101
|
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 2017; 7:8263. [PMID: 28811584 DOI: 10.1038/541598-017-08669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/12/2017] [Indexed: 05/19/2023] Open
Abstract
Application of nanomaterials for agriculture is relatively new as compared to their use in biomedical and industrial sectors. In order to promote sustainable nanoagriculture, biocompatible silver nanoparticles (AgNPs) have been synthesized through green route using kaffir lime leaf extract for use as nanopriming agent for enhancing seed germination of rice aged seeds. Results of various characterization techniques showed the successful formation of AgNPs which were capped with phytochemicals present in the plant extract. Rice aged seeds primed with phytosynthesized AgNPs at 5 and 10 ppm significantly improved germination performance and seedling vigor compared to unprimed control, AgNO3 priming, and conventional hydropriming. Nanopriming could enhance α-amylase activity, resulting in higher soluble sugar content for supporting seedlings growth. Furthermore, nanopriming stimulated the up-regulation of aquaporin genes in germinating seeds. Meanwhile, more ROS production was observed in germinating seeds of nanopriming treatment compared to unprimed control and other priming treatments, suggesting that both ROS and aquaporins play important roles in enhancing seed germination. Different mechanisms underlying nanopriming-induced seed germination were proposed, including creation of nanopores for enhanced water uptake, rebooting ROS/antioxidant systems in seeds, generation of hydroxyl radicals for cell wall loosening, and nanocatalyst for fastening starch hydrolysis.
Collapse
Affiliation(s)
- Wuttipong Mahakham
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon, Ratchasima, 30000, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
102
|
Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 2017; 7:8263. [PMID: 28811584 PMCID: PMC5557806 DOI: 10.1038/s41598-017-08669-5] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Application of nanomaterials for agriculture is relatively new as compared to their use in biomedical and industrial sectors. In order to promote sustainable nanoagriculture, biocompatible silver nanoparticles (AgNPs) have been synthesized through green route using kaffir lime leaf extract for use as nanopriming agent for enhancing seed germination of rice aged seeds. Results of various characterization techniques showed the successful formation of AgNPs which were capped with phytochemicals present in the plant extract. Rice aged seeds primed with phytosynthesized AgNPs at 5 and 10 ppm significantly improved germination performance and seedling vigor compared to unprimed control, AgNO3 priming, and conventional hydropriming. Nanopriming could enhance α-amylase activity, resulting in higher soluble sugar content for supporting seedlings growth. Furthermore, nanopriming stimulated the up-regulation of aquaporin genes in germinating seeds. Meanwhile, more ROS production was observed in germinating seeds of nanopriming treatment compared to unprimed control and other priming treatments, suggesting that both ROS and aquaporins play important roles in enhancing seed germination. Different mechanisms underlying nanopriming-induced seed germination were proposed, including creation of nanopores for enhanced water uptake, rebooting ROS/antioxidant systems in seeds, generation of hydroxyl radicals for cell wall loosening, and nanocatalyst for fastening starch hydrolysis.
Collapse
Affiliation(s)
- Wuttipong Mahakham
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon, Ratchasima, 30000, Thailand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
103
|
Amooaghaie R, Tabatabaie F. Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H 2O 2 signaling and upregulation of heme oxygenase. PROTOPLASMA 2017; 254:1791-1803. [PMID: 28093607 DOI: 10.1007/s00709-016-1069-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
The present study showed that osmopriming or pretreatment with low H2O2 doses (2 mM) for 6 h alleviated salt-reduced seed germination. The NADPH oxidase activity was the main source, and superoxide dismutase (SOD) activity might be a secondary source of H2O2 generation during osmopriming or H2O2 pretreatment. Hematin pretreatment similar to osmopriming improved salt-reduced seed germination that was coincident with the enhancement of heme oxygenase (HO) activity. The semi-quantitative RT-PCR confirmed that osmopriming or H2O2 pretreatment was able to upregulate heme oxygenase HO-1 transcription, while the application of N,N-dimethyl thiourea (DMTU as trap of endogenous H2O2) and diphenyleneiodonium (DPI as inhibitor of NADPHox) not only blocked the upregulation of HO but also reversed the osmopriming-induced salt attenuation. The addition of CO-saturated aqueous rescued the inhibitory effect of DMTU and DPI on seed germination and α-amylase activity during osmopriming or H2O2 pretreatment, but H2O2 could not reverse the inhibitory effect of ZnPPIX (as HO inhibitor) or Hb (as CO scavenger) that indicates that the CO acts downstream of H2O2 in priming-driven salt acclimation. The antioxidant enzymes and proline synthesis were upregulated in roots of seedlings grown from primed seeds, and these responses were reversed by adding DMTU, ZnPPIX, and Hb during osmopriming. These findings for the first time suggest that H2O2 signaling and upregulation of heme oxygenase play a crucial role in priming-driven salt tolerance.
