101
|
Zhang Y, Hao F, Liu N, Xu Y, Jia A, Yang Z, Xia X, Liu C. Stereochemical determination of a new and cytotoxic euphane triterpenoid from the plant endophytic fungus Phomopsis chimonanthi. J Antibiot (Tokyo) 2013; 66:679-82. [PMID: 23921820 DOI: 10.1038/ja.2013.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/25/2013] [Accepted: 05/30/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Yonggang Zhang
- Key Laboratory for Applied Microbiology of Shandong Province, Biotechnology Center of Shandong Academy of Sciences, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Sette LD, Pagnocca FC, Rodrigues A. Microbial culture collections as pillars for promoting fungal diversity, conservation and exploitation. Fungal Genet Biol 2013; 60:2-8. [PMID: 23872281 DOI: 10.1016/j.fgb.2013.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
Abstract
Fungi are a diverse group of organisms with an overall global number of 1.5M up to 3.3M species on Earth. Besides their ecological roles as decomposers, fungi are important in several aspects of applied research. Here, we review how culture collections may promote the knowledge on diversity, conservation and biotechnological exploitation of fungi. The impact of fungi diversity on biotechnological studies is discussed. We point out the major roles of microbial repositories, including fungal preservation, prospecting, identification, authentication and supply. A survey on the World Data Center for Microorganisms (WDCM) powered by the World Federation for Culture Collections and on the Genetic Heritage Management Council (CGEN) database revealed that 46 Brazilian culture collections registered in these databases are dedicate to preserving fungi. Most of these culture collections are located in the Southeast of Brazil. This scenario also demonstrates that Brazil has many collections focused on fungal strains, but the lack of up-to-date information in WDCM as well as of a solid national platform for culture collections registration do not allow accurate assessment of fungal preservation.
Collapse
Affiliation(s)
- Lara Durães Sette
- UNESP - São Paulo State University, Department of Biochemistry and Microbiology, Rio Claro, SP 13506-900, Brazil.
| | | | | |
Collapse
|
103
|
Species diversity of culturable endophytic fungi from Brazilian mangrove forests. Curr Genet 2013; 59:153-66. [PMID: 23832271 DOI: 10.1007/s00294-013-0396-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/05/2023]
Abstract
This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.
Collapse
|
104
|
Kusari S, Pandey SP, Spiteller M. Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites. PHYTOCHEMISTRY 2013; 91:81-7. [PMID: 22954732 DOI: 10.1016/j.phytochem.2012.07.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 05/29/2012] [Accepted: 07/25/2012] [Indexed: 05/02/2023]
Abstract
The biosynthetic potential of endophytic fungi has gained impetus in recent times owing to the continual discovery of fungal endophytes capable of synthesizing plant compounds. However, the sustained production of the desired plant compounds has not yet been achieved using endophytes. It is thus imperative to investigate the diverse interactions that endophytes have with coexisting endophytes, host plants, insect pests, and other specific herbivores. The precise role of these associations on the endophytic production of host plant compounds is mostly overlooked and open to future discoveries. Here, highlighted are the implications of the poorly investigated links and molecular mechanisms that might trigger similar chemical responses in both plants and endophytes. Elucidating such connections can not only enhance the understanding of evolution of complex defense mechanisms in plants and associated organisms, but also help in the sustained production of plant compounds using endophytes harbored within them.
