101
|
Yabuno Y, Uchihashi T, Sasakura T, Shimizu H, Naito Y, Fukushima K, Ota K, Kogo M, Nojima H, Yabuta N. Clathrin heavy chain phosphorylated at T606 plays a role in proper cell division. Cell Cycle 2019; 18:1976-1994. [PMID: 31272276 PMCID: PMC6681784 DOI: 10.1080/15384101.2019.1637201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Abstract
Clathrin regulates mitotic progression, in addition to membrane trafficking. However, the detailed regulatory mechanisms of clathrin during mitosis remain elusive. Here, we demonstrate novel regulation of clathrin during mitotic phase of the cell cycle. Clathrin heavy chain (CHC) was phosphorylated at T606 by its association partner cyclin G-associated kinase (GAK). This phosphorylation was required for proper cell proliferation and tumor growth of cells implanted into nude mice. Immunofluorescence analysis showed that the localization of CHC-pT606 signals changed during mitosis. CHC-pT606 signals localized in the nucleus and at the centrosome during interphase, whereas CHC signals were mostly cytoplasmic. Co-immunoprecipitation suggested that CHC formed a complex with GAK and polo-like kinase 1 (PLK1). Depletion of GAK using siRNA induced metaphase arrest and aberrant localization of CHC-pT606, which abolished Kiz-pT379 (as a phosphorylation target of PLK1) signals on chromatin at metaphase. Taken together, we propose that the GAK_CHC-pT606_PLK1_Kiz-pT379 axis plays a role in proliferation of cancer cells.
Collapse
Affiliation(s)
- Yusuke Yabuno
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Toshihiro Uchihashi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Towa Sasakura
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Shimizu
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Kohshiro Fukushima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Kaori Ota
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hiroshi Nojima
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norikazu Yabuta
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
102
|
Zeno WF, Thatte AS, Wang L, Snead WT, Lafer EM, Stachowiak JC. Molecular Mechanisms of Membrane Curvature Sensing by a Disordered Protein. J Am Chem Soc 2019; 141:10361-10371. [PMID: 31180661 DOI: 10.1021/jacs.9b03927] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability of proteins to sense membrane curvature is essential for the initiation and assembly of curved membrane structures. Established mechanisms of curvature sensing rely on proteins with specific structural features. In contrast, it has recently been discovered that intrinsically disordered proteins, which lack a defined three-dimensional fold, can also be potent sensors of membrane curvature. How can an unstructured protein sense the structure of the membrane surface? Many disordered proteins that associate with membranes have two key physical features: a high degree of conformational entropy and a high net negative charge. Binding of such proteins to membrane surfaces results simultaneously in a decrease in conformational entropy and an increase in electrostatic repulsion by anionic lipids. Here we show that each of these effects gives rise to a distinct mechanism of curvature sensing. Specifically, as the curvature of the membrane increases, the steric hindrance between the disordered protein and membrane is reduced, leading to an increase in chain entropy. At the same time, increasing membrane curvature increases the average separation between anionic amino acids and lipids, creating an electrostatic preference for curved membranes. Using quantitative imaging of membrane vesicles, our results demonstrate that long disordered amino acid chains with low net charge sense curvature predominately through the entropic mechanism. In contrast, shorter, more highly charged amino acid chains rely largely on the electrostatic mechanism. These findings provide a roadmap for predicting and testing the curvature sensitivity of the large and diverse set of disordered proteins that function at cellular membranes.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ajay S Thatte
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology , The University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Wilton T Snead
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology , The University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States.,Institute for Cellular and Molecular Biology , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
103
|
Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: Insights from Implicit Membrane Modeling. Biophys J 2019; 114:2128-2141. [PMID: 29742406 DOI: 10.1016/j.bpj.2018.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023] Open
Abstract
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York
| | - John Leveritt
- Department of Chemistry, Newman University, Wichita, Kansas
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
104
|
Pascolutti R, Algisi V, Conte A, Raimondi A, Pasham M, Upadhyayula S, Gaudin R, Maritzen T, Barbieri E, Caldieri G, Tordonato C, Confalonieri S, Freddi S, Malabarba MG, Maspero E, Polo S, Tacchetti C, Haucke V, Kirchhausen T, Di Fiore PP, Sigismund S. Molecularly Distinct Clathrin-Coated Pits Differentially Impact EGFR Fate and Signaling. Cell Rep 2019; 27:3049-3061.e6. [PMID: 31167147 PMCID: PMC6581797 DOI: 10.1016/j.celrep.2019.05.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/04/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
Adaptor protein 2 (AP2) is a major constituent of clathrin-coated pits (CCPs). Whether it is essential for all forms of clathrin-mediated endocytosis (CME) in mammalian cells is an open issue. Here, we demonstrate, by live TIRF microscopy, the existence of a subclass of relatively short-lived CCPs lacking AP2 under physiological, unperturbed conditions. This subclass is retained in AP2-knockout cells and is able to support the internalization of epidermal growth factor receptor (EGFR) but not of transferrin receptor (TfR). The AP2-independent internalization mechanism relies on the endocytic adaptors eps15, eps15L1, and epsin1. The absence of AP2 impairs the recycling of the EGFR to the cell surface, thereby augmenting its degradation. Accordingly, under conditions of AP2 ablation, we detected dampening of EGFR-dependent AKT signaling and cell migration, arguing that distinct classes of CCPs could provide specialized functions in regulating EGFR recycling and signaling.
Collapse
Affiliation(s)
- Roberta Pascolutti
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Veronica Algisi
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Alexia Conte
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | - Mithun Pasham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Srigokul Upadhyayula
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Raphael Gaudin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Institut de Recherche en Infectiologie de Montpellier, UMR 9004, CNRS/UM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Tanja Maritzen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Elisa Barbieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Giusi Caldieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Chiara Tordonato
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Confalonieri
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Stefano Freddi
- Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Maria Grazia Malabarba
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Straße 10, 13125 Berlin, Germany
| | - Tom Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Di Fiore
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy
| | - Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy; Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, 20141 Milan, Italy; Università degli Studi di Milano, Dipartimento di Oncologia ed Emato-oncologia, Via Santa Sofia 9/1, 20122 Milan, Italy.
