101
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
102
|
Issad T, Pagesy P. [Protein O-GlcNAcylation and regulation of cell signalling: involvement in pathophysiology]. Biol Aujourdhui 2014; 208:109-17. [PMID: 25190571 DOI: 10.1051/jbio/2014015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Indexed: 11/14/2022]
Abstract
O-GlcNAcylation corresponds to the addition of N-acetyl glucosamine (GlcNAc) on serine or threonine residues of cytosolic and nuclear proteins. This reversible post-translational modification regulates protein phosphorylation, sub-cellular localisation, stability and activity. Only two enzymes, OGT (O-linked N-acetyl-glucosaminyltransferase) and OGA (O-linked N-acetyl-β-D glucosaminidase), control the addition and removal of GlcNAc from more than a thousand of proteins. Alternative splicing generates different isoforms of OGT and OGA, and address these enzymes to different sub-cellular compartments (mitochondria, cytosol...), restraining their action to specific subsets of substrates. Moreover, interaction with adaptor proteins may also help address these enzymes to specific substrates. Alterations in protein O-GlcNAcylation have been observed in a number of important human diseases, such as Alzheimer, cancer and diabetes. A reciprocal relationship between Tau protein phosphorylation and O-GlcNAcylation has been observed, and decreased O-GlcNAcylation in the brain of patients with Alzheimer diseases may favour Tau aggregation, destabilisation of microtubules and neuronal alterations. Alterations in OGT/OGA expression levels, and in protein O-GlcNAcylation, have been described in different types of cancer, and much evidence indicates that O-GlcNAcylation may participate in abnormal proliferation and migration of cancer cells. O-GlcNAcylation of transcription factors and signalling effectors may also participate in defects observed in diabetes. Indeed, in situation of chronic hyperglycaemia, abnormal O-GlcNAcylation may have deleterious effect on insulin secretion and action, resulting in further impairment of glucose homeostasis. Therefore, O-GlcNAcylation appears to be a major regulator of cellular activities and may play an important part in different human diseases. However, because of the large spectrum of OGT and OGA substrates, targeting O-GlcNAc for treatment of these diseases will be a highly challenging task.
Collapse
Affiliation(s)
- Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France - INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France - INSERM, U1016, Paris, France
| |
Collapse
|
103
|
Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res 2014; 2014:137919. [PMID: 25019091 PMCID: PMC4082845 DOI: 10.1155/2014/137919] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/27/2014] [Indexed: 02/08/2023] Open
Abstract
Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS) and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH), respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, RES-314E, Fort Worth, TX 76107, USA
| |
Collapse
|
104
|
Kolybaba A, Classen AK. Sensing cellular states--signaling to chromatin pathways targeting Polycomb and Trithorax group function. Cell Tissue Res 2014; 356:477-93. [PMID: 24728925 DOI: 10.1007/s00441-014-1824-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
Cells respond to extra- and intra-cellular signals by dynamically changing their gene expression patterns. After termination of the original signal, new expression patterns are maintained by epigenetic DNA and histone modifications. This represents a powerful mechanism that enables long-term phenotypic adaptation to transient signals. Adaptation of epigenetic landscapes is important for mediating cellular differentiation during development and allows adjustment to altered environmental conditions throughout life. Work over the last decade has begun to elucidate the way that extra- and intra-cellular signals lead to changes in gene expression patterns by directly modulating the function of chromatin-associated proteins. Here, we review key signaling-to-chromatin pathways that are specifically thought to target Polycomb and Trithorax group complexes, a classic example of epigenetically acting gene silencers and activators important in development, stem cell differentiation and cancer. We discuss the influence that signals triggered by kinase cascades, metabolic fluctuations and cell-cycle dynamics have on the function of these protein complexes. Further investigation into these pathways will be important for understanding the mechanisms that maintain epigenetic stability and those that promote epigenetic plasticity.
Collapse
Affiliation(s)
- Addie Kolybaba
- Ludwig Maximilians University Munich, Faculty of Biology, Grosshaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany
| | | |
Collapse
|
105
|
Affiliation(s)
- Maximillian A. Rogers
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., E.A.) and Center of Excellence in Vascular Biology (E.A.), Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences (M.A.R., E.A.) and Center of Excellence in Vascular Biology (E.A.), Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
106
|
Deng RP, He X, Guo SJ, Liu WF, Tao Y, Tao SC. Global identification of O-GlcNAc transferase (OGT) interactors by a human proteome microarray and the construction of an OGT interactome. Proteomics 2014; 14:1020-30. [PMID: 24536041 DOI: 10.1002/pmic.201300144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 11/10/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAcylation) is an important protein PTM, which is very abundant in mammalian cells. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT), whose substrate specificity is believed to be regulated through interactions with other proteins. There are a handful of known human OGT interactors, which is far from enough for fully elucidating the substrate specificity of OGT. To address this challenge, we used a human proteome microarray containing ~17,000 affinity-purified human proteins to globally identify OGT interactors and identified 25 OGT-binding proteins. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in intra-Golgi vesicle-mediated transport and vitamin biosynthetic processes. Combining newly identified OGT interactors with the interactors identified prior to this study, we have constructed the first OGT interactome. Bioinformatics analysis suggests that the OGT interactome plays important roles in protein transportation/localization and transcriptional regulation. The novel OGT interactors that we identified in this study could serve as a starting point for further functional analysis. Because of its high-throughput and parallel analysis capability, we strongly believe that protein microarrays could be easily applied for the global identification of regulators for other key enzymes.
