101
|
Photoinduced electron transfer reactions in mixed micelles of a star block copolymer and surface active ionic liquids: Role of the anion. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
102
|
Shaikh S, Patel H, Ray D, Aswal VK, Sharma RK. Mixed Poloxamer Nanomicelles for the Anticonvulsant Lamotrigine Drug: Solubility, Micellar Characterization, and In-Vitro Release Studies. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5723-5735. [PMID: 33980386 DOI: 10.1166/jnn.2021.19490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently the applications of Poloxamers in drug development is promising as it facilitated the drug molecule for delivering to the correct place, at the correct time and in the correct amount. Poloxamers can form nanomicelles to encapsulate hydrophobic drugs in order to increase solubility, stability and facilitate delivery at target. In this context, the solubilization of anticonvulsant lamotrigine (LMN) drug in a chain of Poloxamers containing different polyethylene oxide and polypropylene oxide noieties were examined. The results showed better solubilization of LMN in Poloxamers contain low CMTs while poor with Poloxamers having high CMTs. Systematic investigation of two mixed Poloxamer nanomicelles (P407:P403 and P407:P105) for LMN bioavailability at body temperature (37 °C) were investigated. The solubility of LMN was enhanced in mixed P407:P403 nanomicelles with the amount of P403 and reduced in mixed P407:P105 nanomicelles with the amount of P105. LMN encapsulated mixed Poloxamer nanomicelles were found spherical in shape with ~25 nm Dh sizes. The In-Vitro release profiles of mixed Poloxamer nanomicelles demonstrated the biphasic model with initial burst release and then slowly release of LMN. Better biocompatibility of LMN in the mixed P407:P403 nanomicelles was confirmed with stability data. The results of this work were proven the mixed P407:P403 nanomicelles as efficient nanocarriers for LMN.
Collapse
Affiliation(s)
- Sofiya Shaikh
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Hemil Patel
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| | - Debes Ray
- State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Vinod K Aswal
- State Physics Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, Maharashtra, India
| | - Rakesh K Sharma
- Applied Chemistry Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat, India
| |
Collapse
|
103
|
Sipos B, Csóka I, Budai-Szűcs M, Kozma G, Berkesi D, Kónya Z, Balogh GT, Katona G. Development of dexamethasone-loaded mixed polymeric micelles for nasal delivery. Eur J Pharm Sci 2021; 166:105960. [PMID: 34339828 DOI: 10.1016/j.ejps.2021.105960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/18/2022]
Abstract
Our study aimed to formulate a novel dexamethasone (DXM)-loaded, mixed polymeric micelle-based drug delivery system, focusing on the auspicious nose-to-brain pathway, as a key delivery route to treat central nervous system (CNS) associated diseases. Polymeric micelles might be a solution to deliver drugs to the place of action compared to conventional formulations. Due to low Z-average (89.92 ± 2.7 nm), a polydispersity index of 0.216 ± 0.014 and high surface polarity (52.23%), a significant increase in water solubility (14-fold) was experienced. This increase resulted in favourable dissolution profile at nasal and axonal conditions with high in vitro permeability value (14.6×10-6 cm/s) on polar brain (porcine) lipid extract. Modified Side-bi-side® type diffusion study confirmed rapid and efficient passive diffusion through the nasal mucosa contributed by strong mucoadhesive properties. The final formulation met all the requirements of a nasal drug delivery system with rapid onset of action, meaning DXM can reach the CNS and there it can exert its beneficial effects in pathological conditions.
Collapse
Affiliation(s)
- Bence Sipos
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary.
| | - Ildikó Csóka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary.
| | - Mária Budai-Szűcs
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary.
| | - Gábor Kozma
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. sq. 1., Hungary.
| | - Dániel Berkesi
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. sq. 1., Hungary.
| | - Zoltán Kónya
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. sq. 1., Hungary.
| | - György Tibor Balogh
- Faculty of Pharmacy, Department of Pharmacodynamics and Biopharmacy, University of Szeged, H-6720 Szeged, Eötvös str. 6., Hungary; Department of Chemical and Environmental Process Engineering, Budapest University of Technology and Economics, Műegyetem quay 3, H-1111 Budapest, Hungary.
| | - Gábor Katona
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
104
|
Formulation, Solubilization, and In Vitro Characterization of Quercetin-Incorporated Mixed Micelles of PEO-PPO-PEO Block Copolymers. Appl Biochem Biotechnol 2021; 194:445-463. [PMID: 34611857 DOI: 10.1007/s12010-021-03691-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Quercetin (QCN) is a plant polyphenol with a variety of medicinal effects. Poor water solubility, on the other hand, restricts its therapeutic effectiveness. The purpose of this study was to develop mixed micellar systems using two biocompatible amphiphilic PEO-PPO-PEO triblock copolymers, Pluronic P123 (EO20-PO70-EO20) and Pluronic F88 (EO104-PO39-EO104), in order to enhance the aqueous solubility and oral bioavailability of QCN drug. The critical micelle concentrations (CMCs) of mixed P123/F88 micellar solutions were investigated using UV-visible spectroscopy with pyrene as a probe. Mixed P123/F88 micelles have low CMCs, indicating that they have a stable micelle structure even when diluted. The solubility of QCN in aqueous mixed P123/F88 micellar solutions at different temperatures was investigated to better understand drug entrapment. The QCN solubility increased with increasing temperature in the mixed P123/F88 micellar system. The QCN-incorporated mixed P123/F88 micelles were prepared using the thin-film hydration method and were well characterized in terms of size and morphology, compatibility, in vitro release and antioxidant profile. In addition, the cell proliferation activity of the mixed micelles was evaluated in the MCF-7 cell line. The QCN-incorporated mixed P123/F88 micelles had a small particle size (< 25 nm) and a negative zeta potential with a spherical shape. The in vitro release behaviour of QCN from a mixed P123/F88 micellar system was slower and more sustained at physiological conditions. The oxidation resistance of QCN-incorporating mixed P123/F88 micelles was shown to be considerably higher than that of pure QCN. An in vitro cell proliferation study revealed that QCN-incorporated mixed micells were effective in inhibiting tumour cell growth. In conclusion, the QCN-incorporated mixed P123/F88 micelle may be a promising approach to increase QCN oral bioavailability, antioxidant activity, and cell viability.
