101
|
Parmar DR, Soni JY, Guduru R, Rayani RH, Kusurkar RV, Vala AG, Talukdar SN, Eissa IH, Metwaly AM, Khalil A, Zunjar V, Battula S. Discovery of new anticancer thiourea-azetidine hybrids: design, synthesis, in vitro antiproliferative, SAR, in silico molecular docking against VEGFR-2, ADMET, toxicity, and DFT studies. Bioorg Chem 2021; 115:105206. [PMID: 34339975 DOI: 10.1016/j.bioorg.2021.105206] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
With the aim to discover potent and novel antitumor agents, a series of thiourea compounds bearing 3-(4-methoxyphenyl)azetidine moiety were designed according to the essential pharmacophoric features of the reported VEGFR-2 inhibitors and synthesized. All the synthesized compounds were evaluated for their in vitro anticancer activity against various human cancer cell lines (lung (A549), prostate (PC3), breast (MCF-7), liver (HepG2), colon (HCT-116), ovarian (SKOV-3), skin (A431), brain (U251) and kidney (786-O)). 3-(4-Methoxy-3-(2-methoxypyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (3B) was found to be most potent member against PC3, U251, A431, and 786-O cancer cell lines with EC50 values 0.25, 0.6, 0.03, and 0.03 µM, respectively and showed more potency than Doxorubicin in PC3, A431, and 786-O cell lines. Compounds 1B to 7B showed EC50 values ranging from 0.03 to 12.55 µM in A431 cell line. Compound 3-(4-methoxy-3-(pyridin-4-yl)phenyl)-N-(4-methoxyphenyl)azetidine-1-carbothioamide (1B) was found to be highly efficient in A431 and 786-O cell line with EC50 values of 0.77 and 0.73 µM respectively. All the compounds exhibited good to moderate cytotoxic activity. The pharmacophoric features and molecular docking studies confirmed the potentialities of compounds 1B, 2B, 3B and 5B to be VEGFR-2 inhibitors. Moreover, in silico ADMET prediction indicated that most of the synthesized compounds have drug-like properties, possess low adverse effects and toxicity. In addition, the DFT studies for the most active compounds (1B and 3B) were carried out. In the end, our studies revealed that the compounds 1B and 3B represent promising anticancer potentialities through their VEGFR-2 inhibition.
Collapse
Affiliation(s)
- Deepa R Parmar
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Jigar Y Soni
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India.
| | - Ramakrishna Guduru
- Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Rahul H Rayani
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Rakesh V Kusurkar
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Anand G Vala
- Department of Chemistry, Faculty of Basic and Applied Sciences, Madhav University, Abu Road, Sirohi, Rajasthan, India; Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India
| | - Sahista N Talukdar
- In vitro Department, Piramal Pharma Limited - Discovery Solutions, Plot no. 18, Pharmaceutical Special Economic Zone, Village Matoda, Ahmedabad, Gujarat, India; Pharmacokinetics Drug Metabolism Department, Syngene Amgen Research Centre, Plot no. 1,2,3,4, and 5, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bengaluru, Karnataka, India
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Vishwanath Zunjar
- School of Engineering and Technology, Navrachana University, Vadodara, Gujarat, India
| | - Satyanarayana Battula
- Department of Chemistry, Uka Tarsadia University, Maliba campus, Bardoli, Gujarat, India
| |
Collapse
|
102
|
Tiglani D, Salahuddin, Mazumder A, Yar MS, Kumar R, Ahsan MJ. Benzimidazole-Quinoline Hybrid Scaffold as Promising Pharmacological Agents: A Review. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1942933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Devleena Tiglani
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research Jamia Hamdard, New Delhi, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Maharishi Arvind College of Pharmacy, Ambabari Circle, Jaipur, Rajasthan, India
| |
Collapse
|
103
|
Malka MM, Eberle J, Niedermayer K, Zlotos DP, Wiesmüller L. Dual PARP and RAD51 Inhibitory Drug Conjugates Show Synergistic and Selective Effects on Breast Cancer Cells. Biomolecules 2021; 11:biom11070981. [PMID: 34356606 PMCID: PMC8301877 DOI: 10.3390/biom11070981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
The genetic principle of synthetic lethality has most successfully been exploited in therapies engaging Poly-ADP-ribose-polymerase (PARP) inhibitors to treat patients with homologous recombination (HR)-defective tumors. In this work, we went a step further following the idea of a local molecular cooperation and designed hybrid compounds M1–M3. The drug conjugates M1–M3 combine Olaparib, the first PARP inhibitor approved for clinical use, with Cpd 1, an inhibitor of RAD51 that blocks its HR functions and yet permits RAD51 nucleoprotein filament formation on single-stranded DNA. While in M2 and M3, the parental drugs are linked by -CO-(CH2)n-CO-spacers (n = 2 and 4, respectively), they are directly merged omitting the piperazine ring of Olaparib in M1. Monitoring anti-survival effects of M1–M3 in six breast cancer cell lines of different molecular subtypes showed that in each cell line, at least one of the drug conjugates decreased viability by one to two orders of magnitude compared with parental drugs. While triple-negative breast cancer (TNBC) cells with frequent BRCA1 pathway dysfunction were sensitive to spacer-linked hybrid compounds M1 and M2 regardless of their HR capacities, non-TNBC cells were responsive to the merged drug conjugate M1 only, suggesting different spatial requirements for dual inhibition in these two groups of cell lines. These results demonstrate that, depending on chemical linkage, dual PARP1-RAD51 inhibitory drugs can either sensitize non-TNBC and re-sensitize TNBC cells, or discriminate between these groups of cells.
Collapse
Affiliation(s)
- Matthews M. Malka
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Main Entrance of Al Tagamoa Al Khames, Cairo 11835, Egypt;
| | - Julia Eberle
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, 89075 Ulm, Germany; (J.E.); (K.N.)
| | - Kathrin Niedermayer
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, 89075 Ulm, Germany; (J.E.); (K.N.)
| | - Darius P. Zlotos
- Department of Pharmaceutical Chemistry, The German University in Cairo, New Cairo City, Main Entrance of Al Tagamoa Al Khames, Cairo 11835, Egypt;
- Correspondence: (D.P.Z.); (L.W.)
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Prittwitzstrasse 43, 89075 Ulm, Germany; (J.E.); (K.N.)
- Correspondence: (D.P.Z.); (L.W.)
| |
Collapse
|
104
|
Singam MKR, Suri Babu U, Nagireddy A, Nanubolu JB, Sridhar Reddy M. Harnessing Rhodium-Catalyzed C-H Activation: Regioselective Cascade Annulation for Fused Polyheterocycles. J Org Chem 2021; 86:8069-8077. [PMID: 34048238 DOI: 10.1021/acs.joc.1c00477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the realm of transition-metal catalyzed arene functionalization, rhodium(III) catalysis is considered as exemplary due to its propensity to activate C-H bonds to obtain comprehensive molecular assembly. Herein, we demonstrate a new rhodium(III) catalyzed assembly of polyheterocyclic scaffolds via C-H activation and regioselective annulation of 4-arylbut-3-yn-1-amines with 4-hydroxy-2-alkynoates. Heterocyclization and trans-metalation prior to annulation is the key for initiation of this relay redox-neutral catalytic cascade.