Collapse
Affiliation(s)
- Rui-Ping Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, P. R. China
| | | | | | | | | | | |
Collapse
|
107
|
Ma J, Hart GW. O-GlcNAc profiling: from proteins to proteomes. Clin Proteomics 2014; 11:8. [PMID: 24593906 PMCID: PMC4015695 DOI: 10.1186/1559-0275-11-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/01/2014] [Indexed: 11/16/2022] Open
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) onto serine and threonine residues of proteins is an important post-translational modification (PTM), which is involved in many crucial biological processes including transcription, translation, proteasomal degradation, and signal transduction. Aberrant protein O-GlcNAcylation is directly linked to the pathological progression of chronic diseases including diabetes, cancer, and neurodegenerative disorders. Identification, site mapping, and quantification of O-GlcNAc proteins are a prerequisite to decipher their functions. In this review, we mainly focus on technological developments regarding O-GlcNAc protein profiling. Specifically, on one hand, we show how these techniques are being used for the comprehensive characterization of certain targeted proteins in which biologists are most interested. On the other hand, we present several newly developed approaches for O-GlcNAcomic profiling as well as how they provide us with a systems perspective to crosstalk amongst different PTMs and complicated biological events. Promising technical trends are also highlighted to evoke more efforts by diverse laboratories, which would further expand our understanding of the physiological and pathological roles of protein O-GlcNAcylation in chronic diseases.
Collapse
Affiliation(s)
| | - Gerald W Hart
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA.
| |
Collapse
|
108
|
Vaidyanathan K, Durning S, Wells L. Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit Rev Biochem Mol Biol 2014; 49:140-163. [PMID: 24524620 PMCID: PMC4912837 DOI: 10.3109/10409238.2014.884535] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a regulatory post-translational modification of intracellular proteins. The dynamic and inducible cycling of the modification is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in response to UDP-GlcNAc levels in the hexosamine biosynthetic pathway (HBP). Due to its reliance on glucose flux and substrate availability, a major focus in the field has been on how O-GlcNAc contributes to metabolic disease. For years this post-translational modification has been known to modify thousands of proteins implicated in various disorders, but direct functional connections have until recently remained elusive. New research is beginning to reveal the specific mechanisms through which O-GlcNAc influences cell dynamics and disease pathology including clear examples of O-GlcNAc modification at a specific site on a given protein altering its biological functions. The following review intends to focus primarily on studies in the last half decade linking O-GlcNAc modification of proteins with chromatin-directed gene regulation, developmental processes, and several metabolically related disorders including Alzheimer's, heart disease and cancer. These studies illustrate the emerging importance of this post-translational modification in biological processes and multiple pathophysiologies.
Collapse
Affiliation(s)
| | - Sean Durning
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| |
Collapse
|
109
|
Cieniewski-Bernard C, Dupont E, Richard E, Bastide B. Phospho-GlcNAc modulation of slow MLC2 during soleus atrophy through a multienzymatic and sarcomeric complex. Pflugers Arch 2014; 466:2139-51. [DOI: 10.1007/s00424-014-1453-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/12/2023]
|
110
|
A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology. PLoS One 2014; 9:e85082. [PMID: 24465478 PMCID: PMC3894948 DOI: 10.1371/journal.pone.0085082] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/22/2013] [Indexed: 12/20/2022] Open
Abstract
Objective The objective of the current study was to find a metabolic signature associated with the early manifestations of type-2 diabetes mellitus. Research Design and Method Modern metabolic profiling technology (MxP™ Broad Profiling) was applied to find early alterations in the plasma metabolome of type-2 diabetic patients. The results were validated in an independent study. Eicosanoid and single inon monitoring analysis (MxP™ Eicosanoid and MxP™ SIM analysis) were performed in subsets of samples. Results A metabolic signature including significantly increased levels of glyoxylate as a potential novel marker for early detection of type-2 diabetes mellitus was identified in an initial study (Study1). The signature was significantly altered in fasted diabetic and pre-diabetic subjects and in non-fasted subjects up to three years prior to the diagnosis of type-2 diabetes; most alterations were also consistently found in an independent patient group (Study 2). In Study 2 diabetic and most control subjects suffered from heart failure. In Study 1 a subgroup of diabetic subjects, with a history of use of anti-hypertensive medication further showed a more pronounced increase of glyoxylate levels, compared to a non-diabetic control group when tested in a hyperglycemic state. In the context of a prior history of anti-hypertensive medication, alterations in hexosamine and eicosanoid levels were also found. Conclusion A metabolic signature including glyoxylate was associated with type-2 diabetes mellitus, independent of the fasting status and of occurrence of another major disease. The same signature was also found to be associated with pre-diabetic subjects. Glyoxylate levels further showed a specifically strong increase in a subgroup of diabetic subjects. It could represent a new marker for the detection of medical subgroups of diabetic subjects.