Collapse
|
105
|
Zhang W, Zheng Q, Song M, Xiao J, Cao Y, Huang Q, Ho CT, Lu M. A review on the bioavailability, bio-efficacies and novel delivery systems for piperine. Food Funct 2021; 12:8867-8881. [PMID: 34528635 DOI: 10.1039/d1fo01971f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As the major naturally occurring alkaloid in pepper with a pungent taste, piperine is known for its beneficial biological functions and therapeutic effects. In this work, the bioavailability and biological activities of piperine were presented and discussed. Novel delivery systems for enhancing the bioavailability of piperine were also reviewed. This study could provide a better understanding of the physiological and biochemical aspects of piperine to be further developed in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Weiyun Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qianwang Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
106
|
Trivedi S, Thool S, Wadher K, Bhalekar M, Bire P. Self-Assembling Dioscorea bulbifera loaded mixed micelles: Formulation optimization, in-vitro cytotoxicity and in-vivo pharmacokinetics. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
107
|
A Smart Core-Crosslinked Supramolecular Drug Delivery System (SDDS) Enabled by Pendant Cyclodextrins Encapsulation of Drug Dimers via Host-Guest Interaction. BIOSENSORS 2021; 11:bios11090306. [PMID: 34562896 PMCID: PMC8466753 DOI: 10.3390/bios11090306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 12/05/2022]
Abstract
Owing to poor aqueous solubility and low delivery efficiency, most of anti-cancer chemodrugs depend on various smart drug delivery platforms to enhance the treatment efficacy. Herein, a stimuli-responsive supramolecular drug delivery system (SDDS) is developed based on polymeric cyclodextrins (PCD) which crosslinked by stimuli-cleavable drug dimers via host-guest interaction. PEGylated PCD was precisely controlled synthesized by ring-opening polymerization and azide-alkyne click chemistry, and two doxorubicins (DOX) were linked with a disulfide bond to form a drug dimer (ss-DOX). They then co-assembled into supramolecular micelles. Drug dimers were utilized as cross-linkers to stabilize the micelles. The drug loading efficiency was very high that could be up to 98%. The size and morphology were measured by DLS and TEM. Owing to the disulfide bonds of drug dimers, these supramolecular micelles were dissociated by treating with dithiothreitol (DTT). In the meanwhile, the free DOXs were recovered and released from cavities of cyclodextrins because of dynamic equilibrium and hydrophilicity changes. The release profile was studied under mimic physiological conditions. Furthermore, in vitro cytotoxicity study showed excellent anti-cancer efficacy of reduced-responsive supramolecular polymeric micelles. Therefore, it can be served as a safe and stimuli-responsive SDDS for cancer therapy.
Collapse
|
108
|
Exploring micellar-based polymeric systems for effective nose-to-brain drug delivery as potential neurotherapeutics. Drug Deliv Transl Res 2021; 10:1019-1031. [PMID: 31858442 DOI: 10.1007/s13346-019-00702-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Non-invasive nose-to-brain delivery presents a competitive strategy for effective drug targeting. This strategy can potentially evade the blood-brain barrier (BBB) depending on the pathway the drug and/or drug/micelle composite travels, thereby allowing direct drug delivery to the brain. This delivery strategy was employed for lurasidone, a clinically USFDA-approved neurotherapeutic molecule in bipolar disorders and schizophrenia treatments. The aim of this study was to develop mixed polymeric micelles of lurasidone HCl (LH) for targeted brain delivery via intranasal route. Lurasidone HCl-loaded mixed micelles (LHMM) were prepared by solvent evaporation method and optimized by 32 factorial design to quantify the effects of excipients on micelle size and entrapment efficiency. Fourier transform infrared spectroscopy helped in scrutinizing drug-excipient interactions whereas transmission electron microscopy images showed particle size and shape. Further, LHMM and LHMM hydrogel were evaluated for in vitro diffusion, histopathology, ex vivo permeation, in vivo pharmacokinetics and stability studies. Optimized LHMM exhibited 175 nm particle size and 97.8% entrapment efficiency with improved in vitro drug diffusion (81%). LHMM hydrogel showed 79% ex vivo drug permeation without any significant signs of nasociliary toxicity to sheep nasal mucosa. Single dose in vivo pharmacokinetic studies showed improved therapeutic concentration of drug in the brain post intranasal administration with 9.5 ± 0.21 μg/mL Cmax and T1/2 of 19.1 ± 0.08 h as compared to pure drug. LHMM, when administered by intranasal route, demonstrated significant increase in the drug targeting efficiency as well as potential (%DTE and %DTP) of drug as compared to pure lurasidone. Thus, nanosized mixed micelles were useful in effective brain delivery of lurasidone HCl via intranasal route. Graphical abstract.
Collapse
|
109
|
Doxorubicin-Loaded Mixed Micelles Using Degradable Graft and Diblock Copolymers to Enhance Anticancer Sensitivity. Cancers (Basel) 2021; 13:cancers13153816. [PMID: 34359717 PMCID: PMC8345050 DOI: 10.3390/cancers13153816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In this study, a long-circulating and pH responsive mixed micellar system was assembled with a degradable graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide) to load with the anticancer agent doxorubicin. The in vitro results indicate that the micellar system display high biosafety and intracellular drug-releasing behavior in cancer cells. Furthermore, the in vivo results show that the high stability of the mixed micelles leads to a high tumor accumulation and hence an excellent inhibition of tumor growth. This mixed micellar system, comprising degradable diblock and graft copolymers enables one to increase cancer cells’ sensitivity toward doxorubicin (Dox) and is feasible for further clinical use in cancer therapy. Abstract In this study, a graft copolymer, poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(d,l-lactide), and a diblock copolymer, methoxy poly(ethylene glycol)-b-poly(d,l-lactide), were assembled into a mixed micellar system to encapsulate the anticancer drug doxorubicin (Dox). This mixed micellar system possesses the hydrophobic lactide segment of both copolymers, which reinforces its stability in physiological milieus; the histidine molecules appended on the graft copolymer provide the desired pH-responsive behavior to release Dox during internalization in cancer cells. The results demonstrate that the two copolymers were successfully prepared, and their ratios in the mixed micelles were optimized on the basis of the results of the stability tests. Under acidic conditions, the mixed micelles swell and are able to release their payloads. Therefore, the in vitro results indicate that the Dox in the mixed micelles is released effectively in response to the environmental pH of the mimetic internalization process, increasing cancer cells’ sensitivity toward Dox. The mixed micelles display low cytotoxicity due to the degradability of the polymers. The in vivo images show that the high stability of the mixed micelles ensures a high tumor accumulation. This selective tumor accumulation results in an excellent inhibition of in vivo tumor growth and a high rate of apoptosis in cancerous tissues, with low toxicity. This highly stable, mixed micellar system with a pH-dependent drug release, which enables the precise delivery of drugs to the tumor lesions, is feasible to employ clinically in cancer therapy.
Collapse
|
110
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
111
|
Pharmaceutical Formulations with P-Glycoprotein Inhibitory Effect as Promising Approaches for Enhancing Oral Drug Absorption and Bioavailability. Pharmaceutics 2021; 13:pharmaceutics13071103. [PMID: 34371794 PMCID: PMC8309061 DOI: 10.3390/pharmaceutics13071103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein (P-gp) is crucial in the active transport of various substrates with diverse structures out of cells, resulting in poor intestinal permeation and limited bioavailability following oral administration. P-gp inhibitors, including small molecule drugs, natural constituents, and pharmaceutically inert excipients, have been exploited to overcome P-gp efflux and enhance the oral absorption and bioavailability of many P-gp substrates. The co-administration of small molecule P-gp inhibitors with P-gp substrates can result in drug–drug interactions and increased side effects due to the pharmacological activity of these molecules. On the other hand, pharmaceutically inert excipients, including polymers, surfactants, and lipid-based excipients, are safe, pharmaceutically acceptable, and are not absorbed from the gut. Notably, they can be incorporated in pharmaceutical formulations to enhance drug solubility, absorption, and bioavailability due to the formulation itself and the P-gp inhibitory effects of the excipients. Different formulations with inherent P-gp inhibitory activity have been developed. These include micelles, emulsions, liposomes, solid lipid nanoparticles, polymeric nanoparticles, microspheres, dendrimers, and solid dispersions. They can bypass P-gp by different mechanisms related to their properties. In this review, we briefly introduce P-gp and P-gp inhibitors, and we extensively summarize the current development of oral drug delivery systems that can bypass and inhibit P-gp to improve the oral absorption and bioavailability of P-gp substrates. Since many drugs are limited by P-gp-mediated efflux, this review is helpful for designing suitable formulations of P-gp substrates to enhance their oral absorption and bioavailability.