Collapse
Affiliation(s)
- Rayhaneh Amooaghaie
- Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran.
| | - Fatemeh Tabatabaie
- Biology Department, Science Faculty, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
104
|
Hassini I, Baenas N, Moreno DA, Carvajal M, Boughanmi N, Martinez Ballesta MDC. Effects of seed priming, salinity and methyl jasmonate treatment on bioactive composition of Brassica oleracea var. capitata (white and red varieties) sprouts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2291-2299. [PMID: 27625158 DOI: 10.1002/jsfa.8037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Brassica spp. sprouts are rich in nutrients and bioactive compounds, especially glucosinolates and phenolic acid derivatives, and the composition of these young germinating seeds can be altered by several external factors. In this study two cabbage varieties (Brassica oleracea var. capitata, red and white) were studied using seed priming (KCl 50 mmol L-1 ; NaCl 150 mmol L-1 ) and MeJA spraying (25 µmol L-1 ) to elicit the phytochemical content of edible sprouts. RESULTS The red variety was richer in glucosinolates and phenolic compounds than the white one but not in mineral nutrients. Seed priming enhanced the potassium (K) content and flavonols in both varieties, while the total content of glucosinolates was reduced after seed priming only in the red variety. The white variety responded better than the red one to KCl seed priming, increasing the flavonols (89%). Salinity did not induce any change in the phytochemical content of these two varieties. Elicitation with sprayed MeJA was effective in significantly increasing the content of indolic glucosinolates glucobrassicin (5.7-fold) and neoglucobrassicin (9.7-fold) in the red cultivar. In the white variety, in addition to glucobrassicin (19.4-fold) and neoglucobrassicin (9.4-fold), 4-hydroxyglucobrassicin (2.3-fold) was also enhanced. MeJA also elicited significant amounts of anthocyanins (41%) and chlorogenic acid derivatives (329%) in the white variety. CONCLUSION KCl seed priming and MeJA elicitation promoted the phytochemical composition of the cabbage varieties, especially in the white variety. The application of NaCl resulted in less efficient elicitation. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ismahen Hassini
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | - Nieves Baenas
- Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Diego A Moreno
- Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Micaela Carvajal
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Neziha Boughanmi
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, 7021 Zarzouna, Tunisia
| | | |
Collapse
|
105
|
Ellouzi H, Sghayar S, Abdelly C. H 2O 2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. JOURNAL OF PLANT PHYSIOLOGY 2017; 210:38-50. [PMID: 28056386 DOI: 10.1016/j.jplph.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 05/22/2023]
Abstract
The effect of H2O2 and mannitol seed priming was investigated on plant growth, oxidative stress biomarkers and activities of antioxidant enzymes in leaves of Cakile maritima and Eutrema salsugineum, when exposed to drought and salt stress, either separately applied or combined. Under unprimed conditions, drought severely restricted growth (40% as compared to the control) and redox balance of C. maritima seedlings, whereas E. salsugineum showed these drastic effects under individual salinity (33% as compared to the control). Combined salinity and drought maintained and even stimulated the antioxidant defense of both plants from unprimed seeds. Both priming agents (mannitol and H2O2) significantly ameliorated growth and antioxidant defense of both species grown under salinity, drought and their combined effect. However, H2O2 priming appeared to be more beneficial in C. maritima seedlings. Indeed, oxidative injuries were significantly reduced, together with significantly higher concentrations of ascorbic acid (36%), glutathione (2-fold) and proline production (2-fold), leading to a greater redox balance that was closely associated with enhanced antioxidant enzyme activities, specifically under salt stress. Overall, our results indicate that it is very likely that H2O2 priming, due to its signal role, improves C. maritima tolerance to both osmotic stresses and enables the plant to memorize and to decode early signals that are rapidly activated when plants are later exposed to stress.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie.