Collapse
|
111
|
Myslicki JP, Shearer J, Hittel DS, Hughey CC, Belke DD. O-GlcNAc modification is associated with insulin sensitivity in the whole blood of healthy young adult males. Diabetol Metab Syndr 2014; 6:96. [PMID: 25228926 PMCID: PMC4164748 DOI: 10.1186/1758-5996-6-96] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/27/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Hemoglobin A1c (HbA1c) is the predominant diagnostic tool for diabetes diagnosis and progression. However, it has proven to be insensitive at pre-diabetic threshold values. O-linked-β-N-acetylglucosamine (O-GlcNAc) modification has emerged as a sensitive biomarker. The purpose of this study was to explore the sensitivity of O-GlcNAc expression as a potential marker of early metabolic dysfunction in a young adult population. Healthy, young males (18-35 y) from the Assessing Inherited Metabolic syndrome Markers in the Young study (AIMMY), were divided into low (LH,0.60) or high (HH,1.61) homeostatic model assessment of insulin resistance (HOMA-IR) cohorts. FINDINGS The relationships between a panel of anthropometric, metabolic measures and whole blood global protein O-GlcNAc was examined. O-GlcNAc and O-GlcNAc transferase (OGT) levels were quantified by immunoblotting and compared to anthropometric measures: body mass index (BMI), percentage body fat, aerobic fitness, blood glucose, triglycerides, HDL, insulin, and HbA1c. HOMA-IR cohorts showed no differences in BMI, blood glucose or HbA1c, but differed in percent body fat, plasma triglycerides, and circulating insulin. Greater O-GlcNAc expression was observed in the whole blood of HH compared to LH. Moreover, a positive association between HOMA-IR and O-GlcNAc emerged, while no relationship was found between HbA1c and HOMA-IR. This effect was not related to OGT expression. CONCLUSIONS Results indicate that O-GlcNAc has a greater sensitivity to metabolic status compared to HbA1c in this population. O-GlcNAc has the potential to serve as a screening tool for predicting future metabolic disturbances in a young healthy adult population free of any clinically relevant pathologies.
Collapse
Affiliation(s)
- Jason P Myslicki
- />Faculty of Kinesiology, University of Calgary, 3300 University Drive NW, Calgary, Alberta T2N 4N1 Canada
| | - Jane Shearer
- />Faculty of Kinesiology, University of Calgary, 3300 University Drive NW, Calgary, Alberta T2N 4N1 Canada
- />Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Dustin S Hittel
- />Faculty of Kinesiology, University of Calgary, 3300 University Drive NW, Calgary, Alberta T2N 4N1 Canada
| | - Curtis C Hughey
- />Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4 Canada
| | - Darrell D Belke
- />Faculty of Kinesiology, University of Calgary, 3300 University Drive NW, Calgary, Alberta T2N 4N1 Canada
| |
Collapse
|
112
|
Dehennaut V, Leprince D, Lefebvre T. O-GlcNAcylation, an Epigenetic Mark. Focus on the Histone Code, TET Family Proteins, and Polycomb Group Proteins. Front Endocrinol (Lausanne) 2014; 5:155. [PMID: 25309514 PMCID: PMC4176146 DOI: 10.3389/fendo.2014.00155] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/14/2014] [Indexed: 01/18/2023] Open
Abstract
There are increasing evidences that dietary components and metabolic disorders affect gene expression through epigenetic mechanisms. These observations support the notion that epigenetic reprograming-linked nutrition is connected to the etiology of metabolic diseases and cancer. During the last 5 years, accumulating data revealed that the nutrient-sensing O-GlcNAc glycosylation (O-GlcNAcylation) may be pivotal in the modulation of chromatin remodeling and in the regulation of gene expression by being part of the "histone code," and by identifying OGT (O-GlcNAc transferase) as an interacting partner of the TET family proteins of DNA hydroxylases and as a member of the polycomb group proteins. Thus, it is suggested that O-GlcNAcylation is a post-translational modification that links nutrition to epigenetic. This review summarizes recent findings about the interplay between O-GlcNAcylation and the epigenome and enlightens the contribution of the glycosylation to epigenetic reprograming.