Collapse
|
112
|
Alhakamy NA, Ahmed OA, Fahmy UA, Asfour HZ, Alghaith AF, Mahdi WA, Alshehri S, Md S. Development, Optimization and Evaluation of 2-Methoxy-Estradiol Loaded Nanocarrier for Prostate Cancer. Front Pharmacol 2021; 12:682337. [PMID: 34335251 PMCID: PMC8322574 DOI: 10.3389/fphar.2021.682337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
The therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, toward the improvement of the anticancer potential of 2-methoxy estradiol (2 ME) on prostate cancer, the drug was entrapped into the hydrophobic micelles core formulated with Phospholipon 90G and d-α-tocopheryl polyethylene glycol succinate (TPGS). Optimization of the formulation was done by Box-Behnken statistical design using Statgraphics software to standardize percentages of TPGS and phospholipid to obtain the smallest particle size. The optimized formulation was found to be spherical with nanometer size of 152 ± 5.2 nm, and low PDI (0.234). The entrapment efficiency of the micelles was 88.67 ± 3.21% with >93% release of 2 ME within 24 h. There was a 16-fold increase in apoptosis and an 8-fold increase in necrosis of the PC-3 cells when incubated with 2 ME micellar delivery compared to control cells (2.8 ± 0.2%). This increased apoptosis was further correlated with increased BAX expression (11.6 ± 0.7) and decreased BCL-2 expression (0.29 ± 0.05) in 2 ME micelles treated cells when compared to the control group. Further, loss of mitochondrial membrane potential (∼50-fold) by the drug-loaded micelles and free drug compared to control cells was found to be due to the generation of ROS. Findings on cell cycle analysis revealed the significant arrest of the G2-M phase of the PC-3 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed the maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-9, p53, and NO, with downregulation of TNF-α, NF-κβ, and inflammatory mediators of the PC-3 cells established the superiority of the micellar approach against prostate cancer. In summary, the acquired results highlighted the potentiality of the 2 ME-micellar delivery tool for controlling the growth of prostate cancer cells for improved efficacy.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Z Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel F Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
113
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. OBJECTIVE Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. METHODS The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. RESULTS In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. CONCLUSION Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
114
|
da Silva Leite JM, Patriota YBG, de La Roca MF, Soares-Sobrinho JL. New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis. Curr Med Chem 2021; 29:1936-1958. [PMID: 34212827 DOI: 10.2174/0929867328666210629154908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis is a chronic respiratory disease caused by Mycobacterium tuberculosis. The common treatment regimens of tuberculosis are lengthy with adverse side effects, low patient compliance, and antimicrobial resistance. Drug delivery systems (DDSs) can overcome these limitations. OBJECTIVE This review aims to summarize the latest DDSs for the treatment of tuberculosis. In the first section, the main pharmacokinetic and pharmacodynamic challenges, due to the innate properties of the drugs, are put forth. The second section elaborates on the use of DDS to overcome the disadvantages of the current treatment of tuberculosis. CONCLUSION We reviewed research articles published in the last 10 years. DDSs can improve the physicochemical properties of anti-tuberculosis drugs, improving solubility, stability, and bioavailability, with better control of drug release and can target alveolar macrophages. However, more preclinical studies and robust bio-relevant analyses are needed for DDSs to become a feasible option to treat patients and attract investors.
Collapse
Affiliation(s)
- Joandra Maísa da Silva Leite
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Yuri Basilio Gomes Patriota
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mônica Felts de La Roca
- Núcleo de Controle de Qualidade de Medicamentos e Correlatos, Federal University of Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
115
|
Zhang Y, Sun M, Jian S, Huang J, Xiao C, Zhang X, Hu R, Si L. mPEG 2k-PCL x Polymeric Micelles Influence Pharmacokinetics and Hypoglycemic Efficacy of Metformin through Inhibition of Organic Cation Transporters in Rats. Mol Pharm 2021; 18:2586-2599. [PMID: 34102842 DOI: 10.1021/acs.molpharmaceut.1c00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence has shown that nanocarriers have effects on several efflux drug transporters. To date, little is known about whether influx transporters are also modulated. Herein, we investigated the impact of amphiphilic polymer micelles on the uptake function of organic cation transporters (OCTs) and the influence on the pharmacokinetics and pharmacodynamics of metformin, a well-characterized substrate of OCTs. Five types of polymeric micelles (mPEG2k-PCL2k, mPEG2k-PCL3.5k, mPEG2k-PCL5k, mPEG2k-PCL7.5k, and mPEG2k-PCL10k) were prepared to evaluate the inhibition of hOCT1-3-overexpressing Madin-Darby canine kidney cells. The mPEG2k-PCLx micelles played an inhibitory role above the critical micelle concentration. The inhibitory potency could be ranked as mPEG2k-PCL2k > mPEG2k-PCL3.5k > mPEG2k-PCL5k > mPEG2k-PCL7.5k > mPEG2k-PCL10k, which negatively declined with the increase of molecular weight of the hydrophobic segment. The inhibitory effects of polymeric micelles on the hOCT1 isoform were the most pronounced, with the lowest IC50 values ranging from 0.106 to 0.280 mg/mL. The mPEG2k-PCL2k micelles distinctly increased the plasma concentration of metformin and significantly decreased Vss by 35.6% (p < 0.05) after seven consecutive treatments in rats, which was interrelated with the restrained metformin distribution in the liver and kidney. The uptake inhibition of micelles on hepatic and renal rOcts also diminished the glucose-lowering effect of metformin and fasting insulin levels in the oral glucose tolerance test. Consistent with the inhibitory effects, the mRNA and protein levels of rOct1 and rOct2 were decreased in the liver, kidney, and small intestine. The present study demonstrated that mPEG2k-PCLx micelles could inhibit the transport function of OCTs, indicating a potential risk of drug-drug interactions during concomitant medication of nanomedicine with organic cationic drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Minghui Sun
- Department of Pharmaceutics, Affiliated Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, PR China
| | - Shuxin Jian
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Chuyao Xiao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Xiangyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Ruhao Hu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, PR China
| |
Collapse
|
116
|
Sun Y, Chen X, Liu H, Liu S, Yu H, Wang X, Qin Y, Li P. Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J. Molecules 2021; 26:3265. [PMID: 34071584 PMCID: PMC8199121 DOI: 10.3390/molecules26113265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.
Collapse
Affiliation(s)
- Yuhao Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Hong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Xueqin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Y.S.); (H.L.); (S.L.); (H.Y.); (X.W.); (Y.Q.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
117
|
Liu Z, Chu W, Sun Q, Zhao L, Tan X, Zhang Y, Yin T, He H, Gou J, Tang X. Micelle-contained and PEGylated hybrid liposomes of combined gemcitabine and cisplatin delivery for enhancing antitumor activity. Int J Pharm 2021; 602:120619. [PMID: 33887396 DOI: 10.1016/j.ijpharm.2021.120619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022]
Abstract
Combination, synergistic chemotherapy with gemcitabine (GEM) and cisplatin (CDDP) is a common strategy, and has been recommended for tumor treatment due to its promoted therapeutic effect and reduced systemic toxicity. However, this process involves the intravenous infusion of GEM prior to that of CDDP, which is inconvenient for patients and staff. Here, a novel hybrid nano-carrier system comprised of micelles encapsulated within PEGylated liposomes is proposed, in order to combine the unique strengths of each component. CDDP was bonded with PLG-PEG, and then the formed CDDP@PLG-PEG micelles and GEM were co-loaded inside PEGylated liposomes. The hybrid liposomes with the optimized GEM/CDDP ratio (1:0.6) showed a roughly spherical morphology, appropriate drug loading, and sustained release behavior. In vitro, the hybrid liposomes had 1.72-fold increased cellular uptake, and 57.42%-fold decreased IC50 value. In vivo, pharmacokinetic studies showed increased t1/2 values (125.64%- and 128.57%-folds for GEM and CDDP), decreased clearance (41.90%- and 2.37%-folds), and promoted AUC (262.76%- and 4577.24%-folds). Finally, an in vivo antitumor study showed effective activity in regards to lung tumor size and weight, which were 40.48%- and 33.11%-folds that of GEM/CDDP solution. In summary, we demonstrated the development of an effective micelle-containing PEGylated hybrid liposomes for combined GEM/CDDP delivery.
