101
|
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J Nanobiotechnology 2024; 22:41. [PMID: 38281957 PMCID: PMC10823703 DOI: 10.1186/s12951-024-02298-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Malignancy is a major public health problem and among the leading lethal diseases worldwide. Although the current tumor treatment methods have therapeutic effect to a certain extent, they still have some shortcomings such as poor water solubility, short half-life, local and systemic toxicity. Therefore, how to deliver therapeutic agent so as to realize safe and effective anti-tumor therapy become a problem urgently to be solved in this field. As a medium of information exchange and material transport between cells, exosomes are considered to be a promising drug delivery carrier due to their nano-size, good biocompatibility, natural targeting, and easy modification. In this review, we summarize recent advances in the isolation, identification, drug loading, and modification of exosomes as drug carriers for tumor therapy alongside their application in tumor therapy. Basic knowledge of exosomes, such as their biogenesis, sources, and characterization methods, is also introduced herein. In addition, challenges related to the use of exosomes as drug delivery vehicles are discussed, along with future trends. This review provides a scientific basis for the application of exosome delivery systems in oncological therapy.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shaohong Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Lanjie Lei
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
102
|
Lan G, Song Q, Luan Y, Cheng Y. Targeted strategies to deliver boron agents across the blood-brain barrier for neutron capture therapy of brain tumors. Int J Pharm 2024; 650:123747. [PMID: 38151104 DOI: 10.1016/j.ijpharm.2023.123747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Boron neutron capture therapy (BNCT), as an innovative radiotherapy technology, has demonstrated remarkable outcomes when compared to conventional treatments in the management of recurrent and refractory brain tumors. However, in BNCT of brain tumors, the blood-brain barrier is a main stumbling block for restricting the transport of boron drugs to brain tumors, while the tumor targeting and retention of boron drugs also affect the BNCT effect. This review focuses on the recent development of strategies for delivering boron drugs crossing the blood-brain barrier and targeting brain tumors, providing new insights for the development of efficient boron drugs for the treatment of brain tumors.
Collapse
Affiliation(s)
- Gongde Lan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qingxu Song
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuxia Luan
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Boron Neutron Capture Therapy Medical Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
103
|
Cai Q, Fan H, Li X, Giannotta M, Bachoo R, Qin Z. Optical Modulation of the Blood-Brain Barrier for Glioblastoma Treatment. Bio Protoc 2024; 14:e4920. [PMID: 38268976 PMCID: PMC10804243 DOI: 10.21769/bioprotoc.4920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/26/2024] Open
Abstract
The blood-brain barrier (BBB) is a major obstacle to the diagnostics and treatment of many central nervous system (CNS) diseases. A prime example of this challenge is seen in glioblastoma (GBM), the most aggressive and malignant primary brain tumor. The BBB in brain tumors, or the blood-brain-tumor barrier (BBTB), prevents the efficient delivery of most therapeutics to brain tumors. Current strategies to overcome the BBB for therapeutic delivery, such as using hyperosmotic agents (mannitol), have impeded progress in clinical translation limited by the lack of spatial resolution, high incidences of complications, and potential for toxicity. Focused ultrasound combined with intravenously administered microbubbles enables the transient disruption of the BBB and has progressed to early-phase clinical trials. However, the poor survival with currently approved treatments for GBM highlights the compelling need to develop and validate treatment strategies as well as the screening for more potent anticancer drugs. In this protocol, we introduce an optical method to open the BBTB (OptoBBTB) for therapeutic delivery via ultrashort pulse laser stimulation of vascular targeting plasmonic gold nanoparticles (AuNPs). Specifically, the protocol includes the synthesis and characterization of vascular-targeting AuNPs and a detailed procedure of optoBBTB. We also report the downstream characterization of the drug delivery and tumor treatment efficacy after BBB modulation. Compared with other barrier modulation methods, our optical approach has advantages in high spatial resolution and minimally invasive access to tissues. Overall, optoBBTB allows for the delivery of a variety of therapeutics into the brain and will accelerate drug delivery and screening for CNS disease treatment. Key features • Pulsed laser excitation of vascular-targeting gold nanoparticles non-invasively and reversibly modulates the blood-brain barrier permeability. • OptoBBTB enhances drug delivery in clinically relevant glioblastoma models. • OptoBBTB has the potential for drug screening and evaluation for superficial brain tumor treatment.
Collapse
Affiliation(s)
- Qi Cai
- Department of Mechanical Engineering, The University
of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biological and Agricultural
Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Hanwen Fan
- Department of Mechanical Engineering, The University
of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xiaoqing Li
- Department of Bioengineering, The University of Texas
at Dallas, Richardson, TX, 75080, USA
| | - Monica Giannotta
- FIRC Institute of Molecular Oncology Foundation
(IFOM), 20139 Milan, Italy
- Division of Immunology, Transplantation and
Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan,
Italy
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center,
University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas
Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University
of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas
at Dallas, Richardson, TX, 75080, USA
- The Center for Advanced Pain Studies, The University
of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, The
University of Texas at Southwestern Medical Center, Dallas, TX, 75080, USA
| |
Collapse
|
104
|
Bataille Backer P, Adekiya TA, Kim Y, Reid TER, Thomas M, Adesina SK. Development of a Targeted SN-38-Conjugate for the Treatment of Glioblastoma. ACS OMEGA 2024; 9:2615-2628. [PMID: 38250376 PMCID: PMC10795035 DOI: 10.1021/acsomega.3c07486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and fatal brain tumor, with approximately 10,000 people diagnosed every year in the United States alone. The typical survival period for individuals with glioblastoma ranges from 12 to 18 months, with significant recurrence rates. Common therapeutic modalities for brain tumors are chemotherapy and radiotherapy. The main challenges with chemotherapy for the treatment of glioblastoma are high toxicity, poor selectivity, and limited accumulation of therapeutic anticancer agents in brain tumors as a result of the presence of the blood-brain barrier. To overcome these challenges, researchers have explored strategies involving the combination of targeting peptides possessing a specific affinity for overexpressed cell-surface receptors with conventional chemotherapy agents via the prodrug approach. This approach results in the creation of peptide drug conjugates (PDCs), which facilitate traversal across the blood-brain barrier (BBB), enable preferential accumulation of chemotherapy within the neoplastic microenvironment, and selectively target cancerous cells. This approach increases accumulation in tumors, thereby improving therapeutic efficiency and minimizing toxicity. Leveraging the affinity of the HAIYPRH (T7) peptide for the transferrin receptor (TfR) overexpressed on the blood-brain barrier and glioma cells, a novel T7-SN-38 peptide drug conjugate was developed. The T7-SN-38 peptide drug conjugate demonstrates about a 2-fold reduction in glide score (binding affinity) compared to T7 while maintaining a comparable orientation within the TfR target site using Schrödinger-2022-3 Maestro 13.3 for ligand preparation and Glide SP-Peptide docking. Additionally, SN-38 extends into a solvent-accessible region, enhancing its susceptibility to protease hydrolysis at the cathepsin B (Cat B) cleavable site. The SN-38-ether-peptide drug conjugate displayed high stability in buffer at physiological pH, and cleavage of the conjugate to release free cytotoxic SN-38 was observed in the presence of exogenous cathepsin B. The synthesized peptide drug conjugate exhibited potent cytotoxic activities in cellular models of glioblastoma in vitro. In addition, blocking transferrin receptors using the free T7 peptide resulted in a notable inhibition of cytotoxicity of the conjugate, which was reversed when exogenous cathepsin B was added to cells. This work demonstrates the potential for targeted drug delivery to the brain in the treatment of glioblastoma using the transferrin receptor-targeted T7-SN-38 conjugate.
Collapse
Affiliation(s)
| | - Tayo Alex Adekiya
- Department
of Pharmaceutical Sciences, Howard University, Washington D.C. 20059, United States
| | - Yushin Kim
- Department
of Pharmaceutical Sciences, Concordia University
of Wisconsin, Mequon, Wisconsin 53097-2402, United States
| | - Terry-Elinor R. Reid
- Department
of Pharmaceutical Sciences, Concordia University
of Wisconsin, Mequon, Wisconsin 53097-2402, United States
| | - Michael Thomas
- Department
of Biology, Howard University, Washington D.C. 20059, United States
| | - Simeon K. Adesina
- Department
of Pharmaceutical Sciences, Howard University, Washington D.C. 20059, United States
| |
Collapse
|
105
|
Gupta RK, Niklasson M, Bergström T, Segerman A, Betsholtz C, Westermark B. Tumor-specific migration routes of xenotransplanted human glioblastoma cells in mouse brain. Sci Rep 2024; 14:864. [PMID: 38195678 PMCID: PMC10776844 DOI: 10.1038/s41598-023-51063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024] Open
Abstract
The migration of neural progenitor cells (NPCs) to their final destination during development follows well-defined pathways, such as along blood vessels. Cells originating from the highly malignant tumor glioblastoma (GBM) seem to exploit similar routes for infiltrating the brain parenchyma. In this report, we have examined the migration of GBM cells using three-dimensional high-resolution confocal microscopy in brain tumors derived from eight different human GBM cell lines xenografted into immunodeficient mice. The primary invasion routes identified were long-distance migration along white matter tracts and local migration along blood vessels. We found that GBM cells in the majority of tumors (6 out of 8) did not exhibit association with blood vessels. These tumors, derived from low lamin A/C expressing GBM cells, were comparatively highly diffusive and invasive. Conversely, in 2 out of 8 tumors, we noted perivascular invasion and displacement of astrocyte end-feet. These tumors exhibited less diffusive migration, grew as solid tumors, and were distinguished by elevated expression of lamin A/C. We conclude that the migration pattern of glioblastoma is distinctly tumor cell-specific. Furthermore, the ability to invade the confined spaces within white matter tracts may necessitate low expression of lamin A/C, contributing to increased nuclear plasticity. This study highlights the role of GBM heterogeneity in driving the aggressive growth of glioblastoma.