Collapse
Affiliation(s)
- Vanessa Dehennaut
- Structural and Functional Glycobiology Unit, Lille 1 University, Villeneuve d’Ascq, France
- Institut de Biologie de Lille, Pasteur Institute of Lille, Université Lille Nord de France, Lille, France
| | - Dominique Leprince
- Institut de Biologie de Lille, Pasteur Institute of Lille, Université Lille Nord de France, Lille, France
| | - Tony Lefebvre
- Structural and Functional Glycobiology Unit, Lille 1 University, Villeneuve d’Ascq, France
- *Correspondence: Tony Lefebvre, CNRS-UMR 8576, Lille 1 University, cité scientifique, Bat C9, 59655 Vileneuve d’Ascq, France e-mail:
| |
Collapse
|
113
|
Baudoin L, Issad T. O-GlcNAcylation and Inflammation: A Vast Territory to Explore. Front Endocrinol (Lausanne) 2014; 5:235. [PMID: 25620956 PMCID: PMC4288382 DOI: 10.3389/fendo.2014.00235] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 12/18/2014] [Indexed: 01/04/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification that regulates the activities of cytosolic and nuclear proteins according to glucose availability. This modification appears to participate in several hyperglycemia-associated complications. An important feature of metabolic diseases such as diabetes and obesity is the presence of a low-grade chronic inflammation that causes numerous complications. Hyperglycemia associated with the metabolic syndrome is known to promote inflammatory processes through different mechanisms including oxidative stress and abnormally elevated protein O-GlcNAcylation. However, the role of O-GlcNAcylation on inflammation remains contradictory. O-GlcNAcylation associated with hyperglycemia has been shown to increase nuclear factor κB (NFκB) transcriptional activity through different mechanisms. This could contribute in inflammation-associated diabetic complications. However, in other conditions such as acute vascular injury, O-linked N-acetyl glucosamine (O-GlcNAc) also exerts anti-inflammatory effects via inhibition of the NFκB pathway, suggesting a complex regulation of inflammation by O-GlcNAc. Moreover, whereas macrophages and monocytes exposed to high glucose for a long-term period developed a pro-inflammatory phenotype, the impact of O-GlcNAcylation in these cells remains unclear. A future challenge will be to clearly establish the role of O-GlcNAcylation in pro- and anti-inflammatory functions in macrophages.
Collapse
Affiliation(s)
- Léa Baudoin
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
| | - Tarik Issad
- UMR8104, CNRS, Institut Cochin, Université Paris Descartes, Paris, France
- U1016, INSERM, Paris, France
- *Correspondence: Tarik Issad, Department of Endocrinology, Metabolism and Diabetes, Institute Cochin, 22 rue Méchain, Paris 75014, France e-mail:
| |
Collapse
|
114
|
Maury JJP, Ng D, Bi X, Bardor M, Choo ABH. Multiple Reaction Monitoring Mass Spectrometry for the Discovery and Quantification of O-GlcNAc-Modified Proteins. Anal Chem 2013; 86:395-402. [DOI: 10.1021/ac401821d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| | - Daniel Ng
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Xuezhi Bi
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Muriel Bardor
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Université de Rouen, Laboratoire Glycobiologie et Matrice
Extracellulaire Végétale (Glyco-MEV) EA 4358, Institut
de Recherche et d’Innovation Biomédicale (IRIB), Faculté
des Sciences et Techniques, 76821 Mont-Saint-Aignan Cédex, France
| | - Andre Boon-Hwa Choo
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department
of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 119077
| |
Collapse
|
115
|
Fardini Y, Masson E, Boudah O, Ben Jouira R, Cosson C, Pierre-Eugene C, Kuo MS, Issad T. O-GlcNAcylation of FoxO1 in pancreatic β cells promotes Akt inhibition through an IGFBP1-mediated autocrine mechanism. FASEB J 2013; 28:1010-21. [PMID: 24174424 DOI: 10.1096/fj.13-238378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-GlcNAcylation on serine/threonine is a post-translational modification that controls the activity of nucleocytoplasmic proteins according to glucose availability. We previously showed that O-GlcNAcylation of FoxO1 in liver cells increases its transcriptional activity. In the present study, we evaluated the potential involvement of FoxO1 O-GlcNAcylation in the context of pancreatic β-cell glucotoxicity. FoxO1 was O-GlcNAcylated in INS-1 832/13 β cells and isolated rat pancreatic islets. O-GlcNAcylation of FoxO1 resulted in a 2-fold increase in its transcriptional activity toward a FoxO1 reporter gene and a 3-fold increase in the expression of the insulin-like growth factor-binding protein 1 (Igfbp1) gene at the mRNA level, resulting in IGFBP1 protein oversecretion by the cells. Of note, increased IGFBP1 in the culture medium inhibited the activity of the insulin-like growth factor 1 receptor (IGF1R)/phosphatidyl inositol 3 kinase (PI3K)/Akt pathway. We reveal in this report a novel mechanism by which O-GlcNAcylation inhibits Akt activity through an autocrine mechanism. However, although inhibition of IGFBP1 expression using siRNA restored the PI3 kinase/Akt pathway, it did not rescue INS-1 832/13 cells from high-glucose- or O-glcNAcylation-induced cell death. In contrast, FoxO1 down-regulation by siRNA led to 30 to 60% protection of INS-1 832/13 cells from death mediated by glucotoxic conditions. Therefore, whereas FoxO1 O-GlcNAcylation inhibits Akt through an IGFBP1-mediated autocrine pathway, the deleterious effects of FoxO1 O-GlcNAcylation on cell survival appeared to be independent of this pathway.