Collapse
Affiliation(s)
- Zixu Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Wei Chu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Qianhe Sun
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Linxuan Zhao
- Department of Pharmaceutics, College of Pharmacy Sciences, Jilin University, Changchun 130021, China
| | - Xinyi Tan
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110116, China.
| |
Collapse
|
118
|
Sanderson L, da Silva M, Sekhar GN, Brown RC, Burrell-Saward H, Fidanboylu M, Liu B, Dailey LA, Dreiss CA, Lorenz C, Christie M, Persaud SJ, Yardley V, Croft SL, Valero M, Thomas SA. Drug reformulation for a neglected disease. The NANOHAT project to develop a safer more effective sleeping sickness drug. PLoS Negl Trop Dis 2021; 15:e0009276. [PMID: 33857146 PMCID: PMC8078842 DOI: 10.1371/journal.pntd.0009276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2021] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Background Human African trypanosomiasis (HAT or sleeping sickness) is caused by the
parasite Trypanosoma brucei sspp. The disease has two
stages, a haemolymphatic stage after the bite of an infected tsetse fly,
followed by a central nervous system stage where the parasite penetrates the
brain, causing death if untreated. Treatment is stage-specific, due to the
blood-brain barrier, with less toxic drugs such as pentamidine used to treat
stage 1. The objective of our research programme was to develop an
intravenous formulation of pentamidine which increases CNS exposure by some
10–100 fold, leading to efficacy against a model of stage 2 HAT. This target
candidate profile is in line with drugs for neglected diseases inititative
recommendations. Methodology To do this, we evaluated the physicochemical and structural characteristics
of formulations of pentamidine with Pluronic micelles (triblock-copolymers
of polyethylene-oxide and polypropylene oxide), selected candidates for
efficacy and toxicity evaluation in vitro, quantified
pentamidine CNS delivery of a sub-set of formulations in vitro and
in vivo, and progressed one pentamidine-Pluronic formulation
for further evaluation using an in vivo single dose brain
penetration study. Principal Findings Screening pentamidine against 40 CNS targets did not reveal any major
neurotoxicity concerns, however, pentamidine had a high affinity for the
imidazoline2 receptor. The reduction in insulin secretion in
MIN6 β-cells by pentamidine may be secondary to pentamidine-mediated
activation of β-cell imidazoline receptors and impairment of cell viability.
Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory
effect on insulin secretion as pentamidine alone and an additive
trypanocidal effect in vitro. However, all Pluronics tested
(P85, P105 and F68) did not significantly enhance brain exposure of
pentamidine. Significance These results are relevant to further developing block-copolymers as
nanocarriers, improving BBB drug penetration and understanding the side
effects of pentamidine. Sleeping sickness or human African Trypanosomiasis (HAT) is a disease caused by a
parasite, which is transferred to humans by the bite of an infected tsetse fly.
There are two disease stages: the first stage is the blood-based stage of the
disease and the second stage affects the brain. It is fatal if left untreated.
The blood-brain barrier (BBB) makes the brain stage difficult to treat because
it prevents 99% of all drugs from entering the brain from the blood. Those
anti-HAT drugs that do enter the brain are toxic and have serious side effects.
Pentamidine is a less toxic blood stage drug, which our research has shown has a
limited ability to cross the BBB due to its removal by proteins called
transporters. The objective of this study was to use Pluronic to improve
pentamidine delivery to target sites, whilst reducing its side effects. Pluronic
is a polymer, which can assemble into micelles and encapsulate the drug. Thus,
prolonging its circulation time and protecting it. Our study indicated that the
selected Pluronics did not increase the brain delivery of pentamidine. However.
Pluronic-pentamidine formulations were identified that harboured trypanocidal
activity and did not increase safety concerns compared to unformulated
pentamidine.
Collapse
Affiliation(s)
- Lisa Sanderson
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Marcelo da Silva
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Gayathri N. Sekhar
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Rachel C. Brown
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Hollie Burrell-Saward
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Mehmet Fidanboylu
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Bo Liu
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Lea Ann Dailey
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Cécile A. Dreiss
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Chris Lorenz
- King’s College London, Theory & Simulation of Condensed Matter Group,
Department of Physics, Strand, London, United Kingdom
| | - Mark Christie
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
| | - Shanta J. Persaud
- King’s College London, Department of Diabetes, School of Life Course
Sciences, Faculty of Life Sciences & Medicine, London, United
Kingdom
| | - Vanessa Yardley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Simon L. Croft
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and
Tropical Medicine, London, United Kingdom
| | - Margarita Valero
- Physical Chemistry Department, Faculty of Pharmacy, University of
Salamanca, Salamanca, Spain
| | - Sarah A. Thomas
- King’s College London, Institute of Pharmaceutical Science,
Franklin-Wilkins Building, Stamford Street, London, United
Kingdom
- * E-mail:
| |
Collapse
|
119
|
Denture-Soaking Solution Containing Piper betle Extract-Loaded Polymeric Micelles; Inhibition of Candida albicans, Clinical Study, and Effects on Denture Base Resin. Antibiotics (Basel) 2021; 10:antibiotics10040440. [PMID: 33920823 PMCID: PMC8071126 DOI: 10.3390/antibiotics10040440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Candida albicans is a common overgrowth in people wearing dentures. Long-term use of antifungal chemicals carries a risk of toxic side effects. This study focused on the edible Piper betle extract because of its safety. The broth dilution method was applied for antifungal determination of the ethyl acetate fractionated extract (fEA) and fEA-loaded polymeric micelles (PMF). The PMF was prepared by thin-film hydration using poloxamer 407 as a polymer base. The results found that the weight ratio of fEA to polymer is the main factor to obtain PMF system as a clear solution, nanoparticle sizes, narrow size distribution, negative zeta potential, and high entrapment efficiency. The activity of PMF against C. albicans is significantly higher than fEA alone, with a minimum fungicidal concentration of 1.5 mg/mL. PMF from 1:3 ratio of fEA to polymer is used to develop a denture-soaking solution contained 1.5 mg fEA/mL (PMFS). A clinical study on dentures of 15 volunteers demonstrated an 86.1 ± 9.2% reduction of C. albicans after soaking the dentures in PMFS daily for 14 days. Interestingly, PMFS did not change the hardness and roughness of the denture base resins. The developed PMFS may serve as a potential natural denture-soaking solution against candidiasis in denture wearers.