Collapse
Affiliation(s)
- Maneesh Kumar Reddy Singam
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Undamatla Suri Babu
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Attunuri Nagireddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | | | - Maddi Sridhar Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
105
|
Sahu R, Mishra R, Kumar R, Salahuddin, Majee C, Mazumder A, Kumar A. Pyridine moiety: An insight into recent advances in treatment of cancer. Mini Rev Med Chem 2021; 22:248-272. [PMID: 34126914 DOI: 10.2174/1389557521666210614162031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The incidence of cancer is increasing worldwide, affecting a vast majority of the human population. As new different anticancer agents are being developed now, the requirement is to deal somehow with them and evaluate their safety. Among them, pyridine based drugs are contributing a lot, as it is one of the imperative pharmacophores occurring synthetically as well as naturally in heterocyclic compounds, and having a wide range of therapeutic applications in the area of drug discovery, thereby offering many chances for further improvement in antitumor agents via acting onto numerous receptors of extreme prominence. Many pyridine derivatives have been reported to inhibit enzymes, receptors and many other targets for controlling and curing the global health issue of cancer. Nowadays, in combination with other moieties, researchers are focusing on the development of pyridine-based new derivatives for cancer treatment. Therefore, this review sheds light on the recent therapeutic expansions of pyridine together with its molecular docking, structure-activity-relationship, availability in the market, and a summary of recently patented and published research works that shall jointly help the scientists to produce effective drugs with the desired pharmacological activity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida-201310, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| |
Collapse
|
106
|
Ganta RK, Kerru N, Maddila S, Jonnalagadda SB. Advances in Pyranopyrazole Scaffolds' Syntheses Using Sustainable Catalysts-A Review. Molecules 2021; 26:3270. [PMID: 34071629 PMCID: PMC8199150 DOI: 10.3390/molecules26113270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Heterogeneous catalysis plays a crucial role in many chemical processes, including advanced organic preparations and the design and synthesis of new organic moieties. Efficient and sustainable catalysts are vital to ecological and fiscal viability. This is why green multicomponent reaction (MCR) approaches have gained prominence. Owing to a broad range of pharmacological applications, pyranopyrazole syntheses (through the one-pot strategy, employing sustainable heterogeneous catalysts) have received immense attention. This review aimed to emphasise recent developments in synthesising nitrogen-based fused heterocyclic ring frameworks, exploring diverse recyclable catalysts. The article focused on the synthetic protocols used between 2010 and 2020 using different single, bi- and tri-metallic materials and nanocomposites as reusable catalysts. This review designated the catalysts' efficacy and activity in product yields, reaction time, and reusability. The MCR green methodologies (in conjunction with recyclable catalyst materials) proved eco-friendly and ideal, with a broad scope that could feasibly lead to advancements in organic synthesis.
Collapse
Affiliation(s)
- Ravi Kumar Ganta
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
| | - Nagaraju Kerru
- Department of Chemistry, GITAM School of Science, Bengaluru Campus, GITAM University, Karnataka 561203, India;
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Suresh Maddila
- Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam 530045, India; (R.K.G.); (S.M.)
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, Westville Campus, University of KwaZulu-Natal, Chiltern Hills, Durban 4000, South Africa
| |
Collapse
|
107
|
El Azab IH, Bakr RB, Elkanzi NAA. Facile One-Pot Multicomponent Synthesis of Pyrazolo-Thiazole Substituted Pyridines with Potential Anti-Proliferative Activity: Synthesis, In Vitro and In Silico Studies. Molecules 2021; 26:molecules26113103. [PMID: 34067399 PMCID: PMC8196987 DOI: 10.3390/molecules26113103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Pyrazolothiazole-substituted pyridine conjugates are an important class of heterocyclic compounds with an extensive variety of potential applications in the medicinal and pharmacological arenas. Therefore, herein, we describe an efficient and facile approach for the synthesis of novel pyrazolo-thiazolo-pyridine conjugate 4, via multicomponent condensation. The latter compound was utilized as a base for the synthesis of two series of 15 novel pyrazolothiazole-based pyridine conjugates (5-16). The newly synthesized compounds were fully characterized using several spectroscopic methods (IR, NMR and MS) and elemental analyses. The anti-proliferative impact of the new synthesized compounds 5-13 and 16 was in vitro appraised towards three human cancer cell lines: human cervix (HeLa), human lung (NCI-H460) and human prostate (PC-3). Our outcomes regarding the anti-proliferative activities disclosed that all the tested compounds exhibited cytotoxic potential towards all the tested cell lines with IC50 = 17.50-61.05 µM, especially the naphthyridine derivative 7, which exhibited the most cytotoxic potential towards the tested cell lines (IC50 = 14.62-17.50 µM) compared with the etoposide (IC50 = 13.34-17.15 µM). Moreover, an in silico docking simulation study was performed on the newly prepared compounds within topoisomerase II (3QX3), to suggest the binding mode of these compounds as anticancer candidates. The in silico docking results indicate that compound 7 was a promising lead anticancer compound which possesses high binding affinity toward topoisomerase II (3QX3) protein.
Collapse
Affiliation(s)
- Islam H. El Azab
- Food Science and Nutrition Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence:
| | - Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Nadia A. A. Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia;
- Chemistry Department, Faculty of Science, Aswan University, Aswan, P.O. Box 81528, Aswan, Egypt
| |
Collapse
|
108
|
New Hybrids Based on Curcumin and Resveratrol: Synthesis, Cytotoxicity and Antiproliferative Activity against Colorectal Cancer Cells. Molecules 2021; 26:molecules26092661. [PMID: 34062841 PMCID: PMC8124228 DOI: 10.3390/molecules26092661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
We synthesized twelve hybrids based on curcumin and resveratrol, and their structures were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, along with the non-malignant CHO-K1 cell line. Among the tested compounds, hybrids 3e and 3i (for SW480) and 3a, 3e and 3k (for SW620) displayed the best cytotoxic activity with IC50 values ranging from 11.52 ± 2.78 to 29.33 ± 4.73 µM for both cell lines, with selectivity indices (SI) higher than 1, after 48 h of treatment. Selectivity indices were even higher than those reported for the reference drug, 5-fluorouracil (SI = 0.96), the starting compound resveratrol (SI = 0.45) and the equimolar mixture of curcumin plus resveratrol (SI = 0.77). The previous hybrids showed good antiproliferative activity.
Collapse
|
109
|
Manhas N, Singh P, Mocktar C, Singh M, Koorbanally N. Cytotoxicity and Antibacterial Evaluation of O-Alkylated/Acylated Quinazolin-4-one Schiff Bases. Chem Biodivers 2021; 18:e2100096. [PMID: 33724670 DOI: 10.1002/cbdv.202100096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/15/2021] [Indexed: 11/10/2022]
Abstract
A series of quinazolin-4-one Schiff bases were synthesized and tested in vitro for their cytotoxicity against two cancerous cell lines (MCF-7, Caco-2) and a human embryonic cell line (HEK-293) including their antibacterial evaluation against two Gram-positive and four Gram-negative bacterial strains. Most of the quinazoline-Schiff bases exhibited potent cytotoxicity against Caco-2. 3-[(Z)-({4-[(But-2-yn-1-yl)oxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one (6f) with the O-butyne functional group displayed three-fold higher cytotoxic activity (IC50 =376.8 μM) as compared to 5-fluorouracil (5-FU; IC50 =1086.1 μM). However, all compounds were found to be toxic to HEK-293, except for 3-[(Z)-({4-[(2,4-difluorophenyl)methoxy]phenyl}methylidene)amino]-2-methylquinazolin-4(3H)-one (6h) that showed ∼three-fold lower toxicity and higher selectivity index than 5-FU. Structure-activity relationship (SAR) analysis revealed that O-alkylation generally increased the anticancer activity and selectivity of quinazoline-4-one Schiff bases toward Caco-2 cells. The fluorinated Schiff-base generally exhibited even more significant cytotoxic activity compared to their chlorine analogs. Surprisingly, none of the quinazoline-4-one Schiff bases displayed encouraging antibacterial activity against the bacterial strains investigated. Most of the compounds were predicted to show compliance with the Lipinski parameters and ADMET profiles, indicating their drug-like properties.