Collapse
Affiliation(s)
- Yann Fardini
- 1Department of Endocrinology, Metabolism, and Diabetes, Institut Cochin, 22 rue Méchain, 75014, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Hughey CC, Ma L, James FD, Bracy DP, Wang Z, Wasserman DH, Rottman JN, Hittel DS, Shearer J. Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart. Cardiovasc Diabetol 2013; 12:128. [PMID: 24007410 PMCID: PMC3847505 DOI: 10.1186/1475-2840-12-128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/30/2013] [Indexed: 12/28/2022] Open
Abstract
Background This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. Methods C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. Results MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. Conclusions These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 2500 University Drive N,W,, Calgary, AB, Canada, T2N 1N4.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugène C, Masson E, Hampe C, Issad T. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 2013; 8:e69150. [PMID: 23935944 PMCID: PMC3730543 DOI: 10.1371/journal.pone.0069150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine
residues) is a post-translational modification that regulates stability,
activity or localization of cytosolic and nuclear proteins. O-linked
N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the
hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc
from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent
evidences suggest that O-GlcNAcylation may affect the growth of cancer cells.
However, the consequences of O-GlcNAcylation on anti-cancer therapy have not
been evaluated. In this work, we studied the effects of O-GlcNAcylation on
tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells.
Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected
MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT
expression by siRNA potentiated the effect of tamoxifen on cell death. Since the
PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to
evaluate the effect of PUGNAc+glucosamine on PIP3 production. We
observed that these treatments stimulated PIP3 production in MCF-7
cells. This effect was associated with an increase in Akt phosphorylation.
However, the PI-3 kinase inhibitor LY294002, which abolished the effect of
PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects
of PUGNAc+glucosamine against tamoxifen-induced cell death. These results
suggest that the protective effects of O-GlcNAcylation are independent of the
PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen
receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine
on the expression of this receptor. We observed that O-GlcNAcylation-inducing
treatment significantly reduced the expression of ERα mRNA and protein,
suggesting a potential mechanism for the decreased tamoxifen sensitivity induced
by these treatments. Therefore, our results suggest that inhibition of
O-GlcNAcylation may constitute an interesting approach to improve the
sensitivity of breast cancer to anti-estrogen therapy.
Collapse
Affiliation(s)
- Shahzina Kanwal
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Thierry N’Tumba-Byn
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Elodie Masson
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
118
|
Dennis MD, Shenberger JS, Stanley BA, Kimball SR, Jefferson LS. Hyperglycemia mediates a shift from cap-dependent to cap-independent translation via a 4E-BP1-dependent mechanism. Diabetes 2013; 62:2204-14. [PMID: 23434932 PMCID: PMC3712054 DOI: 10.2337/db12-1453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the translational regulatory protein 4E-BP1 alters hepatic gene expression through a process involving the selection of mRNA for translation. In both streptozotocin (STZ)-treated mice and cells in culture exposed to hyperglycemic conditions, expression of 4E-BP1 and its interaction with the mRNA cap-binding protein eIF4E were enhanced in conjunction with downregulation of cap-dependent and concomitant upregulation of cap-independent mRNA translation, as assessed by a bicistronic luciferase reporter assay. Phlorizin treatment of STZ-treated mice lowered blood glucose concentrations and reduced activity of the cap-independent reporter. Notably, the glucose-induced shift from cap-dependent to cap-independent mRNA translation did not occur in cells lacking 4E-BP1. The extensive nature of this shift in translational control of gene expression was revealed using pulsed stable isotope labeling by amino acids in cell culture to identify proteins that undergo altered rates of synthesis in response to hyperglycemia. Taken together, these data provide evidence for a novel mechanism whereby O-GlcNAcylation of 4E-BP1 mediates translational control of hepatic gene expression.
Collapse
Affiliation(s)
- Michael D. Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| | - Jeffrey S. Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and the
| | - Bruce A. Stanley
- Department of Microbiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
- Corresponding author: Scot R. Kimball,
| | - Leonard S. Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| |
Collapse
|
119
|
Maury JJP, Chan KKK, Zheng L, Bardor M, Choo ABH. Excess of O-linked N-acetylglucosamine modifies human pluripotent stem cell differentiation. Stem Cell Res 2013; 11:926-37. [PMID: 23859804 DOI: 10.1016/j.scr.2013.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 06/06/2013] [Accepted: 06/13/2013] [Indexed: 11/27/2022] Open
Abstract
O-linked-N-acetylglucosamine (O-GlcNAc), a post translational modification, has emerged as an important cue in controlling key cell mechanisms. Here, we investigate O-GlcNAc's role in the maintenance and differentiation of human pluripotent stem cells (hPSC). We reveal that protein expression of O-GlcNAc transferase and hydrolase both decreases during hPSC differentiation. Upregulating O-GlcNAc with O-GlcNAc hydrolase inhibitors has no significant effect on either the maintenance of pluripotency in hPSC culture, or the loss of pluripotency in differentiating hPSC. However, in spontaneously differentiating hPSC, excess O-GlcNAc alters the expression of specific lineage markers: decrease of ectoderm markers (PAX6 by 53-88%, MSX1 by 26-49%) and increase of adipose-related mesoderm markers (PPARγ by 28-100%, C/EBPα by 46-135%). All other lineage markers tested (cardiac, visceral-endoderm, trophectoderm) remain minimally affected by upregulated O-GlcNAc. Interestingly, we also show that excess O-GlcNAc triggers a feedback mechanism that increases O-GlcNAc hydrolase expression by 29-91%. To the best of our knowledge, this is the first report demonstrating that excess O-GlcNAc does not affect hPSC pluripotency in undifferentiated maintenance cultures; instead, it restricts the hPSC differentiation towards specific cell lineages. These data will be useful for developing targeted differentiation protocols and aid in understanding the effects of O-GlcNAc on hPSC differentiation.