Collapse
|
120
|
Xing Y, Lu P, Xue Z, Liang C, Zhang B, Kebebe D, Liu H, Liu Z. Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations. Mini Rev Med Chem 2021; 20:1258-1271. [PMID: 32386491 DOI: 10.2174/1389557520666200509235945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary pharmaceutical formulations are targeted for the treatment of respiratory diseases. However, their application is limited due to the physiological characteristics of the lungs, such as branching structure, mucociliary and macrophages, as well as certain properties of the drugs like particle size and solubility. Nano-formulations can ameliorate particle sizes and improve drug solubility to enhance bioavailability in the lungs. The nano-formulations for lungs reviewed in this article can be classified into nanocarriers, no-carrier-added nanosuspensions and polymer-drug conjugates. Compared with conventional inhalation preparations, these novel pulmonary pharmaceutical formulations have their own advantages, such as increasing drug solubility for better absorption and less inflammatory reaction caused by the aggregation of insoluble drugs; prolonging pulmonary retention time and reducing drug clearance; improving the patient compliance by avoiding multiple repeated administrations. This review will provide the reader with some background information for pulmonary drug delivery and give an overview of the existing literature about nano-formulations for pulmonary application to explore nano-strategies for improving the bioavailability of pulmonary pharmaceutical formulations.
Collapse
Affiliation(s)
- Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
121
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
122
|
Islam MS, Renner F, Foster K, Oderinde MS, Stefanski K, Mitra S. Hydrophilic and Functionalized Nanographene Oxide Incorporated Faster Dissolving Megestrol Acetate. Molecules 2021; 26:molecules26071972. [PMID: 33807401 PMCID: PMC8036621 DOI: 10.3390/molecules26071972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to present an approach to enhance the dissolution of progestin medication, megestrol acetate (also known as MEGACE), for improving the dissolution rate and kinetic solubility by incorporating nano graphene oxide (nGO). An antisolvent precipitation process was investigated for nGO-drug composite preparation, where prepared composites showed crystalline properties that were similar to the pure drug but enhanced aqueous dispersibility and colloidal stability. To validate the efficient release profile of composite, in vitro dissolution testing was carried out using United States Pharmacopeia, USP-42 paddle method, with gastric pH (1.4) and intestinal pH (6.5) solutions to mimic in vivo conditions. Pure MA is practically insoluble (2 µg/mL at 37 °C). With the incorporation of nGO, it was possible to dissolve nearly 100% in the assay. With the incorporation of 1.0% of nGO, the time required to dissolve 50% and 80% of drug, namely T50 and T80, decreased from 138.0 min to 27.0 min, and the drug did not dissolve for 97.0 min in gastric media, respectively. Additionally, studies done in intestinal media have revealed T50 did not dissolve for 92.0 min. This work shows promise in incorporating functionalized nanoparticles into the crystal lattice of poorly soluble drugs to improve dissolution rate.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
| | - Faradae Renner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Kimberly Foster
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Martin S. Oderinde
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Kevin Stefanski
- Bristol Myers Squibb Research and Early Development, Princeton, NJ 08543, USA; (K.F.); (M.S.O.); (K.S.)
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (M.S.I.); (F.R.)
- Correspondence:
| |
Collapse
|
123
|
Abstract
Cardiovascular diseases (CVDs) are the world’s leading cause of mortality and represent a large contributor to the costs of medical care. Although tremendous progress has been made for the diagnosis of CVDs, there is an important need for more effective early diagnosis and the design of novel diagnostic methods. The diagnosis of CVDs generally relies on signs and symptoms depending on molecular imaging (MI) or on CVD-associated biomarkers. For early-stage CVDs, however, the reliability, specificity, and accuracy of the analysis is still problematic. Because of their unique chemical and physical properties, nanomaterial systems have been recognized as potential candidates to enhance the functional use of diagnostic instruments. Nanomaterials such as gold nanoparticles, carbon nanotubes, quantum dots, lipids, and polymeric nanoparticles represent novel sources to target CVDs. The special properties of nanomaterials including surface energy and topographies actively enhance the cellular response within CVDs. The availability of newly advanced techniques in nanomaterial science opens new avenues for the targeting of CVDs. The successful application of nanomaterials for CVDs needs a detailed understanding of both the disease and targeting moieties.
Collapse
|
124
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
125
|
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021; 332:312-336. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Citation(s) in RCA: 494] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Polymeric micelles, i.e. aggregation colloids formed in solution by self-assembling of amphiphilic polymers, represent an innovative tool to overcome several issues related to drug administration, from the low water-solubility to the poor drug permeability across biological barriers. With respect to other nanocarriers, polymeric micelles generally display smaller size, easier preparation and sterilization processes, and good solubilization properties, unfortunately associated with a lower stability in biological fluids and a more complicated characterization. Particularly challenging is the study of their interaction with the biological environment, essential to predict the real in vivo behavior after administration. In this review, after a general presentation on micelles features and properties, different characterization techniques are discussed, from the ones used for the determination of micelles basic characteristics (critical micellar concentration, size, surface charge, morphology) to the more complex approaches used to figure out micelles kinetic stability, drug release and behavior in the presence of biological substrates (fluids, cells and tissues). The techniques presented (such as dynamic light scattering, AFM, cryo-TEM, X-ray scattering, FRET, symmetrical flow field-flow fractionation (AF4) and density ultracentrifugation), each one with their own advantages and limitations, can be combined to achieve a deeper comprehension of polymeric micelles in vivo behavior. The set-up and validation of adequate methods for micelles description represent the essential starting point for their development and clinical success.
Collapse
Affiliation(s)
- M Ghezzi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - S Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - C Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - P Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - E Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - L Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Segrate, Italy
| | - S Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| |
Collapse
|
126
|
Wan Z, Zheng R, Moharil P, Liu Y, Chen J, Sun R, Song X, Ao Q. Polymeric Micelles in Cancer Immunotherapy. Molecules 2021; 26:1220. [PMID: 33668746 PMCID: PMC7956602 DOI: 10.3390/molecules26051220] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapies have generated some miracles in the clinic by orchestrating our immune system to combat cancer cells. However, the safety and efficacy concerns of the systemic delivery of these immunostimulatory agents has limited their application. Nanomedicine-based delivery strategies (e.g., liposomes, polymeric nanoparticles, silico, etc.) play an essential role in improving cancer immunotherapies, either by enhancing the anti-tumor immune response, or reducing their systemic adverse effects. The versatility of working with biocompatible polymers helps these polymeric nanoparticles stand out as a key carrier to improve bioavailability and achieve specific delivery at the site of action. This review provides a summary of the latest advancements in the use of polymeric micelles for cancer immunotherapy, including their application in delivering immunological checkpoint inhibitors, immunostimulatory molecules, engineered T cells, and cancer vaccines.
Collapse
Affiliation(s)
- Zhuoya Wan
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Ruohui Zheng
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Pearl Moharil
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA 02115, USA;
| | - Yuzhe Liu
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47906, USA;
| | - Jing Chen
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
- Department of Pharmaceutical Science, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Runzi Sun
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Xu Song
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; (Z.W.); (J.C.); (X.S.)
| |
Collapse
|
127
|
Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of Nanomicellar Technology and In Situ Gelling Polymer as Ocular Drug Delivery System (ODDS) for Cyclosporine-A. Pharmaceutics 2021; 13:pharmaceutics13020192. [PMID: 33535607 PMCID: PMC7912864 DOI: 10.3390/pharmaceutics13020192] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/22/2022] Open
Abstract
A combination of in situ gelling systems and a loaded drug self-assembling nanomicellar carrier was chosen in this study as a new potential Ocular Drug Delivery System (ODDS) for Cyclosporine-A (CyA), a poorly water-soluble drug. Two non-ionic surfactants (d-α-tocopherol polyethylene glycol succinate, VitE-TPGS and polyoxyl 40 hydrogenated castor oil, RH-40) were used to produce the nanomicelles. The physical-chemical characterization of the nanomicelles in terms of CyA entrapment (EE%) and loading efficiency (LE%), cloud point (CP), regeneration time (RT), size and polydispersity index (PI) allowed us to select the best combination of surfactant mixture, which showed appropriate stability, high CyA-EE (99.07%), very small and homogeneous dimensions and favored the solubilization of an amount of CyA (0.144% w/w) comparable to that contained in marketed emulsion Ikervis®. The selected nanomicellar formulation incorporated into optimized ion-sensitive polymeric dispersions of gellan gum (GG-LA: 0.10, 0.15 and 0.20% w/w) able to trigger the sol-gel transition after instillation was characterized from technological (osmolality, pH, gelling capacity, rheological behavior, wettability, TEM and storage stability at 4 and 20 °C) and biopharmaceutical points of view. This new combined approach allowed us to obtain clear aqueous dispersions that were easy to instill and able to form a viscous gel when in contact with the tear fluid, improving CyA ocular bioavailability. Furthermore, this new ODDS prevented CyA transcorneal permeation, exhibited low cytotoxicity and prolonged the CyA resident time in the precorneal area compared to Ikervis®.