Collapse
Affiliation(s)
- Neha Manhas
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Moganavelli Singh
- Non-Viral Gene Delivery Laboratory, Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
110
|
Feng LS. Development and Advances of Drugs for Cancer Theranostics - PART-III. Curr Top Med Chem 2021; 21:347. [PMID: 33726640 DOI: 10.2174/156802662105210216122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
111
|
Singu PS, Chilakamarthi U, Mahadik NS, Keerti B, Valipenta N, Mokale SN, Nagesh N, Kumbhare RM. Benzimidazole-1,2,3-triazole hybrid molecules: synthesis and study of their interaction with G-quadruplex DNA. RSC Med Chem 2021; 12:416-429. [PMID: 34046624 DOI: 10.1039/d0md00414f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
A series of new benzimidazole-1,2,3-triazole hybrid derivatives have been synthesized via 'click' reaction and evaluated for their in vitro cytotoxicity as well as DNA binding affinity. MTT assay showed that all the six compounds are cytotoxic to PC3 and B16-F10 cancer cell lines. Though all the compounds showed moderate interaction with G4, c-Myc promoter DNA and dsDNA, 4f exhibited selective interaction with G-quadruplex DNA over duplex DNA as demonstrated by spectroscopic experiments like UV-vis spectroscopy, fluorescence spectroscopy, CD spectroscopy, thermal melting and fluorescence lifetime experiments. They also confirm the G-quadruplex DNA stabilizing potential of 4f. Viscosity measurements also confirm that 4f exhibits high G-quadruplex DNA selectivity over duplex DNA. Docking studies supported the spectroscopic observations. Cell cycle analysis showed that 4f induces G2/M phase arrest and induces apoptosis. Hence, from these experimental results it is evident that compound 4f may be a G-quadruplex DNA groove binding molecule with anticancer activity.
Collapse
Affiliation(s)
- Padma S Singu
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Ushasri Chilakamarthi
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Namita S Mahadik
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Bhamidipati Keerti
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology Hyderabad-500007 India
| | - Narasimhulu Valipenta
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Santosh N Mokale
- Y. B. Chavan College of Pharmacy Dr. Rafiq Zakaria Campus Aurangabad-431001 India
| | - Narayana Nagesh
- Medical Biotechnology Complex, CSIR-Centre for Cellular and Molecular Biology ANNEXE II, Uppal Road Hyderabad 500007 India
| | - Ravindra M Kumbhare
- Department of Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad 500007 India .,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
112
|
Coumarin Sulfonamides and Amides Derivatives: Design, Synthesis, and Antitumor Activity In Vitro. Molecules 2021; 26:molecules26040786. [PMID: 33546294 PMCID: PMC7913302 DOI: 10.3390/molecules26040786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
Coumarins possesses immeasurable antitumor potential with minimum side effects depending on the substitutions on the basic nucleus, which exhibits great prospects for antitumor drug development. In an attempt to develop novel antitumor candidates, a series of coumarin sulfonamides and amides derivatives were designed and synthetized. The majority of these derivatives showed good cytotoxic activity against MDA-MB-231 and KB cell lines, among which compound 9c was the most potent against MDA-MB-231 cells, with IC50 value of 9.33 μM, comparable to 5-fluorouracil. Further investigation revealed that compound 9c had versatile properties against tumors, including inhibition of cell migration and invasion as well as inducing apoptosis. Reactive oxygen species (ROS) assay and western blotting analysis suggested that compound 9c promoted cancer cell apoptosis by increasing ROS levels and upregulating the expression of caspase-3 in MDA-MB-231 cells. These results indicated that compound 9c could be promising lead compound for further antitumor drug research.
Collapse
|
113
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. A Review of Recent Advances in the Green Synthesis of Azole- and Pyran-based Fused Heterocycles Using MCRs and Sustainable Catalysts. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201020204620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen, oxygen and sulfur-containing fused heterocycles are of great importance
because of their exciting and diverse biological activities. The construction of the carbonnitrogen
and carbon-oxygen through a multicomponent reaction approach by using ecofriendly
reusable heterogeneous catalysts are of significant importance as it opens avenues for
the introduction of nitrogen and oxygen in organic molecules. Thus, green methodologies
have gained particular significance in this field; today, green chemistry is considered a tool
for introducing sustainable concepts at the fundamental level. This review emphasizes and
discusses the current progress on the applications of eco-friendly, recyclable heterogeneous
catalysts for the synthesis of different heterocyclic fused systems and their green protocols.
We paid particular attention to the specific integration of carbon-nitrogen, and carbon-oxygen
bond-forming fused heterocycles by a one-pot approach by evaluating the literature between 2012 and the middle of
2020. The efficiency of the catalyst is assessed in terms of reaction time, yield and possible reusability. The MCR and
heterogeneous catalyst strategies have demonstrated broader scope, economical and viability for the green and sustainable
processes in the field of synthetic organic chemistry.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban-4000,, South Africa
| |
Collapse
|
114
|
Miao J, Meng C, Wu H, Shan W, Wang H, Ling C, Zhang J, Yang T. Novel Hybrid CHC from β-carboline and N-Hydroxyacrylamide Overcomes Drug-Resistant Hepatocellular Carcinoma by Promoting Apoptosis, DNA Damage, and Cell Cycle Arrest. Front Pharmacol 2021; 11:626065. [PMID: 33536926 PMCID: PMC7848139 DOI: 10.3389/fphar.2020.626065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
A novel hybrid CHC was designed and synthesized by conjugating β-carboline with an important active fragment N-hydroxyacrylamide of histone deacetylase (HDAC) inhibitor by an amide linkage to enhance antitumor efficacy/potency or even block drug resistance. CHC displayed high antiproliferative effects against drug-sensitive SUMM-7721, Bel7402, Huh7, and HCT116 cells and drug-resistant Bel7402/5FU cells with IC50 values ranging from 1.84 to 3.27 μM, which were two-to four-fold lower than those of FDA-approved HDAC inhibitor SAHA. However, CHC had relatively weak effect on non-tumor hepatic LO2 cells. Furthermore, CHC exhibited selective HDAC1/6 inhibitory effects and simultaneously augmented the acetylated histone H3/H4 and α-tubulin, which may make a great contribution to their antiproliferative effects. In addition, CHC also electrostatically interacted with CT-DNA, exerted remarkable cellular apoptosis by regulating the expression of apoptosis-related proteins and DNA damage proteins in Bel7402/5FU cells, and significantly accumulated cancer cells at the G2/M phase of the cell cycle by suppressing CDK1 and cyclin B protein with greater potency than SAHA-treated groups. Finally, CHC displayed strong inhibitory potency to drug-resistant hepatic tumors in mice. Our designed and synthetic hybrid CHC could be further developed as a significant and selective anticancer agent to potentially treat drug-resistant hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiefei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Hongmei Wu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Haoran Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Changchun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlin Zhang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, China
| | - Tao Yang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| |
Collapse
|
115
|
Camacho CM, Pizzio MG, Roces DL, Boggián DB, Mata EG, Bellizzi Y, Barrionuevo E, Blank VC, Roguin LP. Design, synthesis and cytotoxic evaluation of a library of oxadiazole-containing hybrids. RSC Adv 2021; 11:29741-29751. [PMID: 35479556 PMCID: PMC9040754 DOI: 10.1039/d1ra05602f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/20/2021] [Indexed: 11/30/2022] Open
Abstract
