2017; 432:140-150. [PMID: 28993200 DOI: 10.1016/j.ydbio.2017.09.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 09/23/2017] [Indexed: 12/16/2022]
Abstract
In the developing retina, as in other regions of the CNS, neural progenitors give rise to individual cell types during discrete temporal windows. Pax6 is expressed in retinal progenitor cells (RPCs) throughout the course of retinogenesis, and has been shown to be required during early retinogenesis for generation of most early-born cell types. In this study, we examined the function of Pax6 in postnatal mouse retinal development. We found that Pax6 is essential for the generation of late-born interneurons, while inhibiting photoreceptor differentiation. Generation of bipolar interneurons requires Pax6 expression in RPCs, while Pax6 is required for the generation of glycinergic, but not for GABAergic or non-GABAergic-non-glycinergic (nGnG) amacrine cell subtypes. In contrast, overexpression of either full-length Pax6 or its 5a isoform in RPCs induces formation of cells with nGnG amacrine features, and suppresses generation of other inner retinal cell types. Moreover, overexpression of both Pax6 variants prevents photoreceptor differentiation, most likely by inhibiting Crx expression. Taken together, these data show that Pax6 acts in RPCs to control differentiation of multiple late-born neuronal cell types.
Collapse
Affiliation(s)
- Liv Aleen Remez
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Akishi Onishi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Yotam Menuchin-Lasowski
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Assaf Biran
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
| | - Donlad J Zack
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
103
|
Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, Mikkelsen JG, Corydon TJ. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:89-99. [PMID: 29246327 PMCID: PMC5626917 DOI: 10.1016/j.omtn.2017.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022]
Abstract
Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp) Cas9, delivered by lentiviral vectors (LVs), can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa) gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs) induce in vitro indel formation at high frequencies (44%-93%). A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.
Collapse
Affiliation(s)
- Andreas Holmgaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | - Yujia Cai
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | | | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark.
| |
Collapse
|
104
|
Combinatorial regulation of a Blimp1 (Prdm1) enhancer in the mouse retina. PLoS One 2017; 12:e0176905. [PMID: 28829770 PMCID: PMC5568747 DOI: 10.1371/journal.pone.0176905] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/19/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse retina comprises seven major cell types that exist in differing proportions. They are generated from multipotent progenitors in a stochastic manner, such that the relative frequency of any given type generated changes over time. The mechanisms determining the proportions of each cell type are only partially understood. Photoreceptors and bipolar interneurons are derived from cells that express Otx2. Within this population, Blimp1 (Prdm1) helps set the balance between photoreceptors and bipolar cells by suppressing bipolar identity in most of the cells. How only a subset of these Otx2+ cells decides to upregulate Blimp1 and adopt photoreceptor fate is unknown. To understand this, we investigated how Blimp1 transcription is regulated. We identified several potential Blimp1 retinal enhancer elements using DNase hypersensitivity sequencing. Only one of the elements recapitulated Blimp1 spatial and temporal expression in cultured explant assays and within the retinas of transgenic mice. Mutagenesis of this retinal Blimp1 enhancer element revealed four discrete sequences that were each required for its activity. These included highly conserved Otx2 and ROR (retinoic acid receptor related orphan receptor) binding sites. The other required sequences do not appear to be controlled by Otx2 or ROR factors, increasing the complexity of the Blimp1 gene regulatory network. Our results show that the intersection of three or more transcription factors is required to correctly regulate the spatial and temporal features of Blimp1 enhancer expression. This explains how Blimp1 expression can diverge from Otx2 and set the balance between photoreceptor and bipolar fates.
Collapse
|
105
|
Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: Could material transfer distort conclusions? Dev Dyn 2017. [PMID: 28643368 DOI: 10.1002/dvdy.24535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies reported the transfer of fluorescent labels between grafted and host cells after transplantation of photoreceptor precursor cells in the mouse retina. While clearly impacting the interpretation of transplantation studies in the retina, the potential impact of material transfer in other experimental paradigms using cell-specific labels remains uncertain. Here, we briefly review the evidence supporting material transfer in transplantation studies and discuss whether it might influence retinal cell lineage tracing experiments in developmental and regeneration studies. We also propose ways to control for the possible confounding occurrence of label exchange in such experiments. Developmental Dynamics 247:10-17, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Camille Boudreau-Pinsonneault
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Integrated Program in Neuroscience, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Medicine, Université de Montréal, QC, Canada.,Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
106
|
Cho GY, Abdulla Y, Sengillo JD, Justus S, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. CRISPR-mediated Ophthalmic Genome Surgery. CURRENT OPHTHALMOLOGY REPORTS 2017; 5:199-206. [PMID: 28966884 DOI: 10.1007/s40135-017-0144-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Clustered regularly interspaced short palindromic repeats (CRISPR) is a genome engineering system with great potential for clinical applications due to its versatility and programmability. This review highlights the development and use of CRISPR-mediated ophthalmic genome surgery in recent years. RECENT FINDINGS Diverse CRISPR techniques are in development to target a wide array of ophthalmic conditions, including inherited and acquired conditions. Preclinical disease modeling and recent successes in gene editing suggest potential efficacy of CRISPR as a therapeutic for inherited conditions. In particular, the treatment of Leber congenital amaurosis with CRISPR-mediated genome surgery is expected to reach clinical trials in the near future. SUMMARY Treatment options for inherited retinal dystrophies are currently limited. CRISPR-mediated genome surgery methods may be able to address this unmet need in the future.
