101
|
Swartz SZ, McKay LS, Su KC, Bury L, Padeganeh A, Maddox PS, Knouse KA, Cheeseman IM. Quiescent Cells Actively Replenish CENP-A Nucleosomes to Maintain Centromere Identity and Proliferative Potential. Dev Cell 2019; 51:35-48.e7. [PMID: 31422918 PMCID: PMC6783363 DOI: 10.1016/j.devcel.2019.07.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 05/28/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Centromeres provide a robust model for epigenetic inheritance as they are specified by sequence-independent mechanisms involving the histone H3-variant centromere protein A (CENP-A). Prevailing models indicate that the high intrinsic stability of CENP-A nucleosomes maintains centromere identity indefinitely. Here, we demonstrate that CENP-A is not stable at centromeres but is instead gradually and continuously incorporated in quiescent cells including G0-arrested tissue culture cells and prophase I-arrested oocytes. Quiescent CENP-A incorporation involves the canonical CENP-A deposition machinery but displays distinct requirements from cell cycle-dependent deposition. We demonstrate that Plk1 is required specifically for G1 CENP-A deposition, whereas transcription promotes CENP-A incorporation in quiescent oocytes. Preventing CENP-A deposition during quiescence results in significantly reduced CENP-A levels and perturbs chromosome segregation following the resumption of cell division. In contrast to quiescent cells, terminally differentiated cells fail to maintain CENP-A levels. Our work reveals that quiescent cells actively maintain centromere identity providing an indicator of proliferative potential.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Liliana S McKay
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Leah Bury
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Abbas Padeganeh
- Biology Department, UNC Chapel Hill, 120 South Road, Chapel Hill, NC 27599-3280, USA
| | - Paul S Maddox
- Biology Department, UNC Chapel Hill, 120 South Road, Chapel Hill, NC 27599-3280, USA
| | - Kristin A Knouse
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
102
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
103
|
Kuhn J, Dumont S. Mammalian kinetochores count attached microtubules in a sensitive and switch-like manner. J Cell Biol 2019; 218:3583-3596. [PMID: 31492713 PMCID: PMC6829666 DOI: 10.1083/jcb.201902105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 01/09/2023] Open
Abstract
Kinetochores monitor their attachment to spindle microtubules to control spindle assembly checkpoint (SAC) signaling and cell cycle progression. Kuhn and Dumont show that individual mammalian kinetochores monitor the number of attached microtubules as a single unit in a sensitive and switch-like manner. The spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. Each mammalian kinetochore binds many microtubules, but how many attached microtubules are required to turn off the checkpoint, and how the kinetochore monitors microtubule numbers, are not known and are central to understanding SAC mechanisms and function. To address these questions, here we systematically tune and fix the fraction of Hec1 molecules capable of microtubule binding. We show that Hec1 molecules independently bind microtubules within single kinetochores, but that the kinetochore does not independently process attachment information from different molecules. Few attached microtubules (20% occupancy) can trigger complete Mad1 loss, and Mad1 loss is slower in this case. Finally, we show using laser ablation that individual kinetochores detect changes in microtubule binding, not in spindle forces that accompany attachment. Thus, the mammalian kinetochore responds specifically to the binding of each microtubule and counts microtubules as a single unit in a sensitive and switch-like manner. This may allow kinetochores to rapidly react to early attachments and maintain a robust SAC response despite dynamic microtubule numbers.
Collapse
Affiliation(s)
- Jonathan Kuhn
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA .,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA.,Department of Cell and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
104
|
Sathyan KM, McKenna BD, Anderson WD, Duarte FM, Core L, Guertin MJ. An improved auxin-inducible degron system preserves native protein levels and enables rapid and specific protein depletion. Genes Dev 2019; 33:1441-1455. [PMID: 31467088 PMCID: PMC6771385 DOI: 10.1101/gad.328237.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022]
Abstract
Rapid perturbation of protein function permits the ability to define primary molecular responses while avoiding downstream cumulative effects of protein dysregulation. The auxin-inducible degron (AID) system was developed as a tool to achieve rapid and inducible protein degradation in nonplant systems. However, tagging proteins at their endogenous loci results in chronic auxin-independent degradation by the proteasome. To correct this deficiency, we expressed the auxin response transcription factor (ARF) in an improved inducible degron system. ARF is absent from previously engineered AID systems but is a critical component of native auxin signaling. In plants, ARF directly interacts with AID in the absence of auxin, and we found that expression of the ARF PB1 (Phox and Bem1) domain suppresses constitutive degradation of AID-tagged proteins. Moreover, the rate of auxin-induced AID degradation is substantially faster in the ARF-AID system. To test the ARF-AID system in a quantitative and sensitive manner, we measured genome-wide changes in nascent transcription after rapidly depleting the ZNF143 transcription factor. Transcriptional profiling indicates that ZNF143 activates transcription in cis and regulates promoter-proximal paused RNA polymerase density. Rapidly inducible degradation systems that preserve the target protein's native expression levels and patterns will revolutionize the study of biological systems by enabling specific and temporally defined protein dysregulation.
Collapse
Affiliation(s)
- Kizhakke Mattada Sathyan
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Brian D McKenna
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Leighton Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Michael J Guertin
- Biochemistry and Molecular Genetics Department, University of Virginia, Charlottesville, Virginia 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia 22908, USA.,Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
105
|
Giotti B, Chen SH, Barnett MW, Regan T, Ly T, Wiemann S, Hume DA, Freeman TC. Assembly of a parts list of the human mitotic cell cycle machinery. J Mol Cell Biol 2019; 11:703-718. [PMID: 30452682 PMCID: PMC6788831 DOI: 10.1093/jmcb/mjy063] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 12/21/2022] Open
Abstract
The set of proteins required for mitotic division remains poorly characterized. Here, an extensive series of correlation analyses of human and mouse transcriptomics data were performed to identify genes strongly and reproducibly associated with cells undergoing S/G2-M phases of the cell cycle. In so doing, 701 cell cycle-associated genes were defined and while it was shown that many are only expressed during these phases, the expression of others is also driven by alternative promoters. Of this list, 496 genes have known cell cycle functions, whereas 205 were assigned as putative cell cycle genes, 53 of which are functionally uncharacterized. Among these, 27 were screened for subcellular localization revealing many to be nuclear localized and at least three to be novel centrosomal proteins. Furthermore, 10 others inhibited cell proliferation upon siRNA knockdown. This study presents the first comprehensive list of human cell cycle proteins, identifying many new candidate proteins.
Collapse
Affiliation(s)
- Bruno Giotti
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Biosciences and Biotechnology Institute, EDyP Department, CEA Grenoble, 17 rue des Martyrs, Grenoble, France
| | - Sz-Hau Chen
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Mark W Barnett
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tim Regan
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Tony Ly
- Wellcome Centre for Cell Biology, University of Edinburgh, Swann Building, Edinburgh EH9 3BF, Scotland, UK
| | - Stefan Wiemann
- Molecular Genome Analysis (B050), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, Heidelberg, Germany
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
- Mater Research Institute, University of Queensland, Level 3, Aubigny Place, Raymond Terrace, South Brisbane, Qld,Australia
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| |
Collapse
|
106
|
Wilhelm T, Olziersky AM, Harry D, De Sousa F, Vassal H, Eskat A, Meraldi P. Mild replication stress causes chromosome mis-segregation via premature centriole disengagement. Nat Commun 2019; 10:3585. [PMID: 31395887 PMCID: PMC6687892 DOI: 10.1038/s41467-019-11584-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/23/2019] [Indexed: 01/19/2023] Open
Abstract
Replication stress, a hallmark of cancerous and pre-cancerous lesions, is linked to structural chromosomal aberrations. Recent studies demonstrated that it could also lead to numerical chromosomal instability (CIN). The mechanism, however, remains elusive. Here, we show that inducing replication stress in non-cancerous cells stabilizes spindle microtubules and favours premature centriole disengagement, causing transient multipolar spindles that lead to lagging chromosomes and micronuclei. Premature centriole disengagement depends on the G2 activity of the Cdk, Plk1 and ATR kinases, implying a DNA-damage induced deregulation of the centrosome cycle. Premature centriole disengagement also occurs spontaneously in some CIN+ cancer cell lines and can be suppressed by attenuating replication stress. Finally, we show that replication stress potentiates the effect of the chemotherapeutic agent taxol, by increasing the incidence of multipolar cell divisions. We postulate that replication stress in cancer cells induces numerical CIN via transient multipolar spindles caused by premature centriole disengagement. Chromosome instability can be caused by replication stress, although the mechanism is unclear. Here, the authors show that inducing mild replication stress in cancerous and non-cancerous cell lines leads to centriole disengagement and the subsequent formation of lagging chromosomes and micronuclei.