The development of hybrid compounds led to the discovery of new pharmacologically active agents for some of the most critical diseases, including cancer. Herein, we describe a new series of oxadiazole-containing structures designed by a molecular hybridization approach. Penicillin derivatives and amino acids were linked to amino acid and aromatic moieties through the formation of a 1,2,4-oxadiazole ring. Alternatively, condensation between amino acid-derived hydrazides and an activated penicillanic acid led to a series of 1,3,4-oxadiazole penicillin-containing hybrids and non-cyclized diacylhydrazides. From the cytotoxicity assays it is highlighted that two 1,2,4-oxadiazoles and one 1,3,4-oxadiazole connecting a penicillin and aliphatic amino acids displayed a high degree of cytotoxic selectivity, ranging between being three and four times more potent against tumor cells than normal cells. The results give a very interesting perspective suggesting that these hybrid compounds can offer a novel antitumor scaffold with promising cytotoxicity profiles. Synthesized hybrids of 1,2,4-oxadiazole and 1,3,4-oxadiazole connecting a penicillin and aliphatic amino acids displayed a high degree of cytotoxic selectivity.![]()
Collapse
Affiliation(s)
- Cristián M. Camacho
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Marianela G. Pizzio
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - David L. Roces
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Dora B. Boggián
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Ernesto G. Mata
- Instituto de Química Rosario (CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Yanina Bellizzi
- Instituto de Química y Fisicoquímica Biológicas (UBA – CONICET), Facultad de Farmacia y Bioquímica, UBA, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Elizabeth Barrionuevo
- Instituto de Química y Fisicoquímica Biológicas (UBA – CONICET), Facultad de Farmacia y Bioquímica, UBA, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Viviana C. Blank
- Instituto de Química y Fisicoquímica Biológicas (UBA – CONICET), Facultad de Farmacia y Bioquímica, UBA, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Leonor P. Roguin
- Instituto de Química y Fisicoquímica Biológicas (UBA – CONICET), Facultad de Farmacia y Bioquímica, UBA, Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
116
|
Shalini, Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin Drug Discov 2020; 16:335-363. [PMID: 33305635 DOI: 10.1080/17460441.2021.1850686] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cancer continues to be a big threat and its treatment is a huge challenge among the medical fraternity. Conventional anti-cancer agents are losing their efficiency which highlights the need to introduce new anti-cancer entities for treating this complex disease. A hybrid molecule has a tendency to act through varied modes of action on multiple targets at a given time. Thus, there is the significant scope with hybrid compounds to tackle the existing limitations of cancer chemotherapy. AREA COVERED This perspective describes the most significant hybrids that spring hope in the field of cancer chemotherapy. Several hybrids with anti-proliferative/anti-tumor properties currently approved or in clinical development are outlined, along with a description of their mechanism of action and identified drug targets. EXPERT OPINION The success of molecular hybridization in cancer chemotherapy is quite evident by the number of molecules entering into clinical trials and/or have entered the drug market over the past decade. Indeed, the recent advancements and co-ordinations in the interface between chemistry, biology, and pharmacology will help further the advancement of hybrid chemotherapeutics in the future.List of abbreviations: Deoxyribonucleic acid, DNA; national cancer institute, NCI; peripheral blood mononuclear cells, PBMC; food and drug administration, FDA; histone deacetylase, HDAC; epidermal growth factor receptor, EGFR; vascular endothelial growth factor receptor, VEGFR; suberoylanilide hydroxamic acid, SAHA; farnesyltransferase inhibitor, FTI; adenosine triphosphate, ATP; Tamoxifen, TAM; selective estrogen receptor modulator, SERM; structure activity relationship, SAR; estrogen receptor, ER; lethal dose, LD; half maximal growth inhibitory concentration, GI50; half maximal inhibitory concentration, IC50.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| |
Collapse
|
117
|
Ahmed MF, Santali EY, El-Haggar R. Novel piperazine-chalcone hybrids and related pyrazoline analogues targeting VEGFR-2 kinase; design, synthesis, molecular docking studies, and anticancer evaluation. J Enzyme Inhib Med Chem 2020; 36:307-318. [PMID: 33349069 PMCID: PMC7758046 DOI: 10.1080/14756366.2020.1861606] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
New piperazine–chalcone hybrids and related pyrazoline derivatives have been designed and synthesised as potential vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors. The National Cancer Institute (NCI) has selected six compounds to evaluate their antiproliferative activity in vitro against 60 human cancer cells lines. Preliminary screening of the examined compounds indicated promising anticancer activity against number of cell lines. The enzyme inhibitory activity against VEGFR-2 was evaluated and IC50 of the tested compounds ranged from 0.57 µM to 1.48 µM. The most potent derivatives Vd and Ve were subjected to further investigations. A cell cycle analysis showed that both compounds mainly arrest HCT-116 cell cycle in the G2/M phase. Annexin V-FITC apoptosis assay showed that Vd and Ve induced an approximately 18.7-fold and 21.2-fold total increase in apoptosis compared to the control. Additionally, molecular docking study was performed against VEGFR (PDB ID: 4ASD) using MOE 2015.10 software and Sorafenib as a reference ligand.
Collapse
Affiliation(s)
- Marwa F Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman Y Santali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
118
|
El-Damasy AK, Haque MM, Park JW, Shin SC, Lee JS, EunKyeong Kim E, Keum G. 2-Anilinoquinoline based arylamides as broad spectrum anticancer agents with B-RAF V600E/C-RAF kinase inhibitory effects: Design, synthesis, in vitro cell-based and oncogenic kinase assessments. Eur J Med Chem 2020; 208:112756. [PMID: 32942186 DOI: 10.1016/j.ejmech.2020.112756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/15/2022]
Abstract
Prompted by the urgent demand for identification of new anticancer agents with improved potency and efficacy, a new series of arylamides incorporating the privileged 2-anilinoquinoline scaffold has been designed, synthesized, and biologically assessed. Aiming at extensive evaluation of the target compounds' potency and spectrum, a panel of 60 clinically important cancer cell lines representing nine cancer types has been used. Compounds 9a and 9c, with piperazine substituted phenyl ring, emerged as the most active members surpassing the anticancer potencies of the FDA-approved drug imatinib. They elicited sub-micromolar or one-digit micromolar GI50 values over the majority of tested cancer cells including multidrug resistant (MDR) cells like colon HCT-15, renal TK-10 and UO-31, and ovarian NCI/ADR-RES. In vitro mechanistic study showed that compounds 9a and 9c could trigger morphological changes, apoptosis and cell cycle arrest in HCT-116 colon cancer cells. Besides, compound 9c altered microtubule polymerization pattern in a similar fashion to paclitaxel. Kinase screening of 9c disclosed its inhibitory activity over B-RAFV600E and C-RAF kinases with IC50 values of 0.888 μM and 0.229 μM, respectively. Taken together, the current report presents compounds 9a and 9c as promising broad-spectrum potent anticancer candidates, which could be considered for further development of new anticancer drugs.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Md Mamunul Haque
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea
| | - Jung Woo Park
- Center for Supercomputing Applications, Div. of National Supercomputing R&D, Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Chul Shin
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Molecular Recognition Research Center, KIST, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, KIST, Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul, 136-791, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
119
|
Gummidi L, Kerru N, Awolade P, Raza A, Sharma AK, Singh P. Synthesis of indole-tethered [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids as anti-pancreatic cancer agents. Bioorg Med Chem Lett 2020; 30:127544. [PMID: 32920143 DOI: 10.1016/j.bmcl.2020.127544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/07/2023]
Abstract
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.