Collapse
Affiliation(s)
- Galaxy Y Cho
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yazeed Abdulla
- School of Medicine, The University of Jordan, Amman, Jordan
| | - Jesse D Sengillo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sally Justus
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Kellie A Schaefer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Alexander G Bassuk
- Department of Pediatrics and Neurology, University of Iowa, Iowa City, IA, USA
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
107
|
Chinchore Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL. Glycolytic reliance promotes anabolism in photoreceptors. eLife 2017; 6. [PMID: 28598329 PMCID: PMC5499945 DOI: 10.7554/elife.25946] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Vertebrate photoreceptors are among the most metabolically active cells, exhibiting a high rate of ATP consumption. This is coupled with a high anabolic demand, necessitated by the diurnal turnover of a specialized membrane-rich organelle, the outer segment, which is the primary site of phototransduction. How photoreceptors balance their catabolic and anabolic demands is poorly understood. Here, we show that rod photoreceptors in mice rely on glycolysis for their outer segment biogenesis. Genetic perturbations targeting allostery or key regulatory nodes in the glycolytic pathway impacted the size of the outer segments. Fibroblast growth factor signaling was found to regulate glycolysis, with antagonism of this pathway resulting in anabolic deficits. These data demonstrate the cell autonomous role of the glycolytic pathway in outer segment maintenance and provide evidence that aerobic glycolysis is part of a metabolic program that supports the biosynthetic needs of a normal neuronal cell type. DOI:http://dx.doi.org/10.7554/eLife.25946.001 Living cells need building materials and energy to grow and carry out their activities. Most cells in the body use sugars like glucose for these purposes. In a process known as glycolysis, cells break down glucose into molecules that are eventually converted to carbon dioxide and water to form the chemical ATP – the cellular currency for energy. Developing cells that have not yet fully specialized, and rapidly dividing cells, like cancer cells, consume large amounts of glucose via aerobic glycolysis (also known as the Warburg effect) as they require high levels of energy and building materials. As cells become more specialized and divide less often, they have a reduced need for building blocks, and adjust their consumption and breakdown of glucose accordingly. One exception is the photoreceptor cells, found in the light-sensitive part of our eyes. Although these specialized cells do not divide, they still need a lot of energy and building blocks to constantly renew their light-sensing and processing structures, and to capture and convert the information from the environment into signals. Previous research has shown that the eye also uses the Warburg effect. However, until now, it was not known whether the photoreceptors or other cells in the eye carry out this form of glycolysis. Using genetic tools, Chinchore et al. analysed how the photoreceptor cells in mice used glucose. The experiments demonstrated that the photoreceptors do indeed carry out the Warburg effect. Chinchore et al. further discovered that the Warburg effect is regulated by the same key enzymes and signalling molecules that cancer cells use. This indicates that specialized cells like photoreceptors might choose to retain certain metabolic features of their precursor cells, if they need to. These findings provide new insight into how photoreceptors use glucose. The next step will be to understand how aerobic glycolysis is regulated in healthy eyes as well as in eyes that are affected by degenerating diseases, which may ultimately lead to new ways of treating blindness. DOI:http://dx.doi.org/10.7554/eLife.25946.002
Collapse
Affiliation(s)
- Yashodhan Chinchore
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Tedi Begaj
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - David Wu
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Eugene Drokhlyansky
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
108
|
Abstract
Photoreceptors are highly specialized primary sensory neurons that sense light and initiate vision. This critical role is well demonstrated by the fact that visual impairment accompanies photoreceptor loss or dysfunction in many human diseases. With the remarkable advances in stem cell research, one therapeutic approach is to use stem cells to generate photoreceptors and then engraft them into diseased eyes. Knowledge of the molecular mechanisms that control photoreceptor genesis during normal development can greatly aid in the production of photoreceptor cells for this approach. This article will discuss advances in our understanding of the molecular mechanisms that regulate photoreceptor fate determination during development. Recent lineage studies have shown that there are distinct retinal progenitor cells (RPCs) that produce specific combinations of daughter cell types, including photoreceptors and other types of retinal cells. Gene regulatory networks, in which transcription factors interact via cis-regulatory DNA elements, have been discovered that operate within distinct RPCs, and/or newly postmitotic cells, to direct the choice of photoreceptor fate.
Collapse
Affiliation(s)
- Sui Wang
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| | - Constance L Cepko
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| |
Collapse
|
109
|
Powell SK, Gregory J, Akbarian S, Brennand KJ. Application of CRISPR/Cas9 to the study of brain development and neuropsychiatric disease. Mol Cell Neurosci 2017; 82:157-166. [PMID: 28549865 DOI: 10.1016/j.mcn.2017.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
CRISPR/Cas9 technology has transformed our ability to manipulate the genome and epigenome, from efficient genomic editing to targeted localization of effectors to specific loci. Through the manipulation of DNA- and histone-modifying enzyme activities, activation or repression of gene expression, and targeting of transcriptional regulators, the role of gene-regulatory and epigenetic pathways in basic biology and disease processes can be directly queried. Here, we discuss emerging CRISPR-based methodologies, with specific consideration of neurobiological applications of human induced pluripotent stem cell (hiPSC)-based models.
Collapse
Affiliation(s)
- S K Powell
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - J Gregory
- Instructional Technology Group, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - S Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - K J Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
110
|
Sun Y, Lin Z, Liu CH, Gong Y, Liegl R, Fredrick TW, Meng SS, Burnim SB, Wang Z, Akula JD, Pu WT, Chen J, Smith LEH. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. J Exp Med 2017; 214:1753-1767. [PMID: 28465464 PMCID: PMC5461000 DOI: 10.1084/jem.20161645] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/02/2017] [Accepted: 03/22/2017] [Indexed: 11/04/2022] Open
Abstract
Pathological neovessels growing into the normally avascular photoreceptors cause vision loss in many eye diseases, such as age-related macular degeneration and macular telangiectasia. Ocular neovascularization is strongly associated with inflammation, but the source of inflammatory signals and the mechanisms by which these signals regulate the disruption of avascular privilege in photoreceptors are unknown. In this study, we found that c-Fos, a master inflammatory regulator, was increased in photoreceptors in a model of pathological blood vessels invading photoreceptors: the very low-density lipoprotein receptor-deficient (Vldlr-/- ) mouse. Increased c-Fos induced inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor (TNF), leading to activation of signal transducer and activator of transcription 3 (STAT3) and increased TNFα-induced protein 3 (TNFAIP3) in Vldlr-/- photoreceptors. IL-6 activated the STAT3/vascular endothelial growth factor A (VEGFA) pathway directly, and elevated TNFAIP3 suppressed SOCS3 (suppressor of cytokine signaling 3)-activated STAT3/VEGFA indirectly. Inhibition of c-Fos using photoreceptor-specific AAV (adeno-associated virus)-hRK (human rhodopsin kinase)-sh_c-fos or a chemical inhibitor substantially reduced the pathological neovascularization and rescued visual function in Vldlr-/- mice. These findings suggested that the photoreceptor c-Fos controls blood vessel growth into the normally avascular photoreceptor layer through the inflammatory signal-induced STAT3/VEGFA pathway.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhiqiang Lin