Collapse
Affiliation(s)
- Julien Jean Pierre Maury
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | | | | | | | | |
Collapse
|
120
|
Abstract
To maintain homeostasis under variable nutrient conditions, cells rapidly and robustly respond to fluctuations through adaptable signaling networks. Evidence suggests that the O-linked N-acetylglucosamine (O-GlcNAc) posttranslational modification of serine and threonine residues functions as a critical regulator of intracellular signaling cascades in response to nutrient changes. O-GlcNAc is a highly regulated, reversible modification poised to integrate metabolic signals and acts to influence many cellular processes, including cellular signaling, protein stability, and transcription. This review describes the role O-GlcNAc plays in governing both integrated cellular processes and the activity of individual proteins in response to nutrient levels. Moreover, we discuss the ways in which cellular changes in O-GlcNAc status may be linked to chronic diseases such as type 2 diabetes, neurodegeneration, and cancers, providing a unique window through which to identify and treat disease conditions.
Collapse
Affiliation(s)
- Michelle R. Bond
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|
121
|
Hewagama A, Gorelik G, Patel D, Liyanarachchi P, McCune WJ, Somers E, Gonzalez-Rivera T, Strickland F, Richardson B. Overexpression of X-linked genes in T cells from women with lupus. J Autoimmun 2013; 41:60-71. [PMID: 23434382 DOI: 10.1016/j.jaut.2012.12.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
Women develop lupus more frequently than men and the reason remains incompletely understood. Evidence that men with Klinefelter's Syndrome (XXY) develop lupus at approximately the same rate as women suggests that a second X chromosome contributes. However, since the second X is normally inactivated, how it predisposes to lupus is unclear. DNA methylation contributes to the silencing of one X chromosome in women, and CD4+ T cell DNA demethylation contributes to the development of lupus-like autoimmunity. This suggests that demethylation of genes on the inactive X may predispose women to lupus, and this hypothesis is supported by a report that CD40LG, an immune gene encoded on the X chromosome, demethylates and is overexpressed in T cells from women but not men with lupus. Overexpression of other immune genes on the inactive X may also predispose women to this disease. We therefore compared mRNA and miRNA expression profiles in experimentally demethylated T cells from women and men as well as in T cells from women and men with lupus. T cells from healthy men and women were treated with the DNA methyltransferase inhibitor 5-azacytidine, then X-linked mRNAs were surveyed with oligonucleotide arrays, and X-linked miRNA's surveyed with PCR arrays. CD40LG, CXCR3, OGT, miR-98, let-7f-2*, miR 188-3p, miR-421 and miR-503 were among the genes overexpressed in women relative to men. MiRNA target prediction analyses identified CBL, which downregulates T cell receptor signaling and is decreased in lupus T cells, as a gene targeted by miR-188-3p and miR-98. Transfection with miR-98 and miR-188-3p suppressed CBL expression. The same mRNA and miRNA transcripts were also demethylated and overexpressed in CD4+ T cells from women relative to men with active lupus. Together these results further support a role for X chromosome demethylation in the female predisposition to lupus.
Collapse
Affiliation(s)
- Anura Hewagama
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Fardini Y, Dehennaut V, Lefebvre T, Issad T. O-GlcNAcylation: A New Cancer Hallmark? Front Endocrinol (Lausanne) 2013; 4:99. [PMID: 23964270 PMCID: PMC3740238 DOI: 10.3389/fendo.2013.00099] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 12/11/2022] Open
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification consisting in the addition of a sugar moiety to serine/threonine residues of cytosolic or nuclear proteins. Catalyzed by O-GlcNAc-transferase (OGT) and removed by O-GlcNAcase, this dynamic modification is dependent on environmental glucose concentration. O-GlcNAcylation regulates the activities of a wide panel of proteins involved in almost all aspects of cell biology. As a nutrient sensor, O-GlcNAcylation can relay the effects of excessive nutritional intake, an important cancer risk factor, on protein activities and cellular functions. Indeed, O-GlcNAcylation has been shown to play a significant role in cancer development through different mechanisms. O-GlcNAcylation and OGT levels are increased in different cancers (breast, prostate, colon…) and vary during cell cycle progression. Modulating their expression or activity can alter cancer cell proliferation and/or invasion. Interestingly, major oncogenic factors have been shown to be directly O-GlcNAcylated (p53, MYC, NFκB, β-catenin…). Furthermore, chromatin dynamics is modulated by O-GlcNAc. DNA methylation enzymes of the Tet family, involved epigenetic alterations associated with cancer, were recently found to interact with and target OGT to multi-molecular chromatin-remodeling complexes. Consistently, histones are subjected to O-GlcNAc modifications which regulate their function. Increasing number of evidences point out the central involvement of O-GlcNAcylation in tumorigenesis, justifying the attention received as a potential new approach for cancer treatment. However, comprehension of the underlying mechanism remains at its beginnings. Future challenge will be to address directly the role of O-GlcNAc-modified residues in oncogenic-related proteins to eventually propose novel strategies to alter cancer development and/or progression.