Collapse
Affiliation(s)
- Therese Wilhelm
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland. .,Department of Genetic Stability and Oncogenesis, Institut Gustave Roussy, CNRS UMR8200, 94805, Villejuif, France.
| | - Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Daniela Harry
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Filipe De Sousa
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland
| | - Helène Vassal
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.,National Institute of Applied Sciences, Villeurbanne, 69621, France
| | - Anja Eskat
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.,Clinical Trials Center, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland. .,Translational Research Centre in Onco-hematology, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
107
|
Little JN, Dwyer ND. p53 deletion rescues lethal microcephaly in a mouse model with neural stem cell abscission defects. Hum Mol Genet 2019; 28:434-447. [PMID: 30304535 DOI: 10.1093/hmg/ddy350] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/28/2018] [Indexed: 12/17/2022] Open
Abstract
Building a cerebral cortex of the proper size involves balancing rates and timing of neural stem cell (NSC) proliferation, neurogenesis and cell death. The cellular mechanisms connecting genetic mutations to brain malformation phenotypes are still poorly understood. Microcephaly may result when NSC divisions are too slow, produce neurons too early or undergo apoptosis but the relative contributions of these cellular mechanisms to various types of microcephaly are not understood. We previously showed that mouse mutants in Kif20b (formerly called Mphosph1, Mpp1 or KRMP1) have small cortices that show elevated apoptosis and defects in maturation of NSC midbodies, which mediate cytokinetic abscission. Here we test the contribution of intrinsic NSC apoptosis to brain size reduction in this lethal microcephaly model. By making double mutants with the pro-apoptotic genes Bax and Trp53 (p53), we find that p53-dependent apoptosis of cortical NSCs accounts for most of the microcephaly, but that there is a significant apoptosis-independent contribution as well. Remarkably, heterozygous p53 deletion is sufficient to fully rescue survival of the Kif20b mutant into adulthood. In addition, the NSC midbody maturation defects are not rescued by p53 deletion, showing that they are either upstream of p53 activation, or in a parallel pathway. Accumulation of p53 in the nucleus of mutant NSCs at midbody stage suggests the possibility of a novel midbody-mediated pathway for p53 activation. This work elucidates both NSC apoptosis and abscission mechanisms that could underlie human microcephaly or other brain malformations.
Collapse
Affiliation(s)
- Jessica Neville Little
- Department of Cell Biology.,Cell and Developmental Biology Graduate Program.,Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
108
|
Pamula MC, Carlini L, Forth S, Verma P, Suresh S, Legant WR, Khodjakov A, Betzig E, Kapoor TM. High-resolution imaging reveals how the spindle midzone impacts chromosome movement. J Cell Biol 2019; 218:2529-2544. [PMID: 31248912 PMCID: PMC6683753 DOI: 10.1083/jcb.201904169] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022] Open
Abstract
Microtubule bundles in the spindle midzone have been reported to either promote or hinder chromosome movement. Pamula et al. examine the assembly dynamics of midzone microtubule bundles during anaphase and how chromosome segregation is impacted by aberrant bundle assembly. In the spindle midzone, microtubules from opposite half-spindles form bundles between segregating chromosomes. Microtubule bundles can either push or restrict chromosome movement during anaphase in different cellular contexts, but how these activities are achieved remains poorly understood. Here, we use high-resolution live-cell imaging to analyze individual microtubule bundles, growing filaments, and chromosome movement in dividing human cells. Within bundles, filament overlap length marked by the cross-linking protein PRC1 decreases during anaphase as chromosome segregation slows. Filament ends within microtubule bundles appear capped despite dynamic PRC1 turnover and submicrometer proximity to growing microtubules. Chromosome segregation distance and rate are increased in two human cell lines when microtubule bundle assembly is prevented via PRC1 knockdown. Upon expressing a mutant PRC1 with reduced microtubule affinity, bundles assemble but chromosome hypersegregation is still observed. We propose that microtubule overlap length reduction, typically linked to pushing forces generated within filament bundles, is needed to properly restrict spindle elongation and position chromosomes within daughter cells.
Collapse
Affiliation(s)
- Melissa C Pamula
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Scott Forth
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Priyanka Verma
- Department of Cancer Biology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Subbulakshmi Suresh
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| | - Wesley R Legant
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC.,Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, and North Carolina State University, Raleigh, NC
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY
| | - Eric Betzig
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY
| |
Collapse
|
109
|
Shi L, Qalieh A, Lam MM, Keil JM, Kwan KY. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 2019; 10:2588. [PMID: 31197172 PMCID: PMC6565622 DOI: 10.1038/s41467-019-10411-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
The brain is a genomic mosaic shaped by cellular responses to genome damage. Here, we manipulate somatic genome stability by conditional Knl1 deletion from embryonic mouse brain. KNL1 mutations cause microcephaly and KNL1 mediates the spindle assembly checkpoint, a safeguard against chromosome missegregation and aneuploidy. We find that following Knl1 deletion, segregation errors in mitotic neural progenitor cells give rise to DNA damage on the missegregated chromosomes. This triggers rapid p53 activation and robust apoptotic and microglial phagocytic responses that extensively eliminate cells with somatic genome damage, thus causing microcephaly. By leaving only karyotypically normal progenitors to continue dividing, these mechanisms provide a second safeguard against brain somatic aneuploidy. Without Knl1 or p53-dependent safeguards, genome-damaged cells are not cleared, alleviating microcephaly, but paradoxically leading to total pre-weaning lethality. Thus, mitotic genome damage activates robust responses to eliminate somatic mutant cells, which if left unpurged, can impact brain and organismal fitness.
Collapse
Affiliation(s)
- Lei Shi
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adel Qalieh
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mandy M Lam
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason M Keil
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenneth Y Kwan
- Molecular & Behavioral Neuroscience Institute (MBNI), University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
110
|
Haliki E, Alpagut Keskin N, Masalci O. Boolean gene regulatory network model of centromere function in Saccharomyces cerevisiae. J Biol Phys 2019; 45:235-251. [PMID: 31175490 DOI: 10.1007/s10867-019-09526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022] Open
Abstract
Centromeres, a highly conserved locus of eukaryotic chromosomes, have critical function for genome stability and integrity. Because their centromeric DNA sequences are necessary and sufficient for kinetochore recruitment and DNA segregation, point centromeres of Saccharomyces cerevisiae chromosomes provide an attractive system for the study of the regulation of centromere function. Using the mathematical model of Boolean gene regulatory networks, the gene regulatory dynamics of centromere region of S. cerevisiae (budding yeast), which is actively involved in the cell-cycle, has been examined. A gene regulatory network containing the relevant centromere genes of the model organism from biological databases was established and all possible cellular phenotypes subjected to a synchronous gene regulation and attracted to several basins. Gene expression in the largest attractor was compared with the biological data by obtaining changes in the cell-cycle. We show that the model for centromere function recovers a single cyclic attractor. The trajectory flow diagram plotted over all initial conditions of the system also shows good correspondence with the cell-cycle phases. Although other upstream signals are possibly involved in the regulation of centromere genes, proposed interactions with selected cell-cycle genes were sufficient to recover whole cell-cycle process. To truly clarify these proposed regulatory interactions of candidate genes for centromere function, profiling and analyzing their expression levels over time with expanded nodes/edges are required. Moreover, a previously modeled gene knock-down mechanism applied to the network and robustness versus knock-down was interpreted based on the obtained consequences.