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Raffael Liegl
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Thomas W Fredrick
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Zhongxiao Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - James D Akula
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - William T Pu
- Department of Cardiology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Jing Chen
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115
| |
Collapse
|
111
|
Li Y, Hao H, Swerdel MR, Cho HY, Lee KB, Hart RP, Lyu YL, Cai L. Top2b is involved in the formation of outer segment and synapse during late-stage photoreceptor differentiation by controlling key genes of photoreceptor transcriptional regulatory network. J Neurosci Res 2017; 95:1951-1964. [PMID: 28370415 DOI: 10.1002/jnr.24037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 01/17/2023]
Abstract
Topoisomerase II beta (Top2b) is an enzyme that alters the topologic states of DNA during transcription. Top2b deletion in early retinal progenitor cells causes severe defects in neural differentiation and affects cell survival in all retinal cell types. However, it is unclear whether the observed severe phenotypes are the result of cell-autonomous/primary defects or non-cell-autonomous/secondary defects caused by alterations of other retinal cells. Using photoreceptor cells as a model, we first characterized the phenotypes in Top2b conditional knockout. Top2b deletion leads to malformation of photoreceptor outer segments (OSs) and synapses accompanied by dramatic cell loss at late-stage photoreceptor differentiation. Then, we performed mosaic analysis with shRNA-mediated Top2b knockdown in neonatal retina using in vivo electroportation to target rod photoreceptors in neonatal retina. Top2b knockdown causes defective OS without causing a dramatic cell loss, suggesting a Top2b cell-autonomous function. Furthermore, RNA-seq analysis reveals that Top2b controls the expression of key genes in the photoreceptor gene-regulatory network (e.g., Crx, Nr2e3, Opn1sw, Vsx2) and retinopathy-related genes (e.g., Abca4, Bbs7, Pde6b). Together, our data establish a combinatorial cell-autonomous and non-cell-autonomous role for Top2b in the late stage of photoreceptor differentiation and maturation. © 2017 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Hailing Hao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Yi Lisa Lyu
- Office of Research Commercialization, Rutgers University, Piscataway, New Jersey
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
112
|
Sun Y, Liegl R, Gong Y, Bühler A, Cakir B, Meng SS, Burnim SB, Liu CH, Reuer T, Zhang P, Walz JM, Ludwig F, Lange C, Agostini H, Böhringer D, Schlunck G, Smith LEH, Stahl A. Sema3f Protects Against Subretinal Neovascularization In Vivo. EBioMedicine 2017; 18:281-287. [PMID: 28373097 PMCID: PMC5405173 DOI: 10.1016/j.ebiom.2017.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Pathological neovascularization of the outer retina is the hallmark of neovascular age-related macular degeneration (nAMD). Building on our previous observations that semaphorin 3F (Sema3f) is expressed in the outer retina and demonstrates anti-angiogenic potential, we have investigated whether Sema3f can be used to protect against subretinal neovascularization in two mouse models. Both in the very low-density lipid-receptor knockout (Vldlr−/−) model of spontaneous subretinal neovascularization as well as in the mouse model of laser-induced choroidal neovascularization (CNV), we found protective effects of Sema3f against the formation of pathologic neovascularization. In the Vldlr−/− model, AAV-induced overexpression of Sema3f reduced the size of pathologic neovascularization by 56%. In the laser-induced CNV model, intravitreally injected Sema3f reduced pathologic neovascularization by 30%. Combined, these results provide the first evidence from two distinct in vivo models for a use of Sema3f in protecting the outer retina against subretinal neovascularization. Sema3f is expressed in the physiologically avascular layers of the outer retina. Vldlr−/− mice have reduced Sema3f and form spontaneous subretinal neovascularization. AAV-mediated increase of Sema3f protects against neovascularization in Vldlr−/− mice. Sema3f also reduces pathologic neovascularization in eyes with laser-induced CNV.
Abnormal formation of new blood vessels in the retina is one of the hallmarks of a potentially blinding eye disease called wet (or exudative) macular degeneration. Here we investigated in two independent mouse models whether Sema3f (a protein involved in guiding blood vessel growth) can be modulated to protect against abnormal blood vessel growth. In both mouse models, we found protective effects of Sema3f against abnormal blood vessel formation in the retina. Combined, these results provide the first evidence that Sema3f could be modulated to protect against wet macular degeneration.
Collapse
Affiliation(s)
- Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Raffael Liegl
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Anima Bühler
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Bertan Cakir
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Steven S Meng
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Tristan Reuer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Peipei Zhang
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Johanna M Walz
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Franziska Ludwig
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Andreas Stahl
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Killianstrasse 5, 79106 Freiburg, Germany.
| |
Collapse
|
113
|
Correction of Monogenic and Common Retinal Disorders with Gene Therapy. Genes (Basel) 2017; 8:genes8020053. [PMID: 28134823 PMCID: PMC5333042 DOI: 10.3390/genes8020053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 11/16/2022] Open
Abstract
The past decade has seen major advances in gene-based therapies, many of which show promise for translation to human disease. At the forefront of research in this field is ocular disease, as the eye lends itself to gene-based interventions due to its accessibility, relatively immune-privileged status, and ability to be non-invasively monitored. A landmark study in 2001 demonstrating successful gene therapy in a large-animal model for Leber congenital amaurosis set the stage for translation of these strategies from the bench to the bedside. Multiple clinical trials have since initiated for various retinal diseases, and further improvements in gene therapy techniques have engendered optimism for alleviating inherited blinding disorders. This article provides an overview of gene-based strategies for retinal disease, current clinical trials that engage these strategies, and the latest techniques in genome engineering, which could serve as the next frontline of therapeutic interventions.
Collapse
|
114
|
Abstract
Genome editing is driving a revolution in the biomedical sciences that carries the promise for future treatments of genetic diseases. The CRISPR/Cas9 system of RNA-guided genome editing has been successfully applied to modify the genome of a wide spectrum of organisms. We recently showed that this technique can be combined with in vivo electroporation to inhibit the function of genes of interest in somatic cells of the developing chicken embryo. We present here a simplified version of the previously described technique that leads to effective gene loss-of-function.