Collapse
Affiliation(s)
- Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
120
|
Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur J Med Chem 2020; 205:112679. [PMID: 32791404 DOI: 10.1016/j.ejmech.2020.112679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
121
|
Thari FZ, Tachallait H, El Alaoui NE, Talha A, Arshad S, Álvarez E, Karrouchi K, Bougrin K. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na 3PO 4 in aqueous media. ULTRASONICS SONOCHEMISTRY 2020; 68:105222. [PMID: 32585575 DOI: 10.1016/j.ultsonch.2020.105222] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
A rapid and green method for the synthesis of novel N-thiazolidine-2,4-dione isoxazoline derivatives 5 from N-allyl-5-arylidenethiazolidine-2,4-diones 3 as dipolarophiles with arylnitrile oxides via 1,3-dipolar cycloaddition reaction. The corresponding N-allyl substituted dipolarophiles were prepared by one-pot method from thiazolidine-2,4-dione with aldehydes using Knoevenagel condensation followed by N-allylation of thiazolidine-2,4-dione in NaOH aqueous solution under sonication. In addition, the isoxazoline derivatives 5 were synthesized by regioselective and chemoselective 1,3-dipolar cycloaddition using inexpensive and mild NaCl/Oxone/Na3PO4 as a Cl source, oxidant and/or catalyst under ultrasonic irradiation in EtOH/H2O (v/v, 2:1) as green solvent. All synthesized products are furnished in good yields in the short reaction time, and then their structures were confirmed by NMR, mass spectrometry and X-ray crystallography analysis.
Collapse
Affiliation(s)
- Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Hamza Tachallait
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Nour-Eddine El Alaoui
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Aicha Talha
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco.
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University of Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Benguerir, Morocco.
| |
Collapse
|
122
|
Kerru N, Gummidi L, Maddila S, Jonnalagadda SB. Polyethylene glycol (PEG‐400) Mediated One‐pot Green Synthesis of 4,7‐Dihydro‐2
H
‐pyrazolo[3,4‐
b
]pyridines Under Catalyst‐free Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Lalitha Gummidi
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Suresh Maddila
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Chiltern Hills Private Bag 54001 Durban-4000 South Africa
| |
Collapse
|
123
|
Kankala S, Rama KR, Kesari C, Björkling F, Nerella S, Gundepaka P, Guguloth H, Thota N. Synthesis of novel fluorophenylpyrazole-picolinamide derivatives and determination of their anticancer activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1791341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Koteshwar Rao Rama
- Department of Chemistry, Mewar University, Chittorgarh, Rajasthan, India
| | - Chekrapani Kesari
- Department of Chemistry, Mewar University, Chittorgarh, Rajasthan, India
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Srinivas Nerella
- Department of Chemistry, Kakatiya University, Warangal, Telangana, India
| | - Prasad Gundepaka
- Centre for Pharmaceutical Science, Institute of Science and Technology, JNTU, Hyderabad, India
| | - Hanmanthu Guguloth
- Department of Chemistry, Kakatiya University, Warangal, Telangana, India
| | - Niranjan Thota
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
124
|
Yan X, Wen J, Zhou L, Fan L, Wang X, Xu Z. Current Scenario of 1,3-oxazole Derivatives for Anticancer Activity. Curr Top Med Chem 2020; 20:1916-1937. [PMID: 32579505 DOI: 10.2174/1568026620666200624161151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/06/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023]
Abstract
Cancer, which has been cursed for human beings for long time is considered as one of the
leading causes of morbidity and mortality across the world. In spite of different types of treatments
available, chemotherapy is still deemed as a favored treatment for the cancer. Unfortunately, many currently
accessible anticancer agents have developed multidrug resistance along with fatal adverse effects.
Therefore, intensive efforts have been made to seek for new active drugs with improved anticancer efficacy
and reduced adverse effects. In recent years, the emergence of heterocyclic ring-containing anticancer
agents has gained a great deal of attention among medicinal chemists. 1,3- oxazole is a versatile
heterocyclic compound, and its derivatives possess broad-spectrum pharmacological properties, including
anticancer activity against both drug-susceptible, drug-resistant and even multidrug-resistant cancer
cell lines through multiple mechanisms. Thus, the 1,3-oxazole moiety is a useful template for the development
of novel anticancer agents. This review will provide a comprehensive overview of the recent
advances on 1,3-oxazole derivatives with potential therapeutic applications as anticancer agents, focus
on the chemical structures, anticancer activity, and mechanisms of action.
Collapse
Affiliation(s)
- Xinjia Yan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Jing Wen
- College of Pharmacy, Harbin University of Commerce, Harbin, China
| | - Lin Zhou
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Lei Fan
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Xiaobo Wang
- Department of Pharmacy, The 967th Hospital of Joint Logistic Support Force of PLA, Dalian, China
| | - Zhi Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
125
|
Recent advances of podophyllotoxin/epipodophyllotoxin hybrids in anticancer activity, mode of action, and structure-activity relationship: An update (2010-2020). Eur J Med Chem 2020; 208:112830. [PMID: 32992133 DOI: 10.1016/j.ejmech.2020.112830] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 02/08/2023]
Abstract
Podophyllotoxins and epipodophyllotoxins, possess excellent activity against both drug-sensitive and drug-resistant even multidrug-resistant cancer cells via inhibition of tubulin polymerization. Several podophyllotoxin/epipodophyllotoxin derivatives such as etoposide and teniposide have already been applied for cancer therapy, revealing their potential as putative anticancer drugs. Hybridization of podophyllotoxin/epipodophyllotoxin moiety with other anticancer pharmacophores is a promising strategy to develop novel drug candidates so as to overcome drug resistance and improve the specificity, and numerous of podophyllotoxin/epipodophyllotoxin hybrids exhibit excellent in vitro antiproliferative and in vivo anticancer potency. This review emphasizes the recent development of podophyllotoxin/epipodophyllotoxin hybrids with potential application for cancer therapy covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design as well as structure-activity relationships were also summarized.