Collapse
|
111
|
Abstract
Cell division is a highly regulated and carefully orchestrated process. Understanding the mechanisms that promote proper cell division is an important step toward unraveling important questions in cell biology and human health. Early studies seeking to dissect the mechanisms of cell division used classical genetics approaches to identify genes involved in mitosis and deployed biochemical approaches to isolate and identify proteins critical for cell division. These studies underscored that post-translational modifications and cyclin-kinase complexes play roles at the heart of the cell division program. Modern approaches for examining the mechanisms of cell division, including the use of high-throughput methods to study the effects of RNAi, cDNA, and chemical libraries, have evolved to encompass a larger biological and chemical space. Here, we outline some of the classical studies that established a foundation for the field and provide an overview of recent approaches that have advanced the study of cell division.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095 .,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California 90095.,Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
112
|
Rosas-Salvans M, Scrofani J, Modol A, Vernos I. DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. J Cell Sci 2019; 132:jcs.227033. [PMID: 31064815 PMCID: PMC6589090 DOI: 10.1242/jcs.227033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bipolar spindle organization is essential for the faithful segregation of chromosomes during cell division. This organization relies on the collective activities of motor proteins. The minus-end-directed dynein motor complex generates spindle inward forces and plays a major role in spindle pole focusing. The dynactin complex regulates many dynein functions, increasing its processivity and force production. Here, we show that DnaJB6 is a novel RanGTP-regulated protein. It interacts with the dynactin subunit p150Glued (also known as DCTN1) in a RanGTP-dependent manner specifically in M-phase, and promotes spindle pole focusing and dynein force generation. Our data suggest a novel mechanism by which RanGTP regulates dynein activity during M-phase. Summary: DnaJB6 is a novel RanGTP-regulated protein that appears to play an important role in dynein-dependent spindle organization and spindle assembly.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Jacopo Scrofani
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Modol
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
113
|
BUB1 Is Essential for the Viability of Human Cells in which the Spindle Assembly Checkpoint Is Compromised. Cell Rep 2019; 22:1424-1438. [PMID: 29425499 DOI: 10.1016/j.celrep.2018.01.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 11/22/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures faithful segregation of chromosomes. Although most mammalian cell types depend on the SAC for viability, we found that human HAP1 cells can grow SAC independently. We generated MAD1- and MAD2-deficient cells and mutagenized them to identify synthetic lethal interactions, revealing that chromosome congression factors become essential upon SAC deficiency. Besides expected hits, we also found that BUB1 becomes essential in SAC-deficient cells. We found that the BUB1 C terminus regulates alignment as well as recruitment of CENPF. Second, we found that BUBR1 was not essential in SAC-deficient HAP1 cells. We confirmed that BUBR1 does not regulate chromosome alignment in HAP1 cells and that BUB1 does not regulate chromosome alignment through BUBR1. Taken together, our data resolve some long-standing questions about the interplay between BUB1 and BUBR1 and their respective roles in the SAC and chromosome alignment.
Collapse
|
114
|
Liu X, Zhao P, Wang X, Wang L, Zhu Y, Gao W. Triptolide Induces Glioma Cell Autophagy and Apoptosis via Upregulating the ROS/JNK and Downregulating the Akt/mTOR Signaling Pathways. Front Oncol 2019; 9:387. [PMID: 31157167 PMCID: PMC6528693 DOI: 10.3389/fonc.2019.00387] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 01/17/2023] Open
Abstract
Apoptosis and autophagy are the two prominent forms of developmental cell death, and researches have shown that crosstalk exists between these two processes. A prior study demonstrated that triptolide inhibited the proliferation of malignant glioma cells. However, whether apoptosis and autophagy participate in the inhibitory effect of triptolide in glioma cells has not been clarified. In the present study, we demonstrated that triptolide potently inhibited the growth of glioma cells by inducing cell cycle arrest at the G2/M phase. Additionally, the treatment with triptolide induced apoptosis and autophagy in various glioma cell lines. Triptolide-induced autophagy may have tumor-supporting effects. Autophagy and apoptosis could cross-inhibit each other in glioma cells treated with triptolide. Moreover, we found that triptolide induced ROS production and JNK activation and inhibited the activity of Akt and mTOR. Finally, we demonstrated that triptolide suppressed tumor growth in an orthotopic xenograft glioma model. Collectively, these data indicated that triptolide induced G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK and blocking the Akt/mTOR signaling pathways in glioma cells. Triptolide may be a potential anti-tumor drug targeting gliomas.
Collapse
Affiliation(s)
- Xihong Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Peiyuan Zhao
- Basic Discipline of Integrated Chinese and Western Medicine, Henan University of Chinese Medicine, Henan, China
| | - Xiujuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yingjun Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
115
|
Peterka M, Kornmann B. Miro-dependent mitochondrial pool of CENP-F and its farnesylated C-terminal domain are dispensable for normal development in mice. PLoS Genet 2019; 15:e1008050. [PMID: 30856164 PMCID: PMC6428352 DOI: 10.1371/journal.pgen.1008050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/21/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022] Open
Abstract
CENP-F is a large, microtubule-binding protein that regulates multiple cellular processes including chromosome segregation and mitochondrial trafficking at cytokinesis. This multiplicity of functions is mediated through the binding of various partners, like Bub1 at the kinetochore and Miro at mitochondria. Due to the multifunctionality of CENP-F, the cellular phenotypes observed upon its depletion are difficult to interpret and there is a need to genetically separate its different functions by preventing binding to selected partners. Here we engineer a CENP-F point-mutant that is deficient in Miro binding and thus is unable to localize to mitochondria, but retains other localizations. We introduce this mutation in cultured human cells using CRISPR/Cas9 system and show it causes a defect in mitochondrial spreading similar to that observed upon Miro depletion. We further create a mouse model carrying this CENP-F variant, as well as truncated CENP-F mutants lacking the farnesylated C-terminus of the protein. Importantly, one of these truncations leads to ~80% downregulation of CENP-F expression. We observe that, despite the phenotypes apparent in cultured cells, mutant mice develop normally. Taken together, these mice will serve as important models to study CENP-F biology at organismal level. In addition, because truncations of CENP-F in humans cause a lethal disease termed Strømme syndrome, they might also be relevant disease models.
Collapse
Affiliation(s)
- Martin Peterka
- Institute of Biochemistry, ETH Zurich, Zürich, Switzerland
- Molecular Life Science Program, Zurich Life-Science Graduate School, Zürich, Switzerland
| | | |
Collapse
|
116
|
Kojima ML, de Rooij DG, Page DC. Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice. eLife 2019; 8:43738. [PMID: 30810530 PMCID: PMC6392498 DOI: 10.7554/elife.43738] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/10/2019] [Indexed: 12/22/2022] Open
Abstract
The germ line provides the cellular link between generations of multicellular organisms, its cells entering the meiotic cell cycle only once each generation. However, the mechanisms governing this initiation of meiosis remain poorly understood. Here, we examined cells undergoing meiotic initiation in mice, and we found that initiation involves the dramatic upregulation of a transcriptional network of thousands of genes whose expression is not limited to meiosis. This broad gene expression program is directly upregulated by STRA8, encoded by a germ cell-specific gene required for meiotic initiation. STRA8 binds its own promoter and those of thousands of other genes, including meiotic prophase genes, factors mediating DNA replication and the G1-S cell-cycle transition, and genes that promote the lengthy prophase unique to meiosis I. We conclude that, in mice, the robust amplification of this extraordinarily broad transcription program by a common factor triggers initiation of meiosis.