Collapse
Affiliation(s)
- Rajesh Kumar Gupta
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mia Niklasson
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Bergström
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Segerman
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institutet Flemingsberg Campus, Huddinge, Sweden
| | - Bengt Westermark
- Deparment of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
106
|
Pinkiewicz M, Pinkiewicz M, Walecki J, Zaczyński A, Zawadzki M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood-Brain Barrier Disruption. Cancers (Basel) 2024; 16:236. [PMID: 38201663 PMCID: PMC10778052 DOI: 10.3390/cancers16010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The blood-brain barrier (BBB) poses a significant challenge to drug delivery for brain tumors, with most chemotherapeutics having limited permeability into non-malignant brain tissue and only restricted access to primary and metastatic brain cancers. Consequently, due to the drug's inability to effectively penetrate the BBB, outcomes following brain chemotherapy continue to be suboptimal. Several methods to open the BBB and obtain higher drug concentrations in tumors have been proposed, with the selection of the optimal method depending on the size of the targeted tumor volume, the chosen therapeutic agent, and individual patient characteristics. Herein, we aim to comprehensively describe osmotic disruption with intra-arterial drug administration, intrathecal/intraventricular administration, laser interstitial thermal therapy, convection-enhanced delivery, and ultrasound methods, including high-intensity focused and low-intensity ultrasound as well as tumor-treating fields. We explain the scientific concept behind each method, preclinical/clinical research, advantages and disadvantages, indications, and potential avenues for improvement. Given that each method has its limitations, it is unlikely that the future of BBB disruption will rely on a single method but rather on a synergistic effect of a combined approach. Disruption of the BBB with osmotic infusion or high-intensity focused ultrasound, followed by the intra-arterial delivery of drugs, is a promising approach. Real-time monitoring of drug delivery will be necessary for optimal results.
Collapse
Affiliation(s)
- Miłosz Pinkiewicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wrocław, Poland
| | - Mateusz Pinkiewicz
- Department of Diagnostic Imaging, Mazowiecki Regional Hospital in Siedlce, 08-110 Siedlce, Poland
| | - Jerzy Walecki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Artur Zaczyński
- Department of Neurosurgery, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Michał Zawadzki
- Division of Interventional Neuroradiology, Department of Radiology, The National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Department of Radiology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| |
Collapse
|
107
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Chhokar A, Yadav J, Chaudhary A, Thakur K, Singh T, Bharti AC. Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability. Cardiovasc Hematol Agents Med Chem 2024; 22:187-211. [PMID: 37936455 DOI: 10.2174/0118715257250417231019102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
108
|
Santiago-Vicente Y, de Jesús Castillejos-López M, Carmona-Aparicio L, Coballase-Urrutia E, Velasco-Hidalgo L, Niembro-Zúñiga AM, Zapata-Tarrés M, Torres-Espíndola LM. Immunotherapy for Pediatric Gliomas: CAR-T Cells Against B7H3: A Review of the Literature. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:420-430. [PMID: 37038673 DOI: 10.2174/1871527322666230406094257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND B7H3 is a co-stimulatory molecule for immune reactions found on the surface of tumor cells in a wide variety of tumors. Preclinical and clinical studies have reported it as a tumor target towards which various immunotherapy modalities could be directed. So far, good results have been obtained in hematological neoplasms; however, a contrasting situation is evident in solid tumors, including those of the CNS, which show high refractoriness to current treatments. The appearance of cellular immunotherapies has transformed oncology due to the reinforcement of the immune response that is compromised in people with cancer. OBJECTIVE This article aims to review the literature to describe the advancement in knowledge on B7H3 as a target of CAR-T cells in pediatric gliomas to consider them as an alternative in the treatment of these patients. RESULTS Although B7H3 is considered a suitable candidate as a target agent for various immunotherapy techniques, there are still limitations in using CAR-T cells to achieve the desired success. CONCLUSION Results obtained with CAR-T cells can be further improved by the suggested proposals; therefore, more clinical trials are needed to study this new therapy in children with gliomas.
Collapse
Affiliation(s)
- Yolanda Santiago-Vicente
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México
| | | | | | | | | | | | - Marta Zapata-Tarrés
- Head of Research Coordination at Mexican Social Security Institute Foundation, Mexico City, México
| | | |
Collapse
|
109
|
Ereej N, Hameed H, Khan MA, Faheem S, Hameed A. Nanoparticle-based Gene Therapy for Neurodegenerative Disorders. Mini Rev Med Chem 2024; 24:1723-1745. [PMID: 38676491 DOI: 10.2174/0113895575301011240407082559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024]
Abstract
Neurological disorders present a formidable challenge in modern medicine due to the intricate obstacles set for the brain and the multipart nature of genetic interventions. This review article delves into the promising realm of nanoparticle-based gene therapy as an innovative approach to addressing the intricacies of neurological disorders. Nanoparticles (NPs) provide a multipurpose podium for the conveyance of therapeutic genes, offering unique properties such as precise targeting, enhanced stability, and the potential to bypass blood-brain barrier (BBB) restrictions. This comprehensive exploration reviews the current state of nanoparticle-mediated gene therapy in neurological disorders, highlighting recent advancements and breakthroughs. The discussion encompasses the synthesis of nanoparticles from various materials and their conjugation to therapeutic genes, emphasizing the flexibility in design that contributes to specific tissue targeting. The abstract also addresses the low immunogenicity of these nanoparticles and their stability in circulation, critical factors for successful gene delivery. While the potential of NP-based gene therapy for neurological disorders is vast, challenges and gaps in knowledge persist. The lack of extensive clinical trials leaves questions about safety and potential side effects unanswered. Therefore, this abstract emphasizes the need for further research to validate the therapeutic applications of NP-mediated gene therapy and to address nanosafety concerns. In conclusion, nanoparticle-based gene therapy emerges as a promising avenue in the pursuit of effective treatments for neurological disorders. This abstract advocates for continued research efforts to bridge existing knowledge gaps, unlocking the full potential of this innovative approach and paving the way for transformative solutions in the realm of neurological health.
Collapse
Affiliation(s)
- Nelofer Ereej
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
- Institute of Clinical and Experimental Pharmacology and Toxicology, University of Lubeck 23566 Lubeck, Germany
| | - Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan
| |
Collapse
|
110
|
Zhang P, Kuil LE, Buil LCM, Freriks S, Beijnen JH, van Tellingen O, de Gooijer MC. Acquired and intrinsic resistance to vemurafenib in BRAF V600E -driven melanoma brain metastases. FEBS Open Bio 2024; 14:96-111. [PMID: 37953496 PMCID: PMC10761933 DOI: 10.1002/2211-5463.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BRAFV600 -mutated melanoma brain metastases (MBMs) are responsive to BRAF inhibitors, but responses are generally less durable than those of extracranial metastases. We tested the hypothesis that the drug efflux transporters P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2) expressed at the blood-brain barrier (BBB) offer MBMs protection from therapy. We intracranially implanted A375 melanoma cells in wild-type (WT) and Abcb1a/b;Abcg2-/- mice, characterized the tumor BBB, analyzed drug levels in plasma and brain lesions after oral vemurafenib administration, and determined the efficacy against brain metastases and subcutaneous lesions. Although contrast-enhanced MRI demonstrated that the integrity of the BBB is disrupted in A375 MBMs, vemurafenib achieved greater antitumor efficacy against MBMs in Abcb1a/b;Abcg2-/- mice compared with WT mice. Concordantly, P-gp and BCRP are expressed in MBM-associated brain endothelium both in patients and in A375 xenografts and expression of these transporters limited vemurafenib penetration into A375 MBMs. Although initially responsive, A375 MBMs rapidly developed therapy resistance, even in Abcb1a/b;Abcg2-/- mice, and this was unrelated to pharmacokinetic or target inhibition issues. Taken together, we demonstrate that both intrinsic and acquired resistance can play a role in MBMs.
Collapse
Affiliation(s)
- Ping Zhang
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityChina
- Shandong Provincial Key Laboratory of Brain Function Remodeling, Qilu HospitalShandong UniversityChina
| | - Laura Esmee Kuil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Division of Psychosocial Sciences and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Levi Conrad Maria Buil
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Stephan Freriks
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos Hendrik Beijnen
- Department of Pharmacy and PharmacologyThe Netherlands Cancer Institute/MC Slotervaart HospitalAmsterdamThe Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityThe Netherlands
| | - Olaf van Tellingen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Mouse Cancer ClinicThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Mark Cornelis de Gooijer
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Faculty of Biology, Medicine and HealthUniversity of ManchesterUK
- The Christie NHS Foundation TrustManchesterUK
| |
Collapse
|
111
|
Wang W, Zhang Y, Jian Y, He S, Liu J, Cheng Y, Zheng S, Qian Z, Gao X, Wang X. Sensitizing chemotherapy for glioma with fisetin mediated by a microenvironment-responsive nano-drug delivery system. NANOSCALE 2023; 16:97-109. [PMID: 38087978 DOI: 10.1039/d3nr05195a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Drug resistance has become an obstacle to successful cancer chemotherapies, with therapeutic agents effectively traversing the blood-brain barrier (BBB) remaining a great challenge. A microenvironment responsive and active targeting nanoparticle was constructed to enhance the penetration of drugs, leading to improved therapeutic effects. Dynamic light scattering demonstrated that the prepared nanoparticle had a uniform size. The cRGD modification renders the nanoparticle with active targeting capabilities to traverse the BBB for chemotherapy. The disulfide-bond-containing nanoparticle can be disintegrated in response to a high concentration of endogenous glutathione (GSH) within the tumor microenvironment (TME) for tumor-specific drug release, resulting in more effective accumulation. Notably, the released fisetin further increased the uptake of doxorubicin by glioma cells and exerted synergistic effects to promote apoptosis, induce cellular G2/M cycle arrest, and inhibit cell proliferation and migration in vitro. Moreover, the nanoparticle showed favorable anti-glioma effects in vivo. Our study provides a new strategy to overcome drug resistance by utilizing a natural product to sensitize conventional chemotherapeutics with well-designed targeted nanodelivery systems for cancer treatment.