Collapse
Affiliation(s)
- Valérie Morin
- Institut NeuroMyoGène, INMG, Faculty of Medicine Laënnec, University Lyon1, Bâtiment B, 7 rue Guillaume Paradin, 69008, Lyon, France
| | - Nadège Véron
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Christophe Marcelle
- Institut NeuroMyoGène, INMG, Faculty of Medicine Laënnec, University Lyon1, Bâtiment B, 7 rue Guillaume Paradin, 69008, Lyon, France. .,EMBL Australia, Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
115
|
Liu H, Aramaki M, Fu Y, Forrest D. Retinoid-Related Orphan Receptor β and Transcriptional Control of Neuronal Differentiation. Curr Top Dev Biol 2016; 125:227-255. [PMID: 28527573 DOI: 10.1016/bs.ctdb.2016.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to generate neuronal diversity is central to the function of the nervous system. Here we discuss the key neurodevelopmental roles of retinoid-related orphan receptor β (RORβ) encoded by the Rorb (Nr1f2) gene. Recent studies have reported loss of function of the human RORB gene in cases of familial epilepsy and intellectual disability. Principal sites of expression of the Rorb gene in model species include sensory organs, the spinal cord, and brain regions that process sensory and circadian information. Genetic analyses in mice have indicated functions in circadian behavior, vision, and, at the cellular level, the differentiation of specific neuronal cell types. Studies in the retina and sensory areas of the cerebral cortex suggest that this orphan nuclear receptor acts at decisive steps in transcriptional hierarchies that determine neuronal diversity.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Michihiko Aramaki
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Yulong Fu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
116
|
Chaney SY, Mukherjee S, Giddabasappa A, Rueda EM, Hamilton WR, Johnson JE, Fox DA. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis 2016; 22:1468-1489. [PMID: 28050121 PMCID: PMC5204453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/22/2016] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Studies of neuronal development in the retina often examine the stages of proliferation, differentiation, and synaptic development, albeit independently. Our goal was to determine if a known neurotoxicant insult to a population of retinal progenitor cells (RPCs) would affect their eventual differentiation and synaptic development. To that end, we used our previously published human equivalent murine model of low-level gestational lead exposure (GLE). Children and animals with GLE exhibit increased scotopic electroretinogram a- and b-waves. Adult mice with GLE exhibit an increased number of late-born RPCs, a prolonged period of RPC proliferation, and an increased number of late-born rod photoreceptors and rod and cone bipolar cells (BCs), with no change in the number of late-born Müller glial cells or early-born neurons. The specific aims of this study were to determine whether increased and prolonged RPC proliferation alters the spatiotemporal differentiation and synaptic development of rods and BCs in early postnatal GLE retinas compared to control retinas. METHODS C57BL/6N mouse pups were exposed to lead acetate via drinking water throughout gestation and until postnatal day 10, which is equivalent to the human gestation period for retinal neurogenesis. RT-qPCR, immunohistochemical analysis, and western blots of well-characterized, cell-specific genes and proteins were performed at embryonic and early postnatal ages to assess rod and cone photoreceptor differentiation, rod and BC differentiation and synaptic development, and Müller glial cell differentiation. RESULTS Real-time quantitative PCR (RT-qPCR) with the rod-specific transcription factors Nrl, Nr2e3, and Crx and the rod-specific functional gene Rho, along with central retinal confocal studies with anti-recoverin and anti-rhodopsin antibodies, revealed a two-day delay in the differentiation of rod photoreceptors in GLE retinas. Rhodopsin immunoblots supported this conclusion. No changes in glutamine synthetase gene or protein expression, a marker for late-born Müller glial cells, were observed in the developing retinas. In the retinas from the GLE mice, anti-PKCα, -Chx10 (Vsx2) and -secretagogin antibodies revealed a two- to three-day delay in the differentiation of rod and cone BCs, whereas the expression of the proneural and BC genes Otx2 and Chx10, respectively, increased. In addition, confocal studies of proteins associated with functional synapses (e.g., vesicular glutamate transporter 1 [VGluT1], plasma membrane calcium ATPase [PMCA], transient receptor potential channel M1 [TRPM1], and synaptic vesicle glycoprotein 2B [SV2B]) revealed a two-day delay in the formation of the outer and inner plexiform layers of the GLE retinas. Moreover, several markers revealed that the initiation of the differentiation and intensity of the labeling of early-born cells in the retinal ganglion cell and inner plexiform layers were not different in the control retinas. CONCLUSIONS Our combined gene, confocal, and immunoblot findings revealed that the onset of rod and BC differentiation and their subsequent synaptic development is delayed by two to three days in GLE retinas. These results suggest that perturbations during the early proliferative stages of late-born RPCs fated to be rods and BCs ultimately alter the coordinated time-dependent progression of rod and BC differentiation and synaptic development. These GLE effects were selective for late-born neurons. Although the molecular mechanisms are unknown, alterations in soluble neurotrophic factors and/or their receptors are likely to play a role. Since neurodevelopmental delays and altered synaptic connectivity are associated with neuropsychiatric and behavioral disorders as well as cognitive deficits, future work is needed to determine if similar effects occur in the brains of GLE mice and whether children with GLE experience similar delays in retinal and brain neuronal differentiation and synaptic development.
Collapse
Affiliation(s)
- Shawnta Y. Chaney
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Shradha Mukherjee
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Anand Giddabasappa
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Elda M. Rueda
- College of Optometry, University of Houston, Houston, TX
| | - W. Ryan Hamilton
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jerry E. Johnson
- College of Optometry, University of Houston, Houston, TX,Department of Natural Sciences, University of Houston-Downtown; Houston, TX
| | - Donald A. Fox
- College of Optometry, University of Houston, Houston, TX,Department of Biology and Biochemistry, University of Houston, Houston, TX,Department of Pharmacology and Pharmaceutical Science, University of Houston, Houston, TX
| |
Collapse
|
117
|
Yang MG, West AE. Editing the Neuronal Genome: a CRISPR View of Chromatin Regulation in Neuronal Development, Function, and Plasticity. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:457-470. [PMID: 28018138 PMCID: PMC5168825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dynamic orchestration of gene expression is crucial for the proper differentiation, function, and adaptation of cells. In the brain, transcriptional regulation underlies the incredible diversity of neuronal cell types and contributes to the ability of neurons to adapt their function to the environment. Recently, novel methods for genome and epigenome editing have begun to revolutionize our understanding of gene regulatory mechanisms. In particular, the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has proven to be a particularly accessible and adaptable technique for genome engineering. Here, we review the use of CRISPR/Cas9 in neurobiology and discuss how these studies have advanced understanding of nervous system development and plasticity. We cover four especially salient applications of CRISPR/Cas9: testing the consequences of enhancer mutations, tagging genes and gene products for visualization in live cells, directly activating or repressing enhancers in vivo, and manipulating the epigenome. In each case, we summarize findings from recent studies and discuss evolving adaptations of the method.
Collapse
Affiliation(s)
| | - Anne E. West
- Anne West, Department of Neurobiology, DUMC Box 3209, 311 Research Drive, Bryan Research 301D, Durham, NC 27710, Phone: 919-681-1909, Fax: 919-668-4431,
| |
Collapse
|
118
|
Abstract
Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.
Collapse
|
119
|
Reese BE, Keeley PW. Genomic control of neuronal demographics in the retina. Prog Retin Eye Res 2016; 55:246-259. [PMID: 27492954 DOI: 10.1016/j.preteyeres.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/21/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
The mature retinal architecture is composed of various types of neuron, each population differing in size and constrained to particular layers, wherein the cells achieve a characteristic patterning in their local organization. These demographic features of retinal nerve cell populations are each complex traits controlled by multiple genes affecting different processes during development, and their genetic determinants can be dissected by correlating variation in these traits with their genomic architecture across recombinant-inbred mouse strains. Using such a resource, we consider how the variation in the numbers of twelve different types of retinal neuron are independent of one another, including those sharing transcriptional regulation as well as those that are synaptically-connected, each mapping to distinct genomic loci. Using the populations of two retinal interneurons, the horizontal cells and the cholinergic amacrine cells, we present in further detail examples where the variation in neuronal number, as well as the variation in mosaic patterning or in laminar positioning, each maps to discrete genomic loci where allelic variants modulating these features must be present. At those loci, we identify candidate genes which, when rendered non-functional, alter those very demographic properties, and in turn, we identify candidate coding or regulatory variants that alter protein structure or gene expression, respectively, being prospective contributors to the variation in phenotype. This forward-genetic approach provides an alternative means for dissecting the molecular genetic control of neuronal population dynamics, with each genomic locus serving as a causal anchor from which we may ultimately understand the developmental principles responsible for the control of those traits.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, USA.