Collapse
Affiliation(s)
- Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
| | - Vanessa Dehennaut
- CNRS/UMR 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche IFR 147, Lille 1 University, Villeneuve d’Ascq, France
| | - Tony Lefebvre
- CNRS/UMR 8576, Unit of Structural and Functional Glycobiology, Institut Fédératif de Recherche IFR 147, Lille 1 University, Villeneuve d’Ascq, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris, France
- INSERM, U1016, Paris, France
- *Correspondence: Tarik Issad, Department of Endocrinology, Metabolism and Diabetes, Institut Cochin, 22 rue Méchain, 75014 Paris, France e-mail:
| |
Collapse
|
123
|
Springhorn C, Matsha TE, Erasmus RT, Essop MF. Exploring leukocyte O-GlcNAcylation as a novel diagnostic tool for the earlier detection of type 2 diabetes mellitus. J Clin Endocrinol Metab 2012; 97:4640-9. [PMID: 23066116 DOI: 10.1210/jc.2012-2229] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT Because current tests available for the diagnosis of diabetes have shortcomings, a novel screening method for the earlier and more efficient detection of type 2 diabetes would be a significant clinical advance. OBJECTIVE The hexosamine biosynthetic pathway usually acts as a fuel sensor, and its activation leads to O-linked β-N-acetylglucosamine (O-GlcNAc) modification of target proteins (O-GlcNAcylation) in a glucose-responsive manner. O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) are responsible for O-GlcNAc addition and removal, respectively. Because higher hexosamine biosynthetic pathway flux is linked to insulin resistance/type 2 diabetes, we hypothesized that increased O-GlcNAcylation of leukocyte proteins can detect the onset of pre- and overt diabetes. DESIGN, SETTING AND PATIENTS Seventy-four participants from Bellville and Stellenbosch (Western Cape, South Africa) were recruited and classified as normal, prediabetic, and diabetic individuals (American Diabetes Association criteria). MAIN OUTCOME MEASURES Leukocytes isolated from study subjects were evaluated for O-GlcNAc, OGA, and O-GlcNAc transferase expression by flow cytometry and immunofluorescence microscopy. RESULTS Flow cytometric analysis of leukocyte subtypes revealed increased O-GlcNAcylation in granulocytes vs. lymphocytes (P < 0.001). Diabetic individuals displayed higher leukocyte O-GlcNAcylation (P < 0.01), whereas granulocyte analysis showed an increase for prediabetic subjects (P < 0.01). However, OGA expression increased in leukocytes of diabetic subjects and is likely an adaptation to attenuate higher O-GlcNAcylation observed (P < 0.001). CONCLUSIONS Together our data demonstrate that leukocyte (particularly granulocyte) O-GlcNAcylation could help detect pre- and overt diabetes and offer clinical value as unique markers for the earlier and more efficient detection of type 2 diabetes.
Collapse
Affiliation(s)
- Clare Springhorn
- Cardio-Metabolic Research Group, Department of Physiological Sciences, Stellenbosch University, Room 2005, Mike De Vries Building, Merriman Avenue, Stellenbosch 7600, South Africa
| | | | | | | |
Collapse
|
124
|
Johnsen VL, Belke DD, Hughey CC, Hittel DS, Hepple RT, Koch LG, Britton SL, Shearer J. Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity. Physiol Genomics 2012; 45:17-25. [PMID: 23132757 DOI: 10.1152/physiolgenomics.00111.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
O-linked β-N-acetyl glucosamine (O-GlcNAc) is a posttranslational modification consisting of a single N-acetylglucosamine moiety attached by an O-β-glycosidic linkage to serine and threonine residues of both nuclear and cytosolic proteins. Analogous to phosphorylation, the modification is reversible and dynamic, changing in response to stress, nutrients, hormones, and exercise. Aims of this study were to examine differences in O-GlcNAc protein modification in the cardiac tissue of rats artificially selected for low (LCR) or high (HCR) running capacity. Hyperinsulinemic-euglycemic clamps in conscious animals assessed insulin sensitivity while 2-[(14)C] deoxyglucose tracked both whole body and tissue-specific glucose disposal. Immunoblots of cardiac muscle examined global O-GlcNAc modification, enzymes that control its regulation (OGT, OGA), and specific proteins involved in mitochondrial oxidative phosphorylation. LCR rats were insulin resistant disposing of 65% less glucose than HCR. Global tissue O-GlcNAc, OGT, OGA, and citrate synthase were similar between groups. Analysis of cardiac proteins revealed enhanced O-GlcNAcylation of mitochondrial Complex I, Complex IV, VDAC, and SERCA in LCR compared with HCR. These results are the first to establish an increase in specific protein O-GlcNAcylation in LCR animals that may contribute to progressive mitochondrial dysfunction and the pathogenesis of insulin resistance observed in the LCR phenotype.