Collapse
Affiliation(s)
- Wanyu Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yuanyuan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Jian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Shi He
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Jiagang Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongzhong Cheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Songping Zheng
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Zhiyong Qian
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Gao
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Xiang Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
112
|
Ramos-Fresnedo A, Al-Kharboosh R, Twohy EL, Basil AN, Szymkiewicz EC, Zubair AC, Trifiletti DM, Durand N, Dickson DW, Middlebrooks EH, Abarbanel DN, Tzeng SY, Almeida JP, Chaichana KL, Green JJ, Sherman WJ, Quiñones-Hinojosa A. Phase 1, Dose Escalation, Nonrandomized, Open-Label, Clinical Trial Evaluating the Safety and Preliminary Efficacy of Allogenic Adipose-Derived Mesenchymal Stem Cells for Recurrent Glioblastoma: A Clinical Trial Protocol. NEUROSURGERY PRACTICE 2023; 4:e00062. [PMID: 38464470 PMCID: PMC10923529 DOI: 10.1227/neuprac.0000000000000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 02/18/2025]
Abstract
Background and Objectives Despite standard of care with maximal safe resection and chemoradiation, glioblastoma is the most common and aggressive type of primary brain cancer. Surgical resection provides a window of opportunity to locally treat gliomas while the patient is recovering, and before initiating concomitant chemoradiation. To assess the safety and establish the maximum tolerated dose of adipose-derived mesenchymal stem cells (AMSCs) for the treatment of recurrent glioblastoma (GBM). Secondary objectives are to assess the toxicity profile and long-term survival outcomes of patients enrolled in the trial. Additionally, biospecimens will be collected to explore the local and systemic responses to this therapy. Methods We will conduct a phase 1, dose escalated, non-randomized, open label, clinical trial of GBM patients who are undergoing surgical resection for recurrence. Up to 18 patients will receive intra-cavitary application of AMSCs encapsulated in fibrin glue during surgical resection. All patients will be followed for up to 5 years for safety and survival data. Adverse events will be recorded using the CTCAE V5.0. Expected Outcomes This study will explore the maximum tolerated dose (MTD) of AMSCs along with the toxicity profile of this therapy in patients with recurrent GBM. Additionally, preliminary long-term survival and progression-free survival outcome analysis will be used to power further randomized studies. Lastly, CSF and blood will be obtained throughout the treatment period to investigate circulating molecular and inflammatory tumoral/stem cell markers and explore the mechanism of action of the therapeutic intervention. Discussion This prospective translational study will determine the initial safety and toxicity profile of local delivery of AMSCs for recurrent GBM. It will also provide additional survival metrics for future randomized trials.
Collapse
Affiliation(s)
| | | | - Erin L. Twohy
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Abba C. Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Nisha Durand
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, Florida, USA
| | - Dennis W. Dickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Erik H. Middlebrooks
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Jacksonville, Florida, USA
| | - David N. Abarbanel
- Department of Neurology, Neuro-Oncology Division, Mayo Clinic, Jacksonville, Florida, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wendy J. Sherman
- Department of Neurology, Neuro-Oncology Division, Mayo Clinic, Jacksonville, Florida, USA
| | | |
Collapse
|
113
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
114
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
115
|
Xiao Z, Li J, Liang C, Liu Y, Zhang Y, Zhang Y, Liu Q, Yan X. Identification of M5c regulator-medicated methylation modification patterns for prognosis and immune microenvironment in glioma. Aging (Albany NY) 2023; 15:12275-12295. [PMID: 37934565 PMCID: PMC10683591 DOI: 10.18632/aging.205179] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023]
Abstract
Glioma is a common intracranial tumor and is generally associated with poor prognosis. Recently, numerous studies illustrated the importance of 5-methylcytosine (m5C) RNA modification to tumorigenesis. However, the prognostic value and immune correlation of m5C in glioma remain unclear. We obtained RNA expression and clinical information from The Cancer Genome Atlas (TCGA) and The Chinese Glioma Genome Atlas (CGGA) datasets to analyze. Nonnegative matrix factorization (NMF) was used to classify patients into two subgroups and compare these patients in survival and clinicopathological characteristics. CIBERSORT and single-sample gene-set algorithm (ssGSEA) methods were used to investigate the relationship between m5C and the immune environment. The Weighted correlation network analysis (WGCNA) and univariate Cox proportional hazard model (CoxPH) were used to construct a m5C-related signature. Most of m5C RNA methylation regulators presented differential expression and prognostic values. There were obvious relationships between immune infiltration cells and m5C regulators, especially NSUN7. In the m5C-related module from WGCNA, we found SEPT3, CHI3L1, PLBD1, PHYHIPL, SAMD8, RAP1B, B3GNT5, RER1, PTPN7, SLC39A1, and MXI1 were prognostic factors for glioma, and they were used to construct the signature. The great significance of m5C-related signature in predicting the survival of patients with glioma was confirmed in the validation sets and CGGA cohort.
Collapse
Affiliation(s)
- Zhenyong Xiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Jinwei Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Cong Liang
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yamei Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxiu Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Yuxia Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Quan Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
| | - Xianlei Yan
- Department of Neurosurgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou 545000, Guangxi, China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| |
Collapse
|
116
|
Mellinger A, Lubitz LJ, Gazaille C, Leneweit G, Bastiat G, Lépinoux-Chambaud C, Eyer J. The use of liposomes functionalized with the NFL-TBS.40-63 peptide as a targeting agent to cross the in vitro blood-brain barrier and target glioblastoma cells. Int J Pharm 2023; 646:123421. [PMID: 37722495 DOI: 10.1016/j.ijpharm.2023.123421] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Glioblastoma is the most common and aggressive brain tumor. Current treatments do not allow to cure the patients. This is partly due to the blood-brain barrier (BBB), which limits the delivery of drugs to the pathological site. To overcome this, we developed liposomes functionalized with a neurofilament-derived peptide, NFL-TBS.40-63 (NFL), known for its highly selective targeting of glioblastoma cells. First, in vitro BBB model was developed to check whether the NFL can also promote barrier crossing in addition to its active targeting capacity. Permeability experiments showed that the NFL peptide was able to cross the BBB. Moreover, when the BBB was in a pathological situation, i.e., an in vitro blood-brain tumor barrier (BBTB), the passage of the NFL peptide was greater while maintaining its glioblastoma targeting capacity. When the NFL peptide was associated to liposomes, it enhanced their ability to be internalized into glioblastoma cells after passage through the BBTB, compared to liposomes without NFL. The cellular uptake of liposomes was limited in the endothelial cell monolayer in comparison to the glioblastoma one. These data indicated that the NFL peptide is a promising cell-penetrating peptide tool when combined with drug delivery systems for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Adélie Mellinger
- GlioCure SA, Angers, France; Univ Angers, Inserm, CNRS, MINT, Angers, France.
| | | | | | | | | | | | - Joël Eyer
- Univ Angers, Inserm, CNRS, MINT, Angers, France.
| |
Collapse
|
117
|
Song X, Qian H, Yu Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302613. [PMID: 37415556 DOI: 10.1002/smll.202302613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glioblastoma is one of the most aggressive central nervous system malignancies with high morbidity and mortality. Current clinical approaches, including surgical resection, radiotherapy, and chemotherapy, are limited by the difficulty of targeting brain lesions accurately, leading to disease recurrence and fatal outcomes. The lack of effective treatments has prompted researchers to continuously explore novel therapeutic strategies. In recent years, nanomedicine has made remarkable progress and expanded its application in brain drug delivery, providing a new treatment for brain tumors. Against this background, this article reviews the application and progress of nanomedicine delivery systems in brain tumors. In this paper, the mechanism of nanomaterials crossing the blood-brain barrier is summarized. Furthermore, the specific application of nanotechnology in glioblastoma is discussed in depth.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230011, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, 230011, China
| | - Yongqiang Yu
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| |
Collapse
|
118
|
Yin N, Wang Y, Liu Y, Niu R, Zhang S, Cao Y, Lv Z, Song S, Liu X, Zhang H. A Cholesterol Metabolic Regulated Hydrogen-Bonded Organic Framework (HOF)-Based Biotuner for Antibody Non-Dependent Immunotherapy Tailored for Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303567. [PMID: 37466394 DOI: 10.1002/adma.202303567] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
The metabolic reprogramming of glioblastoma (GBM) poses a tremendous obstacle to effective immunotherapy due to its impact on the immunosuppressive microenvironment. In this work, a hydrogen-bonded organic framework (HOF) specifically designed for GBM immunotherapy is developed, taking advantage of the relatively isolated cholesterol metabolism microenvironment in the central nervous system (CNS). The HOF-based biotuner regulates extra/intracellular cholesterol metabolism, effectively blocking the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) pathway and reducing 2B4 expression. This metabolically disrupts the immunosuppressive microenvironment of GBM and rejuvenates CD8+ T cells. Moreover, cholesterol metabolism regulation offers additional benefits in treating GBM invasion. Furthermore, tumor microenvironment (TME)-initiated chemiexcited photodynamic therapy (PDT) is enhanced during the regulation of cholesterol metabolism, and the biotuner can effectively trigger immunogenic cell death (ICD) and increase the infiltration of cytotoxic T lymphocytes (CTLs) in GBM. By reversing the immunosuppressive microenvironment and bolstering chemiexcited-PDT, this approach invigorates efficient antibody non-dependent immunotherapy for GBM. This study provides a model for enhancing immunotherapy through cholesterol metabolism regulation and explores the feasibility of a "metabolic checkpoint" strategy in GBM treatment.
Collapse
Affiliation(s)
- Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Rui Niu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuai Zhang
- The First Hospital of Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Yue Cao
- The First Hospital of Jilin University, Changchun, Jilin, 130022, P. R. China
| | - Zhijia Lv
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
119
|
Angom RS, Nakka NMR, Bhattacharya S. Advances in Glioblastoma Therapy: An Update on Current Approaches. Brain Sci 2023; 13:1536. [PMID: 38002496 PMCID: PMC10669378 DOI: 10.3390/brainsci13111536] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a primary malignant brain tumor characterized by a high grade of malignancy and an extremely unfavorable prognosis. The current efficacy of established treatments for GBM is insufficient, necessitating the prompt development of novel therapeutic approaches. The progress made in the fundamental scientific understanding of GBM is swiftly translated into more advanced stages of therapeutic studies. Despite extensive efforts to identify new therapeutic approaches, GBM exhibits a high mortality rate. The current efficacy of treatments for GBM patients is insufficient due to factors such as tumor heterogeneity, the blood-brain barrier, glioma stem cells, drug efflux pumps, and DNA damage repair mechanisms. Considering this, pharmacological cocktail therapy has demonstrated a growing efficacy in addressing these challenges. Towards this, various forms of immunotherapy, including the immune checkpoint blockade, chimeric antigen receptor T (CAR T) cell therapy, oncolytic virotherapy, and vaccine therapy have emerged as potential strategies for enhancing the prognosis of GBM. Current investigations are focused on exploring combination therapies to mitigate undesirable side effects and enhance immune responses against tumors. Furthermore, clinical trials are underway to evaluate the efficacy of several strategies to circumvent the blood-brain barrier (BBB) to achieve targeted delivery in patients suffering from recurrent GBM. In this review, we have described the biological and molecular targets for GBM therapy, pharmacologic therapy status, prominent resistance mechanisms, and new treatment approaches. We also discuss these promising therapeutic approaches to assess prospective innovative therapeutic agents and evaluated the present state of preclinical and clinical studies in GBM treatment. Overall, this review attempts to provide comprehensive information on the current status of GBM therapy.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Naga Malleswara Rao Nakka
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA; (R.S.A.); (N.M.R.N.)