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, USA; Departments of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
120
|
Abstract
Mouse models are powerful tools for the study of ocular diseases. Alterations in the morphology and function of the retinal pigment epithelium (RPE) are common features shared by many ocular disorders. We report a detailed protocol to collect, seed, culture and characterize RPE cells from mice. We describe a reproducible method that we previously developed to collect and culture murine RPE cells on Transwells as functional polarized monolayers. The collection of RPE cells takes ∼3 h, and the cultures mimic in vivo RPE cell features within 1 week. This protocol also describes methods to characterize the cells on Transwells within 1-2 weeks by transmission and scanning electron microscopy (TEM and SEM, respectively), immunostaining of vibratome sections and flat mounts, and measurement of transepithelial electrical resistance. The RPE cell cultures are suitable to study the biology of the RPE from wild-type and genetically modified strains of mice between the ages of 10 d and 12 months. The RPE cells can also be manipulated to investigate molecular mechanisms underlying the RPE pathology in the numerous mouse models of ocular disorders. Furthermore, modeling the RPE pathology in vitro represents a new approach to testing drugs that will help accelerate the development of therapies for vision-threatening disorders such as macular degeneration (MD).
Collapse
|
121
|
Fei JF, Knapp D, Schuez M, Murawala P, Zou Y, Pal Singh S, Drechsel D, Tanaka EM. Tissue- and time-directed electroporation of CAS9 protein-gRNA complexes in vivo yields efficient multigene knockout for studying gene function in regeneration. NPJ Regen Med 2016; 1:16002. [PMID: 29302334 PMCID: PMC5744710 DOI: 10.1038/npjregenmed.2016.2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/05/2023] Open
Abstract
A rapid method for temporally and spatially controlled CRISPR-mediated gene knockout in vertebrates will be an important tool to screen for genes involved in complex biological phenomena like regeneration. Here we show that in vivo injection of CAS9 protein-guide RNA (gRNA) complexes into the spinal cord lumen of the axolotl and subsequent electroporation leads to comprehensive knockout of Sox2 gene expression in SOX2+ neural stem cells with corresponding functional phenotypes from the gene knockout. This is particularly surprising considering the known prevalence of RNase activity in cerebral spinal fluid, which apparently the CAS9 protein protects against. The penetrance/efficiency of gene knockout in the protein-based system is far higher than corresponding electroporation of plasmid-based CRISPR systems. We further show that simultaneous delivery of CAS9-gRNA complexes directed against Sox2 and GFP yields efficient knockout of both genes in GFP-reporter animals. Finally, we show that this method can also be applied to other tissues such as skin and limb mesenchyme. This efficient delivery method opens up the possibility for rapid in vivo genetic screens during axolotl regeneration and can in principle be applied to other vertebrate tissue systems.
Collapse
Affiliation(s)
- Ji-Feng Fei
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Dunja Knapp
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Maritta Schuez
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Prayag Murawala
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Yan Zou
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sumeet Pal Singh
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - David Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elly M Tanaka
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
122
|
Miano JM, Zhu QM, Lowenstein CJ. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Arterioscler Thromb Vasc Biol 2016; 36:1058-75. [PMID: 27102963 PMCID: PMC4882230 DOI: 10.1161/atvbaha.116.304790] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022]
Abstract
Previous efforts to target the mouse genome for the addition, subtraction, or substitution of biologically informative sequences required complex vector design and a series of arduous steps only a handful of laboratories could master. The facile and inexpensive clustered regularly interspaced short palindromic repeats (CRISPR) method has now superseded traditional means of genome modification such that virtually any laboratory can quickly assemble reagents for developing new mouse models for cardiovascular research. Here, we briefly review the history of CRISPR in prokaryotes, highlighting major discoveries leading to its formulation for genome modification in the animal kingdom. Core components of CRISPR technology are reviewed and updated. Practical pointers for 2-component and 3-component CRISPR editing are summarized with many applications in mice including frameshift mutations, deletion of enhancers and noncoding genes, nucleotide substitution of protein-coding and gene regulatory sequences, incorporation of loxP sites for conditional gene inactivation, and epitope tag integration. Genotyping strategies are presented and topics of genetic mosaicism and inadvertent targeting discussed. Finally, clinical applications and ethical considerations are addressed as the biomedical community eagerly embraces this astonishing innovation in genome editing to tackle previously intractable questions.
Collapse
Affiliation(s)
- Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.).
| | - Qiuyu Martin Zhu
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| | - Charles J Lowenstein
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (J.M.M., Q.M.Z., C.J.L.); and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA (Q.M.Z.)
| |
Collapse
|
123
|
Rocha-Martins M, Cavalheiro GR, Matos-Rodrigues GE, Martins RAP. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond. AN ACAD BRAS CIENC 2016; 87:1323-48. [PMID: 26397828 DOI: 10.1590/0001-3765201520140710] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genome modification technologies are powerful tools for molecular biology and related areas. Advances in animal transgenesis and genome editing technologies during the past three decades allowed systematic interrogation of gene function that can help model how the genome influences cellular physiology. Genetic engineering via homologous recombination (HR) has been the standard method to modify genomic sequences. Nevertheless, nuclease-guided genome editing methods that were developed recently, such as ZFN, TALEN and CRISPR/Cas, opened new perspectives for biomedical research. Here, we present a brief historical perspective of genome modification methods, focusing on transgenic mice models. Moreover, we describe how new techniques were discovered and improved, present the paradigm shifts and discuss their limitations and applications for biomedical research as well as possible future directions.
Collapse
Affiliation(s)
- Maurício Rocha-Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | - Gabriel R Cavalheiro
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| | | | - Rodrigo A P Martins
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BR
| |
Collapse
|
124
|
Transitional Progenitors during Vertebrate Retinogenesis. Mol Neurobiol 2016; 54:3565-3576. [PMID: 27194297 DOI: 10.1007/s12035-016-9899-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The retina is a delicate neural tissue responsible for light signal capturing, modulating, and passing to mid-brain. The brain then translated the signals into three-dimensional vision. The mature retina is composed of more than 50 subtypes of cells, all of which are developed from a pool of early multipotent retinal progenitors, which pass through sequential statuses of oligopotent, bipotent, and unipotent progenitors, and finally become terminally differentiated retinal cells. A transitional progenitor model is proposed here to describe how intrinsic developmental programs, along with environmental cues, control the step-by-step differentiation during retinogenesis. The model could elegantly explain many current findings as well as predict roles of intrinsic factors during retinal development.