| | - Souhir Sghayar
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie
| |
Collapse
|
106
|
Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 573:1089-1102. [PMID: 27639594 DOI: 10.1016/j.scitotenv.2016.08.120] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 04/15/2023]
Abstract
Application of nanotechnology in agriculture is moving towards to improve the cultivation and growth of crop plants. The present study is the first attempt to propose a simple, yet cost-effective and ecofriendly synthesis of phytochemicals-capped GNPs using rhizome extract of galanga plant at room temperature. The synthesized GNPs were characterized by various characterization techniques. To promote the green nanotechnology applications in agriculture, GNPs solution at environmentally realistic dose (5 to 15ppm) as nanopriming agent was used to activate the germination and early seedling growth of maize aged seeds. Priming with 5ppm GNPs showed the best effects on promoting emergence percentage (83%) compared to unprimed control (43%) and hydroprimed groups (56%). Seed priming at both 5 and 10ppm GNPs also enhanced seedling vigor index by 3 times over the control. Priming with GNPs at 10ppm was found to enhance the best physiological and biochemical properties of maize seedlings. Internalization studies by inductively coupled plasma atomic emission spectroscopy (ICP-OES) and transmission electron microscopy (TEM) strongly supported that GNPs can internalize into seeds. However, ICP-OES analysis revealed that GNPs were not present in both shoot and root parts, suggesting that nanopriming approach minimizes the Au translocation from seeds into plant vegetative organs. Phytosynthesized GNPs were found to be less toxic than chemically synthesized GNPs. This is the first report showing phytochemicals-capped GNPs as a promising nanopriming agent for activating the germination of naturally aged seeds of crop plant.
Collapse
Affiliation(s)
- Wuttipong Mahakham
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Piyada Theerakulpisut
- Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Santi Maensiri
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Santi Phumying
- School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
107
|
Wojtyla Ł, Lechowska K, Kubala S, Garnczarska M. Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:116-126. [PMID: 27174076 DOI: 10.1016/j.jplph.2016.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/04/2016] [Accepted: 04/04/2016] [Indexed: 05/21/2023]
Abstract
Environmental stress factors such as drought, salinity, temperature extremes and rising CO2 negatively affect crop growth and productivity. Faced with the scarcity of water resources, drought is the most critical threat to world food security. This is particularly important in the context of climate change and an increasing world population. Seed priming is a very promising strategy in modern crop production management. Although it has been known for several years that seed priming can enhance seed quality and the effectiveness of stress responses of germinating seeds and seedlings, the molecular mechanisms involved in the acquisition of stress tolerance by primed seeds in the germination process and subsequent plant growth remain poorly understood. This review provides an overview of the metabolic changes modulated by priming, such as the activation of DNA repair and the antioxidant system, accumulation of aquaporins and late embryogenesis abundant proteins that contribute to enhanced drought stress tolerance. Moreover, the phenomenon of "priming memory," which is established during priming and can be recruited later when seeds or plants are exposed to stress, is highlighted.
Collapse
Affiliation(s)
- Łukasz Wojtyla
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Katarzyna Lechowska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Szymon Kubala
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
108
|
Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1125. [PMID: 27516766 PMCID: PMC4964843 DOI: 10.3389/fpls.2016.01125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 05/08/2023]
Abstract
Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.