Collapse
Affiliation(s)
- Souvik Kusari
- Institute of Environmental Research (INFU) of the Faculty of Chemistry, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Dortmund, Germany
| | | | | |
Collapse
|
105
|
An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. FUNGAL DIVERS 2013. [DOI: 10.1007/s13225-013-0227-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
106
|
de Souza Leite T, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV. Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 2013; 51:56-69. [PMID: 23456713 DOI: 10.1007/s12275-013-2356-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/28/2012] [Indexed: 12/17/2022]
Abstract
Fungal endophytes were isolated from the leaves of soybean cultivars in Brazil using two different isolation techniques - fragment plating and the innovative dilution-to-extinction culturing - to increase the species richness, frequency of isolates and diversity. A total of 241 morphospecies were obtained corresponding to 62 taxa that were identified by analysis of the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA). The Phylum Ascomycota predominated, representing 99% and 95.2% of isolates in the Monsoy and Conquista cultivars, respectively, whereas the Phylum Basidiomycota represented 1% and 4.8% of isolates, respectively. The genera Ampelomyces, Annulohypoxylon, Guignardia, Leptospora, Magnaporthe, Ophiognomonia, Paraconiothyrium, Phaeosphaeriopsis, Rhodotorula, Sporobolomyces, and Xylaria for the first time were isolated from soybean; this suggests that soybean harbours novel and highly diverse fungi. The yeasts genera Rhodotorula and Sporobolomyces (subphylum Pucciniomycotina) represent the Phylum Basidiomycota. The species richness was greater when both isolation techniques were used. The diversity of fungal endophytes was similar in both cultivars when the same isolation technique was used except for Hill's index, N1. The use of ITS region sequences allowed the isolates to be grouped according to Order, Class and Phylum. Ampelomyces, Chaetomium, and Phoma glomerata are endophytic species that may play potential roles in the biological control of soybean pathogens. This study is one of the first to apply extinction-culturing to isolate fungal endophytes in plant leaves, thus contributing to the development and improvement of this technique for future studies.
Collapse
Affiliation(s)
- Tiago de Souza Leite
- Department of Microbiology/Institute of Microbiology Applied to Agriculture and Livestock Raising (BIOAGRO), Laboratory of Microorganism Molecular Genetics, Vicosa, Brazil
| | | | | | | | | | | |
Collapse
|
107
|
Gagne-Bourgue F, Aliferis K, Seguin P, Rani M, Samson R, Jabaji S. Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum
L.) cultivars. J Appl Microbiol 2013. [DOI: 10.1111/jam.12088] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Gagne-Bourgue
- Department of Plant Science; Macdonald Campus of McGill University; Ste-Anne-de-Bellevue QC Canada
| | - K.A. Aliferis
- Department of Plant Science; Macdonald Campus of McGill University; Ste-Anne-de-Bellevue QC Canada
| | - P. Seguin
- Department of Plant Science; Macdonald Campus of McGill University; Ste-Anne-de-Bellevue QC Canada
| | - M. Rani
- Department of Plant Science; Macdonald Campus of McGill University; Ste-Anne-de-Bellevue QC Canada
| | - R. Samson
- Resource Efficient Agricultural Production (REAP) Canada; Ste-Anne-de-Bellevue QC Canada
| | - S. Jabaji
- Department of Plant Science; Macdonald Campus of McGill University; Ste-Anne-de-Bellevue QC Canada
| |
Collapse
|
108
|
Fungal Endophytes in Plant Roots: Taxonomy, Colonization Patterns, and Functions. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-39317-4_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
109
|
Cabezas L, Calderon C, Medina LM, Bahamon I, Cardenas M, Bernal AJ, Gonzalez A, Restrepo S. Characterization of cellulases of fungal endophytes isolated from Espeletia spp. J Microbiol 2012; 50:1009-13. [DOI: 10.1007/s12275-012-2130-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/04/2012] [Indexed: 02/07/2023]
|
110
|
Abstract
Pestalafuranones A–E (compounds 1–5), five new 2(5H)-furanones, have been isolated from cultures of an isolate of Pestalotiopsis besseyi. The structures of these compounds were elucidated mainly by analysis of their NMR spectroscopic data and HRESIMS experiments. Pestalafuranones A–C (compounds 1–3) displayed weak inhibitory effects against HIV-1 replication in C8166 cells, whereas pestalafuranones D (4) and E (5) showed moderate antifungal activity against the plant pathogens Verticillium dahiae and Alternaria longipes.