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| |
Collapse
|
120
|
Koňáriková K, Girašková GM, Žitňanová I, Dvořáková M, Rollerová E, Scsuková S, Bizik J, Janubová M, Muchová J. Biological analyses of the effects of TiO2 and PEG-b-PLA nanoparticles on three-dimensional spheroid-based tumor. Physiol Res 2023; 72:S257-S266. [PMID: 37888969 PMCID: PMC10669953 DOI: 10.33549/physiolres.935152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of our study was to monitor the antiproliferative/ cytotoxic and genotoxic effects of both, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) and titanium dioxide (TiO2) nanoparticles on the tumor (HT-29, MCF-7, U118MG) and healthy (HEK-293T) cell lines during 2D cultivation and during cultivation in the spheroid form (3D cultivation). Cells or spheroids were cultivated with nanoparticles (0.01, 0.1, 1, 10, 50, and 100 ?g/ml) for 72 hours. The cytotoxic effect was determined by the MTT test and the genotoxic effect by the comet assay. We found that 2D cultivation of tumor cell lines with PEG-b-PLA and TiO2 nanoparticles had an anti-proliferative effect on human colon cancer cell line HT-29, human breast cancer cell line MCF-7, human glioma cell line U-118MG during 72h cultivation, but not on control/healthy HEK-293T cells. At the concentrations used, the tested nanoparticles caused no cytotoxic effect on tumor cell lines. Nanoparticles PEG-b-PLA induced significant damage to DNA in HT-29 and MCF-7 cells, while TiO2 nanoparticles in MCF-7 and U-118MG cells. Only PEG-b-PLA nanoparticles caused cytotoxic (IC50 = 7 mikrog/ml) and genotoxic effects on the healthy cell line HEK-293T after 72h cultivation. The cells which were cultivated in spheroid forms were more sensitive to both types of nanoparticles. After 72h cultivation, we observed the cytotoxic effect on both, the tumor and healthy cell lines.
Collapse
Affiliation(s)
- K Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Uceda-Castro R, Margarido AS, Song JY, de Gooijer MC, Messal HA, Chambers CR, Nobis M, Çitirikkaya CH, Hahn K, Seinstra D, Herrmann D, Timpson P, Wesseling P, van Tellingen O, Vennin C, van Rheenen J. BCRP drives intrinsic chemoresistance in chemotherapy-naïve breast cancer brain metastasis. SCIENCE ADVANCES 2023; 9:eabp9530. [PMID: 37851804 PMCID: PMC10584345 DOI: 10.1126/sciadv.abp9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mark C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ceren H. Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
122
|
Ye Q, Zhou X, Ren H, Han F, Lin R, Li J. An overview of the past decade of bufalin in the treatment of refractory and drug-resistant cancers: current status, challenges, and future perspectives. Front Pharmacol 2023; 14:1274336. [PMID: 37860119 PMCID: PMC10582727 DOI: 10.3389/fphar.2023.1274336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Profound progress has been made in cancer treatment in the past three decades. However, drug resistance remains prevalent and a critical challenge. Drug resistance can be attributed to oncogenes mutations, activated defensive mechanisms, ATP-bind cassette transporters overexpression, cancer stem cells, etc. Chinese traditional medicine toad venom has been used for centuries for different diseases, including resistant cancers. Bufalin is one of the bufadienolides in toad venom that has been extensively studied for its potential in refractory and drug-resistant cancer treatments in vitro and in vivo. In this work, we would like to critically review the progress made in the past decade (2013-2022) of bufalin in overcoming drug resistance in cancers. Generally, bufalin shows high potential in killing certain refractory and resistant cancer cells via multiple mechanisms. More importantly, bufalin can work as a chemo-sensitizer that enhances the sensitivity of certain conventional and targeted therapies at low concentrations. In addition, the development of bufalin derivatives was also briefly summarized and discussed. We also analyzed the obstacles and challenges and provided possible solutions for future perspectives. We hope that the collective information may help evoke more effort for more in-depth studies and evaluation of bufalin in both lab and possible clinical trials.
Collapse
Affiliation(s)
- Qingmei Ye
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Han Ren
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Rong Lin
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
123
|
Wang J, Yang J, Liu K, Yuan J, Shi Y, Li H, Zhao L. Tumor targeted cancer membrane-camouflaged ultra-small Fe nanoparticles for enhanced collaborative apoptosis and ferroptosis in glioma. Mater Today Bio 2023; 22:100780. [PMID: 37680585 PMCID: PMC10480784 DOI: 10.1016/j.mtbio.2023.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Glioma is recognized as the most common and aggressive primary brain tumor in adults. Owing to the occurrence of drug resistance and the failure of drug to penetrate the blood-brain barrier (BBB), there is no effective strategy for the treatment of glioma. The main objective of this study was to develop a biomimetic glioma C6 cell membrane (C6M) derived nanovesicles (DOX-FN/C6M-NVs) loaded with doxorubicin (DOX) and ultra-small Fe nanoparticles (FN) for accomplishing the effective brain tumor-targeted delivery of DOX and improving anti-cancer efficacy via inducing collaborative apoptosis and ferroptosis. The findings revealed that employing C6M-NVs as a carrier significantly improved the therapeutic efficacy by enabling evasion of immune surveillance, facilitating targeted drug delivery to tumor sites, and minimizing cardiotoxicity and adverse effects associated with DOX. DOX-FN/C6M-NVs exhibited more potent anti-tumor effects as compared with free DOX by promoting DOX-mediated apoptosis and accelerating ferroptosis via the mediation of FN. This study suggested that DOX-FN/C6M-NVs as the potential inducer of ferroptosis and apoptosis conferred effective tumor suppression in the treatment of glioma.
Collapse
Affiliation(s)
- Jingchen Wang
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jian Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Kang Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Hongdan Li
- Life Science Institution, Jinzhou Medical University, Jinzhou, 121000, PR China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000, PR China
| |
Collapse
|
124
|
Bérard C, Truillet C, Larrat B, Dhermain F, Estève MA, Correard F, Novell A. Anticancer drug delivery by focused ultrasound-mediated blood-brain/tumor barrier disruption for glioma therapy: From benchside to bedside. Pharmacol Ther 2023; 250:108518. [PMID: 37619931 DOI: 10.1016/j.pharmthera.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption. The safety of this technique has been demonstrated in small and large animal models. This approach promises to enhance drug delivery into the brain tumor and therefore to improve survival outcomes by repurposing existing drugs. Several clinical trials continue to be initiated in the last decade. In this review, we provide an overview of the rationale behind the use of FUS-BBBD in gliomas and summarize the preclinical studies investigating different approaches (free drugs, drug-loaded microbubbles and drug-loaded nanocarriers) in combination with this technology in in vivo glioma models. Furthermore, we discuss the current state of clinical trials and devices developed and review the challenges to overcome for clinical use of FUS-BBBD in glioma therapy.
Collapse
Affiliation(s)
- Charlotte Bérard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, 91191 Gif-sur-Yvette, France.
| | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, 94805 Villejuif, France.
| | - Marie-Anne Estève
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Florian Correard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| |
Collapse
|
125
|
Yan Y, Liu Y, Liang Q, Xu Z. Drug metabolism-related gene ABCA1 augments temozolomide chemoresistance and immune infiltration abundance of M2 macrophages in glioma. Eur J Med Res 2023; 28:373. [PMID: 37749600 PMCID: PMC10518970 DOI: 10.1186/s40001-023-01370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
Gliomas are the most prevalent primary tumor in the central nervous system, with an abysmal 5-year survival rate and alarming mortality. The current standard management of glioma is maximum resection of tumors followed by postoperative chemotherapy with temozolomide (TMZ) or radiotherapy. Low chemosensitivity of TMZ in glioma treatment eventuates limited therapeutic efficacy or treatment failure. Hence, overcoming the resistance of glioma to TMZ is a pressing question. Our research centered on identifying the drug metabolism-related genes potentially involved in TMZ-treated resistance of glioma through several bioinformatics datasets and cell experiments. One efflux transporter, ATP-binding cassette transporter subfamily A1 (ABCA1), was discovered with an upregulated expression level and signaled poor clinical outcomes for glioma patients. The transcript level of ABCA1 significantly elevated across the TMZ-resistant glioma cells in contrast with non-resistant cells. Over-expressed ABCA1 restrained the drug activity of TMZ, and ABCA1 knockdown improved the treatment efficacy. Meanwhile, the results of molecular docking between ABCA1 protein and TMZ showed a high binding affinity. Additionally, co-expression and immunological analysis revealed that ABCA1 facilitates the immune infiltration of M2 macrophages in glioma, thereby stimulating tumor growth and aggravating the poor survival of patients. Altogether, we discovered that the ABCA1 transporter was involved in TMZ chemoresistance and the immune infiltration of M2 macrophages in glioma. Treatment with TMZ after ABCA1 knockdown enhances the chemosensitivity, suggesting that inhibition of ABCA1 may be a potential strategy for improving the therapeutic efficacy of gliomas.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
126
|
Hao Z, Yin X, Ding R, Chen L, Hao C, Duan H. A novel oncolytic virus-based biomarker participates in prognosis and tumor immune infiltration of glioma. Front Microbiol 2023; 14:1249289. [PMID: 37808305 PMCID: PMC10556503 DOI: 10.3389/fmicb.2023.1249289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most common central nervous malignancy. Due to its poor survival outcomes, it is essential to identify novel individualized therapy. Oncolytic virus (OV) treatment is a key therapy regulating tumor microenvironment in malignant glioma. Herein, we aim to identify the key genes after OV infection and its role in glioma. Methods Performing an RNA-seq analysis, the differentially expressed genes (DEGs) between EV-A71-infection and mock group were screened with GFold values. DAVID online analysis was performed to identify the functional classification. Overall survival (OS) or disease-free survival (DFS) was evaluated to analyze the relation between PTBP1 expression levels and prognosis of glioma patients. Additionally, the ssGSEA and TIMER algorithms were applied for evaluating immune cell infiltration in glioma. Results Following EV-A71 infection in glioma cells, PTBP1, one of the downregulated DEGs, was found to be associated with multiple categories of GO and KEGG enrichment analysis. We observed elevated expression levels of PTBP1 across various tumor grades of glioma in comparison to normal brain samples. High PTBP1 expression had a notable impact on the OS of patients with low-grade glioma (LGG). Furthermore, we observed an obvious association between PTBP1 levels and immune cell infiltration in LGG. Notably, PTBP1 was regarded as an essential prognostic biomarker in immune cells of LGG. Conclusion Our research uncovered a critical role of PTBP1 in outcomes and immune cell infiltration of glioma patients, particularly in those with LGG.