Collapse
Affiliation(s)
- Eleonora Terreni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
| | - Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
- Correspondence:
| | - Susi Burgalassi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; (E.T.); (E.Z.); (S.B.); (D.M.); (P.C.)
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research), 56122 Pisa, Italy
| |
Collapse
|
128
|
Poloxamine/D-α-Tocopheryl polyethylene glycol succinate (TPGS) mixed micelles and gels: Morphology, loading capacity and skin drug permeability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
129
|
Pellico J, Gawne PJ, T M de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev 2021; 50:3355-3423. [PMID: 33491714 DOI: 10.1039/d0cs00384k] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanomaterials offer unique physical, chemical and biological properties of interest for medical imaging and therapy. Over the last two decades, there has been an increasing effort to translate nanomaterial-based medicinal products (so-called nanomedicines) into clinical practice and, although multiple nanoparticle-based formulations are clinically available, there is still a disparity between the number of pre-clinical products and those that reach clinical approval. To facilitate the efficient clinical translation of nanomedicinal-drugs, it is important to study their whole-body biodistribution and pharmacokinetics from the early stages of their development. Integrating this knowledge with that of their therapeutic profile and/or toxicity should provide a powerful combination to efficiently inform nanomedicine trials and allow early selection of the most promising candidates. In this context, radiolabelling nanomaterials allows whole-body and non-invasive in vivo tracking by the sensitive clinical imaging techniques positron emission tomography (PET), and single photon emission computed tomography (SPECT). Furthermore, certain radionuclides with specific nuclear emissions can elicit therapeutic effects by themselves, leading to radionuclide-based therapy. To ensure robust information during the development of nanomaterials for PET/SPECT imaging and/or radionuclide therapy, selection of the most appropriate radiolabelling method and knowledge of its limitations are critical. Different radiolabelling strategies are available depending on the type of material, the radionuclide and/or the final application. In this review we describe the different radiolabelling strategies currently available, with a critical vision over their advantages and disadvantages. The final aim is to review the most relevant and up-to-date knowledge available in this field, and support the efficient clinical translation of future nanomedicinal products for in vivo imaging and/or therapy.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, UK.
| | | | | |
Collapse
|
130
|
Liu B, Gao W, Wu H, Liu H, Pan H. New PTX-HS15/T80 Mixed Micelles: Cytotoxicity, Pharmacokinetics and Tissue Distribution. AAPS PharmSciTech 2021; 22:56. [PMID: 33486601 DOI: 10.1208/s12249-021-01929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022] Open
Abstract
Compared with single micelle, the new PTX-HS15/T80 mixed micelle system (PTX-HS15/T80 MMs) had achieved better results in solubilization, stability, and sensitization before. Therefore, we intend to further verify the potential advantages of the mixed micelle delivery system through in vitro cytotoxicity test and animal test to understand the anticancer effect and in vivo pharmaceutical behavior of the system. In vitro cytotoxicity test showed that the new PTX-HS15/T80 MMs had a stronger ability to inhibit the proliferation of cancer cells. The results of in vivo pharmacokinetics showed that the micelle had shorter half-life, higher clearance rate, and lower blood concentration and had good blood clearance characteristics. The results of in vivo tissue distribution showed that, compared with the single micelle Taxol®, the new PTX-HS15/T80 MMs had good distribution characteristics in the lung (AUC (lung 0-4 H) increased about 26%) and low concentration in the heart (AUC (Heart 0-4 H) decreased about 10%). Paclitaxel was mainly metabolized through the liver and kidney. The above results suggested that the new PTX-HS15/T80 MMs may have a certain therapeutic potential against lung cancer and reduce the toxic and side effects. In general, the mixed micelle delivery system was not only simple and cheap to prepare but also had certain advantages in vitro and in vivo, indicating that the combination of surfactants provides a good choice for solving the problem of insoluble drug delivery.
Collapse
|
131
|
Yusuf H, Rahmawati RA, Syamsur Rijal MA, Isadiartuti D. Curcumin micelles entrapped in eudragit S-100 matrix: a synergistic strategy for enhanced oral delivery. Future Sci OA 2021; 7:FSO677. [PMID: 33815823 PMCID: PMC8015669 DOI: 10.2144/fsoa-2020-0131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Therapeutic activities of curcumin (CUR) via oral administration are hampered by the lack of bioavailability due to its poor water solubility and rapid degradation in GI tract. Materials & methods: This preliminary study developed CUR micelle-eudragit S100 (EUD) dry powder (CM-EDP) spray-dried formulations. Poloxamer 407 was used as a micelle-forming agent and EUD as an entrapping matrix for protection over hydrolysis and enzymes in the GI tract. Results: The morphology of CM-EDP showed agglomeration with cratering on the surface of particles. Differential thermal analysis and x-ray diffractometry data exhibited evidence that CUR was converted into amorphous solid. An increased concentration of micelle-forming and dispersion matrix polymers resulted in a high fraction of drug being converted into the amorphous state. A significant increase in dissolution by 7–10 times was achieved compared with that of raw CUR. Conclusion: The present study disclosed the CM-EDP potency for future development of CUR oral formulation. Curcumin (CUR) is a natural compound that shows several pharmacological activities, including anti-inflammatory and potential actions against Parkinson’s and Alzheimer’s. However, several drawbacks need to be addressed its application as a therapeutic agent via oral administration. These drawbacks include its poor water solubility and rapid degradation in the GI tract. The present study developed CUR micelle-eudragit S100 (EUD) dry powder formulation involving poloxamer 407 as solubilizing agent and EUD as entrapping matrix for protection in acidic environments and the enzymes in the GI tract. The final product is in the form of dry powder, which showed potency in enhancing CUR absorption following oral administration.
Collapse
Affiliation(s)
- Helmy Yusuf
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Jl Mulyorejo Surabaya 60115, Indonesia
| | - Rizka Arifa Rahmawati
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Jl Mulyorejo Surabaya 60115, Indonesia
| | - M Agus Syamsur Rijal
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Jl Mulyorejo Surabaya 60115, Indonesia
| | - Dewi Isadiartuti
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Jl Mulyorejo Surabaya 60115, Indonesia
| |
Collapse
|
132
|
Abstract
Abstract
Background
Polymers are essential components of many drug delivery systems and biomedical products. Despite the utility of many currently available polymers, there exists a demand for materials with improved characteristics and functionality. Due to the extensive safety testing required for new excipient approval, the introduction and use of new polymers is considerably limited. The blending of currently approved polymers provides a valuable solution by which the limitations of individual polymers can be addressed.