Collapse
Affiliation(s)
- Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hanqi Yin
- Shanghai Biotechnology CorporationShanghai, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Faheem A. Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural UniversityWuhan, China
| | - Fahad Khan
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Sameeullah
- Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal UniversityBolu, Turkey
| | - Hafiz A. Hussain
- Department of Agronomy, University of AgricultureFaisalabad, Pakistan
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
109
|
Hussain S, Yin H, Peng S, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Cui K, Nie L. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1125. [PMID: 27516766 DOI: 10.3389/fpls.2016.01125/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/14/2016] [Indexed: 05/25/2023]
Abstract
Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.
Collapse
Affiliation(s)
- Saddam Hussain
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China; College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Hanqi Yin
- Shanghai Biotechnology Corporation Shanghai, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Faheem A Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University Wuhan, China
| | - Fahad Khan
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China; College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Muhammad Sameeullah
- Faculty of Agriculture and Natural Sciences, Abant Izzet Baysal University Bolu, Turkey
| | - Hafiz A Hussain
- Department of Agronomy, University of Agriculture Faisalabad, Pakistan
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Kehui Cui
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| | - Lixiao Nie
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
110
|
Kołodziejczyk I, Dzitko K, Szewczyk R, Posmyk MM. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress. JOURNAL OF PLANT PHYSIOLOGY 2016. [PMID: 26945210 DOI: 10.1007/s11738-016-2166-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500 μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Ecophysiology and Plant Development, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Katarzyna Dzitko
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| | - Małgorzata M Posmyk
- Department of Ecophysiology and Plant Development, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str., 90-237 Lodz, Poland.
| |
Collapse
|
111
|
Savvides A, Ali S, Tester M, Fotopoulos V. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible? TRENDS IN PLANT SCIENCE 2016; 21:329-340. [PMID: 26704665 DOI: 10.1016/j.tplants.2015.11.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/23/2015] [Accepted: 11/04/2015] [Indexed: 05/18/2023]
Abstract
Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.
Collapse
Affiliation(s)
- Andreas Savvides
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; Agrisearch Innovations Ltd, 2108 Nicosia, Cyprus
| | - Shawkat Ali
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mark Tester
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| |
Collapse
|
112
|
Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:38-46. [PMID: 26812088 DOI: 10.1016/j.jplph.2015.12.011] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Cross Pollinated Vegetable Crops Research Department, Horticulture Research Institute, 9 Cairo University St., Orman, Giza, Egypt.
| |
Collapse
|
113
|
Maswada H, Abd El-Kader N. Redox halopriming: A Promising Strategy for Inducing Salt Tolerance in Bread Wheat. JOURNAL OF AGRONOMY AND CROP SCIENCE 2016; 202:37-50. [DOI: 10.1111/jac.12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- H.F. Maswada
- Agricultural Botany Department; Faculty of Agriculture; Tanta University; Tanta Egypt
| | - N.I.K. Abd El-Kader
- Soil and Water Department; Faculty of Agriculture; Tanta University; Tanta Egypt
| |
Collapse
|
114
|
Sadeghi H, Robati Z. Response of Cichorium intybus L. to eight seed priming methods under osmotic stress conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
115
|
Kubala S, Wojtyla Ł, Quinet M, Lechowska K, Lutts S, Garnczarska M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:1-12. [PMID: 26070063 DOI: 10.1016/j.jplph.2015.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/21/2015] [Accepted: 04/21/2015] [Indexed: 05/21/2023]
Abstract
Osmopriming is a pre-sowing treatment that enhances germination performance and stress tolerance of germinating seeds. Brassica napus seeds showed osmopriming-improved germination and seedling growth under salinity stress. To understand the molecular and biochemical mechanisms of osmopriming-induced salinity tolerance, the accumulation of proline, gene expression and activity of enzymes involved in proline metabolism and the level of endogenous hydrogen peroxide were investigated in rape seeds during osmopriming and post-priming germination under control (H2O) and stress conditions (100 mM NaCl). The relationship between gene expression and enzymatic activity of pyrroline-5-carboxylate synthetase (P5CS), ornithine-δ-aminotransferase (OAT) and proline dehydrogenase (PDH) was determined. The improved germination performance of osmoprimed seeds was accompanied by a significant increase in proline content. The accumulation of proline during priming and post-priming germination was associated with strong up-regulation of the P5CSA gene, down-regulation of the PDH gene and accumulation of hydrogen peroxide. The up-regulated transcript level of P5CSA was consistent with the increase in P5CS activity. This study shows, for the first time, the role of priming-induced modulation of activities of particular genes and enzymes of proline turnover, and its relationship with higher content of hydrogen peroxide, in improving seed germination under salinity stress. Following initial stress-exposure, the primed seeds acquired stronger salinity stress tolerance during post-priming germination, a feature likely linked to a 'priming memory'.