Collapse
Affiliation(s)
- Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Ding
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
127
|
Kannan S, Cheng VWT. Nanoparticle drug delivery to target breast cancer brain metastasis: Current and future trends. Int J Cancer 2023; 153:1118-1129. [PMID: 37096795 DOI: 10.1002/ijc.34542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Breast cancer brain metastasis (BCBM) is rapidly becoming an impediment to continuing survival gains seen in breast cancer patients. Drug delivery across the blood-brain barrier is the main issue hindering systemic therapy against BCBM. This review details recent advances in nanoparticle (NP) drug delivery systems to target BCBM. Their primary benefits are: enhanced circulating and intra-BCBM drug biodistribution, BCBM targeting through NP functionalization, opportunities for gene manipulation and their theragnostic applications. Multiple NPs have been synthesized to deliver therapeutic HER2 blockade, which is particularly important given HER2-positive breast cancer's tendency to form BCBM. Finally, we review the clinical context in which NP-based therapeutics have been investigated in BCBM patients. While a breakthrough in improving patient outcomes remain awaited, these clinical trials represent positive steps in the changing attitude towards BCBM as a treatable illness. Although multiple challenges remain in the clinical translation of BCBM-directed NP therapies, ongoing research in the field offers promising avenues for novel targeting of this devastating disease.
Collapse
Affiliation(s)
- Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston, UK
| | - Vinton W T Cheng
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
128
|
Krajcer A, Grzywna E, Lewandowska-Łańcucka J. Strategies increasing the effectiveness of temozolomide at various levels of anti-GBL therapy. Biomed Pharmacother 2023; 165:115174. [PMID: 37459661 DOI: 10.1016/j.biopha.2023.115174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Glioblastoma (GBL) is the most common (60-70% of primary brain tumours) and the most malignant of the glial tumours. Although current therapies remain palliative, they have been proven to prolong overall survival. Within an optimal treatment regimen (incl. surgical resection, radiation therapy, and chemotherapy) temozolomide as the current anti-GBL first-line chemotherapeutic has increased the median overall survival to 14-15 months, and the percentage of patients alive at two years has been reported to rise from 10.4% to 26.5%. Though, the effectiveness of temozolomide chemotherapy is limited by the serious systemic, dose-related side effects. Therefore, the ponderation regarding novel treatment methods along with innovative formulations is crucial to emerging the therapeutic potential of the widely used drug simultaneously reducing the drawbacks of its use. Herein the complex temozolomide application restrictions present at different levels of therapy as well as, the currently proposed strategies aimed at reducing those limitations are demonstrated. Approaches increasing the efficacy of anti-GBL treatment are addressed. Our paper is focused on the most recent developments in the field of nano/biomaterials-based systems for temozolomide delivery and their functionalization towards more effective blood-brain-barrier crossing and/or tumour targeting. Appropriate designing accounting for the physical and chemical features of formulations along with distinct routes of administration is also discussed. In addition, considering the multiple resistance mechanisms, the molecular heterogeneity and the evolution of tumour the purposely selected delivery methods, the combined therapeutic approaches and specifically focused on GBL cells therapies are reviewed.
Collapse
Affiliation(s)
- Aleksandra Krajcer
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Ewelina Grzywna
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Św. Anny 12, 31-008 Kraków, Poland
| | | |
Collapse
|
129
|
Vaz-Salgado MA, Villamayor M, Albarrán V, Alía V, Sotoca P, Chamorro J, Rosero D, Barrill AM, Martín M, Fernandez E, Gutierrez JA, Rojas-Medina LM, Ley L. Recurrent Glioblastoma: A Review of the Treatment Options. Cancers (Basel) 2023; 15:4279. [PMID: 37686553 PMCID: PMC10487236 DOI: 10.3390/cancers15174279] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Glioblastoma is a disease with a poor prognosis. Multiple efforts have been made to improve the long-term outcome, but the 5-year survival rate is still 5-10%. Recurrence of the disease is the usual way of progression. In this situation, there is no standard treatment. Different treatment options can be considered. Among them would be reoperation or reirradiation. There are different studies that have assessed the impact on survival and the selection of patients who may benefit most from these strategies. Chemotherapy treatments have also been considered in several studies, mainly with alkylating agents, with data mostly from phase II studies. On the other hand, multiple studies have been carried out with target-directed treatments. Bevacizumab, a monoclonal antibody with anti-angiogenic activity, has demonstrated activity in several studies, and the FDA has approved it for this indication. Several other TKI drugs have been evaluated in this setting, but no clear benefit has been demonstrated. Immunotherapy treatments have been shown to be effective in other types of tumors, and several studies have evaluated their efficacy in this disease, both immune checkpoint inhibitors, oncolytic viruses, and vaccines. This paper reviews data from different studies that have evaluated the efficacy of different forms of relapsed glioblastoma.
Collapse
Affiliation(s)
- Maria Angeles Vaz-Salgado
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - María Villamayor
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Albarrán
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Víctor Alía
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Pilar Sotoca
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Jesús Chamorro
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Diana Rosero
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Ana M. Barrill
- Medical Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.V.); (V.A.); (V.A.); (P.S.); (J.C.); (D.R.); (A.M.B.)
| | - Mercedes Martín
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - Eva Fernandez
- Radiotherapy Oncology Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (M.M.); (E.F.)
| | - José Antonio Gutierrez
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Mariano Rojas-Medina
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| | - Luis Ley
- Neurosurgery Department, Ramon y Cajal University Hospital, 28034 Madrid, Spain; (J.A.G.); (L.M.R.-M.); (L.L.)
| |
Collapse
|
130
|
Cai Q, Li X, Xiong H, Fan H, Gao X, Vemireddy V, Margolis R, Li J, Ge X, Giannotta M, Hoyt K, Maher E, Bachoo R, Qin Z. Optical blood-brain-tumor barrier modulation expands therapeutic options for glioblastoma treatment. Nat Commun 2023; 14:4934. [PMID: 37582846 PMCID: PMC10427669 DOI: 10.1038/s41467-023-40579-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
The treatment of glioblastoma has limited clinical progress over the past decade, partly due to the lack of effective drug delivery strategies across the blood-brain-tumor barrier. Moreover, discrepancies between preclinical and clinical outcomes demand a reliable translational platform that can precisely recapitulate the characteristics of human glioblastoma. Here we analyze the intratumoral blood-brain-tumor barrier heterogeneity in human glioblastoma and characterize two genetically engineered models in female mice that recapitulate two important glioma phenotypes, including the diffusely infiltrative tumor margin and angiogenic core. We show that pulsed laser excitation of vascular-targeted gold nanoparticles non-invasively and reversibly modulates the blood-brain-tumor barrier permeability (optoBBTB) and enhances the delivery of paclitaxel in these two models. The treatment reduces the tumor volume by 6 and 2.4-fold and prolongs the survival by 50% and 33%, respectively. Since paclitaxel does not penetrate the blood-brain-tumor barrier and is abandoned for glioblastoma treatment following its failure in early-phase clinical trials, our results raise the possibility of reevaluating a number of potent anticancer drugs by combining them with strategies to increase blood-brain-tumor barrier permeability. Our study reveals that optoBBTB significantly improves therapeutic delivery and has the potential to facilitate future drug evaluation for cancers in the central nervous system.
Collapse
Affiliation(s)
- Qi Cai
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xiaoqing Li
- Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hanwen Fan
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xiaofei Gao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vamsidhara Vemireddy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ryan Margolis
- Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Junjie Li
- Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xiaoqian Ge
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Monica Giannotta
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Kenneth Hoyt
- Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Elizabeth Maher
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Zhenpeng Qin
- Department of Mechanical Engineering, the University of Texas at Dallas, Richardson, TX, 75080, USA.
- Department of Bioengineering, the University of Texas at Dallas, Richardson, TX, 75080, USA.
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Center for Advanced Pain Studies, the University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
131
|
Li L, Fu Y, Zhang Y, Mao Y, Huang D, Yi X, Wang J, Tan Z, Jiang M, Chen BT. Magnetic resonance imaging findings of intracranial extraventricular ependymoma: A retrospective multi-center cohort study of 114 cases. Cancer Med 2023; 12:16195-16206. [PMID: 37376821 PMCID: PMC10469843 DOI: 10.1002/cam4.6279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Intracranial extraventricular ependymoma (IEE) is an ependymoma located in the brain parenchyma outside the ventricles. IEE has overlapping clinical and imaging characteristics with glioblastoma multiforme (GBM) but different treatment strategy and prognosis. Therefore, an accurate preoperative diagnosis is necessary for optimizing therapy for IEE. METHODS A retrospective multicenter cohort of IEE and GBM was identified. MR imaging characteristics assessed with the Visually Accessible Rembrandt Images (VASARI) feature set and clinicopathological findings were recorded. Independent predictors for IEE were identified using multivariate logistic regression, which was used to construct a diagnostic score for differentiating IEE from GBM. RESULTS Compared to GBM, IEE tended to occur in younger patients. Multivariate logistic regression analysis identified seven independent predictors for IEE. Among them, 3 predictors including tumor necrosis rate (F7), age, and tumor-enhancing margin thickness (F11), demonstrated higher diagnostic performance with an Area Under Curve (AUC) of more than 70% in distinguishing IEE from GBM. The AUC was 0.85, 0.78, and 0.70, with sensitivity of 92.98%, 72.81%, and 96.49%, and specificity of 65.50%, 73.64%, and 43.41%, for F7, age, and F11, respectively. CONCLUSION We identified specific MR imaging features such as tumor necrosis and thickness of enhancing tumor margins that could help to differentiate IEE from GBM. Our study results should be helpful to assist in diagnosis and clinical management of this rare brain tumor.