Collapse
Affiliation(s)
- Mina L Kojima
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | | | - David C Page
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, United States
| |
Collapse
|
117
|
Verma V, Maresca TJ. Microtubule plus-ends act as physical signaling hubs to activate RhoA during cytokinesis. eLife 2019; 8:38968. [PMID: 30758285 PMCID: PMC6398982 DOI: 10.7554/elife.38968] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/10/2019] [Indexed: 02/06/2023] Open
Abstract
Microtubules (MTs) are essential for cleavage furrow positioning during cytokinesis, but the mechanisms by which MT-derived signals spatially define regions of cortical contractility are unresolved. In this study cytokinesis regulators visualized in Drosophila melanogaster (Dm) cells were found to localize to and track MT plus-ends during cytokinesis. The RhoA GEF Pebble (Dm ECT2) did not evidently tip-track, but rather localized rapidly to cortical sites contacted by MT plus-tips, resulting in RhoA activation and enrichment of myosin-regulatory light chain. The MT plus-end localization of centralspindlin was compromised following EB1 depletion, which resulted in a higher incidence of cytokinesis failure. Centralspindlin plus-tip localization depended on the C-terminus and a putative EB1-interaction motif (hxxPTxh) in RacGAP50C. We propose that MT plus-end-associated centralspindlin recruits a cortical pool of Dm ECT2 upon physical contact to activate RhoA and to trigger localized contractility.
Collapse
Affiliation(s)
- Vikash Verma
- Biology Department, University of Massachusetts, Amherst, United States
| | - Thomas J Maresca
- Biology Department, University of Massachusetts, Amherst, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, United States
| |
Collapse
|
118
|
Hueschen CL, Galstyan V, Amouzgar M, Phillips R, Dumont S. Microtubule End-Clustering Maintains a Steady-State Spindle Shape. Curr Biol 2019; 29:700-708.e5. [PMID: 30744975 DOI: 10.1016/j.cub.2019.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/26/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023]
Abstract
Each time a cell divides, the microtubule cytoskeleton self-organizes into the metaphase spindle: an ellipsoidal steady-state structure that holds its stereotyped geometry despite microtubule turnover and internal stresses [1-6]. Regulation of microtubule dynamics, motor proteins, microtubule crosslinking, and chromatid cohesion can modulate spindle size and shape, and yet modulated spindles reach and hold a new steady state [7-11]. Here, we ask what maintains any spindle steady-state geometry. We report that clustering of microtubule ends by dynein and NuMA is essential for mammalian spindles to hold a steady-state shape. After dynein or NuMA deletion, the mitotic microtubule network is "turbulent"; microtubule bundles extend and bend against the cell cortex, constantly remodeling network shape. We find that spindle turbulence is driven by the homotetrameric kinesin-5 Eg5, and that acute Eg5 inhibition in turbulent spindles recovers spindle geometry and stability. Inspired by in vitro work on active turbulent gels of microtubules and kinesin [12, 13], we explore the kinematics of this in vivo turbulent network. We find that turbulent spindles display decreased nematic order and that motile asters distort the nematic director field. Finally, we see that turbulent spindles can drive both flow of cytoplasmic organelles and whole-cell movement-analogous to the autonomous motility displayed by droplet-encapsulated turbulent gels [12]. Thus, end-clustering by dynein and NuMA is required for mammalian spindles to reach a steady-state geometry, and in their absence Eg5 powers a turbulent microtubule network inside mitotic cells.
Collapse
Affiliation(s)
- Christina L Hueschen
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA.
| | - Vahe Galstyan
- Biochemistry and Molecular Biophysics Option, California Institute of Technology, Pasadena, CA 91106, USA
| | - Meelad Amouzgar
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | - Rob Phillips
- Department of Physics, California Institute of Technology, Pasadena, CA 91106, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| | - Sophie Dumont
- Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, UCSF, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
119
|
Oser MG, Fonseca R, Chakraborty AA, Brough R, Spektor A, Jennings RB, Flaifel A, Novak JS, Gulati A, Buss E, Younger ST, McBrayer SK, Cowley GS, Bonal DM, Nguyen QD, Brulle-Soumare L, Taylor P, Cairo S, Ryan CJ, Pease EJ, Maratea K, Travers J, Root DE, Signoretti S, Pellman D, Ashton S, Lord CJ, Barry ST, Kaelin WG. Cells Lacking the RB1 Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival. Cancer Discov 2019; 9:230-247. [PMID: 30373918 PMCID: PMC6368871 DOI: 10.1158/2159-8290.cd-18-0389] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 10/05/2018] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15% of lung cancers and is almost always linked to inactivating RB1 and TP53 mutations. SCLC frequently responds, albeit briefly, to chemotherapy. The canonical function of the RB1 gene product RB1 is to repress the E2F transcription factor family. RB1 also plays both E2F-dependent and E2F-independent mitotic roles. We performed a synthetic lethal CRISPR/Cas9 screen in an RB1 -/- SCLC cell line that conditionally expresses RB1 to identify dependencies that are caused by RB1 loss and discovered that RB1 -/- SCLC cell lines are hyperdependent on multiple proteins linked to chromosomal segregation, including Aurora B kinase. Moreover, we show that an Aurora B kinase inhibitor is efficacious in multiple preclinical SCLC models at concentrations that are well tolerated in mice. These results suggest that RB1 loss is a predictive biomarker for sensitivity to Aurora B kinase inhibitors in SCLC and perhaps other RB1 -/- cancers. SIGNIFICANCE: SCLC is rarely associated with actionable protooncogene mutations. We did a CRISPR/Cas9-based screen that showed that RB1 -/- SCLC are hyperdependent on AURKB, likely because both genes control mitotic fidelity, and confirmed that Aurora B kinase inhibitors are efficacious against RB1 -/- SCLC tumors in mice at nontoxic doses.See related commentary by Dick and Li, p. 169.This article is highlighted in the In This Issue feature, p. 151.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel Fonseca
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abhishek A Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel Brough
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Alexander Spektor
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rebecca B Jennings
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abdallah Flaifel
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jesse S Novak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditi Gulati
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elizabeth Buss
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Scott T Younger
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Samuel K McBrayer
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Paula Taylor
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | | | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Republic of Ireland
| | | | - Kim Maratea
- IMED Drug Safety and Metabolism, AstraZeneca, Boston, Massachusetts
| | - Jon Travers
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Susan Ashton
- IMED Oncology, AstraZeneca, Cheshire, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, United Kingdom
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Simon T Barry
- IMED Oncology, AstraZeneca, Cambridge, United Kingdom
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| |
Collapse
|
120
|
Deretic J, Kerr A, Welburn JPI. A rapid computational approach identifies SPICE1 as an Aurora kinase substrate. Mol Biol Cell 2019; 30:312-323. [PMID: 30485161 PMCID: PMC6589576 DOI: 10.1091/mbc.e18-08-0495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 11/11/2022] Open
Abstract
Aurora kinases play a major role in mitosis by regulating diverse substrates. Defining their critical downstream targets is important in understanding Aurora kinase function. Here we have developed an unbiased computational approach to identify new Aurora kinase substrates based on phosphorylation site clustering, protein localization, protein structure, and species conservation. We validate the microtubule-associated proteins Clasp2, Elys, tubulin tyrosine ligase-like polyglutamylase residues 330-624 and spindle and centriole associated protein 1, residues 549-855 (SPICE1), as Aurora A and B kinases substrates in vitro. We also demonstrate that SPICE1 localization is regulated by Aurora kinases during mitosis. In the absence of Aurora kinase activity, SPICE1 remains at centrioles but does not target to the spindle. Similarly, a nonphosphorylatable SPICE1 mutant no longer localizes to the spindle. Finally, we show that misregulating SPICE1 phosphorylation results in abnormal centriole number, spindle multipolarity, and chromosome alignment defects. Overall, our work indicates that temporal and spatial Aurora kinase-mediated regulation of SPICE1 is important for correct chromosome segregation. In addition, our work provides a database-search tool that enables rapid identification of Aurora kinase substrates.