Main body
Polymer blends combine two or more polymers resulting in improved, augmented, or customized properties and functionality which can result in significant advantages in drug delivery applications. This review discusses the rationale for the use of polymer blends and blend polymer-polymer interactions. It provides examples of their use in commercially marketed products and drug delivery systems. Examples of polymer blends in amorphous solid dispersions and biodegradable systems are also discussed. A classification scheme for polymer blends based on the level of material processing and interaction is presented.
Conclusion
The use of polymer blends represents a valuable and under-utilized resource in addressing a diverse range of drug delivery challenges. It is anticipated that new drug molecule development challenges such as bioavailability enhancement and the demand for enabling excipients will lead to increased applications of polymer blends in pharmaceutical products.
Graphical abstract
Collapse
|
133
|
Gomes CSF, Santos DFG, Amaral MHR. Nanominerals and Nanomaterials Utilized in Pharmacy and Therapeutics. MINERALS LATU SENSU AND HUMAN HEALTH 2021:443-475. [DOI: 10.1007/978-3-030-65706-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
134
|
|
135
|
Obeid MA, Aljabali AAA, Rezigue M, Amawi H, Alyamani H, Abdeljaber SN, Ferro VA. Use of Nanoparticles in Delivery of Nucleic Acids for Melanoma Treatment. Methods Mol Biol 2021; 2265:591-620. [PMID: 33704742 DOI: 10.1007/978-1-0716-1205-7_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Melanoma accounts for 4% of all skin cancer malignancies, with only 14% of diagnosed patients surviving for more than 5 years after diagnosis. Until now, there is no clear understanding of the detailed molecular contributors of melanoma pathogenesis. Accordingly, more research is needed to understand melanoma development and prognosis.All the treatment approaches that are currently applied have several significant limitations that prevent effective use in melanoma. One major limitation in the treatment of cancer is the acquisition of multidrug resistance (MDR). The MDR results in significant treatment failure and poor clinical outcomes in several cancers, including skin cancer. Treatment of melanoma is especially retarded by MDR. Despite the current advances in targeted and immune-mediated therapy, treatment arms of melanoma are severely limited and stand as a significant clinical challenge. Further, the poor pharmacokinetic profile of currently used chemotherapeutic agents is another reason for treatment failure. Therefore, more research is needed to develop novel drugs and carrier tools for more effective and targeted treatment.Nucleic acid therapy is based on nucleic acids or chemical compounds that are closely related, such as antisense oligonucleotides, aptamers, and small-interfering RNAs that are usually used in situations when a specific gene implicated in a disorder is deemed a therapeutically beneficial target for inhibition. However, the proper application for nucleic acid therapies is hampered by the development of an effective delivery system that can maintain their stability in the systemic circulation and enhance their uptake by the target cells. In this chapter, the prognosis of the different types of melanoma along with the currently used medications is highlighted, and the different types of nucleic acids along with the currently available nanoparticle systems for delivering these nucleic acids into melanoma cells are discussed. We also discuss recently conducted research on the use of different types of nanoparticles for nucleic acid delivery into melanoma cells and highlight the most significant outcomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Hanin Alyamani
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Shatha N Abdeljaber
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
136
|
Kurnik IS, D'Angelo NA, Mazzola PG, Chorilli M, Kamei DT, Pereira JFB, Vicente AA, Lopes AM. Polymeric micelles using cholinium-based ionic liquids for the encapsulation and release of hydrophobic drug molecules. Biomater Sci 2021; 9:2183-2196. [DOI: 10.1039/d0bm01884h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We generated stable amphiphilic copolymer-based polymeric micelles (PMs) with temperature-responsive properties utilizing Pluronic® L35 and a variety of ionic liquids (ILs) for the encapsulation and release of curcumin.
Collapse
Affiliation(s)
- Isabelle S. Kurnik
- Department of Engineering of Bioprocesses and Biotechnology
- School of Pharmaceutical Sciences
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | | | | | - Marlus Chorilli
- Department of Drugs and Medicines
- School of Pharmaceutical Sciences
- São Paulo State University (UNESP)
- Araraquara
- Brazil
| | - Daniel T. Kamei
- Department of Bioengineering
- University of California
- Los Angeles
- USA
| | - Jorge F. B. Pereira
- University of Coimbra
- CIEPQPF
- Department of Chemical Engineering
- Coimbra
- Portugal
| | | | - André M. Lopes
- Faculty of Pharmaceutical Sciences
- University of Campinas
- Campinas
- Brazil
| |
Collapse
|
137
|
Dahanayake MH, Jayasundera ACA. Nano-based drug delivery optimization for tuberculosis treatment: A review. J Microbiol Methods 2020; 181:106127. [PMID: 33359155 DOI: 10.1016/j.mimet.2020.106127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022]
Abstract
Regardless of advanced technology and innovation, infectious diseases continue to be one of the extreme health challenges in modern world. Tuberculosis (TB) is one of the top ten causes of deaths worldwide and the leading cause of death from a single infectious agent. The conventional TB drug therapy requires a long term treatment with frequent and multiple drug dosing with a stiff administration schedule, which results in low patient compliance. This eventually leads to the recurrence of the infection and the emergence of multiple drug resistance. Hence, there is an urgent need to develop more successful and effective strategies to overcome the problems of drug resistance, duration of treatment course and devotion to treatment. Nanotechnology has considerable potential for diagnosis, treatment and prevention of infectious diseases including TB. The main advantages of nanoparticles to be used as drug carriers are their small size, high stability, enhanced delivery of hydrophilic and hydrophobic drugs, intracellular delivery of macromolecules, targeted delivery of drugs to specific cells or tissues, and the feasibility of various drug administration routes. Moreover, these carriers are adapted to facilitate controlled, slow, and persistent drug release from the matrix. Above properties of nanoparticles permit the improvement of drug bioavailability and reduction of dosing frequency and may reduce the toxicity and resolve the problem of low adherence to the prescribed therapy. In this review, various types of nanocarriers have been evaluated as promising drug delivery systems for different administration routes and main research outcomes in this area have been discussed.
Collapse
Affiliation(s)
| | - Anil C A Jayasundera
- Department of Chemistry, Faculty of Science, University of Paradeniya, Sri Lanka
| |
Collapse
|
138
|
Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, Lee NJ, Gorain B, Amin MCIM, Pichika MR. Folic Acid Conjugated Nanocarriers for Efficient Targetability and Promising Anticancer Efficacy for Treatment of Breast Cancer: A Review of Recent Updates. Curr Pharm Des 2020; 26:5365-5379. [DOI: 10.2174/1381612826666200721000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be
caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional
treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy,
however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance.
Advancement of nanotechnology in the medical application has been made to enhance the therapeutic
effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer
drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering
the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor
overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers
have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells.
Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics
in BC cells, without much exposing the other parts of the body. Simultaneously, these folate--
conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses
to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics
for the treatment and theranostic approaches against BC along with the significant challenges to anticancer
therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate
nanocarriers.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lee Pei Wen
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ling Kah Cien
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ho Xin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alvina Ng Jia Yee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ng Joo Lee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
139
|
Li L, Zhang X, Pi C, Yang H, Zheng X, Zhao L, Wei Y. Review of Curcumin Physicochemical Targeting Delivery System. Int J Nanomedicine 2020; 15:9799-9821. [PMID: 33324053 PMCID: PMC7732757 DOI: 10.2147/ijn.s276201] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin (CUR), as a traditional Chinese medicine monomer extracted from the rhizomes of some plants in Ginkgo and Araceae, has shown a wide range of therapeutic and pharmacological activities such as anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, anti-liver fibrosis, anti-atherosclerosis, and anti-Alzheimer’s disease. However, some issues significantly affect its biological activity, such as low aqueous solubility, physico-chemical instability, poor bioavailability, and low targeting efficacy. In order to further improve its curative effect, numerous efficient drug delivery systems have been carried out. Among them, physicochemical targeting preparations could improve the properties, targeting ability, and biological activity of CUR. Therefore, in this review, CUR carrier systems are discussed that are driven by physicochemical characteristics of the microenvironment (eg, pH variation of tumorous tissues), affected by external influences like magnetic fields and vehicles formulated with thermo-sensitive materials.