| |
Collapse
|
105
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
106
|
From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol 2019; 29:241-256. [DOI: 10.1016/j.tcb.2018.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/13/2023]
|
107
|
Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1111:77-137. [PMID: 30483964 DOI: 10.1007/5584_2018_288] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within eukaryotic cells, biochemical reactions need to be organized on the surface of membrane compartments that use distinct lipid constituents to dynamically modulate the functions of integral proteins or influence the selective recruitment of peripheral membrane effectors. As a result of these complex interactions, a variety of human pathologies can be traced back to improper communication between proteins and membrane surfaces; either due to mutations that directly alter protein structure or as a result of changes in membrane lipid composition. Among the known structural lipids found in cellular membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the membrane-anchored precursor of low-abundance regulatory lipids, the polyphosphoinositides (PPIn), which have restricted distributions within specific subcellular compartments. The ability of PPIn lipids to function as signaling platforms relies on both non-specific electrostatic interactions and the selective stereospecific recognition of PPIn headgroups by specialized protein folds. In this chapter, we will attempt to summarize the structural diversity of modular PPIn-interacting domains that facilitate the reversible recruitment and conformational regulation of peripheral membrane proteins. Outside of protein folds capable of capturing PPIn headgroups at the membrane interface, recent studies detailing the selective binding and bilayer extraction of PPIn species by unique functional domains within specific families of lipid-transfer proteins will also be highlighted. Overall, this overview will help to outline the fundamental physiochemical mechanisms that facilitate localized interactions between PPIn lipids and the wide-variety of PPIn-binding proteins that are essential for the coordinate regulation of cellular metabolism and membrane dynamics.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
108
|
Synergy between intrinsically disordered domains and structured proteins amplifies membrane curvature sensing. Nat Commun 2018; 9:4152. [PMID: 30297718 PMCID: PMC6175956 DOI: 10.1038/s41467-018-06532-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of proteins to sense membrane curvature is essential to cellular function. All known sensing mechanisms rely on protein domains with specific structural features such as wedge-like amphipathic helices and crescent-shaped BAR domains. Yet many proteins that contain these domains also contain large intrinsically disordered regions. Here we report that disordered domains are themselves potent sensors of membrane curvature. Comparison of Monte Carlo simulations with in vitro and live-cell measurements demonstrates that the polymer-like behavior of disordered domains found in endocytic proteins drives them to partition preferentially to convex membrane surfaces, which place fewer geometric constraints on their conformational entropy. Further, proteins containing both structured curvature sensors and disordered regions are more than twice as curvature sensitive as their respective structured domains alone. These findings demonstrate an entropic mechanism of curvature sensing that is independent of protein structure and illustrate how structured and disordered domains can synergistically enhance curvature sensitivity. Many proteins which sense membrane curvature contain intrinsically disordered domains. Here the authors use Monte Carlo simulations combined with experimental approaches and report that disordered domains are potent sensors of membrane curvature.
Collapse
|
109
|
Maib H, Ferreira F, Vassilopoulos S, Smythe E. Cargo regulates clathrin-coated pit invagination via clathrin light chain phosphorylation. J Cell Biol 2018; 217:4253-4266. [PMID: 30228161 PMCID: PMC6279376 DOI: 10.1083/jcb.201805005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Phosphorylation of clathrin light chains (CLCs) regulates GPCR uptake but is dispensable for transferrin internalization. Maib et al. show that CLCb phosphorylation is required for efficient auxilin-mediated clathrin exchange to promote coated pit invagination in a cargo-specific manner. Clathrin light chains (CLCs) control selective uptake of a range of G protein–coupled receptors (GPCRs), although the mechanism by which this occurs has remained elusive thus far. In particular, site-specific phosphorylation of CLCb controls the uptake of the purinergic GPCR P2Y12, but it is dispensable for the constitutive uptake of the transferrin receptor (TfR). We demonstrate that phosphorylation of CLCb is required for the maturation of clathrin-coated pits (CCPs) through the transition of flat lattices into invaginated buds. This transition is dependent on efficient clathrin exchange regulated by CLCb phosphorylation and mediated through auxilin. Strikingly, this rearrangement is required for the uptake of P2Y12 but not TfR. These findings link auxilin-mediated clathrin exchange to early stages of CCP invagination in a cargo-specific manner. This supports a model in which CCPs invaginate with variable modes of curvature depending on the cargo they incorporate.
Collapse
Affiliation(s)
- Hannes Maib
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Filipe Ferreira
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM, Institute of Myology, Centre for Research in Myology, UMRS 974, Paris, France
| | - Elizabeth Smythe
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
110
|
Haucke V, Kozlov MM. Membrane remodeling in clathrin-mediated endocytosis. J Cell Sci 2018; 131:131/17/jcs216812. [PMID: 30177505 DOI: 10.1242/jcs.216812] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Clathrin-mediated endocytosis is an essential cellular mechanism by which all eukaryotic cells regulate their plasma membrane composition to control processes ranging from cell signaling to adhesion, migration and morphogenesis. The formation of endocytic vesicles and tubules involves extensive protein-mediated remodeling of the plasma membrane that is organized in space and time by protein-protein and protein-phospholipid interactions. Recent studies combining high-resolution imaging with genetic manipulations of the endocytic machinery and with theoretical approaches have led to novel multifaceted phenomenological data of the temporal and spatial organization of the endocytic reaction. This gave rise to various - often conflicting - models as to how endocytic proteins and their association with lipids regulate the endocytic protein choreography to reshape the plasma membrane. In this Review, we discuss these findings in light of the hypothesis that endocytic membrane remodeling may be determined by an interplay between protein-protein interactions, the ability of proteins to generate and sense membrane curvature, and the ability of lipids to stabilize and reinforce the generated membrane shape through adopting their lateral distribution to the local membrane curvature.
Collapse
Affiliation(s)
- Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany .,Freie Universität Berlin, Department of Biology, Chemistry, Pharmacy, Takustrasse 3, 14195 Berlin, Germany
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
111
|
Dambournet D, Sochacki KA, Cheng AT, Akamatsu M, Taraska JW, Hockemeyer D, Drubin DG. Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation. J Cell Biol 2018; 217:3301-3311. [PMID: 29980624 PMCID: PMC6123002 DOI: 10.1083/jcb.201710084] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/05/2017] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
We developed a general approach for investigation of how cellular processes become adapted for specific cell types during differentiation. Previous studies reported substantial differences in the morphology and dynamics of clathrin-mediated endocytosis (CME) sites. However, associating specific CME properties with distinct differentiated cell types and determining how these properties are developmentally specified during differentiation have been elusive. Using genome-edited human embryonic stem cells, and isogenic fibroblasts and neuronal progenitor cells derived from them, we established by live-cell imaging and platinum replica transmission electron microscopy that CME site dynamics and ultrastructure on the plasma membrane are precisely reprogrammed during differentiation. Expression levels for the endocytic adaptor protein AP2μ2 were found to underlie dramatic changes in CME dynamics and structure. Additionally, CME dependency on actin assembly and phosphoinositide-3 kinase activity are distinct for each cell type. Collectively, our results demonstrate that key CME properties are reprogrammed during differentiation at least in part through AP2μ2 expression regulation.
Collapse
Affiliation(s)
- Daphné Dambournet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | | | - Matthew Akamatsu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| |
Collapse
|
112
|
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther 2018; 191:43-49. [PMID: 29932886 DOI: 10.1016/j.pharmthera.2018.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically approved cancer therapies include small molecules, antibodies, and nanoparticles. There has been major progress in the treatment of several cancer types over recent decades. However, many challenges remain for optimal use of conventional and nanoparticle-based therapies in oncology including poor drug delivery, rapid clearance, and drug resistance. The antimalarial agent chloroquine has been found to mitigate some of these challenges by modulating cancer cells and the tissue microenvironment. Particularly, chloroquine was recently found to reduce immunological clearance of nanoparticles by resident macrophages in the liver, leading to increased tumor accumulation of nanodrugs. Additionally, chloroquine has been shown to improve drug delivery and efficacy through normalization of tumor vasculature and suppression of several oncogenic and stress-tolerance pathways, such as autophagy, that protect cancer cells from cytotoxic agents. This review will discuss the use of chloroquine as combination therapy to improve cancer treatment.