Collapse
Affiliation(s)
- Szymon Kubala
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland; Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, 50829 Köln, Germany
| | - Łukasz Wojtyla
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Lechowska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 4-5, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Małgorzata Garnczarska
- Adam Mickiewicz University in Poznań, Department of Plant Physiology, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
116
|
Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Lutts S, Quinet M. Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:94-113. [PMID: 25575995 DOI: 10.1016/j.plantsci.2014.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 05/03/2023]
Abstract
Rape seeds primed with -1.2 MPa polyethylene glycol 6000 showed improved germination performance. To better understand the beneficial effect of osmopriming on seed germination, a global expression profiling method was used to compare, for the first time, transcriptomic and proteomic data for osmoprimed seeds at the crucial phases of priming procedure (soaking, drying), whole priming process and subsequent germination. Brassica napus was used here as a model to dissect the process of osmopriming into its essential components. A total number of 952 genes and 75 proteins were affected during the main phases of priming and post-priming germination. Transcription was not coordinately associated with translation resulting in a limited correspondence between mRNAs level and protein abundance. Soaking, drying and final germination of primed seeds triggered distinct specific pathways since only a minority of genes and proteins were involved in all phases of osmopriming while a vast majority was involved in only one single phase. A particular attention was paid to genes and proteins involved in the transcription, translation, reserve mobilization, water uptake, cell cycle and oxidative stress processes.
Collapse
Affiliation(s)
- Szymon Kubala
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - Małgorzata Garnczarska
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland.
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznan, Poland
| | - André Clippe
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 45, boîte L7.07.02, B-1348 Louvain-la-Neuve, Belgium
| | - Arkadiusz Kosmala
- Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan, Poland
| | - Agnieszka Żmieńko
- Laboratory of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Science, ul. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, Croix du Sud 45, boîte L7.07.13, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
117
|
Effect of seed pre-treatment with varying concentrations of salicylic acid on antioxidant response of wheat seedlings. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40502-014-0100-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
118
|
Benítez-Rodríguez L, Gamboa-deBuen A, Sánchez-Coronado ME, Alvarado-López S, Soriano D, Méndez I, Vázquez-Santana S, Carabias-Lillo J, Mendoza A, Orozco-Segovia A. Effects of seed burial on germination, protein mobilisation and seedling survival in Dodonaea viscosa. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:732-739. [PMID: 24148161 DOI: 10.1111/plb.12110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Ecological restoration of disturbed areas requires substantial knowledge of the germination of native plants and the creation of novel methods to increase seedling establishment in the field. We studied the effects of soil matrix priming on the germination of Dodonaea viscosa seeds, which exhibit physical dormancy. To this end, we buried both pre-scarified (in H2SO4, 3 min) and non-pre-scarified seeds in the Parque Ecológico de la Ciudad de México. After seeds were unearthed, they were post-scarified for 0, 2, 6 and 10 min and their germination percentages compared to the germination of a control batch of laboratory-stored seeds. For both control and unearthed seeds, the protein pattern was determined in the enriched storage protein fraction in SDS-PAGE gels stained with Coomassie blue. Percentage germination increased as the scarification time increased. Pre-scarification significantly increased percentage germination of post-scarified seeds in relation to the control and non-pre-scarified seeds. In seeds unearthed from the forest site, the buried pre-scarified seeds had relatively high percentage germination, even in the absence of post-scarification treatment. A 48-kDa protein was not found in unearthed, pre-scarified seeds nor in the control germinated seeds, indicating that mobilisation of this protein occurred during soil priming. Burying seeds for a short period, including the beginning of the rainy season, promoted natural priming, which increased protein mobilisation. Functionally, priming effects were reflected in high percentage seedling survival in both the shade house and the field. Seed burial also reduced the requirement for acidic post-scarification.