Collapse
Affiliation(s)
- Jovana Deretic
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Julie P. I. Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| |
Collapse
|
121
|
Edwards F, Maton G, Gareil N, Canman JC, Dumont J. BUB-1 promotes amphitelic chromosome biorientation via multiple activities at the kinetochore. eLife 2018; 7:40690. [PMID: 30547880 PMCID: PMC6303103 DOI: 10.7554/elife.40690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 12/13/2018] [Indexed: 12/03/2022] Open
Abstract
Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.
Collapse
Affiliation(s)
- Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nelly Gareil
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, United States
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
122
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
123
|
Rodriguez-Rodriguez JA, Lewis C, McKinley KL, Sikirzhytski V, Corona J, Maciejowski J, Khodjakov A, Cheeseman IM, Jallepalli PV. Distinct Roles of RZZ and Bub1-KNL1 in Mitotic Checkpoint Signaling and Kinetochore Expansion. Curr Biol 2018; 28:3422-3429.e5. [PMID: 30415700 DOI: 10.1016/j.cub.2018.10.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/30/2018] [Accepted: 10/02/2018] [Indexed: 10/28/2022]
Abstract
The Mad1-Mad2 heterodimer is the catalytic hub of the spindle assembly checkpoint (SAC), which controls M phase progression through a multi-subunit anaphase inhibitor, the mitotic checkpoint complex (MCC) [1, 2]. During interphase, Mad1-Mad2 generates MCC at nuclear pores [3]. After nuclear envelope breakdown (NEBD), kinetochore-associated Mad1-Mad2 catalyzes MCC assembly until all chromosomes achieve bipolar attachment [1, 2]. Mad1-Mad2 and other factors are also incorporated into the fibrous corona, a phospho-dependent expansion of the outer kinetochore that precedes microtubule attachment [4-6]. The factor(s) involved in targeting Mad1-Mad2 to kinetochores in higher eukaryotes remain controversial [7-12], and the specific phosphorylation event(s) that trigger corona formation remain elusive [5, 13]. We used genome editing to eliminate Bub1, KNL1, and the Rod-Zw10-Zwilch (RZZ) complex in human cells. We show that RZZ's sole role in SAC activation is to tether Mad1-Mad2 to kinetochores. Separately, Mps1 kinase triggers fibrous corona formation by phosphorylating two N-terminal sites on Rod. In contrast, Bub1 and KNL1 activate kinetochore-bound Mad1-Mad2 to produce a "wait anaphase" signal but are not required for corona formation. We also show that clonal lines isolated after BUB1 disruption recover Bub1 expression and SAC function through nonsense-associated alternative splicing (NAS). Our study reveals a fundamental division of labor in the mammalian SAC and highlights a transcriptional response to nonsense mutations that can reduce or eliminate penetrance in genome editing experiments.
Collapse
Affiliation(s)
| | - Clare Lewis
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Kara L McKinley
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Vitali Sikirzhytski
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jennifer Corona
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
124
|
Nguyen AL, Drutovic D, Vazquez BN, El Yakoubi W, Gentilello AS, Malumbres M, Solc P, Schindler K. Genetic Interactions between the Aurora Kinases Reveal New Requirements for AURKB and AURKC during Oocyte Meiosis. Curr Biol 2018; 28:3458-3468.e5. [PMID: 30415701 DOI: 10.1016/j.cub.2018.08.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 06/19/2018] [Accepted: 08/22/2018] [Indexed: 12/21/2022]
Abstract
Errors in chromosome segregation during female meiosis I occur frequently, and aneuploid embryos account for 1/3 of all miscarriages in humans [1]. Unlike mitotic cells that require two Aurora kinase (AURK) homologs to help prevent aneuploidy (AURKA and AURKB), mammalian germ cells also require a third (AURKC) [2, 3]. AURKA is the spindle-pole-associated homolog, and AURKB/C are the chromosome-localized homologs. In mitosis, AURKB has essential roles as the catalytic subunit of the chromosomal passenger complex (CPC), regulating chromosome alignment, kinetochore-microtubule attachments, cohesion, the spindle assembly checkpoint, and cytokinesis [4, 5]. In mouse oocyte meiosis, AURKC takes over as the predominant CPC kinase [6], although the requirement for AURKB remains elusive [7]. In the absence of AURKC, AURKB compensates, making defining potential non-overlapping functions difficult [6, 8]. To investigate the role(s) of AURKB and AURKC in oocytes, we analyzed oocyte-specific Aurkb and Aurkc single- and double-knockout (KO) mice. Surprisingly, we find that double KO female mice are fertile. We demonstrate that, in the absence of AURKC, AURKA localizes to chromosomes in a CPC-dependent manner. These data suggest that AURKC prevents AURKA from localizing to chromosomes by competing for CPC binding. This competition is important for adequate spindle length to support meiosis I. We also describe a unique requirement for AURKB to negatively regulate AURKC to prevent aneuploidy. Together, our work reveals oocyte-specific roles for the AURKs in regulating each other's localization and activity. This inter-kinase regulation is critical to support wild-type levels of fecundity in female mice.
Collapse
Affiliation(s)
- Alexandra L Nguyen
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - David Drutovic
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, Libechov 277 21, Czech Republic
| | - Berta N Vazquez
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Amanda S Gentilello
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Petr Solc
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, Libechov 277 21, Czech Republic
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
125
|
Su KC, Tsang MJ, Emans N, Cheeseman IM. CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses. Mol Biol Cell 2018; 29:2370-2377. [PMID: 30091644 PMCID: PMC6233062 DOI: 10.1091/mbc.e18-04-0214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/16/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
A key goal for cell biological analyses is to assess the phenotypes that result from eliminating a target gene. Since the early 1990s, the predominant strategy utilized in human tissue culture cells has been RNA interference (RNAi)-mediated protein depletion. However, RNAi suffers well-documented off-target effects as well as incomplete and reversible protein depletion. The implementation of CRISPR/Cas9-based DNA cleavage has revolutionized the capacity to conduct functional studies in human cells. However, this approach is still underutilized for conducting visual phenotypic analyses, particularly for essential genes that require conditional strategies to eliminate their gene products. Optimizing this strategy requires effective and streamlined approaches to introduce the Cas9 guide RNA into target cells. Here we assess the efficacy of synthetic guide RNA transfection to eliminate gene products for cell biological studies. On the basis of three representative gene targets (KIF11, CENPN, and RELA), we demonstrate that transfection of synthetic single guide RNA (sgRNA) and CRISPR RNA (crRNA) guides works comparably for protein depletion as cell lines stably expressing lentiviral-delivered RNA guides. We additionally demonstrate that synthetic sgRNAs can be introduced by reverse transfection on an array. Together, these strategies provide a robust, flexible, and scalable approach for conducting functional studies in human cells.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | | | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
126
|
Abstract
In metazoans, the assembly of kinetochores on centrometric chromatin and the dismantling of nuclear pore complexes are processes that have to be tightly coordinated to ensure the proper assembly of the mitotic spindle and a successful mitosis. It is therefore noteworthy that these two macromolecular assemblies share a subset of constituents. One of these multifaceted components is Cenp-F, a protein implicated in cancer and developmental pathologies. During the cell cycle, Cenp-F localizes in multiple cellular structures including the nuclear envelope in late G2/early prophase and kinetochores throughout mitosis. We recently characterized the molecular determinants of Cenp-F interaction with Nup133, a structural nuclear pore constituent. In parallel with two other independent studies, we further elucidated the mechanisms governing Cenp-F kinetochore recruitment that mainly relies on its interaction with Bub1, with redundant contribution of Cenp-E upon acute microtubule depolymerisation. Here we synthesize the current literature regarding the dual location of Cenp-F at nuclear pores and kinetochores and extend our discussion to the regulation of these NPC and kinetochore localizations by mitotic kinase and spindle microtubules.