Collapse
Affiliation(s)
- Joe Pelt
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Florida State University, Tallahassee, FL 32306, USA
| | - Sara Busatto
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25133, Italy.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic Cancer Center, Mayo Clinic Florida, Jacksonville, FL 32224, USA.
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
113
|
Takatori S, Tomita T. AP180 N-Terminal Homology (ANTH) and Epsin N-Terminal Homology (ENTH) Domains: Physiological Functions and Involvement in Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1111:55-76. [DOI: 10.1007/5584_2018_218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
114
|
Mertins P, Przybylski D, Yosef N, Qiao J, Clauser K, Raychowdhury R, Eisenhaure TM, Maritzen T, Haucke V, Satoh T, Akira S, Carr SA, Regev A, Hacohen N, Chevrier N. An Integrative Framework Reveals Signaling-to-Transcription Events in Toll-like Receptor Signaling. Cell Rep 2018; 19:2853-2866. [PMID: 28658630 DOI: 10.1016/j.celrep.2017.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022] Open
Abstract
Building an integrated view of cellular responses to environmental cues remains a fundamental challenge due to the complexity of intracellular networks in mammalian cells. Here, we introduce an integrative biochemical and genetic framework to dissect signal transduction events using multiple data types and, in particular, to unify signaling and transcriptional networks. Using the Toll-like receptor (TLR) system as a model cellular response, we generate multifaceted datasets on physical, enzymatic, and functional interactions and integrate these data to reveal biochemical paths that connect TLR4 signaling to transcription. We define the roles of proximal TLR4 kinases, identify and functionally test two dozen candidate regulators, and demonstrate a role for Ap1ar (encoding the Gadkin protein) and its binding partner, Picalm, potentially linking vesicle transport with pro-inflammatory responses. Our study thus demonstrates how deciphering dynamic cellular responses by integrating datasets on various regulatory layers defines key components and higher-order logic underlying signaling-to-transcription pathways.
Collapse
Affiliation(s)
- Philipp Mertins
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Dariusz Przybylski
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nir Yosef
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jana Qiao
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Karl Clauser
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Thomas M Eisenhaure
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Tanja Maritzen
- Molecular Physiology and Cell Biology Section, Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Volker Haucke
- Molecular Physiology and Cell Biology Section, Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Takashi Satoh
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Steven A Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, MIT, Cambridge, MA 02142, USA.
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Center for Immunology and Inflammatory Diseases and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Nicolas Chevrier
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
115
|
Abstract
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.
Collapse
Affiliation(s)
- Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Ping-Hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Saipraveen Srinivasan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , , .,Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Sandra L Schmid
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , , , ,
| |
Collapse
|
116
|
Snead WT, Stachowiak JC. Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. J Mol Biol 2018; 430:2293-2308. [PMID: 29627460 DOI: 10.1016/j.jmb.2018.03.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023]
Abstract
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
117
|
Bucher D, Frey F, Sochacki KA, Kummer S, Bergeest JP, Godinez WJ, Kräusslich HG, Rohr K, Taraska JW, Schwarz US, Boulant S. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat Commun 2018; 9:1109. [PMID: 29549258 PMCID: PMC5856840 DOI: 10.1038/s41467-018-03533-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/15/2018] [Indexed: 12/03/2022] Open
Abstract
Although essential for many cellular processes, the sequence of structural and molecular events during clathrin-mediated endocytosis remains elusive. While it was long believed that clathrin-coated pits grow with a constant curvature, it was recently suggested that clathrin first assembles to form flat structures that then bend while maintaining a constant surface area. Here, we combine correlative electron and light microscopy and mathematical growth laws to study the ultrastructural rearrangements of the clathrin coat during endocytosis in BSC-1 mammalian cells. We confirm that clathrin coats initially grow flat and demonstrate that curvature begins when around 70% of the final clathrin content is acquired. We find that this transition is marked by a change in the clathrin to clathrin-adaptor protein AP2 ratio and that membrane tension suppresses this transition. Our results support the notion that BSC-1 mammalian cells dynamically regulate the flat-to-curved transition in clathrin-mediated endocytosis by both biochemical and mechanical factors. The sequence of structural and molecular events during clathrin-mediated endocytosis is unclear. Here the authors combine correlative microscopy and simple mathematical growth laws to demonstrate that the flat patch starts to curve when around 70% of the final clathrin content is reached.
Collapse
Affiliation(s)
- Delia Bucher
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Felix Frey
- BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Kem A Sochacki
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susann Kummer
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Jan-Philip Bergeest
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - William J Godinez
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Karl Rohr
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), Department of Bioinformatics and Functional Genomics, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Justin W Taraska
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ulrich S Schwarz
- BioQuant Center, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany.
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
118
|
|
119
|
Membrane bending occurs at all stages of clathrin-coat assembly and defines endocytic dynamics. Nat Commun 2018; 9:419. [PMID: 29379015 PMCID: PMC5789089 DOI: 10.1038/s41467-018-02818-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) internalizes plasma membrane by reshaping small regions of the cell surface into spherical vesicles. The key mechanistic question of how coat assembly produces membrane curvature has been studied with molecular and cellular structural biology approaches, without direct visualization of the process in living cells; resulting in two competing models for membrane bending. Here we use polarized total internal reflection fluorescence microscopy (pol-TIRF) combined with electron, atomic force, and super-resolution optical microscopy to measure membrane curvature during CME. Surprisingly, coat assembly accommodates membrane bending concurrent with or after the assembly of the clathrin lattice. Once curvature began, CME proceeded to scission with robust timing. Four color pol-TIRF showed that CALM accumulated at high levels during membrane bending, implicating its auxiliary role in curvature generation. We conclude that clathrin-coat assembly is versatile and that multiple membrane-bending trajectories likely reflect the energetics of coat assembly relative to competing forces. Two distinct and opposing models for clathrin-mediated endocytosis have been inferred from EM and structural biology data. Here the authors develop an optical method to directly visualize membrane-bending dynamics and show that coat assembly accommodates membrane bending during or after the assembly of the clathrin lattice, which is not predicted by either model.
Collapse
|
120
|
Frawley AT, Linford HV, Starck M, Pal R, Parker D. Enantioselective cellular localisation of europium(iii) coordination complexes. Chem Sci 2018; 9:1042-1049. [PMID: 29675151 PMCID: PMC5883863 DOI: 10.1039/c7sc04422d] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022] Open
Abstract
The selective mitochondrial localisation of the Λ enantiomer of three different emissive europium(iii) complexes in NIH 3T3 and MCF7 cells contrasts with the behaviour of the Δ enantiomer, for which a predominant lysosomal localisation was observed by confocal microscopy. In each case, cell uptake occurs via macropinocytosis.