Collapse
Affiliation(s)
- Liyan Li
- Department of RadiologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningP. R. China
| | - Yan Fu
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaP. R. China
| | - Yinping Zhang
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaP. R. China
| | - Yipu Mao
- Department of RadiologyNanning First People's HospitalNanningP. R. China
| | - Deyou Huang
- Department of RadiologyAffiliated Hospital of Youjiang Medical University for NationalitiesBaiseP. R. China
| | - Xiaoping Yi
- Department of RadiologyXiangya Hospital, Central South UniversityChangshaP. R. China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyXiangya HospitalChangshaP. R. China
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaP. R. China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya HospitalCentral South UniversityChangshaP. R. China
- Hunan Engineering Research Center of Skin Health and DiseaseXiangya Hospital, Central South UniversityChangshaP. R. China
- Department of DermatologyXiangya Hospital, Central South UniversityChangshaP. R. China
| | - Jing Wang
- Department of NeurologyXiangya Hospital, Central South UniversityChangshaP. R. China
| | - Zeming Tan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaP. R. China
| | - Muliang Jiang
- Department of RadiologyFirst Affiliated Hospital of Guangxi Medical UniversityNanningP. R. China
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCaliforniaUSA
| |
Collapse
|
132
|
Forgham H, Liu L, Zhu J, Javed I, Cai W, Qiao R, Davis TP. Vector enabled CRISPR gene editing - A revolutionary strategy for targeting the diversity of brain pathologies. Coord Chem Rev 2023; 487:215172. [PMID: 37305445 PMCID: PMC10249757 DOI: 10.1016/j.ccr.2023.215172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brain pathologies are considered one of the greatest contributors of death and disability worldwide. Neurodegenerative Alzheimer's disease is the second leading cause of death in adults, whilst brain cancers including glioblastoma multiforme in adults, and pediatric-type high-grade gliomas in children remain largely untreatable. A further compounding issue for patients with brain pathologies is that of long-term neuropsychiatric sequela - as a symptom or arising from high dose therapeutic intervention. The major challenge to effective, low dose treatment is finding therapeutics that successfully cross the blood-brain barrier and target aberrant cellular processes, while having minimum effect on essential cellular processes, and healthy bystander cells. Following over 30 years of research, CRISPR technology has emerged as a biomedical tour de force with the potential to revolutionise the treatment of both neurological and cancer related brain pathologies. The aim of this review is to take stock of the progress made in CRISPR technology in relation to treating brain pathologies. Specifically, we will describe studies which look beyond design, synthesis, and theoretical application; and focus instead on in vivo studies with translation potential. Along with discussing the latest breakthrough techniques being applied within the CRISPR field, we aim to provide a prospective on the knowledge gaps that exist and challenges that still lay ahead for CRISPR technology prior to successful application in the brain disease treatment field.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
133
|
Das BC, Lepe JJ, Adil Shareef M, Lomeli N, Das S, Bota DA. Identification of new hit to lead magmas inhibitors as potential therapeutics for glioblastoma. Bioorg Med Chem Lett 2023; 91:129330. [PMID: 37201660 PMCID: PMC10506439 DOI: 10.1016/j.bmcl.2023.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
In continuation of our previous efforts for the development of potent small molecules against brain cancer, herein we synthesized seventeen new compounds and tested their anti-gliomapotential against established glioblastoma cell lines, namely, D54MG, U251, and LN-229 as well as patient derived cell lines (DB70 and DB93). Among them, the carboxamide derivatives, BT-851 and BT-892 were found to be the most active leads in comparison to our established hit compound BT#9.The SAR studies of our hit BT#9 compound resulted in the development of two new lead compounds by hit to lead strategy. The detailed biological studies are currently underway. The active compounds could possibly act as template for the future development of newer anti-glioma agents.
Collapse
Affiliation(s)
- Bhaskar C Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA; Department of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Javier J Lepe
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, USA
| | - Mohammed Adil Shareef
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Naomi Lomeli
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, USA
| | - Sasmita Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
| | - Daniela A Bota
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, USA; Department of Neurology, School of Medicine, University of California, Irvine, USA; Department of Neurological Surgery, School of Medicine, University of California, Irvine, USA; Chao Family Comprehensive Cancer Center, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
134
|
Conq J, Joudiou N, Ucakar B, Vanvarenberg K, Préat V, Gallez B. Assessment of Hyperosmolar Blood-Brain Barrier Opening in Glioblastoma via Histology with Evans Blue and DCE-MRI. Biomedicines 2023; 11:1957. [PMID: 37509598 PMCID: PMC10377677 DOI: 10.3390/biomedicines11071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND While the blood-brain barrier (BBB) is often compromised in glioblastoma (GB), the perfusion and consequent delivery of drugs are highly heterogeneous. Moreover, the accessibility of drugs is largely impaired in the margins of the tumor and for infiltrating cells at the origin of tumor recurrence. In this work, we evaluate the value of methods to assess hemodynamic changes induced by a hyperosmolar shock in the core and the margins of a tumor in a GB model. METHODS Osmotic shock was induced with an intracarotid infusion of a hypertonic solution of mannitol in mice grafted with U87-MG cells. The distribution of fluorescent dye (Evans blue) within the brain was assessed via histology. Dynamic contrast-enhanced (DCE)-MRI with an injection of Gadolinium-DOTA as the contrast agent was also used to evaluate the effect on hemodynamic parameters and the diffusion of the contrast agent outside of the tumor area. RESULTS The histological study revealed that the fluorescent dye diffused much more largely outside of the tumor area after osmotic shock than in control tumors. However, the study of tumor hemodynamic parameters via DCE-MRI did not reveal any change in the permeability of the BBB, whatever the studied MRI parameter. CONCLUSIONS The use of hypertonic mannitol infusion seems to be a promising method to increase the delivery of compounds in the margins of GB. Nevertheless, the DCE-MRI analysis method using gadolinium-DOTA as a contrast agent seems of limited value for determining the efficacy of opening the BBB in GB after osmotic shock.
Collapse
Affiliation(s)
- Jérôme Conq
- UCLouvain, Louvain Drug Research Institute (LDRI), Biomedical Magnetic Resonance Research Group, 1200 Brussels, Belgium
- UCLouvain, Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials Research Group, 1200 Brussels, Belgium
| | - Nicolas Joudiou
- UCLouvain, Louvain Drug Research Institute (LDRI), Nuclear and Electron Spin Technologies (NEST) Platform, 1200 Brussels, Belgium
| | - Bernard Ucakar
- UCLouvain, Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials Research Group, 1200 Brussels, Belgium
| | - Kevin Vanvarenberg
- UCLouvain, Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials Research Group, 1200 Brussels, Belgium
| | - Véronique Préat
- UCLouvain, Louvain Drug Research Institute (LDRI), Advanced Drug Delivery and Biomaterials Research Group, 1200 Brussels, Belgium
| | - Bernard Gallez
- UCLouvain, Louvain Drug Research Institute (LDRI), Biomedical Magnetic Resonance Research Group, 1200 Brussels, Belgium
| |
Collapse
|
135
|
Zhu Q, Zhou Y, Wang H, Cao T, Wang X, Liu R, Wu H, Lin B. Fucoxanthin triggers ferroptosis in glioblastoma cells by stabilizing the transferrin receptor. Med Oncol 2023; 40:230. [PMID: 37421513 DOI: 10.1007/s12032-023-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
Glioblastoma (GBM) is the most common and lethal tumor in the world, possessing high stemness, aggressiveness and resistance. Fucoxanthin is a bio-active compound extracted from seaweeds that shows anti-tumor effects to different types of tumors. Here, we show that fucoxanthin inhibits the survival of GBM cells by triggering ferroptosis, a ferric ion and reactive oxygen species (ROS) dependent cell death and ferrostatin-1 could block it. Furthermore, we identified that fucoxanthin targets the transferrin receptor (TFRC). Fucoxanthin is able to block degradation and maintain high levels of TFRC, and similarly inhibits the growth of GBM xenografts in vivo, downregulates the expression of proliferating cell nuclear antigen (PCNA) and upregulates the levels of TFRC in tumor tissues. In conclusion, we demonstrate that fucoxanthin has a significant anti-GBM effect by triggering ferroptosis.
Collapse
Affiliation(s)
- Qin Zhu
- Experiment Center of Science and Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqing Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haixia Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinzhi Wang
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Liu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Wu
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Binyan Lin
- Jiangsu Key Laboratory of Research and Development in Marine Bio-Resource Pharmaceutics, Nanjing, 210023, China.