Collapse
|
126
|
Propargylated monocarbonyl curcumin analogues: synthesis, bioevaluation and molecular docking study. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
127
|
Ali W, Spengler G, Kincses A, Nové M, Battistelli C, Latacz G, Starek M, Dąbrowska M, Honkisz-Orzechowska E, Romanelli A, Rasile MM, Szymańska E, Jacob C, Zwergel C, Handzlik J. Discovery of phenylselenoether-hydantoin hybrids as ABCB1 efflux pump modulating agents with cytotoxic and antiproliferative actions in resistant T-lymphoma. Eur J Med Chem 2020; 200:112435. [DOI: 10.1016/j.ejmech.2020.112435] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
|
128
|
Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg Chem 2020; 102:104094. [PMID: 32711085 DOI: 10.1016/j.bioorg.2020.104094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Novel 1,4-bis[(2-(3-(dimethylamino)-1-oxoprop-2-en-1-yl)benzofuran-5-yl)methyl]piperazine was prepared and used as a key synthon for the this study. Therefore, 1,3-dipolar cycloaddition of this synthon with the appropriate hydrazonyl chlorides afforded a new series of bis(1,3,4-trisubstituted pyrazoles), linked via piperazine moiety. Furthermore, it reacted with hydrazine hydrate and phenyl hydrazine individually to afford the corresponding 1,4-bis[(2-(1H-pyrazolyl)benzofuran-5-yl)methyl]piperazines. Different bacterial strains and cell lines were selected to study the in-vitro antibacterial and cytotoxic activities for the new derivatives. 1,4-Bis[((2-(3-acetyl-1-(4-nitrophenyl)-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine 5e showed the best antibacterial efficacies with MIC/MBC values of 1.2/1.2, 1.2/2.4 and 1.2/2.4 μM against each of E. coli, S. aureus and S. mutans strains, respectively. In addition, the inhibitory activity of some new bis(pyrazoles) as MRSA and VRE inhibitors were studied. Compound 5e gave the best inhibitory activity with MIC/MBC values of 18.1/36.2, 9.0/18.1 and 18.1/18.1 µM, respectively, against MRSA (ATCC:33591 and ATCC:43300) and VRE (ATCC:51575) bacterial strains, respectively. Compound 5e showed more effective biofilm inhibition activities than the reference Ciprofloxacin. It showed IC50 values of 3.0 ± 0.05, 3.2 ± 0.08 and 3.3 ± 0.07 μM against S. aureus, S. mutans and E. coli strains, respectively. Furthermore, experimental study showed excellent inhibitory activities of 1,4-bis[((2-(3-substituted-1-aryl-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine derivatives, attached to p-NO2 or p-Cl groups, against MurB enzyme. Compound 5e gave the best MurB inhibitory activity with IC50 value of 3.1 μM. The in-silico study was performed to predict the capability of new derivatives as potential inhibitors of MurB enzyme.
Collapse
|
129
|
Prasher P, Sharma M, Aljabali AAA, Gupta G, Negi P, Kapoor DN, Singh I, Zacconi FC, Jesus Andreoli Pinto T, Silva MW, Bakshi HA, Chellappan DK, Tambuwala MM, Dua K. Hybrid molecules based on 1,3,5‐triazine as potential therapeutics: A focused review. Drug Dev Res 2020; 81:837-858. [DOI: 10.1002/ddr.21704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/25/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Parteek Prasher
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry University of Petroleum & Energy Studies Dehradun India
| | - Mousmee Sharma
- UGC‐Sponsored Centre for Advanced Studies, Department of Chemistry Guru Nanak Dev University Amritsar India
- Department of Chemistry Uttaranchal University Dehradun India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology Faculty of Pharmacy, Yarmouk University Irbid Jordan
| | - Gaurav Gupta
- School of Pharmacy Suresh Gyan Vihar University Jaipur India
| | - Poonam Negi
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
| | - Inderbir Singh
- Chitkara College of Pharmacy Chitkara University Punjab India
| | - Flavia C. Zacconi
- Departamento de Organica, faculdad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile Santiago Chile
| | | | - Mateus Webba Silva
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Kuala Lumpur Malaysia
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science Ulster University Coleraine United Kingdom
| | - Kamal Dua
- School of Pharmaceutical Sciences Shoolini University of Biotechnology and Management Sciences Solan India
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy University of Newcastle Callaghan New South Wales Australia
- Centre for Inflammation, Centenary Institute Royal Prince Alfred Hospital Sydney New South Wales Australia
| |
Collapse
|
130
|
Kumar RS, Almansour AI, Arumugam N, Mohammad F, Kumar RR. In vitro Mechanistic Exploration of Novel Spiropyrrolidine Heterocyclic Hybrids as Anticancer Agents. Front Chem 2020; 8:465. [PMID: 32582638 PMCID: PMC7283928 DOI: 10.3389/fchem.2020.00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/04/2020] [Indexed: 01/17/2023] Open
Abstract
Novel spiro acenaphthylene pyrrolo[1,2-b]isoquinoline/pyrrolidine hybrids have been achieved through Pictet-Spengler/Eschweiler-Clarke reactions depending on the substitution in the benzyl ring. The in vitro biological efficacy of N-methyl spiropyrrolidine derivatives toward different cancer and non-cancer cell lines revealed that these novel spiro heterocyclic hybrids induced cancer cell death at moderate concentrations, while slight reduction in non-cancer cell viability at the higher concentrations. The analysis of cancer cells proved that the major pathway of cell death is apoptosis and in addition, the role of caspases is confirmed by the appearance of fluorescent cells in microscopic images. Therefore, this study indicates a sustainable way of treating cancer cells by inducing apoptotic pathways and associated caspases, while simultaneously protecting the non-cancer cells.
Collapse
Affiliation(s)
- Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
131
|
Ultrasound-assisted synthesis and antibacterial activity of novel 1,3,4-thiadiazole-1H-pyrazol-4-yl-thiazolidin-4-one derivatives. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
132
|
Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
133
|
Costa CA, Lopes RM, Ferraz LS, Esteves GN, Di Iorio JF, Souza AA, de Oliveira IM, Manarin F, Judice WA, Stefani HA, Rodrigues T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg Med Chem 2020; 28:115511. [DOI: 10.1016/j.bmc.2020.115511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
|
134
|
Garcês de Couto NM, Willig JB, Ruaro TC, de Oliveira DL, Buffon A, Pilger DA, Arruda MS, Miron D, Zimmer AR, Gnoatto SC. Betulinic Acid and Brosimine B Hybrid Derivatives as Potential Agents against Female Cancers. Anticancer Agents Med Chem 2020; 20:622-633. [DOI: 10.2174/1871520620666200124111634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Background:
Cancer is a multifactorial disease, representing one of the leading causes of death
worldwide. On a global estimate, breast cancer is the most frequently occurring cancer in women and cervical
cancer, the fourth most common. Both types of cancer remain the major cause of cancer-related mortality in
developing countries. A strategy for rational drug design is hybridization, which aims to bring together in one
molecule, two or more pharmacophores in order to reach several biological targets.
Objective:
The objective of this work was to develop new hybrids based on natural pharmacophores: Betulinic
acid (1) and brosimine b (2), active in female cancer cell lines.
Methods:
The coupling reactions were carried out by Steglich esterification. Different compounds were designed
for the complete and simplified structural hybridization of molecules. The anticancer activities of the
compounds were evaluated in human cervical adenocarcinoma (HeLa), human cervical metastatic epidermoid
carcinoma (ME-180), and human breast adenocarcinoma (MCF-7) cell lines.
Results:
Hybrid 3 presented higher potency (IC50 = 9.2 ± 0.5μM) and SI (43.5) selectively in MCF-7 cells (in
relation to Vero cells) with its cytotoxic effect occurring via apoptosis. In addition, compound 6 showed activity
in MCF-7 and HeLa cells with intermediate potency, but with high efficacy, acting via apoptosis as well.