Collapse
Affiliation(s)
- Andrew T Frawley
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - Holly V Linford
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - Matthieu Starck
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - Robert Pal
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| | - David Parker
- Department of Chemistry , Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
121
|
Garcia-Alai MM, Heidemann J, Skruzny M, Gieras A, Mertens HDT, Svergun DI, Kaksonen M, Uetrecht C, Meijers R. Epsin and Sla2 form assemblies through phospholipid interfaces. Nat Commun 2018; 9:328. [PMID: 29362354 PMCID: PMC5780493 DOI: 10.1038/s41467-017-02443-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 11/30/2017] [Indexed: 01/22/2023] Open
Abstract
In clathrin-mediated endocytosis, adapter proteins assemble together with clathrin through interactions with specific lipids on the plasma membrane. However, the precise mechanism of adapter protein assembly at the cell membrane is still unknown. Here, we show that the membrane-proximal domains ENTH of epsin and ANTH of Sla2 form complexes through phosphatidylinositol 4,5-bisphosphate (PIP2) lipid interfaces. Native mass spectrometry reveals how ENTH and ANTH domains form assemblies by sharing PIP2 molecules. Furthermore, crystal structures of epsin Ent2 ENTH domain from S. cerevisiae in complex with PIP2 and Sla2 ANTH domain from C. thermophilum illustrate how allosteric phospholipid binding occurs. A comparison with human ENTH and ANTH domains reveal only the human ENTH domain can form a stable hexameric core in presence of PIP2, which could explain functional differences between fungal and human epsins. We propose a general phospholipid-driven multifaceted assembly mechanism tolerating different adapter protein compositions to induce endocytosis.
Collapse
Affiliation(s)
- Maria M Garcia-Alai
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Johannes Heidemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Michal Skruzny
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Anna Gieras
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
- University Medical Center Hamburg - Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany
| | - Marko Kaksonen
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Quai Ernest-Ansermet 30, 1211, Geneva 4, Switzerland
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany.
| | - Rob Meijers
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
122
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 980] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
123
|
Lopdell TJ, Tiplady K, Struchalin M, Johnson TJJ, Keehan M, Sherlock R, Couldrey C, Davis SR, Snell RG, Spelman RJ, Littlejohn MD. DNA and RNA-sequence based GWAS highlights membrane-transport genes as key modulators of milk lactose content. BMC Genomics 2017; 18:968. [PMID: 29246110 PMCID: PMC5731188 DOI: 10.1186/s12864-017-4320-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/21/2017] [Indexed: 12/30/2022] Open
Abstract
Background Lactose provides an easily-digested energy source for neonates, and is the primary carbohydrate in milk in most species. Bovine lactose is also a key component of many human food products. However, compared to analyses of other milk components, the genetic control of lactose has been little studied. Here we present the first GWAS focussed on analysis of milk lactose traits. Results Using a discovery population of 12,000 taurine dairy cattle, we detail 27 QTL for lactose concentration and yield, and subsequently validate the effects of 26 of these loci in a distinct population of 18,000 cows. We next present data implicating causative genes and variants for these QTL. Fine mapping of these regions using imputed, whole genome sequence-resolution genotypes reveals protein-coding candidate causative variants affecting the ABCG2, DGAT1, STAT5B, KCNH4, NPFFR2 and RNF214 genes. Eleven of the remaining QTL appear to be driven by regulatory effects, suggested by the presence of co-locating, co-segregating eQTL discovered using mammary RNA sequence data from a population of 357 lactating cows. Pathway analysis of genes representing all lactose-associated loci shows significant enrichment of genes located in the endoplasmic reticulum, with functions related to ion channel activity mediated through the LRRC8C, P2RX4, KCNJ2 and ANKH genes. A number of the validated QTL are also found to be associated with additional milk volume, fat and protein phenotypes. Conclusions Overall, these findings highlight novel candidate genes and variants involved in milk lactose regulation, whose impacts on membrane transport mechanisms reinforce the key osmo-regulatory roles of lactose in milk. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4320-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand.,School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Kathryn Tiplady
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Maksim Struchalin
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Thomas J J Johnson
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Ric Sherlock
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Christine Couldrey
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Stephen R Davis
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Russell G Snell
- School of Biological Sciences, University of Auckland, Symonds Street, Auckland, New Zealand
| | - Richard J Spelman
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Ruakura Road, Newstead, Hamilton, New Zealand.
| |
Collapse
|
124
|
Evergren E, Cobbe N, McMahon HT. Eps15R and clathrin regulate EphB2-mediated cell repulsion. Traffic 2017; 19:44-57. [PMID: 28972287 PMCID: PMC5836524 DOI: 10.1111/tra.12531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Abstract
Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans‐endocytosis of the inter‐cellular receptor‐ligand EphB‐ephrinB complex is required. The molecular mechanism underlying trans‐endocytosis is poorly defined. Here we show that the process is clathrin‐ and Eps15R‐mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co‐cultures of EphB2‐ and ephrinB1‐expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2‐mediated cell repulsion as shown in a rescue experiment in the EphB2 co‐culture assay where wild type Eps15R but not the clathrin‐binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans‐endocytosis and thereby cell repulsion.
Collapse
Affiliation(s)
- Emma Evergren
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Neville Cobbe
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Harvey T McMahon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
125
|
Wolfram J, Nizzero S, Liu H, Li F, Zhang G, Li Z, Shen H, Blanco E, Ferrari M. A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep 2017; 7:13738. [PMID: 29062065 PMCID: PMC5653759 DOI: 10.1038/s41598-017-14221-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
Site-specific localization is critical for improving the therapeutic efficacy and safety of drugs. Nanoparticles have emerged as promising tools for localized drug delivery. However, over 90% of systemically injected nanocarriers typically accumulate in the liver and spleen due to resident macrophages that form the mononuclear phagocyte system. In this study, the clinically approved antimalarial agent chloroquine was shown to reduce nanoparticle uptake in macrophages by suppressing endocytosis. Pretreatment of mice with a clinically relevant dose of chloroquine substantially decreased the accumulation of liposomes and silicon particles in the mononuclear phagocyte system and improved tumoritropic and organotropic delivery. The novel use of chloroquine as a macrophage-preconditioning agent presents a straightforward approach for addressing a major barrier in nanomedicine. Moreover, this priming strategy has broad applicability for improving the biodistribution and performance of particulate delivery systems. Ultimately, this study defines a paradigm for the combined use of macrophage-modulating agents with nanotherapeutics for improved site-specific delivery.
Collapse
Affiliation(s)
- Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Transplantation, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Applied Physics Graduate Program, Rice University, Houston, TX, 77005, USA
| | - Haoran Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Feng Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Guodong Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Zheng Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Department of Medicine, Weill Cornell Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
126
|
Maib H, Smythe E, Ayscough K. Forty years on: clathrin-coated pits continue to fascinate. Mol Biol Cell 2017; 28:843-847. [PMID: 28360213 PMCID: PMC5385932 DOI: 10.1091/mbc.e16-04-0213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 01/01/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is a fundamental process in cell biology and has been extensively investigated over the past several decades. Every cell biologist learns about it at some point during his or her education, and the beauty of this process has led many of us to go deeper and make it the topic of our research. Great progress has been made toward elucidating the mechanisms of CME, and the field is becoming increasingly complex, with several hundred new publications every year. This makes it easy to get lost in the vast amount of literature and forget about the fundamentals of the field, which are based on the careful interpretation of simple observations made >40 years ago, as exemplified by a study performed by Anderson, Brown, and Goldstein in 1977. We examine how this seminal study was pivotal to our understanding of CME and its progression into ever-increasing complexity over the past four decades.