Collapse
Affiliation(s)
- Alessandro Berto
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France.,b Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577) , Univ Paris Sud, Université Paris-Saclay , Orsay , France
| | - Valérie Doye
- a Institut Jacques Monod , UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
127
|
Abstract
Accurate chromosome segregation is a fundamental process in cell biology. During mitosis, chromosomes are segregated into daughter cells through interactions between centromeres and microtubules in the mitotic spindle. Centromere domains have evolved to nucleate formation of the kinetochore, which is essential for establishing connections between chromosomal DNA and microtubules during mitosis. Centromeres are typically formed on highly repetitive DNA that is not conserved in sequence or size among organisms and can differ substantially between individuals within the same organism. However, transcription of repetitive DNA has emerged as a highly conserved property of the centromere. Recent work has shown that both the topological effect of transcription on chromatin and the nascent noncoding RNAs contribute to multiple aspects of centromere function. In this review, we discuss the fundamental aspects of centromere transcription, i.e., its dual role in chromatin remodeling/CENP-A deposition and kinetochore assembly during mitosis, from a cell cycle perspective.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
128
|
Monda JK, Cheeseman IM. Nde1 promotes diverse dynein functions through differential interactions and exhibits an isoform-specific proteasome association. Mol Biol Cell 2018; 29:2336-2345. [PMID: 30024347 PMCID: PMC6249811 DOI: 10.1091/mbc.e18-07-0418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nde1 is a key regulator of cytoplasmic dynein, binding directly to both dynein itself and the dynein adaptor, Lis1. Nde1 and Lis1 are thought to function together to promote dynein function, yet mutations in each result in distinct neurodevelopment phenotypes. To reconcile these phenotypic differences, we sought to dissect the contribution of Nde1 to dynein regulation and explore the cellular functions of Nde1. Here we show that an Nde1–Lis1 interaction is required for spindle pole focusing and Golgi organization but is largely dispensable for centrosome placement, despite Lis1 itself being required. Thus, diverse functions of dynein rely on distinct Nde1- and Lis1-mediated regulatory mechanisms. Additionally, we discovered a robust, isoform-specific interaction between human Nde1 and the 26S proteasome and identify precise mutations in Nde1 that disrupt the proteasome interaction. Together, our work suggests that Nde1 makes unique contributions to human neurodevelopment through its regulation of both dynein and proteasome function.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
129
|
Vittoria MA, Shenk EM, O'Rourke KP, Bolgioni AF, Lim S, Kacprzak V, Quinton RJ, Ganem NJ. A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Mol Biol Cell 2018; 29:1682-1692. [PMID: 29791254 PMCID: PMC6080710 DOI: 10.1091/mbc.e18-02-0141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tetraploid cells, which are most commonly generated by errors in cell division, are genomically unstable and have been shown to promote tumorigenesis. Recent genomic studies have estimated that ∼40% of all solid tumors have undergone a genome-doubling event during their evolution, suggesting a significant role for tetraploidy in driving the development of human cancers. To safeguard against the deleterious effects of tetraploidy, nontransformed cells that fail mitosis and become tetraploid activate both the Hippo and p53 tumor suppressor pathways to restrain further proliferation. Tetraploid cells must therefore overcome these antiproliferative barriers to ultimately drive tumor development. However, the genetic routes through which spontaneously arising tetraploid cells adapt to regain proliferative capacity remain poorly characterized. Here, we conducted a comprehensive gain-of-function genome-wide screen to identify microRNAs (miRNAs) that are sufficient to promote the proliferation of tetraploid cells. Our screen identified 23 miRNAs whose overexpression significantly promotes tetraploid proliferation. The vast majority of these miRNAs facilitate tetraploid growth by enhancing mitogenic signaling pathways (e.g., miR-191-3p); however, we also identified several miRNAs that impair the p53/p21 pathway (e.g., miR-523-3p), and a single miRNA (miR-24-3p) that potently inactivates the Hippo pathway via down-regulation of the tumor suppressor gene NF2. Collectively, our data reveal several avenues through which tetraploid cells may regain the proliferative capacity necessary to drive tumorigenesis.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Elizabeth M Shenk
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Department of Biomedical Engineering, Boston University, Boston, MA 02118
| | - Kevin P O'Rourke
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | - Amanda F Bolgioni
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Sanghee Lim
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Victoria Kacprzak
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Ryan J Quinton
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Neil J Ganem
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
130
|
Sen O, Saurin AT, Higgins JMG. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Sci Rep 2018; 8:7898. [PMID: 29785044 PMCID: PMC5962532 DOI: 10.1038/s41598-018-26307-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
SiR-Hoechst (SiR-DNA) is a far-red fluorescent DNA probe being used widely for time-lapse imaging of living cells that is reported to be minimally toxic at concentrations as high as 10-25 µM. However, measuring nuclear import of Cyclin B1, inhibition of mitotic entry, and the induction of γH2AX foci in cultured human cells reveals that SiR-Hoechst induces DNA damage responses and G2 arrest at concentrations well below 1 µM. SiR-Hoechst is useful for live cell imaging, but it should be used with caution and at the lowest practicable concentration.
Collapse
Affiliation(s)
- Onur Sen
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jonathan M G Higgins
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
131
|
The new normal of structure/function studies in the era of CRISPR/Cas9. Biochem J 2018; 475:1635-1642. [PMID: 29764955 DOI: 10.1042/bcj20170025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
Abstract
Major advances in gene-editing technologies have enabled the rapid dissection of proteins in complex biological systems, facilitating biological experiments to complement biochemical studies with purified components. In this editorial, we highlight CRISPR/Cas9-based strategies to rapidly manipulate endogenous genes - strategies that have already transformed functional studies of proteins in metazoan systems. We further describe emerging tools using a catalytically dead version of Cas9 (dCas9) that do not cleave DNA, but can alter gene expression and/or local chromatin states, edit single nucleotide bases, and permit the visualization of specific genomic loci. Looking to the not-too-distant future, CRISPR/Cas9-based methodologies promise to lead to discoveries of new biology, opening the door for bold new synthetic biology platforms.
Collapse
|
132
|
McKinley KL. Employing CRISPR/Cas9 genome engineering to dissect the molecular requirements for mitosis. Methods Cell Biol 2018; 144:75-105. [PMID: 29804684 DOI: 10.1016/bs.mcb.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The faithful execution of cell division requires the coordinated action of hundreds of gene products. Precisely perturbing these gene products in cells is central to understanding their functions during normal cell division, and the contributions of their disruption to disease. Here, we describe experimental approaches for using CRISPR/Cas9 for gene disruption and modification, with a focus on human cell culture. We describe strategies for inducible gene disruption to generate acute knockouts of essential cell division genes, which can be modified for the chronic elimination of nonessential genes. We also describe strategies for modifying the genome to generate protein fusions to report on and modify protein behavior. These tools facilitate investigation of protein function, dissection of protein assembly networks, and analyses of disease-associated mutations.