Collapse
|
125
|
Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 2016; 13:41-50. [PMID: 26716561 DOI: 10.1038/nmeth.3684] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
The simplicity of site-specific genome targeting by type II clustered, regularly interspaced, short palindromic repeat (CRISPR)-Cas9 nucleases, along with their robust activity profile, has changed the landscape of genome editing. These favorable properties have made the CRISPR-Cas9 system the technology of choice for sequence-specific modifications in vertebrate systems. For many applications, whether the focus is on basic science investigations or therapeutic efficacy, activity and precision are important considerations when one is choosing a nuclease platform, target site and delivery method. Here we review recent methods for increasing the activity and accuracy of Cas9 and assessing the extent of off-target cleavage events.
Collapse
Affiliation(s)
- Mehmet Fatih Bolukbasi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ankit Gupta
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
126
|
Xiong W, Cepko C. Distinct Expression Patterns of AAV8 Vectors with Broadly Active Promoters from Subretinal Injections of Neonatal Mouse Eyes at Two Different Ages. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:501-7. [PMID: 26427452 DOI: 10.1007/978-3-319-17121-0_67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The retinal expression patterns were analyzed following the injection of serotype 8 adeno-associated virus (AAV8) vectors that utilize two broadly active and commonly used sets of transcription regulatory sequences. These include the human cytomegalovirus (CMV) immediate early (IE) enhancer/promoter and the hybrid CAG element (also known as CAGGS or CBA) composed of a partial human CMV IE enhancer and the chicken β-actin promoter and intron. Subretinal delivery to postnatal day 0 (P0) or 6 (P6) mouse eyes resulted in efficient labeling of retinal cells, but with very distinct patterns. With P0 delivery, AAV8-CMV-GFP selectively labelled photoreceptors, while AAV8-CAG-GFP efficiently labeled both outer and inner retinal neurons, including photoreceptors, horizontal cells, amacrine cells and retinal ganglion cells. With P6 delivery, both vectors led to efficient labeling of photoreceptors and Müller glia cells, but not of inner retinal neurons. Our results suggest that the cell types that express the genes encoded by subretinally delivered AAV8 vectors are determined by both the timing of the injection and the regulatory sequences.
Collapse
Affiliation(s)
- Wenjun Xiong
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 360, 02115, Boston, MA, USA.
| | - Constance Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 360, 02115, Boston, MA, USA.
| |
Collapse
|
127
|
Sotolongo-Lopez M, Alvarez-Delfin K, Saade CJ, Vera DL, Fadool JM. Genetic Dissection of Dual Roles for the Transcription Factor six7 in Photoreceptor Development and Patterning in Zebrafish. PLoS Genet 2016; 12:e1005968. [PMID: 27058886 PMCID: PMC4825938 DOI: 10.1371/journal.pgen.1005968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/09/2016] [Indexed: 11/30/2022] Open
Abstract
The visual system of a particular species is highly adapted to convey detailed ecological and behavioral information essential for survival. The consequences of structural mutations of opsins upon spectral sensitivity and environmental adaptation have been studied in great detail, but lacking is knowledge of the potential influence of alterations in gene regulatory networks upon the diversity of cone subtypes and the variation in the ratio of rods and cones observed in numerous diurnal and nocturnal species. Exploiting photoreceptor patterning in cone-dominated zebrafish, we uncovered two independent mechanisms by which the sine oculis homeobox homolog 7 (six7) regulates photoreceptor development. In a genetic screen, we isolated the lots-of-rods-junior (ljrp23ahub) mutation that resulted in an increased number and uniform distribution of rods in otherwise normal appearing larvae. Sequence analysis, genome editing using TALENs and knockdown strategies confirm ljrp23ahub as a hypomorphic allele of six7, a teleost orthologue of six3, with known roles in forebrain patterning and expression of opsins. Based on the lack of predicted protein-coding changes and a deletion of a conserved element upstream of the transcription start site, a cis-regulatory mutation is proposed as the basis of the reduced expression of six7 in ljrp23ahub. Comparison of the phenotypes of the hypomorphic and knock-out alleles provides evidence of two independent roles in photoreceptor development. EdU and PH3 labeling show that the increase in rod number is associated with extended mitosis of photoreceptor progenitors, and TUNEL suggests that the lack of green-sensitive cones is the result of cell death of the cone precursor. These data add six7 to the small but growing list of essential genes for specification and patterning of photoreceptors in non-mammalian vertebrates, and highlight alterations in transcriptional regulation as a potential source of photoreceptor variation across species.
Collapse
Affiliation(s)
- Mailin Sotolongo-Lopez
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Karen Alvarez-Delfin
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Carole J. Saade
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
- Program in Neuroscience, The Florida State University, Tallahassee, Florida, United States of America
| | - Daniel L. Vera
- Center for Genomics and Personalized Medicine, The Florida State University, Tallahassee, Florida, United States of America
| | - James M. Fadool
- Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
- Program in Neuroscience, The Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
128
|
Fernandez-Valverde SL, Degnan BM. Bilaterian-like promoters in the highly compact Amphimedon queenslandica genome. Sci Rep 2016; 6:22496. [PMID: 26931148 PMCID: PMC4773876 DOI: 10.1038/srep22496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
The regulatory systems underlying animal development must have evolved prior to the emergence of eumetazoans (cnidarians and bilaterians). Although representatives of earlier-branching animals - sponges ctenophores and placozoans - possess most of the developmental transcription factor families present in eumetazoans, the DNA regulatory elements that these transcription factors target remain uncharted. Here we characterise the core promoter sequences, U1 snRNP-binding sites (5' splice sites; 5'SSs) and polyadenylation sites (PASs) in the sponge Amphimedon queenslandica. Similar to unicellular opisthokonts, Amphimedon's genes are tightly packed in the genome and have small introns. In contrast, its genes possess metazoan-like core promoters populated with binding motifs previously deemed to be specific to vertebrates, including Nrf-1 and Krüppel-like elements. Also as in vertebrates, Amphimedon's PASs and 5'SSs are depleted downstream and upstream of transcription start sites, respectively, consistent with non-elongating transcripts being short-lived; PASs and 5'SSs are more evenly distributed in bidirectional promoters in Amphimedon. The presence of bilaterian-like regulatory DNAs in sponges is consistent with these being early and essential innovations of the metazoan gene regulatory repertoire.