Collapse
Affiliation(s)
- Virginia L Johnsen
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Bennett CE, Johnsen VL, Shearer J, Belke DD. Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 2012; 92:657-63. [PMID: 23000101 DOI: 10.1016/j.lfs.2012.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/23/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
AIMS Increased protein O-GlcNAcylation occurs in response to increased availability of glucose and fatty acids and is a hallmark of diabetes. Previous studies have demonstrated an improvement in heart function associated with decreased protein O-GlcNAcylation. Our group has recently demonstrated a capacity for exercise to decrease protein O-GlcNAcylation in the heart of normal mice; however, the impact of such training under diabetic conditions has not been examined. MAIN METHODS Diabetes was induced in mice through injection of streptozotocin. Animals either remained sedentary or were subjected to 6 weeks of swim training protocol. At the end of 6 weeks in vivo cardiac function was assessed and the hearts were harvested for gene expression and Western blotting in relation to O-GlcNAcylation KEY FINDINGS Diabetes resulted in elevated blood glucose relative to non-diabetic mice. Relative to the sedentary diabetic group, the rate of relaxation (Tau) was significantly improved in the exercised group. Western blot analysis revealed an increase in protein O-GlcNAcylation in the diabetic group which was reversed through exercise despite persistent hyperglycemia. No change in the expression of O-GlcNAc transferase (OGT) was noted between sedentary and exercised diabetic mice; however an increase in the expression and activity of O-GlcNAcase (OGA) was apparent in the exercised group. SIGNIFICANCE This study demonstrates the potential for exercise training to decrease intracellular protein O-GlcNAcylation in the heart even under conditions of persistent hyperglycemia associated with diabetes. Our results suggest the beneficial effects of regular aerobic exercise extend beyond simple regulation of blood glucose levels.
Collapse
Affiliation(s)
- Catherine E Bennett
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
126
|
Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, Miyamoto T, Miyashita A, Kuwano R, Tanaka H. AlzPathway: a comprehensive map of signaling pathways of Alzheimer's disease. BMC SYSTEMS BIOLOGY 2012; 6:52. [PMID: 22647208 PMCID: PMC3411424 DOI: 10.1186/1752-0509-6-52] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/30/2012] [Indexed: 01/19/2023]
Abstract
Background Alzheimer’s disease (AD) is the most common cause of dementia among the elderly. To clarify pathogenesis of AD, thousands of reports have been accumulating. However, knowledge of signaling pathways in the field of AD has not been compiled as a database before. Description Here, we have constructed a publicly available pathway map called “AlzPathway” that comprehensively catalogs signaling pathways in the field of AD. We have collected and manually curated over 100 review articles related to AD, and have built an AD pathway map using CellDesigner. AlzPathway is currently composed of 1347 molecules and 1070 reactions in neuron, brain blood barrier, presynaptic, postsynaptic, astrocyte, and microglial cells and their cellular localizations. AlzPathway is available as both the SBML (Systems Biology Markup Language) map for CellDesigner and the high resolution image map. AlzPathway is also available as a web service (online map) based on Payao system, a community-based, collaborative web service platform for pathway model curation, enabling continuous updates by AD researchers. Conclusions AlzPathway is the first comprehensive map of intra, inter and extra cellular AD signaling pathways which can enable mechanistic deciphering of AD pathogenesis. The AlzPathway map is accessible at http://alzpathway.org/.
Collapse
Affiliation(s)
- Satoshi Mizuno
- Department of Bioinformatics, Tokyo Medical and Dental University, Yushima 1-5-45, Tokyo, 113-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens 2012; 25:514-23. [PMID: 22258336 DOI: 10.1038/ajh.2011.245] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The role of aldosterone in the pathogenesis of hypertension and cardiovascular diseases has been clearly shown in congestive heart failure and endocrine hypertension due to primary aldosteronism. In resistant hypertension, defined as a failure of concomitant use of three or more different classes of antihypertensive agents to control blood pressure (BP), add-on therapy with mineralocorticoid receptor (MR) antagonists is frequently effective, which we designate as "MR-associated hypertension". The MR-associated hypertension is classified into two subtypes, that with elevated plasma aldosterone levels and that with normal plasma aldosterone levels. The former subtype includes primary aldosteronism (PA), aldosterone-associated hypertension which exhibited elevated aldosterone-to-renin ratio and plasma aldosterone levels, but no PA, aldosterone breakthrough phenomenon elicited when angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin II receptor blocker (ARB) is continued to be given, and obstructive sleep apnea. In contrast, the latter subtype includes obesity, diabetes mellitus, chronic kidney disease (CKD), and polycystic ovary syndrome (PCOS). The pathogenesis of MR-associated hypertension with normal plasma aldosterone levels is considered to be mediated by MR activation by pathways other than high aldosterone levels, such as increased MR levels, increased MR sensitivity, and MR overstimulation by other factors such as Rac1. For resistant hypertension with high plasma aldosterone levels, MR antagonist should be given as a first-line therapy, whereas for resistant hypertension with normal aldosterone levels, ARB or ACE-I should be given as a first-line therapy and MR antagonist would be given as an add-on agent.
Collapse
|
128
|
Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012; 2012:918267. [PMID: 22611498 PMCID: PMC3348526 DOI: 10.1155/2012/918267] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/18/2011] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes.
Collapse
Affiliation(s)
| | | | - Christopher G. Kevil
- Department of Pathology, LSU Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|