Collapse
Affiliation(s)
- Lanmei Li
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China.,Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese MateriaMedica, Chongqing 400065, People's Republic of China
| | - Chao Pi
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Hongru Yang
- Department of Oncology of Luzhou People's Hospital, Luzhou, Sichuan 646000, People's Republic of China
| | - Xiaoli Zheng
- Basic Medical College of Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Ling Zhao
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| | - Yumeng Wei
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
140
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
141
|
Min Y, Zhang H, Wang H, Song Y. Construction of poly(ethylene glycol)-poly(L-lactic acid)-stearic acid reverse aspirin-loaded micelles and optimization of preparation process. Des Monomers Polym 2020; 23:208-221. [PMID: 33312054 PMCID: PMC7717871 DOI: 10.1080/15685551.2020.1845428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This work aims to study the construction of reverse aspirin-loaded micelles prepared from amphiphilic PEG-PLA-SA triblock copolymers and the optimization of the preparation process. Using polyethylene glycol (PEG) as the initiator, ring-opening polymerization of L-lactide (L-LA) was used to prepare PEG-PLA diblock copolymers. Final product PEG-PLA-SA triblock copolymers were prepared by the reaction of stearic acid (SA) and PEG-PLA catalyzed by 4-dimethylaminopyridine (DMAP) and N,N'-Dicyclohexylcarbodiimide (DCC). Fourier transform infrared spectrometer (FT-IR) was used to characterize the product structure. PEG-PLA-SA triblock copolymers self-assembled in toluene/ethanol/water system to form reverse micelles, which could encapsulate aspirin into a hydrophilic core. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to determine the size and morphology of reverse micelles. The results showed that the reverse micelles are spherical, with a particle size of less than 70 nm. Response surface analysis method was applied to optimize the preparation process of PEG-PLA-SA. In vitro drug release was achieved by embedding reverse aspirin-loaded micelles in the biocompatible membrane in phosphate buffer saline (PBS) at 37°C. In the first 8 h, the drug release rate of the triblock copolymers was slower than that of the diblock copolymers. After 8 h, the drug release rate of both tended to be flat. The stability of aspirin-loaded reverse micelles was studied through accelerated test. These results indicate that reverse micelle PEG-PLA-SA may be a promising carrier for hydrophilic drugs like aspirin.
Collapse
Affiliation(s)
- Yunpeng Min
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
| | - Hang Zhang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
| | - Huiru Wang
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
| | - Yimin Song
- Department of Pharmaceutical Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
| |
Collapse
|
142
|
Thymoquinone-Loaded Soluplus ®-Solutol ® HS15 Mixed Micelles: Preparation, In Vitro Characterization, and Effect on the SH-SY5Y Cell Migration. Molecules 2020; 25:molecules25204707. [PMID: 33066549 PMCID: PMC7587349 DOI: 10.3390/molecules25204707] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.
Collapse
|
143
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
144
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
145
|
Abstract
Polymeric micelles have gained interest as novel drug delivery systems for the treatment and diagnosis of cancer, as they offer several advantages over conventional drug therapies. This includes drug targeting to tumor tissue, in vivo biocompatibility and biodegradability, prolonged circulation time, enhanced accumulation, retention of the drug loaded micelle in the tumor and decreased side effects. This article provides an overview on the current state of micellar formulations as nanocarriers for anticancer drugs and their effectiveness in cancer therapeutics, including their clinical status. The type of copolymers used, their physicochemical properties and characterization as well as recent developments in the design of functional polymeric micelles are highlighted. The article also presents the design and outcomes of various types of stimuli-responsive polymeric micelles.
Collapse
|
146
|
Pillai SA, Sharma AK, Desai SM, Sheth U, Bahadur A, Ray D, Aswal VK, Kumar S. Characterization and application of mixed micellar assemblies of PEO-PPO star block copolymers for solubilization of hydrophobic anticancer drug and in vitro release. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
147
|
Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnol Adv 2020; 42:107339. [DOI: 10.1016/j.biotechadv.2019.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
|
148
|
Gote V, Ansong M, Pal D. Prodrugs and nanomicelles to overcome ocular barriers for drug penetration. Expert Opin Drug Metab Toxicol 2020; 16:885-906. [PMID: 32729364 DOI: 10.1080/17425255.2020.1803278] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ocular barriers hinder drug delivery and reduce drug bioavailability. This article focuses on enhancing drug absorption across the corneal and conjunctival epithelium. Both, transporter targeted prodrug formulations and nanomicellar strategy is proven to enhance the drug permeation of therapeutic agents across various ocular barriers. These strategies can increase aqueous drug solubility and stability of many hydrophobic drugs for topical ophthalmic formulations. AREAS COVERED The article discusses various ocular barriers, ocular influx, and efflux transporters. It elaborates various prodrug strategies used for enhancing drug absorption. Along with this, the article also describes nanomicellar formulation, its characteristic and advantages, and applications in for anterior and posterior segment drug delivery. EXPERT OPINION Prodrugs and nanomicellar formulations provide an effective strategy for improving drug absorption and drug bioavailability across various ocular barriers. It will be exciting to see the efficacy of nanomicelles for treating back of the eye disorders after their topical application. This is considered as a holy grail of ocular drug delivery due to the dynamic and static ocular barriers, restricting posterior entry of topically applied drug formulations.
Collapse
Affiliation(s)
- Vrinda Gote
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Michael Ansong
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| | - Dhananjay Pal
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO, USA
| |
Collapse
|
149
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 DOI: 10.3389/fmolb.2020.00193/bibtex] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 05/26/2023] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
150
|
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci 2020; 7:193. [PMID: 32974385 PMCID: PMC7468194 DOI: 10.3389/fmolb.2020.00193] [Citation(s) in RCA: 602] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has been extensively studied and exploited for cancer treatment as nanoparticles can play a significant role as a drug delivery system. Compared to conventional drugs, nanoparticle-based drug delivery has specific advantages, such as improved stability and biocompatibility, enhanced permeability and retention effect, and precise targeting. The application and development of hybrid nanoparticles, which incorporates the combined properties of different nanoparticles, has led this type of drug-carrier system to the next level. In addition, nanoparticle-based drug delivery systems have been shown to play a role in overcoming cancer-related drug resistance. The mechanisms of cancer drug resistance include overexpression of drug efflux transporters, defective apoptotic pathways, and hypoxic environment. Nanoparticles targeting these mechanisms can lead to an improvement in the reversal of multidrug resistance. Furthermore, as more tumor drug resistance mechanisms are revealed, nanoparticles are increasingly being developed to target these mechanisms. Moreover, scientists have recently started to investigate the role of nanoparticles in immunotherapy, which plays a more important role in cancer treatment. In this review, we discuss the roles of nanoparticles and hybrid nanoparticles for drug delivery in chemotherapy, targeted therapy, and immunotherapy and describe the targeting mechanism of nanoparticle-based drug delivery as well as its function on reversing drug resistance.
Collapse
Affiliation(s)
- Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qiang Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shijie Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|