Collapse
Affiliation(s)
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
129
|
Abstract
Photoreceptors--the light-sensitive cells in the vertebrate retina--have been extremely well-characterized with regards to their biochemistry, cell biology and physiology. They therefore provide an excellent model for exploring the factors and mechanisms that drive neural progenitors into a differentiated cell fate in the nervous system. As a result, great progress in understanding the transcriptional network that controls photoreceptor specification and differentiation has been made over the last 20 years. This progress has also enabled the production of photoreceptors from pluripotent stem cells, thereby aiding the development of regenerative medical approaches to eye disease. In this Review, we outline the signaling and transcription factors that drive vertebrate photoreceptor development and discuss how these function together in gene regulatory networks to control photoreceptor cell fate specification.
Collapse
Affiliation(s)
- Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
130
|
Abstract
How stem cells produce the huge diversity of neurons that form the visual system, and how these cells are assembled in neural circuits are a critical question in developmental neurobiology. Investigations in Drosophila have led to the discovery of several basic principles of neural patterning. In this chapter, we provide an overview of the field by describing the development of the Drosophila visual system, from the embryo to the adult and from the gross anatomy to the cellular level. We then explore the general molecular mechanisms identified that might apply to other neural structures in flies or in vertebrates. Finally, we discuss the major challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Nathalie Nériec
- Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE; Department of Biology, New York University, New York, USA
| | - Claude Desplan
- Center for Genomics & Systems Biology, New York University, Abu Dhabi, UAE; Department of Biology, New York University, New York, USA.
| |
Collapse
|
131
|
Abstract
Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.
Collapse
Affiliation(s)
- Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
132
|
Beccari L, Marco-Ferreres R, Tabanera N, Manfredi A, Souren M, Wittbrodt B, Conte I, Wittbrodt J, Bovolenta P. A trans-Regulatory Code for the Forebrain Expression of Six3.2 in the Medaka Fish. J Biol Chem 2015; 290:26927-26942. [PMID: 26378230 PMCID: PMC4646366 DOI: 10.1074/jbc.m115.681254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
A well integrated and hierarchically organized gene regulatory network is responsible for the progressive specification of the forebrain. The transcription factor Six3 is one of the central components of this network. As such, Six3 regulates several components of the network, but its upstream regulators are still poorly characterized. Here we have systematically identified such regulators, taking advantage of the detailed functional characterization of the regulatory region of the medaka fish Six3.2 ortholog and of a time/cost-effective trans-regulatory screening, which complemented and overcame the limitations of in silico prediction approaches. The candidates resulting from this search were validated with dose-response luciferase assays and expression pattern criteria. Reconfirmed candidates with a matching expression pattern were also tested with chromatin immunoprecipitation and functional studies. Our results confirm the previously proposed direct regulation of Pax6 and further demonstrate that Msx2 and Pbx1 are bona fide direct regulators of early Six3.2 distribution in distinct domains of the medaka fish forebrain. They also point to other transcription factors, including Tcf3, as additional regulators of different spatial-temporal domains of Six3.2 expression. The activity of these regulators is discussed in the context of the gene regulatory network proposed for the specification of the forebrain.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| | - Raquel Marco-Ferreres
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Anna Manfredi
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Marcel Souren
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Beate Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Conte
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,; the Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Jochen Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| |
Collapse
|
133
|
Wang X, Zhou J, Cao C, Huang J, Hai T, Wang Y, Zheng Q, Zhang H, Qin G, Miao X, Wang H, Cao S, Zhou Q, Zhao J. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep 2015; 5:13348. [PMID: 26293209 PMCID: PMC4543986 DOI: 10.1038/srep13348] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/22/2015] [Indexed: 12/26/2022] Open
Abstract
Genetic engineering in livestock was greatly enhanced by the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), which can be programmed with a single-guide RNA (sgRNA) to generate site-specific DNA breaks. However, the uncertainties caused by wide variations in sgRNA activity impede the utility of this system in generating genetically modified pigs. Here, we described a single blastocyst genotyping system to provide a simple and rapid solution to evaluate and compare the sgRNA efficiency at inducing indel mutations for a given gene locus. Assessment of sgRNA mutagenesis efficiencies can be achieved within 10 days from the design of the sgRNA. The most effective sgRNA selected by this system was successfully used to induce site-specific insertion through homology-directed repair at a frequency exceeding 13%. Additionally, the highly efficient gene deletion via the selected sgRNA was confirmed in pig fibroblast cells, which could serve as donor cells for somatic cell nuclear transfer. We further showed that direct cytoplasmic injection of Cas9 mRNA and the favorable sgRNA into zygotes could generate biallelic knockout piglets with an efficiency of up to 100%. Thus, our method considerably reduces the uncertainties and expands the practical possibilities of CRISPR/Cas9-mediated genome engineering in pigs.
Collapse
Affiliation(s)
- Xianlong Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinwei Zhou
- College of Veterinary Medicine, Sichuan Agriculture University, Ya’an, Sichuan 625014, China
| | - Chunwei Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaojiao Huang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Hai
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiantao Zheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyong Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guosong Qin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangnan Miao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agriculture University, Ya’an, Sichuan 625014, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
134
|
Véron N, Qu Z, Kipen PAS, Hirst CE, Marcelle C. CRISPR mediated somatic cell genome engineering in the chicken. Dev Biol 2015; 407:68-74. [PMID: 26277216 DOI: 10.1016/j.ydbio.2015.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 01/17/2023]
Abstract
Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model.
Collapse
Affiliation(s)
- Nadège Véron
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Zhengdong Qu
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Phoebe A S Kipen
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Claire E Hirst
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia
| | - Christophe Marcelle
- EMBL Australia, Australian Regenerative Medicine Institute, Monash University, Building 75, Clayton, VIC 3800, Australia.
| |
Collapse
|
135
|
Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol 2015; 7:284-98. [PMID: 25757625 PMCID: PMC4524425 DOI: 10.1093/jmcb/mjv016] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022] Open
Abstract
The human genome contains millions of DNA regulatory elements and a large number of gene clusters, most of which have not been tested experimentally. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) programed with a synthetic single-guide RNA (sgRNA) emerges as a method for genome editing in virtually any organisms. Here we report that targeted DNA fragment inversions and duplications could easily be achieved in human and mouse genomes by CRISPR with two sgRNAs. Specifically, we found that, in cultured human cells and mice, efficient precise inversions of DNA fragments ranging in size from a few tens of bp to hundreds of kb could be generated. In addition, DNA fragment duplications and deletions could also be generated by CRISPR through trans-allelic recombination between the Cas9-induced double-strand breaks (DSBs) on two homologous chromosomes (chromatids). Moreover, junctions of combinatorial inversions and duplications of the protocadherin (Pcdh) gene clusters induced by Cas9 with four sgRNAs could be detected. In mice, we obtained founders with alleles of precise inversions, duplications, and deletions of DNA fragments of variable sizes by CRISPR. Interestingly, we found that very efficient inversions were mediated by microhomology-mediated end joining (MMEJ) through short inverted repeats. We showed for the first time that DNA fragment inversions could be transmitted through germlines in mice. Finally, we applied this CRISPR method to a regulatory element of the Pcdhα cluster and found a new role in the regulation of members of the Pcdhγ cluster. This simple and efficient method should be useful in manipulating mammalian genomes to study millions of regulatory DNA elements as well as vast numbers of gene clusters.