Collapse
Affiliation(s)
- Kara L McKinley
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
133
|
Berto A, Yu J, Morchoisne-Bolhy S, Bertipaglia C, Vallee R, Dumont J, Ochsenbein F, Guerois R, Doye V. Disentangling the molecular determinants for Cenp-F localization to nuclear pores and kinetochores. EMBO Rep 2018; 19:embr.201744742. [PMID: 29632243 DOI: 10.15252/embr.201744742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/02/2018] [Accepted: 03/08/2018] [Indexed: 11/09/2022] Open
Abstract
Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 β-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.
Collapse
Affiliation(s)
- Alessandro Berto
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Ecole Doctorale Structure et Dynamique des Systèmes Vivants (#577), Univ Paris Sud, Université Paris-Saclay, Orsay, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | | | - Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Richard Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Julien Dumont
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Francoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Valérie Doye
- Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
134
|
Yi Q, Chen Q, Liang C, Yan H, Zhang Z, Xiang X, Zhang M, Qi F, Zhou L, Wang F. HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep 2018; 19:embr.201745484. [PMID: 29491004 DOI: 10.15252/embr.201745484] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/09/2023] Open
Abstract
Heterochromatin protein-1 (HP1) is a key component of heterochromatin. Reminiscent of the cohesin complex which mediates sister-chromatid cohesion, most HP1 proteins in mammalian cells are displaced from chromosome arms during mitotic entry, whereas a pool remains at the heterochromatic centromere region. The function of HP1 at mitotic centromeres remains largely elusive. Here, we show that double knockout (DKO) of HP1α and HP1γ causes defective mitosis progression and weakened centromeric cohesion. While mutating the chromoshadow domain (CSD) prevents HP1α from protecting sister-chromatid cohesion, centromeric targeting of HP1α CSD alone is sufficient to rescue the cohesion defects in HP1 DKO cells. Interestingly, HP1-dependent cohesion protection requires Haspin, an antagonist of the cohesin-releasing factor Wapl. Moreover, HP1α CSD directly binds the N-terminal region of Haspin and facilitates its centromeric localization. The need for HP1 in cohesion protection can be bypassed by centromeric targeting of Haspin or inhibiting Wapl activity. Taken together, these results reveal a redundant role for HP1α and HP1γ in the protection of centromeric cohesion through promoting Haspin localization at mitotic centromeres in mammalian cells.
Collapse
Affiliation(s)
- Qi Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Qinfu Chen
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Cai Liang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Haiyan Yan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Zhenlei Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Xingfeng Xiang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Miao Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Feifei Qi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Linli Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| |
Collapse
|
135
|
Hueschen CL, Kenny SJ, Xu K, Dumont S. NuMA recruits dynein activity to microtubule minus-ends at mitosis. eLife 2017; 6. [PMID: 29185983 PMCID: PMC5706958 DOI: 10.7554/elife.29328] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 10/22/2017] [Indexed: 12/14/2022] Open
Abstract
To build the spindle at mitosis, motors exert spatially regulated forces on microtubules. We know that dynein pulls on mammalian spindle microtubule minus-ends, and this localized activity at ends is predicted to allow dynein to cluster microtubules into poles. How dynein becomes enriched at minus-ends is not known. Here, we use quantitative imaging and laser ablation to show that NuMA targets dynactin to minus-ends, localizing dynein activity there. NuMA is recruited to new minus-ends independently of dynein and more quickly than dynactin; both NuMA and dynactin display specific, steady-state binding at minus-ends. NuMA localization to minus-ends involves a C-terminal region outside NuMA’s canonical microtubule-binding domain and is independent of minus-end binders γ-TuRC, CAMSAP1, and KANSL1/3. Both NuMA’s minus-end-binding and dynein-dynactin-binding modules are required to rescue focused, bipolar spindle organization. Thus, NuMA may serve as a mitosis-specific minus-end cargo adaptor, targeting dynein activity to minus-ends to cluster spindle microtubules into poles. Every time a cell divides, it needs to duplicate its DNA and evenly distribute it between the two new ‘daughter’ cells. To move and distribute DNA, the cell builds a large machine called a spindle, which is made of stiff cables called microtubules. Many proteins, including a motor called dynein, help to organize the spindle’s microtubules. One of dynein’s jobs is to cluster all microtubules at the two tips of the spindle, pulling them into shape. Without this clustering, spindles have the wrong shape and structure and can make mistakes when moving DNA. Microtubules have a ‘plus’ end and a ‘minus’ end, and motor proteins usually only travel in one specified direction. Dynein, for example, moves towards the minus end of microtubules, which is where most of the clustering happens. It can form a complex with other proteins that help clustering, one of which is called NuMA. Until now, it was thought that dynein transports NuMA to the minus ends. To test this model, Hueschen et al. studied dividing human cells under a microscope and isolated minus ends with the help of a laser. The experiments showed that, in fact, NuMA gets to minus ends independently of dynein. Once it is on the minus ends, NuMA grabs hold of another protein complex called dynactin, which then gathers dynein. Dynein then pulls the spindles into shape from the minus ends. When NuMA was experimentally removed from the cells, dynein-dynactin complexes were scattered along the entire length of the microtubule instead of pulling specifically on minus-ends, which resulted in disorganized spindles. Thus, where dynein complexes pull determines what spindle shape they build. Hueschen et al. also showed that dynein complexes only pull on minus-ends while the cell divides, which makes sense, because NuMA remains hidden in the cell nucleus for the rest of the time. Together, these results suggest that NuMA makes sure dynein pulls specifically on the minus-ends of the microtubules to tighten the spindle at the right time. A next step will be to test how the mechanical properties of the spindle are changed without dynein pulling on minus-ends. A better knowledge of how different proteins work together to build the spindle and help cells divide can help us understand what goes wrong when cells divide abnormally, as in the case of cancer cells.
Collapse
Affiliation(s)
- Christina L Hueschen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
136
|
Monda JK, Whitney IP, Tarasovetc EV, Wilson-Kubalek E, Milligan RA, Grishchuk EL, Cheeseman IM. Microtubule Tip Tracking by the Spindle and Kinetochore Protein Ska1 Requires Diverse Tubulin-Interacting Surfaces. Curr Biol 2017; 27:3666-3675.e6. [PMID: 29153323 DOI: 10.1016/j.cub.2017.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/02/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
The macromolecular kinetochore functions to generate interactions between chromosomal DNA and spindle microtubules [1]. To facilitate chromosome movement and segregation, kinetochores must maintain associations with both growing and shrinking microtubule ends. It is critical to define the proteins and their properties that allow kinetochores to associate with dynamic microtubules. The kinetochore-localized human Ska1 complex binds to microtubules and tracks with depolymerizing microtubule ends [2]. We now demonstrate that the Ska1 complex also autonomously tracks with growing microtubule ends in vitro, a key property that would allow this complex to act at kinetochores to mediate persistent associations with dynamic microtubules. To define the basis for Ska1 complex interactions with dynamic microtubules, we investigated the tubulin-binding properties of the Ska1 microtubule binding domain. In addition to binding to the microtubule lattice and dolastatin-induced protofilament-like structures, we demonstrate that the Ska1 microtubule binding domain can associate with soluble tubulin heterodimers and promote assembly of oligomeric ring-like tubulin structures. We generated mutations on distinct surfaces of the Ska1 microtubule binding domain that disrupt binding to soluble tubulin but do not prevent microtubule binding. These mutants display compromised microtubule tracking activity in vitro and result in defective chromosome alignment and mitotic progression in cells using a CRISPR/Cas9-based replacement assay. Our work supports a model in which multiple surfaces of Ska1 interact with diverse tubulin substrates to associate with dynamic microtubule polymers and facilitate optimal chromosome segregation.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA
| | - Ekaterina V Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | | | - Ronald A Milligan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
137
|
Bohaciakova D, Renzova T, Fedorova V, Barak M, Kunova Bosakova M, Hampl A, Cajanek L. An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System. Stem Cells Dev 2017; 26:1521-1527. [PMID: 28835165 DOI: 10.1089/scd.2017.0058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.