Collapse
Affiliation(s)
- L Benítez-Rodríguez
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Tian Y, Guan B, Zhou D, Yu J, Li G, Lou Y. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). ScientificWorldJournal 2014; 2014:834630. [PMID: 25093210 PMCID: PMC4100373 DOI: 10.1155/2014/834630] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/12/2014] [Indexed: 01/30/2023] Open
Abstract
A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.
Collapse
Affiliation(s)
- Yu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Bo Guan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Daowei Zhou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China
| | - Junbao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Guangdi Li
- Graham Centre for Agricultural Innovation (Alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| |
Collapse
|
120
|
Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P. Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). CHEMOSPHERE 2013; 91:506-11. [PMID: 23357866 DOI: 10.1016/j.chemosphere.2012.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/04/2012] [Accepted: 12/08/2012] [Indexed: 05/19/2023]
Abstract
The objective of the this study was to compare concentrations of nanosized TiO2 at 0, 5, 20, 40, 60 and 80 mg L(-1) with bulk TiO2 for phytotoxic and stimulatory effects on fennel seed germination and early growth stage. After 14 d of seed incubation, germination percentage highly improved following exposure to 60 ppm nanosized TiO2. Similar positive effects occurred in terms of shoot dry weight and germination rate. Application of bulk TiO2 particles in 40 ppm concentration greatly decreased shoot biomass up to 50% compared to the control. Application of 40 ppm nanosized TiO2 treatment improved mean germination time by 31.8% in comparison to the untreated control. In addition, low and intermediate concentrations of nanosized TiO2 enhanced indices such as germination value, vigor index and mean daily germination. In general, there was a considerable response by fennel seed to nanosized TiO2 presenting the possibility of a new approach to overcome problems with seed germination in some plant species, particularly medicinal plants.
Collapse
Affiliation(s)
- Hassan Feizi
- Torbat-e Heydariyeh Higher Education Complex, Torbat Heydariyeh, Iran.
| | | | | | | |
Collapse
|
121
|
Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, Mondoni A, Rossi G, Balestrazzi A. Understanding the molecular pathways associated with seed vigor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 60:196-206. [PMID: 22995217 DOI: 10.1016/j.plaphy.2012.07.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 07/31/2012] [Indexed: 05/17/2023]
Abstract
Farmers and growers are constantly looking for high quality seeds able to ensure uniform field establishment and increased production. Seed priming is used to induce pre-germinative metabolism and then enhance germination efficiency and crop yields. It has been hypothesized that priming treatments might also improve stress tolerance in germinating seeds, leaving a sort of 'stress memory'. However, the molecular bases of priming still need to be clarified and the identification of molecular indicators of seed vigor is nowadays a relevant goal for the basic and applied research in seed biology. It is generally acknowledged that enhanced seed vigor and successful priming depend on DNA repair mechanisms, activated during imbibition. The complexity of the networks of DNA damage control/repair functions has been only partially elucidated in plants and the specific literature that address seeds remains scanty. The DNA repair pathways hereby described (Nucleotide and Base Excision Repair, Non-Homologous End Joining, Homologous Recombination) play specific roles, all of them being critical to ensure genome stability. This review also focuses on some novel regulatory mechanisms of DNA repair (chromatin remodeling and small RNAs) while the possible use of telomere sequences as markers of aging in seed banks is discussed. The significant contribution provided by Electron Paramagnetic Resonance in elucidating the kinetics of seed aging, in terms of free radical profiles and membrane integrity is reported.
Collapse
Affiliation(s)
- Lorenzo Ventura
- Dipartimento di Chimica, via Taramelli 12, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|