Collapse
Affiliation(s)
- Hannes Maib
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Elizabeth Smythe
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kathryn Ayscough
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
127
|
Navarro Negredo P, Edgar JR, Wrobel AG, Zaccai NR, Antrobus R, Owen DJ, Robinson MS. Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting. J Cell Biol 2017; 216:2927-2943. [PMID: 28743825 PMCID: PMC5584140 DOI: 10.1083/jcb.201602058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022] Open
Abstract
Acidic clusters act as sorting signals for packaging cargo into clathrin-coated vesicles (CCVs), and also facilitate down-regulation of MHC-I by HIV-1 Nef. To find acidic cluster sorting machinery, we performed a gene-trap screen and identified the medium subunit (µ1) of the clathrin adaptor AP-1 as a top hit. In µ1 knockout cells, intracellular CCVs still form, but acidic cluster proteins are depleted, although several other CCV components were either unaffected or increased, indicating that cells can compensate for long-term loss of AP-1. In vitro experiments showed that the basic patch on µ1 that interacts with the Nef acidic cluster also contributes to the binding of endogenous acidic cluster proteins. Surprisingly, µ1 mutant proteins lacking the basic patch and/or the tyrosine-based motif binding pocket could rescue the µ1 knockout phenotype completely. In contrast, these mutants failed to rescue Nef-induced down-regulation of MHC class I, suggesting a possible mechanism for attacking the virus while sparing the host cell.
Collapse
Affiliation(s)
- Paloma Navarro Negredo
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England, UK
| |
Collapse
|
128
|
Archuleta TL, Frazier MN, Monken AE, Kendall AK, Harp J, McCoy AJ, Creanza N, Jackson LP. Structure and evolution of ENTH and VHS/ENTH-like domains in tepsin. Traffic 2017; 18:590-603. [PMID: 28691777 PMCID: PMC5567745 DOI: 10.1111/tra.12499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/02/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Tepsin is currently the only accessory trafficking protein identified in adaptor-related protein 4 (AP4)-coated vesicles originating at the trans-Golgi network (TGN). The molecular basis for interactions between AP4 subunits and motifs in the tepsin C-terminus have been characterized, but the biological role of tepsin remains unknown. We determined X-ray crystal structures of the tepsin epsin N-terminal homology (ENTH) and VHS/ENTH-like domains. Our data reveal unexpected structural features that suggest key functional differences between these and similar domains in other trafficking proteins. The tepsin ENTH domain lacks helix0, helix8 and a lipid binding pocket found in epsin1/2/3. These results explain why tepsin requires AP4 for its membrane recruitment and further suggest ENTH domains cannot be defined solely as lipid binding modules. The VHS domain lacks helix8 and thus contains fewer helices than other VHS domains. Structural data explain biochemical and biophysical evidence that tepsin VHS does not mediate known VHS functions, including recognition of dileucine-based cargo motifs or ubiquitin. Structural comparisons indicate the domains are very similar to each other, and phylogenetic analysis reveals their evolutionary pattern within the domain superfamily. Phylogenetics and comparative genomics further show tepsin within a monophyletic clade that diverged away from epsins early in evolutionary history (~1500 million years ago). Together, these data provide the first detailed molecular view of tepsin and suggest tepsin structure and function diverged away from other epsins. More broadly, these data highlight the challenges inherent in classifying and understanding protein function based only on sequence and structure.
Collapse
Affiliation(s)
- Tara L. Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Meredith N. Frazier
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Anderson E. Monken
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Joel Harp
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
| | - Airlie J. McCoy
- Cambridge Institute for Medical Research, Department of Clinical
Biochemistry, University of Cambridge, Hills Road, Cambridge, United Kingdom
| | - Nicole Creanza
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville,
TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN,
USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN,
USA
| |
Collapse
|
129
|
Rout MP, Field MC. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell. Annu Rev Biochem 2017; 86:637-657. [DOI: 10.1146/annurev-biochem-061516-044643] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Mark C. Field
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
130
|
Schöneberg J, Lehmann M, Ullrich A, Posor Y, Lo WT, Lichtner G, Schmoranzer J, Haucke V, Noé F. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat Commun 2017. [PMID: 28627515 PMCID: PMC5481832 DOI: 10.1038/ncomms15873] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes. The spatiotemporal regulation of membrane scaffolds recruitment and coupling between membrane deformation and fission in endocytosis are unclear. Here the authors show that lipid conversion at endocytic pits recruits SNX9, which couples local membrane constriction to fission in endocytosis.
Collapse
Affiliation(s)
- Johannes Schöneberg
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - Martin Lehmann
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Alexander Ullrich
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| | - York Posor
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Wen-Ting Lo
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Gregor Lichtner
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany.,Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany
| | - Jan Schmoranzer
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Volker Haucke
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, Berlin 13125, Germany.,Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin 14195, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Virchowweg 6, Berlin 10117, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
131
|
Hussein F, Antonescu C, Karshafian R. Ultrasound and microbubble induced release from intracellular compartments. BMC Biotechnol 2017; 17:45. [PMID: 28521780 PMCID: PMC5437622 DOI: 10.1186/s12896-017-0364-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Ultrasound and microbubbles (USMB) have been shown to enhance the intracellular uptake of molecules, generally thought to occur as a result of sonoporation. The underlying mechanism associated with USMB-enhanced intracellular uptake such as membrane disruption and endocytosis may also be associated with USMB-induced release of cellular materials to the extracellular milieu. This study investigates USMB effects on the molecular release from cells through membrane-disruption and exocytosis. Results USMB induced the release of 19% and 67% of GFP from the cytoplasm in viable and non-viable cells, respectively. Tfn release from early/recycling endosomes increased by 23% in viable cells upon USMB treatment. In addition, the MFI of LAMP-1 antibody increased by 50% in viable cells, suggesting USMB-stimulated lysosome exocytosis. In non-viable cells, labeling of LAMP-1 intracellular structures in the absence of cell permeabilization by detergents suggests that USMB-induced cell death correlates with lysosomal permeabilization. Conclusions In conclusion, USMB enhanced the molecular release from the cytoplasm, lysosomes, and early/recycling endosomes. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0364-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Hussein
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada
| | - Costin Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, 350 Victoria Street Toronto, Ontario, M5B 2K3, Canada. .,Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, Canada. .,Keenan Research Centre, St. Michael's Hospital, Toronto, Canada.
| |
Collapse
|
132
|
Giani M, den Otter WK, Briels WJ. Early stages of clathrin aggregation at a membrane in coarse-grained simulations. J Chem Phys 2017; 146:155102. [DOI: 10.1063/1.4979985] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- M. Giani
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. K. den Otter
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - W. J. Briels
- Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS 3, D-52425 Jülich, Germany
| |
Collapse
|
133
|
Abstract
Membrane fission, which facilitates compartmentalization of biological processes into discrete, membrane-bound volumes, is essential for cellular life. Proteins with specific structural features including constricting rings, helical scaffolds, and hydrophobic membrane insertions are thought to be the primary drivers of fission. In contrast, here we report a mechanism of fission that is independent of protein structure-steric pressure among membrane-bound proteins. In particular, random collisions among crowded proteins generate substantial pressure, which if unbalanced on the opposite membrane surface can dramatically increase membrane curvature, leading to fission. Using the endocytic protein epsin1 N-terminal homology domain (ENTH), previously thought to drive fission by hydrophobic insertion, our results show that membrane coverage correlates equally with fission regardless of the hydrophobicity of insertions. Specifically, combining FRET-based measurements of membrane coverage with multiple, independent measurements of membrane vesiculation revealed that fission became spontaneous as steric pressure increased. Further, fission efficiency remained equally potent when helices were replaced by synthetic membrane-binding motifs. These data challenge the view that hydrophobic insertions drive membrane fission, suggesting instead that the role of insertions is to anchor proteins strongly to membrane surfaces, amplifying steric pressure. In line with these conclusions, even green fluorescent protein (GFP) was able to drive fission efficiently when bound to the membrane at high coverage. Our conclusions are further strengthened by the finding that intrinsically disordered proteins, which have large hydrodynamic radii yet lack a defined structure, drove fission with substantially greater potency than smaller, structured proteins.