Conclusion:
In this context, we showed that the combination of two complex structures generated the development
of hybrids with differing inhibitory profiles and apoptotic modes of action, thus representing potential
alternatives in female cancer treatment.
Collapse
Affiliation(s)
- Nádia M. Garcês de Couto
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Júlia B. Willig
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thaís C. Ruaro
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Andréia Buffon
- Laboratory of Biochemical and Cytological Analysis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo A. Pilger
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara S.P. Arruda
- Institute of Exact and Natural Sciences, Federal University of Para, Belem, Brazil
| | - Diogo Miron
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline R. Zimmer
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone C.B. Gnoatto
- Post-graduation of Pharmaceutical Science Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
135
|
Design synthesis and anti-proliferative activity of some new coumarin substituted hydrazide–hydrazone derivatives. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01767-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
136
|
Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020; 25:molecules25081909. [PMID: 32326131 PMCID: PMC7221918 DOI: 10.3390/molecules25081909] [Citation(s) in RCA: 686] [Impact Index Per Article: 137.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
The analogs of nitrogen-based heterocycles occupy an exclusive position as a valuable source of therapeutic agents in medicinal chemistry. More than 75% of drugs approved by the FDA and currently available in the market are nitrogen-containing heterocyclic moieties. In the forthcoming decade, a much greater share of new nitrogen-based pharmaceuticals is anticipated. Many new nitrogen-based heterocycles have been designed. The number of novel N-heterocyclic moieties with significant physiological properties and promising applications in medicinal chemistry is ever-growing. In this review, we consolidate the recent advances on novel nitrogen-containing heterocycles and their distinct biological activities, reported over the past one year (2019 to early 2020). This review highlights the trends in the use of nitrogen-based moieties in drug design and the development of different potent and competent candidates against various diseases.
Collapse
|
137
|
Yadav U, Sakla AP, Tokala R, Nyalam ST, Khurana A, Digwal CS, Talla V, Godugu C, Shankaraiah N, Kamal A. Design and Synthesis of 5‐Morpholino‐Thiophene‐Indole/ Oxindole Hybrids as Cytotoxic Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Upasana Yadav
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Akash P. Sakla
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ramya Tokala
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Sai Teja Nyalam
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Amit Khurana
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chander Singh Digwal
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Venu Talla
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Chandraiah Godugu
- Department of Regulatory ToxicologyNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Nagula Shankaraiah
- Department of Medicinal ChemistryNational Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia, Hamdard New Delhi 110062 India
| |
Collapse
|
138
|
Zulu AI, Oderinlo OO, Kruger C, Isaacs M, Hoppe HC, Smith VJ, Veale CGL, Khanye SD. Synthesis, Structure and In Vitro Anti-Trypanosomal Activity of Non-Toxic Arylpyrrole-Based Chalcone Derivatives. Molecules 2020; 25:E1668. [PMID: 32260364 PMCID: PMC7181280 DOI: 10.3390/molecules25071668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
With an intention of identifying chalcone derivatives exhibiting anti-protozoal activity, a cohort of relatively unexplored arylpyrrole-based chalcone derivatives were synthesized in moderate to good yields. The resultant compounds were evaluated in vitro for their potential activity against a cultured Trypanosoma brucei brucei 427 strain. Several compounds displayed mostly modest in vitro anti-trypanosomal activity with compounds 10e and 10h emerging as active candidates with IC50 values of 4.09 and 5.11 µM, respectively. More importantly, a concomitant assessment of their activity against a human cervix adenocarcinoma (HeLa) cell line revealed that these compounds are non-toxic.
Collapse
Affiliation(s)
- Ayanda I. Zulu
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Ogunyemi O. Oderinlo
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Cuan Kruger
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
| | - Michelle Isaacs
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
| | - Heinrich C. Hoppe
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
- Department of Biochemistry and Microbiology, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa
| | - Vincent J. Smith
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
| | - Clinton G. L. Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville 3209, South Africa;
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| | - Setshaba D. Khanye
- Department of Chemistry, Faculty of Science, Rhodes University, Grahamstown 6140, South Africa; (A.I.Z.); (O.O.O.); (C.K.); (V.J.S.)
- Centre for Chemico and Biomedicinal Research, Rhodes University, Grahamstown 6140, South Africa; (M.I.); (H.C.H.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Rhodes University, Grahamstown 6140, South Africa
| |
Collapse
|
139
|
|
140
|
Cascioferro S, Petri GL, Parrino B, Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D, Peters GJ, Cirrincione G, Giovannetti E, Diana P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem 2020; 189:112088. [PMID: 32007666 DOI: 10.1016/j.ejmech.2020.112088] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
A new series of eighteen imidazo [2,1-b] [1,3,4]thiadiazole derivatives was efficiently synthesized and screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. Two out of eighteen derivatives, compounds 12a and 12h, showed remarkably cytotoxic activity with the half maximal inhibitory concentration values (IC50) ranging from 0.23 to 11.4 μM, and 0.29-12.2 μM, respectively. However, two additional compounds, 12b and 13g, displayed remarkable in vitro antiproliferative activity against pancreatic ductal adenocarcinoma (PDAC) cell lines, including immortalized (SUIT-2, Capan-1, Panc-1), primary (PDAC-3) and gemcitabine-resistant (Panc-1R), eliciting IC50 values ranging from micromolar to sub-micromolar level, associated with significant reduction of cell-migration and spheroid shrinkage. These remarkable results might be explained by modulation of key regulators of epithelial-to-mesenchymal transition (EMT), including E-cadherin and vimentin, and inhibition of metalloproteinase-2/-9. High-throughput arrays revealed a significant inhibition of the phosphorylation of 45 tyrosine kinases substrates, whose visualization on Cytoscape highlighted PTK2/FAK as an important hub. Inhibition of phosphorylation of PTK2/FAK was validated as one of the possible mechanisms of action, using a specific ELISA. In conclusion, novel imidazothiadiazoles show potent antiproliferative activity, mediated by modulation of EMT and PTK2/FAK.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Giovanna Li Petri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126, Pisa, Italy
| | - Cecilia Bergonzini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Daan Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
141
|
Hou W, Liu B, Xu H. Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. Eur J Med Chem 2020; 189:112081. [DOI: 10.1016/j.ejmech.2020.112081] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022]
|
142
|
Djemoui A, Naouri A, Ouahrani MR, Djemoui D, Lahcene S, Lahrech MB, Boukenna L, Albuquerque HM, Saher L, Rocha DH, Monteiro FL, Helguero LA, Bachari K, Talhi O, Silva AM. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
143
|
Al-Wabli RI, Almomen AA, Almutairi MS, Keeton AB, Piazza GA, Attia MI. New Isatin-Indole Conjugates: Synthesis, Characterization, and a Plausible Mechanism of Their in vitro Antiproliferative Activity. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:483-495. [PMID: 32099332 PMCID: PMC7006853 DOI: 10.2147/dddt.s227862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
Background Cancer remains the leading cause of human morbidity universally. Hence, we sought to assess the in vitro antiproliferative activity of new isatin-based conjugates (5a–s) against three human cancer cell lines. Methods The antiproliferative activities of compounds 5a–s were evaluated in vitro and their ADME (absorption, distribution, metabolism and excretion) was carried out using standard protocols. Subsequently, Western blot analysis was conducted to elucidate the potential antiproliferative mechanism of compounds 5a–s. Results The in vitro antiproliferative activities of compounds 5a–s against the tested cancer cell lines ranged from 20.3 to 95.9%. Compound 5m had an IC50 value of 1.17 µM; thus, its antiproliferative potency was approximately seven-fold greater than that of sunitinib (IC50 = 8.11 µM). In-depth pharmacological testing was conducted with compound 5m to gain insight into the potential antiproliferative mechanism of this class of compounds. Compound 5m caused an increase in the number of cells in the G1 phase, with a concomitant reduction of those in the G2/M and S phases. Additionally, compound 5m significantly and dose-dependently reduced the amount of phosphorylated retinoblastoma protein detected. Compound 5m enhanced expression of B cell translocation gene 1, cell cycle-associated proteins (cyclin B1, cyclin D1, and phosphorylated cyclin-dependent kinase 1), and a pro-apoptotic protein (Bcl-2-associated X protein gene), and activated caspase-3. ADME predictions exposed the oral liability of compounds 5a-s. Conclusion Herein, we revealed the antiproliferative activity and ADME predictions of the newly-synthesized compounds 5a–s and provided a detailed insight into the pharmacological profile of compound 5m. Thus, compounds 5a–s can potentially be exploited as new antiproliferative lead compounds for cancer chemotherapeutic.