Collapse
Affiliation(s)
- Jinhuan Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Jia Shou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Ya Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yuanxiao Tang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yonghu Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Zhilian Jia
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Yanan Zhai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Zhifeng Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Quan Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Center, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
136
|
Orieux G, Slembrouck A, Bensaïd M, Sahel JA, Goureau O. The protein tyrosine phosphatase interacting protein 51 (PTPIP51) is required for the differentiation of photoreceptors. Neuroscience 2015; 300:276-85. [DOI: 10.1016/j.neuroscience.2015.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
|
137
|
Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes (Basel) 2015; 6:641-61. [PMID: 26193323 PMCID: PMC4584322 DOI: 10.3390/genes6030641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells.
Collapse
|
138
|
Dvoriantchikova G, Perea-Martinez I, Pappas S, Barry AF, Danek D, Dvoriantchikova X, Pelaez D, Ivanov D. Molecular Characterization of Notch1 Positive Progenitor Cells in the Developing Retina. PLoS One 2015; 10:e0131054. [PMID: 26091508 PMCID: PMC4474692 DOI: 10.1371/journal.pone.0131054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/28/2015] [Indexed: 12/02/2022] Open
Abstract
The oscillatory expression of Notch signaling in neural progenitors suggests that both repressors and activators of neural fate specification are expressed in the same progenitors. Since Notch1 regulates photoreceptor differentiation and contributes (together with Notch3) to ganglion cell fate specification, we hypothesized that genes encoding photoreceptor and ganglion cell fate activators would be highly expressed in Notch1 receptor-bearing (Notch1+) progenitors, directing these cells to differentiate into photoreceptors or into ganglion cells when Notch1 activity is diminished. To identify these genes, we used microarray analysis to study expression profiles of whole retinas and isolated from them Notch1+ cells at embryonic day 14 (E14) and postnatal day 0 (P0). To isolate Notch1+ cells, we utilized immunomagnetic cell separation. We also used Notch3 knockout (Notch3KO) animals to evaluate the contribution of Notch3 signaling in ganglion cell differentiation. Hierarchical clustering of 6,301 differentially expressed genes showed that Notch1+ cells grouped near the same developmental stage retina cluster. At E14, we found higher expression of repressors (Notch1, Hes5) and activators (Dll3, Atoh7, Otx2) of neuronal differentiation in Notch1+ cells compared to whole retinal cell populations. At P0, Notch1, Hes5, and Dll1 expression was significantly higher in Notch1+ cells than in whole retinas. Otx2 expression was more than thirty times higher than Atoh7 expression in Notch1+ cells at P0. We also observed that retinas of wild type animals had only 14% (P < 0.05) more ganglion cells compared to Notch3KO mice. Since this number is relatively small and Notch1 has been shown to contribute to ganglion cell fate specification, we suggested that Notch1 signaling may play a more significant role in RGC development than the Notch3 signaling cascade. Finally, our findings suggest that Notch1+ progenitors—since they heavily express both pro-ganglion cell (Atoh7) and pro-photoreceptor cell (Otx2) activators—can differentiate into either ganglion cells or photoreceptors.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Isabel Perea-Martinez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Steve Pappas
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ariel Faye Barry
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Dagmara Danek
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Xenia Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Daniel Pelaez
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, United States of America
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
139
|
Li Y, Park AI, Mou H, Colpan C, Bizhanova A, Akama-Garren E, Joshi N, Hendrickson EA, Feldser D, Yin H, Anderson DG, Jacks T, Weng Z, Xue W. A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 2015; 16:111. [PMID: 26018130 PMCID: PMC4465146 DOI: 10.1186/s13059-015-0680-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/19/2015] [Indexed: 01/23/2023] Open
Abstract
Although chromosomal deletions and inversions are important in cancer, conventional methods for detecting DNA rearrangements require laborious indirect assays. Here we develop fluorescent reporters to rapidly quantify CRISPR/Cas9-mediated deletions and inversions. We find that inversion depends on the non-homologous end-joining enzyme LIG4. We also engineer deletions and inversions for a 50 kb Pten genomic region in mouse liver. We discover diverse yet sequence-specific indels at the rearrangement fusion sites. Moreover, we detect Cas9 cleavage at the fourth nucleotide on the non-complementary strand, leading to staggered instead of blunt DNA breaks. These reporters allow mechanisms of chromosomal rearrangements to be investigated.
Collapse
Affiliation(s)
- Yingxiang Li
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, P. R. China.
| | - Angela I Park
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Haiwei Mou
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Cansu Colpan
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Aizhan Bizhanova
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Elliot Akama-Garren
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Nik Joshi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| | - David Feldser
- Abramson Family Cancer Research Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA. .,Harvard-MIT Division of Health Sciences & Technology, Cambridge, MA, 02139, USA. .,Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Zhiping Weng
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, P. R. China. .,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Wen Xue
- RNA Therapeutics Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
140
|
Xiong W, MacColl Garfinkel AE, Li Y, Benowitz LI, Cepko CL. NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage. J Clin Invest 2015; 125:1433-45. [PMID: 25798616 DOI: 10.1172/jci79735] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress contributes to the loss of neurons in many disease conditions as well as during normal aging; however, small-molecule agents that reduce oxidation have not been successful in preventing neurodegeneration. Moreover, even if an efficacious systemic reduction of reactive oxygen and/or nitrogen species (ROS/NOS) could be achieved, detrimental side effects are likely, as these molecules regulate normal physiological processes. A more effective and targeted approach might be to augment the endogenous antioxidant defense mechanism only in the cells that suffer from oxidation. Here, we created several adeno-associated virus (AAV) vectors to deliver genes that combat oxidation. These vectors encode the transcription factors NRF2 and/or PGC1a, which regulate hundreds of genes that combat oxidation and other forms of stress, or enzymes such as superoxide dismutase 2 (SOD2) and catalase, which directly detoxify ROS. We tested the effectiveness of this approach in 3 models of photoreceptor degeneration and in a nerve crush model. AAV-mediated delivery of NRF2 was more effective than SOD2 and catalase, while expression of PGC1a accelerated photoreceptor death. Since the NRF2-mediated neuroprotective effects extended to photoreceptors and retinal ganglion cells, which are 2 very different types of neurons, these results suggest that this targeted approach may be broadly applicable to many diseases in which cells suffer from oxidative damage.
Collapse
|