Collapse
Affiliation(s)
- Dasa Bohaciakova
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Tereza Renzova
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Veronika Fedorova
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | - Martin Barak
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| | | | - Ales Hampl
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic .,3 International Clinical Research Center, St. Anne's University Hospital , Brno, Czech Republic
| | - Lukas Cajanek
- 1 Department of Histology and Embryology, Masaryk University , Brno, Czech Republic
| |
Collapse
|
138
|
King A, Li L, Wong DM, Liu R, Bamford R, Strasser A, Tarlinton DM, Heierhorst J. Dynein light chain regulates adaptive and innate B cell development by distinctive genetic mechanisms. PLoS Genet 2017; 13:e1007010. [PMID: 28922373 PMCID: PMC5619840 DOI: 10.1371/journal.pgen.1007010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/28/2017] [Accepted: 09/07/2017] [Indexed: 11/29/2022] Open
Abstract
Mechanistic differences in the development and function of adaptive, high-affinity antibody-producing B-2 cells and innate-like, “natural” antibody-producing B-1a cells remain poorly understood. Here we show that the multi-functional dynein light chain (DYNLL1/LC8) plays important roles in the establishment of B-1a cells in the peritoneal cavity and in the ongoing development of B-2 lymphoid cells in the bone marrow of mice. Epistasis analyses indicate that Dynll1 regulates B-1a and early B-2 cell development in a single, linear pathway with its direct transcriptional activator ASCIZ (ATMIN/ZNF822), and that the two genes also have complementary functions during late B-2 cell development. The B-2 cell defects caused by loss of DYNLL1 were associated with lower levels of the anti-apoptotic protein BCL-2, and could be supressed by deletion of pro-apoptotic BIM which is negatively regulated by both DYNLL1 and BCL-2. Defects in B cell development caused by loss of DYNLL1 could also be partially suppressed by a pre-arranged SWHELIgm-B cell receptor transgene. In contrast to the rescue of B-2 cell numbers, the B-1a cell deficiency in Dynll1-deleted mice could not be suppressed by the loss of Bim, and was further compounded by the SWHEL transgene. Conversely, oncogenic MYC expression, which is synthetic lethal with Dynll1 deletion in B-2 cells, did not further reduce B-1a cell numbers in Dynll1-defcient mice. Finally, we found that the ASCIZ-DYNLL1 axis was also required for the early-juvenile development of aggressive MYC-driven and p53-deficient B cell lymphomas. These results identify ASCIZ and DYNLL1 as the core of a transcriptional circuit that differentially regulates the development of the B-1a and B-2 B lymphoid cell lineages and plays a critical role in lymphomagenesis. Antibody-producing B cells can be segregated into two major populations: The better known conventional B-2 cells typically produce high-affinity and mono-specific antibodies, but only after they encounter a particular pathogen or in response to vaccines. In contrast, the B-1a cells constitutively produce lower-affinity broad-specificity “natural” antibodies that serve as a preemptive defense against a wide range of microbes. Here we reveal that the transcription factor ASCIZ and its target DYNLL1 are essential for mice to have a normally sized pool of B-1a cells in place shortly after birth. We show that these two factors function in a single linear pathway during the development of B-1a cells. This interaction represents a rare example where the activity of a transcription factor, in this case ASCIZ, can be explained by the effects of a single target gene, in this case Dynll1. While ASCIZ and DYNLL1 are also required for producing normal numbers of B-2 cells, we discovered that they regulate B-1a cells and B-2 cells by distinct genetic mechanisms. Finally, we found that ASCIZ also contributes to the early onset of B-1a B cell-derived lymphoid cancers in juvenile mice. The results provide insight into the development of an important cell population of the immune system.
Collapse
Affiliation(s)
- Ashleigh King
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - Lingli Li
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
| | - David M. Wong
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rui Liu
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Rebecca Bamford
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Andreas Strasser
- Molecular Genetics of Cancer Division, The Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Jörg Heierhorst
- Molecular Genetics Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine (St. Vincent’s Health), University of Melbourne, Fitzroy, Victoria, Australia
- * E-mail:
| |
Collapse
|
139
|
Üretmen Kagıalı ZC, Şentürk A, Özkan Küçük NE, Qureshi MH, Özlü N. Proteomics in Cell Division. Proteomics 2017; 17. [PMID: 28548456 DOI: 10.1002/pmic.201600100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/07/2017] [Indexed: 11/08/2022]
Abstract
Cell division requires a coordinated action of the cell cycle machinery, cytoskeletal elements, chromosomes, and membranes. Cell division studies have greatly benefitted from the mass spectrometry (MS)-based proteomic approaches for probing the biochemistry of highly dynamic complexes and their coordination with each other as a cell progresses into division. In this review, the authors first summarize a wide-range of proteomic studies that focus on the identification of sub-cellular components/protein complexes of the cell division machinery including kinetochores, mitotic spindle, midzone, and centrosomes. The authors also highlight MS-based large-scale analyses of the cellular components that are largely understudied during cell division such as the cell surface and lipids. Then, the authors focus on posttranslational modification analyses, especially phosphorylation and the resulting crosstalk with other modifications as a cell undergoes cell division. Combining proteomic approaches that probe the biochemistry of cell division components with functional genomic assays will lead to breakthroughs toward a systems-level understanding of cell division.
Collapse
Affiliation(s)
| | - Aydanur Şentürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Mohammad Haroon Qureshi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.,Biomedical Sciences and Engineering, Koç University, Istanbul, Turkey
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
140
|
Kern DM, Monda JK, Su KC, Wilson-Kubalek EM, Cheeseman IM. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. eLife 2017; 6:26866. [PMID: 28841134 PMCID: PMC5602300 DOI: 10.7554/elife.26866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | | | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
141
|
Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 2017; 216:3179-3198. [PMID: 28814570 PMCID: PMC5626540 DOI: 10.1083/jcb.201701024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
End-binding proteins regulate the dynamics and function of microtubule plus ends by recruiting a plethora of diverse factors. Yang et al. show that EB1 and EB3 also affect microtubule minus ends by participating in their attachment to Golgi membranes. This function is important for cell polarity and migration. End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3–myomegalin complex, which acts as membrane–microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.
Collapse
Affiliation(s)
- Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yao Yao
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ihor Smal
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Meijering
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Robert Z Qi
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
142
|
Nishimura K, Fukagawa T. An efficient method to generate conditional knockout cell lines for essential genes by combination of auxin-inducible degron tag and CRISPR/Cas9. Chromosome Res 2017; 25:253-260. [PMID: 28589221 DOI: 10.1007/s10577-017-9559-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 05/20/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023]
Abstract
Generation of cells with a loss-of-function mutation in a gene (knockout cells) is a valuable technique for studying the function of a given gene product. However, if the product of the target gene is essential for cell viability, conditional knockout cell lines must be generated. Recently, as gene editing technology using CRISPR/Cas9 has developed, it has become possible to produce conditional knockout cell lines using this technique. However, to obtain final conditional knockout cell lines, it is necessary to perform several experiments with multiple complicated steps. In this paper, we introduce an easy and efficient method to generate conditional knockout cell lines based on combining auxin-inducible degron (AID) technology with CRISPR/Cas9 gene editing. Our method only requires performing a single transfection and is therefore an easy and rapid method to obtain a conditional knockout cell line.
Collapse
Affiliation(s)
- Kohei Nishimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|