Collapse
Affiliation(s)
- Reem I Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah A Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618), Giza 12622, Egypt
| |
Collapse
|
144
|
Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E, Singh P. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur J Med Chem 2020; 187:111921. [PMID: 31835168 PMCID: PMC7111419 DOI: 10.1016/j.ejmech.2019.111921] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/02/2023]
Abstract
The emergence of disease and dearth of effective pharmacological agents on most therapeutic fronts, constitutes a major threat to global public health and man's existence. Consequently, this has created an exigency in the search for new drugs with improved clinical utility or means of potentiating available ones. To this end, accumulating empirical evidence supports molecular target therapy as a plausible egress and, β-glucuronidase (βGLU) - a lysosomal acid hydrolase responsible for the catalytic deconjugation of β-d-glucuronides has emerged as a viable molecular target for several therapeutic applications. The enzyme's activity level in body fluids is also deemed a potential biomarker for the diagnosis of some pathological conditions. Moreover, due to its role in colon carcinogenesis and certain drug-induced dose-limiting toxicities, the development of potent inhibitors of βGLU in human intestinal microbiota has aroused increased attention over the years. Nevertheless, although our literature survey revealed both natural products and synthetic scaffolds as potential inhibitors of the enzyme, only few of these have found clinical utility, albeit with moderate to poor pharmacokinetic profile. Hence, in this review we present a compendium of exploits in the present millennium directed towards the inhibition of βGLU. The aim is to proffer a platform on which new scaffolds can be modelled for improved βGLU inhibitory potency and the development of new therapeutic agents in consequential.
Collapse
Affiliation(s)
- Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ebenezer Oluwakemi
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
145
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
146
|
Dhawan S, Awolade P, Kisten P, Cele N, Pillay AS, Saha S, Kaur M, Jonnalagadda SB, Singh P. Synthesis, Cytotoxicity and Antimicrobial Evaluation of New Coumarin-Tagged β-Lactam Triazole Hybrid. Chem Biodivers 2020; 17:e1900462. [PMID: 31788939 DOI: 10.1002/cbdv.201900462] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
A series of coumarin-tagged β-lactam triazole hybrids (10a-10o) were synthesized and tested for their cytotoxic activity against MDA-MB-231 (triple negative breast cancer), MCF-7 (estrogen receptor positive breast cancer (ER+)) and A549 (human lung carcinoma) cancer cell lines including one normal cell line, HEK-293 (human embryonic kidney). Two compounds 10b and 10d exhibited substantial cytotoxic effect against MCF-7 cancer cell lines with IC50 values of 53.55 and 58.62 μm, respectively. More importantly, compounds 10b and 10d were non-cytotoxic against HEK-293 cell lines. Structure-activity relationship (SAR) studies suggested that the nitro and chloro group at the C-3 position of phenyl ring are favorable for anticancer activity, particularly against MCF-7 cell lines. Furthermore, antimicrobial evaluation of these compounds revealed modest inhibition of examined pathogenic strains with compounds 10c and 10i being the most promising antimicrobial agents against Pseudomonas aeruginosa and Candida albicans, respectively.
Collapse
Affiliation(s)
- Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Prishani Kisten
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Nosipho Cele
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Ashona-Singh Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - SouravTaru Saha
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Johannesburg, WITS-2050, South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| |
Collapse
|
147
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
148
|
Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv 2020; 10:41353-41392. [PMID: 35516563 PMCID: PMC9057921 DOI: 10.1039/d0ra06642g] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the pharmacological activities of quinazoline and quinazolinone scaffolds, it has aroused great interest in medicinal chemists for the development of new drugs or drug candidates. The pharmacological activities of quinazoline and its related scaffolds include anti-cancer, anti-microbial, anti-convulsant, and antihyperlipidaemia. Recently, molecular hybridization technology is used for the development of hybrid analogues with improved potency by combining two or more pharmacophores of bioactive scaffolds. The molecular hybridization of various biologically active pharmacophores with quinazoline derivatives resulted in lead compounds with multi-faceted biological activity wherein specific as well as multiple targets were involved. The present review summarizes the advances in lead compounds of quinazoline hybrids and their related heterocycles in medicinal chemistry. Moreover, the review also helps to intensify the drug development process by providing an understanding of the potential role of these hybridized pharmacophoric features in exhibiting various pharmacological activities. Recent advances in quinazoline/quinazolinone hybrid heterocycles in medicinal chemistry and their pharmacological diversification.![]()
Collapse
Affiliation(s)
- Prashant S. Auti
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Ginson George
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Atish T. Paul
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| |
Collapse
|
149
|
Li B, Cheng X, Guan ZY, Li SY, Huo T, Cheng G, Fan YH, Zhou FS, Deng QH. Zinc-catalyzed asymmetric nitrooxylation of β-keto esters/amides with a benziodoxole-derived nitrooxy transfer reagent. Org Chem Front 2020. [DOI: 10.1039/d0qo01022g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zinc-catalyzed asymmetric nitrooxylation to afford a series of α-nitrooxy β-keto esters/amides in high yields and with low to moderate enantioselectivities has been disclosed.
Collapse
Affiliation(s)
- Bin Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Xuan Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Zhen-Yu Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Si-Yuan Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Guo Cheng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Yan-Hui Fan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- P. R. China
| |
Collapse
|
150
|
Huang L, Huang R, Pang F, Li A, Huang G, Zhou X, Li Q, Li F, Ma X. Synthesis and biological evaluation of dehydroabietic acid-pyrimidine hybrids as antitumor agents. RSC Adv 2020; 10:18008-18015. [PMID: 35517208 PMCID: PMC9053630 DOI: 10.1039/d0ra02432e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel dehydroabietic acid derivatives containing pyrimidine moieties were designed and synthesized. Some of them displayed more potent inhibitory activities compared with 5-FU.
Collapse
Affiliation(s)
- Lin Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Rong Huang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fuhua Pang
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Anke Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Guobao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- College of Chemistry and Food Science
- Yulin Normal University
- Yulin
- PR China
| | - Xiaoqun Zhou
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Qian Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| | - Fangyao Li
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
| | - Xianli Ma
- School of Pharmacy
- Guilin Medical University
- Guilin
- PR China
| |
Collapse
|