Collapse
|
134
|
Sochacki KA, Dickey AM, Strub MP, Taraska JW. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 2017; 19:352-361. [PMID: 28346440 DOI: 10.1038/ncb3498] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/23/2017] [Indexed: 12/15/2022]
Abstract
Dozens of proteins capture, polymerize and reshape the clathrin lattice during clathrin-mediated endocytosis (CME). How or if this ensemble of proteins is organized in relation to the clathrin coat is unknown. Here, we map key molecules involved in CME at the nanoscale using correlative super-resolution light and transmission electron microscopy. We localize 19 different endocytic proteins (amphiphysin1, AP2, β2-arrestin, CALM, clathrin, DAB2, dynamin2, EPS15, epsin1, epsin2, FCHO2, HIP1R, intersectin, NECAP, SNX9, stonin2, syndapin2, transferrin receptor, VAMP2) on thousands of individual clathrin structures, generating a comprehensive molecular architecture of endocytosis with nanoscale precision. We discover that endocytic proteins distribute into distinct spatial zones in relation to the edge of the clathrin lattice. The presence or concentrations of proteins within these zones vary at distinct stages of organelle development. We propose that endocytosis is driven by the recruitment, reorganization and loss of proteins within these partitioned nanoscale zones.
Collapse
Affiliation(s)
- Kem A Sochacki
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Andrea M Dickey
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marie-Paule Strub
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Justin W Taraska
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
135
|
Alnaas AA, Moon CL, Alton M, Reed SM, Knowles MK. Conformational Changes in C-Reactive Protein Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface. J Phys Chem B 2017; 121:2631-2639. [PMID: 28225631 DOI: 10.1021/acs.jpcb.6b11505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-reactive protein (CRP) is a serum protein that binds to damaged membranes through a phosphatidylcholine binding site. The membrane binding process can initiate the complement immune response and facilitates the clearance of apoptotic cells, likely aiding in the protection of autoimmunity. The initiation of an immune response relies on a conformation change from a native, pentameric form to a modified form, where the modified form binds complement proteins (i.e., C1q) and regulatory proteins substantially better than the native form. In vitro, this reactivity is observed when CRP is monomeric, and a modified form has also been observed at sites of inflammation. Despite evidence that the monomeric form has much higher affinities for almost all proteinaceous binding partners, the role of CRP conformation on lipid binding is yet unknown. In this work, we mimic the outer leaflet of apoptotic cell membranes using a nanopatterned substrate to create curved, supported lipid bilayers and then characterize how CRP conformation affects the interactions between CRP and target membranes. In this assay, the chemical composition and shape are separately tunable parameters. The lipids consisted primarily of palmitoyloleoylphosphatidylcholine, with and without lysophosphatidylcholine, and the curvature had a radius of 27-55 nm. Using this model system combined with quantitative fluorescence microscopy methods, CRP binding to lipid membranes was measured as a function of different conformations of CRP. The modified form of CRP bound curved membranes, but the pentameric form did not for the range of curvatures measured. Unlike most other curvature-sensing proteins, modified CRP accumulated more at a moderate curvature, rather than highly curved or flat regions, suggesting that the membrane bound form does not solely depend on a defect binding mechanism. The presence of lysophosphatidylcholine, a component of apoptotic membranes, increased CRP binding to all types of membranes. Overall, our results show that CRP interactions vary with protein form, lipid composition, and membrane shape. The mechanism by which CRP recognizes damaged membranes depends on the combination of all three.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Carrie L Moon
- Molecular and Cellular Biophysics, University of Denver , Denver, Colorado 80208, United States
| | - Mitchell Alton
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States
| | - Scott M Reed
- Department of Chemistry, University of Colorado Denver , Denver, Colorado 80204, United States
| | - Michelle K Knowles
- Department of Chemistry and Biochemistry, University of Denver , Denver, Colorado 80208, United States.,Molecular and Cellular Biophysics, University of Denver , Denver, Colorado 80208, United States
| |
Collapse
|
136
|
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, Rout MP, Field MC. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci 2017; 130:1379-1392. [PMID: 28232524 PMCID: PMC5399782 DOI: 10.1242/jcs.191478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites. Summary: Endocytosis is a vital process in most cells, and here we identify important proteins required for this process in trypanosomes. Significantly, these are unique and not present in animals, fungi or plants.
Collapse
Affiliation(s)
- Paul T Manna
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Samson O Obado
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Cordula Boehm
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Catarina Gadelha
- School of Life Sciences, University of Nottingham, Nottingham NG2 7UH, UK
| | - Andrej Sali
- California Institute for Quantitative Biosciences, University of California, San Francisco, CA 94158, USA
| | - Brian T Chait
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Michael P Rout
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| |
Collapse
|
137
|
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aβ in Alzheimer's disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci 2017; 74:2167-2201. [PMID: 28197669 PMCID: PMC5425508 DOI: 10.1007/s00018-017-2463-7] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/07/2017] [Accepted: 01/11/2017] [Indexed: 01/03/2023]
Abstract
Deficiency in cerebral amyloid β-protein (Aβ) clearance is implicated in the pathogenesis of the common late-onset forms of Alzheimer’s disease (AD). Accumulation of misfolded Aβ in the brain is believed to be a net result of imbalance between its production and removal. This in turn may trigger neuroinflammation, progressive synaptic loss, and ultimately cognitive decline. Clearance of cerebral Aβ is a complex process mediated by various systems and cell types, including vascular transport across the blood–brain barrier, glymphatic drainage, and engulfment and degradation by resident microglia and infiltrating innate immune cells. Recent studies have highlighted a new, unexpected role for peripheral monocytes and macrophages in restricting cerebral Aβ fibrils, and possibly soluble oligomers. In AD transgenic (ADtg) mice, monocyte ablation or inhibition of their migration into the brain exacerbated Aβ pathology, while blood enrichment with monocytes and their increased recruitment to plaque lesion sites greatly diminished Aβ burden. Profound neuroprotective effects in ADtg mice were further achieved through increased cerebral recruitment of myelomonocytes overexpressing Aβ-degrading enzymes. This review summarizes the literature on cellular and molecular mechanisms of cerebral Aβ clearance with an emphasis on the role of peripheral monocytes and macrophages in Aβ removal.