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
136
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
137
|
Mehrdadi S. Drug Delivery of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) to Target Brain Tumors. Adv Pharm Bull 2023; 13:512-520. [PMID: 37646057 PMCID: PMC10460802 DOI: 10.34172/apb.2023.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Brain, predisposed to local and metastasized tumors, has always been the focus of oncological studies. Glioblastoma multiforme (GBM), the most common invasive primary tumor of the brain, is responsible for 4% of all cancer-related deaths worldwide. Despite novel technologies, the average survival rate is 2 years. Physiological barriers such as blood-brain barrier (BBB) prevent drug molecules penetration into brain. Most of the pharmaceuticals present in the market cannot infiltrate BBB to have their maximum efficacy and this in turn imposes a major challenge. This mini review discusses GBM and physiological and biological barriers for anticancer drug delivery, challenges for drug delivery across BBB, drug delivery strategies focusing on SLNs and NLCs and their medical applications in on-going clinical trials. Numerous nanomedicines with various characteristics have been introduced in the last decades to overcome the delivery challenge. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were introduced as oral drug delivery nanomedicines which can be encapsulated by both hydrophilic and lipophilic pharmaceutical compounds. Their biocompatibility, biodegradability, lower toxicity and side effects, enhanced bioavailability, solubility and permeability, prolonged half-life and stability and finally tissue-targeted drug delivery makes them unique among all.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
138
|
Sasaki T, Watanabe J, He X, Katagi H, Suri A, Ishi Y, Abe K, Natsumeda M, Frey WH, Zhang P, Hashizume R. Intranasal delivery of nanoliposomal SN-38 for treatment of diffuse midline glioma. J Neurosurg 2023; 138:1570-1579. [PMID: 36599085 DOI: 10.3171/2022.9.jns22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Diffuse midline gliomas, including diffuse intrinsic pontine gliomas (DIPGs), are among the most malignant and devastating childhood brain cancers. Despite aggressive treatment, nearly all children with these tumors succumb to their disease within 2 years of diagnosis. Due to the anatomical location of the tumors within the pons, surgery is not a treatment option, and distribution of most systematically administered drugs is limited by the blood-brain barrier (BBB). New drug delivery systems that bypass the BBB are desperately needed to improve outcomes of DIPG patients. Intranasal delivery (IND) is a practical and noninvasive drug delivery system that bypasses the BBB and delivers the drugs to the brain through the olfactory and trigeminal neural pathways. In this study, the authors evaluated the efficacy of nanoliposomal (LS) irinotecan (CPT-11) and an active metabolite of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38), using IND in DIPG patient-derived xenograft models. METHODS In vitro responses to LS-CPT-11 and LS-SN-38 in DIPG cells were evaluated with cell viability, colony formation, and apoptosis assays. The cellular uptakes of rhodamine-PE (Rhod)-labeled LS-CPT-11 and LS-SN-38 were analyzed with fluorescence microscopy. Mice bearing DIPG patient-derived xenografts were treated with IND of LS-control (empty liposome), LS-CPT-11, or LS-SN-38 by IND for 4 weeks. In vivo responses were measured for tumor growth by serial bioluminescence imaging and animal subject survival. The concentration of SN-38 in the brainstem tumor administered by IND was determined by liquid chromatography-mass spectrometry (LC-MS). Immunohistochemical analyses of the proliferative and apoptotic responses of in vivo tumor cells were performed with Ki-67 and TUNEL staining. RESULTS LS-SN-38 inhibited DIPG cell growth and colony formation and increased apoptosis, outperforming LS-CPT-11. Rhod-labeled LS-SN-38 showed intracellular fluorescence signals beginning at 30 minutes and peaking at 24 hours following treatment. LC-MS analysis revealed an SN-38 concentration in the brainstem tumor of 0.66 ± 0.25 ng/ml (5.43% ± 0.31% of serum concentration). IND of LS-SN-38 delayed tumor growth and significantly prolonged animal survival compared with IND of LS-control (p < 0.0001) and LS-CPT-11 (p = 0.003). IND of LS-SN-38 increased the number of TUNEL-positive cells and decreased the Ki-67-positive cells in the brainstem tumor. CONCLUSIONS This study demonstrates that IND of LS-SN-38 bypasses the BBB and enables efficient and noninvasive drug delivery to the brainstem tumor, providing a promising therapeutic approach for treating DIPG.
Collapse
Affiliation(s)
- Takahiro Sasaki
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 2Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | - Jun Watanabe
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
- 5Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Xingyao He
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amreena Suri
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Yukitomo Ishi
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Kouki Abe
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Manabu Natsumeda
- 5Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - William H Frey
- 6HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota; and
| | - Peng Zhang
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 7Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rintaro Hashizume
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
- 7Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
139
|
Bianconi A, Palmieri G, Aruta G, Monticelli M, Zeppa P, Tartara F, Melcarne A, Garbossa D, Cofano F. Updates in Glioblastoma Immunotherapy: An Overview of the Current Clinical and Translational Scenario. Biomedicines 2023; 11:1520. [PMID: 37371615 DOI: 10.3390/biomedicines11061520] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive central nervous system tumor, requiring multimodal management. Due to its malignant behavior and infiltrative growth pattern, GBM is one of the most difficult tumors to treat and gross total resection is still considered to be the first crucial step. The deep understanding of GBM microenvironment and the possibility of manipulating the patient's innate and adaptive immune system to fight the neoplasm represent the base of immunotherapeutic strategies that currently express the future for the fight against GBM. Despite the immunotherapeutic approach having been successfully adopted in several solid and haematologic neoplasms, immune resistance and the immunosuppressive environment make the use of these strategies challenging in GBM treatment. We describe the most recent updates regarding new therapeutic strategies that target the immune system, immune checkpoint inhibitors, chimeric antigen receptor T cell therapy, peptide and oncolytic vaccines, and the relevant mechanism of immune resistance. However, no significant results have yet been obtained in studies targeting single molecules/pathways. The future direction of GBM therapy will include a combined approach that, in contrast to the inescapable current treatment modality of maximal resection followed by chemo- and radiotherapy, may combine a multifaceted immunotherapy treatment with the dual goals of directly killing tumor cells and activating the innate and adaptive immune response.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | | | - Gelsomina Aruta
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Matteo Monticelli
- UOC Neurochirurgia, Dipartimento di Medicina Traslazionale e per la Romagna, Università degli Studi di Ferrara, 44121 Ferrara, Italy
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
140
|
Kubelt C, Hellmold D, Peschke E, Hauck M, Will O, Schütt F, Lucius R, Adelung R, Scherließ R, Hövener JB, Jansen O, Synowitz M, Held-Feindt J. Establishment of a Rodent Glioblastoma Partial Resection Model for Chemotherapy by Local Drug Carriers-Sharing Experience. Biomedicines 2023; 11:1518. [PMID: 37371613 DOI: 10.3390/biomedicines11061518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Local drug delivery systems (LDDS) represent a promising therapy strategy concerning the most common and malignant primary brain tumor glioblastoma (GBM). Nevertheless, to date, only a few systems have been clinically applied, and their success is very limited. Still, numerous new LDDS approaches are currently being developed. Here, (partial resection) GBM animal models play a key role, as such models are needed to evaluate the therapy prior to any human application. However, such models are complex to establish, and only a few reports detail the process. Here, we report our results of establishing a partial resection glioma model in rats suitable for evaluating LDDS. C6-bearing Wistar rats and U87MG-spheroids- and patient-derived glioma stem-like cells-bearing athymic rats underwent tumor resection followed by the implantation of an exemplary LDDS. Inoculation, tumor growth, residual tumor tissue, and GBM recurrence were reliably imaged using high-resolution Magnetic Resonance Imaging. The release from an exemplary LDDS was verified in vitro and in vivo using Fluorescence Molecular Tomography. The presented GBM partial resection model appears to be well suited to determine the efficiency of LDDS. By sharing our expertise, we intend to provide a powerful tool for the future testing of these very promising systems, paving their way into clinical application.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24118 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Regina Scherließ
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, Kiel University, 24118 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| | - Olav Jansen
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, UKSH Campus Kiel, 24105 Kiel, Germany
- Priority Research Area Kiel Nano, Surface and Interface Sciences (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
141
|
Lu L, Wang L, Zhao L, Liao J, Zhao C, Xu X, Wang F, Zhang X. A Novel Blood-Brain Barrier-Penetrating and Vascular-Targeting Chimeric Peptide Inhibits Glioma Angiogenesis. Int J Mol Sci 2023; 24:ijms24108753. [PMID: 37240099 DOI: 10.3390/ijms24108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The high vascularization of glioma highlights the potential value of anti-angiogenic therapeutics for glioma treatment. Previously, we designed a novel vascular-targeting and blood-brain barrier (BBB)-penetrating peptide, TAT-AT7, by attaching the cell-penetrating peptide TAT to a vascular-targeting peptide AT7, and we demonstrated that TAT-AT7 could target binding to the vascular endothelial growth factor receptor 2 (VEGFR-2) and Neuropilin-1 (NRP-1), which are both highly expressed in endothelial cells. TAT-AT7 has been proven to be a good targeting peptide which could effectively deliver the secretory endostatin gene to treat glioma via the TAT-AT7-modified polyethyleneimine (PEI) nanocomplex. In the current study, we further explored the molecular binding mechanisms of TAT-AT7 to VEGFR-2 and NRP-1 and its anti-glioma effects. Accordingly, TAT-AT7 was proven to competitively bind to VEGFR-2 and NRP-1 and prevent VEGF-A165 binding to the receptors by the surface plasmon resonance (SPR) assay. TAT-AT7 inhibited endothelial cells' proliferation, migration, invasion, and tubule formation, as well as promoted endothelial cells' apoptosis in vitro. Further research revealed that TAT-AT7 inhibited the phosphorylation of VEGFR-2 and its downstream PLC-γ, ERK1/2, SRC, AKT, and FAK kinases. Additionally, TAT-AT7 significantly inhibited angiogenesis of zebrafish embryo. Moreover, TAT-AT7 had a better penetrating ability and could penetrate the BBB into glioma tissue and target glioma neovascularization in an orthotopic U87-glioma-bearing nude mice model, and exhibited the effect of inhibiting glioma growth and angiogenesis. Taken together, the binding and function mechanisms of TAT-AT7 were firstly revealed, and TAT-AT7 was proven to be an effective and promising peptide for the development of anti-angiogenic drugs for targeted treatment of glioma.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Longkun Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Liao
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohan Xu
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
142
|
Li S, Guo Y, Hu H, Gao N, Yan X, Zhou Q, Liu H. TANK shapes an immunosuppressive microenvironment and predicts prognosis and therapeutic response in glioma. Front Immunol 2023; 14:1138203. [PMID: 37215097 PMCID: PMC10196049 DOI: 10.3389/fimmu.2023.1138203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Background Glioma, the most prevalent malignant intracranial tumor, poses a significant threat to patients due to its high morbidity and mortality rates, but its prognostic indicators remain inaccurate. Although TRAF-associated NF-kB activator (TANK) interacts and cross-regulates with cytokines and microenvironmental immune cells, it is unclear whether TANK plays a role in the immunologically heterogeneous gliomas. Methods TANK mRNA expression patterns in public databases were analyzed, and qPCR and IHC were performed in an in-house cohort to confirm the clinical significance of TANK. Then, we systematically evaluated the relationship between TANK expression and immune characteristics in the glioma microenvironment. Additionally, we evaluated the ability of TANK to predict treatment response in glioma. TANK-associated risk scores were developed by LASSO-Cox regression and machine learning, and their prognostic ability was tested. Results TANK was specifically overexpressed in glioma and enriched in the malignant phenotype, and its overexpression was related to poor prognosis. The presence of a tumor microenvironment that is immunosuppressive was evident by the negative correlations between TANK expression and immunomodulators, steps in the cancer immunity cycle, and immune checkpoints. Notably, treatment for cancer may be more effective when immunotherapy is combined with anti-TANK therapy. Prognosis could be accurately predicted by the TANK-related risk score. Conclusions High expression of TANK is associated with the malignant phenotype of glioma, as it shapes an immunosuppressive tumor microenvironment. Additionally, TANK can be used as a predictive biomarker for responses to various treatments and prognosis.