Collapse
Affiliation(s)
- Leah Zuroff
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Daley
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, 127 S. San Vicente, AHSP A8115, Los Angeles, CA, 90048, USA. .,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
138
|
Design principles for robust vesiculation in clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2017; 114:E1118-E1127. [PMID: 28126722 DOI: 10.1073/pnas.1617705114] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated can be inhibited by elevated membrane tension. The robustness of processes like clathrin-mediated endocytosis (CME) across a diverse range of organisms and mechanical environments suggests that the protein machinery in this process has evolved to take advantage of some set of physical design principles to ensure robust vesiculation against opposing forces like membrane tension. Using a theoretical model for membrane mechanics and membrane protein interaction, we have systematically investigated the influence of membrane rigidity, curvature induced by the protein coat, area covered by the protein coat, membrane tension, and force from actin polymerization on bud formation. Under low tension, the membrane smoothly evolves from a flat to budded morphology as the coat area or spontaneous curvature increases, whereas the membrane remains essentially flat at high tensions. At intermediate, physiologically relevant, tensions, the membrane undergoes a "snap-through instability" in which small changes in the coat area, spontaneous curvature or membrane tension cause the membrane to "snap" from an open, U-shape to a closed bud. This instability can be smoothed out by increasing the bending rigidity of the coat, allowing for successful budding at higher membrane tensions. Additionally, applied force from actin polymerization can bypass the instability by inducing a smooth transition from an open to a closed bud. Finally, a combination of increased coat rigidity and force from actin polymerization enables robust vesiculation even at high membrane tensions.
Collapse
|
139
|
Eberle JP, Rapp A, Krufczik M, Eryilmaz M, Gunkel M, Erfle H, Hausmann M. Super-Resolution Microscopy Techniques and Their Potential for Applications in Radiation Biophysics. Methods Mol Biol 2017; 1663:1-13. [PMID: 28924654 DOI: 10.1007/978-1-4939-7265-4_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescence microscopy is an essential tool for imaging tagged biological structures. Due to the wave nature of light, the resolution of a conventional fluorescence microscope is limited laterally to about 200 nm and axially to about 600 nm, which is often referred to as the Abbe limit. This hampers the observation of important biological structures and dynamics in the nano-scaled range ~10 nm to ~100 nm. Consequentially, various methods have been developed circumventing this limit of resolution. Super-resolution microscopy comprises several of those methods employing physical and/or chemical properties, such as optical/instrumental modifications and specific labeling of samples. In this article, we will give a brief insight into a variety of selected optical microscopy methods reaching super-resolution beyond the Abbe limit. We will survey three different concepts in connection to biological applications in radiation research without making a claim to be complete.
Collapse
Affiliation(s)
- Jan Philipp Eberle
- High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, In the Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Marion Eryilmaz
- Kirchhoff-Institute for Physics, Heidelberg University, In the Neuenheimer Feld 227, 69120, Heidelberg, Germany
| | - Manuel Gunkel
- High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Holger Erfle
- High-Content Analysis of the Cell (HiCell) and Advanced Biological Screening Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, In the Neuenheimer Feld 227, 69120, Heidelberg, Germany.
| |
Collapse
|
140
|
Canter RG, Penney J, Tsai LH. The road to restoring neural circuits for the treatment of Alzheimer's disease. Nature 2016; 539:187-196. [PMID: 27830780 DOI: 10.1038/nature20412] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease is a progressive loss of memory and cognition, for which there is no cure. Although genetic studies initially suggested a primary role for amyloid-in Alzheimer's disease, treatment strategies targeted at reducing amyloid-have failed to reverse cognitive symptoms. These clinical findings suggest that cognitive decline is the result of a complex pathophysiology and that targeting amyloid-alone may not be sufficient to treat Alzheimer's disease. Instead, a broad outlook on neural-circuit-damaging processes may yield insights into new therapeutic strategies for curing memory loss in the disease.
Collapse
Affiliation(s)
- Rebecca G Canter
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jay Penney
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Li-Huei Tsai
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
141
|
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. ACTA ACUST UNITED AC 2016; 6:225-248. [PMID: 28265539 PMCID: PMC5326671 DOI: 10.15171/bi.2016.30] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/24/2022]
Abstract
![]()
Introduction: Desired clinical outcome of pharmacotherapy of brain diseases largely depends upon the safe drug delivery into the brain parenchyma. However, due to the robust blockade function of the blood-brain barrier (BBB), drug transport into the brain is selectively controlled by the BBB formed by brain capillary endothelial cells and supported by astrocytes and pericytes.
Methods: In the current study, we have reviewed the most recent literature on the subject to provide an insight upon the role and impacts of BBB on brain drug delivery and targeting.
Results: All drugs, either small molecules or macromolecules, designated to treat brain diseases must adequately cross the BBB to provide their therapeutic properties on biological targets within the central nervous system (CNS). However, most of these pharmaceuticals do not sufficiently penetrate into CNS, failing to meet the intended therapeutic outcomes. Most lipophilic drugs capable of penetrating BBB are prone to the efflux functionality of BBB. In contrast, all hydrophilic drugs are facing severe infiltration blockage imposed by the tight cellular junctions of the BBB. Hence, a number of strategies have been devised to improve the efficiency of brain drug delivery and targeted therapy of CNS disorders using multimodal nanosystems (NSs).
Conclusions: In order to improve the therapeutic outcomes of CNS drug transfer and targeted delivery, the discriminatory permeability of BBB needs to be taken under control. The carrier-mediated transport machineries of brain capillary endothelial cells (BCECs) can be exploited for the discovery, development and delivery of small molecules into the brain. Further, the receptor-mediated transport systems can be recruited for the delivery of macromolecular biologics and multimodal NSs into the brain.
Collapse
Affiliation(s)
- Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Rafi
- Department of Neurology, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
142
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
143
|
Kanatsu K, Tomita T. Membrane trafficking and proteolytic activity of γ-secretase in Alzheimer’s disease. Biol Chem 2016; 397:827-35. [DOI: 10.1515/hsz-2016-0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/04/2016] [Indexed: 12/26/2022]
Abstract
Abstract
γ-Secretase is an intramembrane-cleaving protease that generates various forms of amyloid-β peptides (Aβ) that accumulate in the brains of Alzheimer’s disease (AD) patients. The intracellular trafficking and subcellular localization of γ-secretase are linked to both qualitative and quantitative changes in Aβ production. However, the precise intracellular localization of γ-secretase as well as its detailed regulatory mechanisms have remained elusive. Recent genetic studies on AD provide ample evidence that alteration of the subcellular localization of γ-secretase contributes to the pathogenesis of AD. Here we review our current understanding of the intracellular membrane trafficking of γ-secretase, the association between its localization and proteolytic activity, and the possibility of γ-secretase as a therapeutic target against AD.