Collapse
Affiliation(s)
- Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Youwei Guo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xuejun Yan
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Quanwei Zhou
- The National Key Clinical Specialty, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
143
|
Farajizadeh F, Taghian F, Jalali Dehkordi K, Mirsafaei Rizi R. Swimming training and herbal nanoformulations as natural remedies to improve sensory-motor impairment in rat midbrain tumor models: system biology, behavioral test, and experimental validation. 3 Biotech 2023; 13:149. [PMID: 37131964 PMCID: PMC10148939 DOI: 10.1007/s13205-023-03574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Motor impairment worsens health-related quality of life in patients with primary and metastatic midbrain tumors. Here, 56-male-Wistar rats were divided into eight groups: Normal group, Midbrain Tomur Model group, Model + Exe group, Model + Lipo, Model + Extract, Model + Lipo-Extract, Model + Extract-Exe, Model + Lipo-Extract + Exe. According to the aim, mid-brain tumor models were conducted by injections of the C6 glioma cell line (5 × 105 cell suspension) and stereotaxic techniques in the substantia nigra area. Furthermore, consumption of nanoformulation of herbals extract (100 mg/kg/day), crude extract (100 mg/kg/day), and swimming training (30 min, 3 days/week) as interventional protocols were performed for 6 weeks. In addition, we evaluated the effect of polyherbal nanoliposomes containing four plant extracts and swimming training on the GABArα1/TRKB/DRD2/DRD1a/TH network in the substantia nigra of the midbrain tumor rat model. Data emphasized that DRD2 might be a druggable protein with the network's highest significance cut-point effect that could modulate sensory-motor impairment. Furthermore, we found Quercetin, Ginsenosides, Curcumin, and Rutin, as bioactive compounds present in Ginseng, Matthiola incana, Turmeric, and Green-Tea extracts, could bind over the DRD2 protein with approved binding affinity scores. Based on our data, swimming training, and nanoliposome-enriched combined supplements could consider effective complementary medicine for motor impairment recovery induced by the midbrain tumor in the substantia nigra area. Hence, regular swimming training and natural medicines rich in polyphenolic bioactive components and antioxidative effects could modify and improve the dopamine receptors' function. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03574-3.
Collapse
Affiliation(s)
- Fariba Farajizadeh
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Khosro Jalali Dehkordi
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Rezvan Mirsafaei Rizi
- Department of Sports Injuries, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
144
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
145
|
Qiao R, Fu C, Forgham H, Javed I, Huang X, Zhu J, Whittaker AK, Davis TP. Magnetic Iron Oxide Nanoparticles for Brain Imaging and Drug Delivery. Adv Drug Deliv Rev 2023; 197:114822. [PMID: 37086918 DOI: 10.1016/j.addr.2023.114822] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/14/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023]
Abstract
Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.
Collapse
Affiliation(s)
- Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ibrahim Javed
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew K Whittaker
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Thomas P Davis
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
146
|
Waseem A, Rashid S, Rashid K, Khan MA, Khan R, Haque R, Seth P, Raza SS. Insight into the transcription factors regulating Ischemic Stroke and Glioma in Response to Shared Stimuli. Semin Cancer Biol 2023; 92:102-127. [PMID: 37054904 DOI: 10.1016/j.semcancer.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemic stroke and glioma are the two leading causes of patient mortality globally. Despite physiological variations, 1 in 10 people who have an ischemic stroke go on to develop brain cancer, most notably gliomas. In addition, glioma treatments have also been shown to increase the risk of ischemic strokes. Stroke occurs more frequently in cancer patients than in the general population, according to traditional literature. Unbelievably, these events share multiple pathways, but the precise mechanism underlying their co-occurrence remains unknown. Transcription factors (TFs), the main components of gene expression programmes, finally determine the fate of cells and homeostasis. Both ischemic stroke and glioma exhibit aberrant expression of a large number of TFs, which are strongly linked to the pathophysiology and progression of both diseases. The precise genomic binding locations of TFs and how TF binding ultimately relates to transcriptional regulation remain elusive despite a strong interest in understanding how TFs regulate gene expression in both stroke and glioma. As a result, the importance of continuing efforts to understand TF-mediated gene regulation is highlighted in this review, along with some of the primary shared events in stroke and glioma.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| | - Sumaiya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Khalid Rashid
- Department of Cancer Biology, Vontz Center for Molecular Studies, Cincinnati, OH 45267-0521
| | | | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City,Mohali, Punjab 140306, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya -824236, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Section, National Brain Research Centre, Manesar, Haryana-122052, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Sarfarazganj, Lucknow-226003, India; Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College Hospital, Era University, Sarfarazganj, Lucknow-226003, India
| |
Collapse
|
147
|
Pérez-López A, Isabel Torres-Suárez A, Martín-Sabroso C, Aparicio-Blanco J. An overview of in vitro 3D models of the blood-brain barrier as a tool to predict the in vivo permeability of nanomedicines. Adv Drug Deliv Rev 2023; 196:114816. [PMID: 37003488 DOI: 10.1016/j.addr.2023.114816] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
The blood-brain barrier (BBB) prevents efficient drug delivery to the central nervous system. As a result, brain diseases remain one of the greatest unmet medical needs. Understanding the tridimensional structure of the BBB helps gain insight into the pathology of the BBB and contributes to the development of novel therapies for brain diseases. Therefore, 3D models with an ever-growing sophisticated complexity are being developed to closely mimic the human neurovascular unit. Among these 3D models, hydrogel-, spheroid- and organoid-based static BBB models have been developed, and so have microfluidic-based BBB-on-a-chip models. The different 3D preclinical models of the BBB, both in health and disease, are here reviewed, from their development to their application for permeability testing of nanomedicines across the BBB, discussing the advantages and disadvantages of each model. The validation with data from in vivo preclinical data is also discussed in those cases where provided.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
148
|
Palma-Florez S, López-Canosa A, Moralez-Zavala F, Castaño O, Kogan MJ, Samitier J, Lagunas A, Mir M. BBB-on-a-chip with integrated micro-TEER for permeability evaluation of multi-functionalized gold nanorods against Alzheimer's disease. J Nanobiotechnology 2023; 21:115. [PMID: 36978078 PMCID: PMC10053726 DOI: 10.1186/s12951-023-01798-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/27/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The lack of predictive models that mimic the blood-brain barrier (BBB) hinders the development of effective drugs for neurodegenerative diseases. Animal models behave differently from humans, are expensive and have ethical constraints. Organ-on-a-chip (OoC) platforms offer several advantages to resembling physiological and pathological conditions in a versatile, reproducible, and animal-free manner. In addition, OoC give us the possibility to incorporate sensors to determine cell culture features such as trans-endothelial electrical resistance (TEER). Here, we developed a BBB-on-a-chip (BBB-oC) platform with a TEER measurement system in close distance to the barrier used for the first time for the evaluation of the permeability performance of targeted gold nanorods for theranostics of Alzheimer's disease. GNR-PEG-Ang2/D1 is a therapeutic nanosystem previously developed by us consisting of gold nanorods (GNR) functionalized with polyethylene glycol (PEG), angiopep-2 peptide (Ang2) to overcome the BBB and the D1 peptide as beta amyloid fibrillation inhibitor, finally obtaining GNR-PEG-Ang2/D1 which showed to be useful for disaggregation of the amyloid in in vitro and in vivo models. In this work, we evaluated its cytotoxicity, permeability, and some indications of its impact on the brain endothelium by employing an animal-free device based on neurovascular human cells. RESULTS In this work, we fabricated a BBB-oC with human astrocytes, pericytes and endothelial cells and a TEER measuring system (TEER-BBB-oC) integrated at a micrometric distance of the endothelial barrier. The characterization displayed a neurovascular network and the expression of tight junctions in the endothelium. We produced GNR-PEG-Ang2/D1 and determined its non-cytotoxic range (0.05-0.4 nM) for plated cells included in the BBB-oC and confirmed its harmless effect at the highest concentration (0.4 nM) in the microfluidic device. The permeability assays revealed that GNR-PEG-Ang2/D1 cross the BBB and this entry is facilitated by Ang2 peptide. Parallel to the permeability analysis of GNR-PEG-Ang2/D1, an interesting behavior of the TJs expression was observed after its administration probably related to the ligands on the nanoparticle surface. CONCLUSIONS BBB-oC with a novel TEER integrated setup which allow a correct read-out and cell imaging monitoring was proven as a functional and throughput platform to evaluate the brain permeability performance of nanotherapeutics in a physiological environment with human cells, putting forward a viable alternative to animal experimentation.
Collapse
Affiliation(s)
- Sujey Palma-Florez
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Adrián López-Canosa
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Francisco Moralez-Zavala
- Department of Pharmacology and Toxicology, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8380494, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Oscar Castaño
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Marcelo J Kogan
- Department of Pharmacology and Toxicology, Faculty of Chemistry and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, 8380494, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Santiago, Chile
| | - Josep Samitier
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Anna Lagunas
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain.
| | - Mònica Mir
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona, Spain.
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
149
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
150
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS OMEGA 2023; 8:10565-10590. [PMID: 36969457 PMCID: PMC10035023 DOI: 10.1021/acsomega.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme (GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened plant-based natural product panels intending to identify novel drugs without elevating drug resistance. We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The functional enrichment analysis demonstrated genes associated with GBM, further PPI network was constructed, and biological pathways associated with them were explored. Seven webtools, including GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9, and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood-brain barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9 protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported flavonoids, 7,4'-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4'-hydroxy-7-methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical applications, including GBM diagnosis, prognosis, and targeted therapy.
Collapse
|