Collapse
|
144
|
Myers MD, Ryazantsev S, Hicke L, Payne GS. Calmodulin Promotes N-BAR Domain-Mediated Membrane Constriction and Endocytosis. Dev Cell 2016; 37:162-73. [PMID: 27093085 DOI: 10.1016/j.devcel.2016.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 10/21/2022]
Abstract
Membrane remodeling by BAR (Bin, Amphiphysin, RVS) domain-containing proteins, such as endophilins and amphiphysins, is integral to the process of endocytosis. However, little is known about the regulation of endocytic BAR domain activity. We have identified an interaction between the yeast Rvs167 N-BAR domain and calmodulin. Calmodulin-binding mutants of Rvs167 exhibited defects in endocytic vesicle release. In vitro, calmodulin enhanced membrane tubulation and constriction by wild-type Rvs167 but not calmodulin-binding-defective mutants. A subset of mammalian N-BAR domains bound calmodulin, and co-expression of calmodulin with endophilin A2 potentiated tubulation in vivo. These studies reveal a conserved role for calmodulin in regulating the intrinsic membrane-sculpting activity of endocytic N-BAR domains.
Collapse
Affiliation(s)
- Margaret D Myers
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sergey Ryazantsev
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda Hicke
- Molecular Genetics and Microbiology, College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory S Payne
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
145
|
Pucadyil TJ, Holkar SS. Comparative analysis of adaptor-mediated clathrin assembly reveals general principles for adaptor clustering. Mol Biol Cell 2016; 27:3156-3163. [PMID: 27559129 PMCID: PMC5063622 DOI: 10.1091/mbc.e16-06-0399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022] Open
Abstract
Clathrin-mediated endocytosis sorts the bulk of membrane proteins and is a process that starts with adaptor-induced clathrin assembly. Real-time fluorescence analysis shows that adaptor sorting is determined not by the extent of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Clathrin-mediated endocytosis (CME) manages the sorting and uptake of the bulk of membrane proteins (or cargo) from the plasma membrane. CME is initiated by the formation of clathrin-coated pits (CCPs), in which adaptors nucleate clathrin assembly. Clathrin adaptors display diversity in both the type and number of evolutionarily conserved clathrin-binding boxes. How this diversity relates to the process of adaptor clustering as clathrin assembles around a growing pit remains unclear. Using real-time, fluorescence microscopy–based assays, we compare the formation kinetics and distribution of clathrin assemblies on membranes that display five unique clathrin adaptors. Correlations between equilibrium and kinetic parameters of clathrin assembly to the eventual adaptor distribution indicate that adaptor clustering is determined not by the amount of clathrin recruited or the degree of clathrin clustered but instead by the rate of clathrin assembly. Together our results emphasize the need to analyze kinetics of protein interactions to better understand mechanisms that regulate CME.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Indian Institute of Science Education and Research, Pune, Maharashtra 411 008, India
| | - Sachin S Holkar
- Indian Institute of Science Education and Research, Pune, Maharashtra 411 008, India
| |
Collapse
|
146
|
Jarsch IK, Daste F, Gallop JL. Membrane curvature in cell biology: An integration of molecular mechanisms. J Cell Biol 2016; 214:375-87. [PMID: 27528656 PMCID: PMC4987295 DOI: 10.1083/jcb.201604003] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/03/2023] Open
Abstract
Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.
Collapse
Affiliation(s)
- Iris K Jarsch
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Frederic Daste
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| | - Jennifer L Gallop
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK
| |
Collapse
|
147
|
Kanatsu K, Hori Y, Takatori S, Watanabe T, Iwatsubo T, Tomita T. Partial loss of CALM function reduces Aβ42 production and amyloid depositionin vivo. Hum Mol Genet 2016; 25:3988-3997. [DOI: 10.1093/hmg/ddw239] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
|
148
|
Ma L, Umasankar PK, Wrobel AG, Lymar A, McCoy AJ, Holkar SS, Jha A, Pradhan-Sundd T, Watkins SC, Owen DJ, Traub LM. Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding. Dev Cell 2016; 37:428-43. [PMID: 27237791 PMCID: PMC4921775 DOI: 10.1016/j.devcel.2016.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/08/2016] [Accepted: 05/02/2016] [Indexed: 11/26/2022]
Abstract
Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2. The structure of an Eps15/R⋅Fcho1 μ-homology domain complex reveals a spacing-dependent DPF triad, bound in a mechanistically distinct way from the mode of single DPF binding to AP-2. Using cells lacking FCHO1/2 and with Eps15 sequestered from the plasma membrane, we establish that without these two endocytic pioneers, AP-2 assemblies are fleeting and endocytosis stalls. Thus, distinct DPF-based codes within the unstructured Eps15/R C terminus direct the assembly of temporary Fcho1/2⋅Eps15/R⋅AP-2 ternary complexes to facilitate conformational activation of AP-2 by the Fcho1/2 interdomain linker to promote AP-2 cargo engagement. The endocytic pioneer protein Eps15 engages AP-2 and Fcho1/2 noncompetitively Structural analysis shows arrayed DPF motif triad in Eps15 for Fcho1/2 μHD binding DPF-based codes direct transient Fcho1/2⋅Eps15/R⋅AP-2 ternary complex formation In ternary complex, Fcho1 interdomain linker primes AP-2 for cargo capture
Collapse
Affiliation(s)
- Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Perunthottathu K Umasankar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Antoni G Wrobel
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Anastasia Lymar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Airlie J McCoy
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Sachin S Holkar
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Tirthadipa Pradhan-Sundd
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA
| | - David J Owen
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, S312 BST, Pittsburgh, PA 15261, USA.
| |
Collapse
|
149
|
Hung CW, Duncan MC. Clathrin binding by the adaptor Ent5 promotes late stages of clathrin coat maturation. Mol Biol Cell 2016; 27:1143-53. [PMID: 26842894 PMCID: PMC4814221 DOI: 10.1091/mbc.e15-08-0588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/28/2016] [Indexed: 11/15/2022] Open
Abstract
Clathrin adaptors link cargo to the clathrin coat. The clathrin adaptor Ent5 is also required for the maturation of clathrin coats at the trans-Golgi network or endosome, suggesting that it plays a key mechanistic role in coat formation. This function requires only the Ent5 clathrin-binding sites and not its interaction with other endosomal adaptors. Clathrin is a ubiquitous protein that mediates membrane traffic at many locations. To function, clathrin requires clathrin adaptors that link it to transmembrane protein cargo. In addition to this cargo selection function, many adaptors also play mechanistic roles in the formation of the transport carrier. However, the full spectrum of these mechanistic roles is poorly understood. Here we report that Ent5, an endosomal clathrin adaptor in Saccharomyces cerevisiae, regulates the behavior of clathrin coats after the recruitment of clathrin. We show that loss of Ent5 disrupts clathrin-dependent traffic and prolongs the lifespan of endosomal structures that contain clathrin and other adaptors, suggesting a defect in coat maturation at a late stage. We find that the direct binding of Ent5 with clathrin is required for its role in coat behavior and cargo traffic. Surprisingly, the interaction of Ent5 with other adaptors is dispensable for coat behavior but not cargo traffic. These findings support a model in which Ent5 clathrin binding performs a mechanistic role in coat maturation, whereas Ent5 adaptor binding promotes cargo incorporation.
Collapse
Affiliation(s)
- Chao-Wei Hung
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mara C Duncan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
150
|
Membrane Lipids in Presynaptic Function and Disease. Neuron 2016; 90:11-25. [DOI: 10.1016/j.neuron.2016.02.033] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
|