Collapse
Affiliation(s)
- Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shuchun Liu
- Graduate School of Chinese Academy of Sciences, Beijing 100086, China
- Institute of Microbiology, Beijing 100086, China
| | | | - Yonggang Zhang
- Biotechnology Center of Shandong Academy of Sciences, Jinan 250014, Shandong, China
| | - Langjun Cui
- College of Life Science, Shaanxi Normal University, Xi’an 710062, Shaanxi, China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Author to whom correspondence should be addressed; or ; Tel.: +86-010-5783-3281; Fax: +86-010-5783-3290
| |
Collapse
|
111
|
Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0216-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
112
|
Wu L, Han T, Li W, Jia M, Xue L, Rahman K, Qin L. Geographic and Tissue Influences on Endophytic Fungal Communities of Taxus chinensis var. mairei in China. Curr Microbiol 2012; 66:40-8. [DOI: 10.1007/s00284-012-0235-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/15/2012] [Indexed: 11/29/2022]
|
113
|
3-hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr Microbiol 2012; 65:622-32. [PMID: 22886401 DOI: 10.1007/s00284-012-0206-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Endophytic fungi are considered a rich source of active compounds resulting from their secondary metabolism. Fungi from marine environment grow in a habitat with unique conditions that can contribute to the activation of metabolic pathways of synthesis of different unknown molecules. The production of these compounds may support the adaptation and survival of the fungi in the marine ecosystem. Mangroves are ecosystems situated between land and sea. They are frequently found in tropical and subtropical areas and enclose approximately 18.1 million hectares of the planet. The great biodiversity found in these ecosystems shows the importance of researching them, including studies regarding new compounds derived from the endophytic fungi that inhabit these ecosystems. 3-hydroxypropionic acid (3-HPA) has been isolated from the mangrove endophytic fungus Diaporthe phaseolorum, which was obtained from branches of Laguncularia racemosa. The structure of this compound was elucidated by spectroscopic methods, mainly 1D and 2D NMR. In bioassays, 3-HPA showed antimicrobial activities against both Staphylococcus aureus and Salmonella typhi. The structure of this antibiotic was modified by the chemical reaction of Fischer-Speier esterification to evaluate the biologic activity of its chemical analog. The esterified product, 3-hydroxypropanoic ethyl ester, did not exhibit antibiotic activity, suggesting that the free carboxylic acid group is important to the pharmacological activity. The antibiotic-producing strain was identified with internal transcribed spacer sequence data. To the best of our knowledge, this is the first report of antibacterial activity by 3-HPA against the growth of medically important pathogens.
Collapse
|
114
|
Ren CG, Dai CC. Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC PLANT BIOLOGY 2012; 12:128. [PMID: 22856333 PMCID: PMC3681289 DOI: 10.1186/1471-2229-12-128] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/25/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Jasmonic acid (JA) is a well-characterized signaling molecule in plant defense responses. However, its relationships with other signal molecules in secondary metabolite production induced by endophytic fungus are largely unknown. Atractylodes lancea (Asteraceae) is a traditional Chinese medicinal plant that produces antimicrobial volatiles oils. We incubated plantlets of A. lancea with the fungus Gilmaniella sp. AL12. to research how JA interacted with other signal molecules in volatile oil production. RESULTS Fungal inoculation increased JA generation and volatile oil accumulation. To investigate whether JA is required for volatile oil production, plantlets were treated with JA inhibitors ibuprofen (IBU) and nordihydroguaiaretic acid. The inhibitors suppressed both JA and volatile oil production, but fungal inoculation could still induce volatile oils. Plantlets were further treated with the nitric oxide (NO)-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), the H2O2 inhibitors diphenylene iodonium (DPI) and catalase (CAT), and the salicylic acid (SA) biosynthesis inhibitors paclobutrazol and 2-aminoindan-2-phosphonic acid. With fungal inoculation, IBU did not inhibit NO production, and JA generation was significantly suppressed by cPTIO, showing that JA may act as a downstream signal of the NO pathway. Exogenous H2O2 could reverse the inhibitory effects of cPTIO on JA generation, indicating that NO mediates JA induction by the fungus through H2O2-dependent pathways. With fungal inoculation, the H2O2 scavenger DPI/CAT could inhibit JA generation, but IBU could not inhibit H2O2 production, implying that H2O2 directly mediated JA generation. Finally, JA generation was enhanced when SA production was suppressed, and vice versa. CONCLUSIONS Jasmonic acid acts as a downstream signaling molecule in NO- and H2O2-mediated volatile oil accumulation induced by endophytic fungus and has a complementary interaction with the SA signaling pathway.
Collapse
Affiliation(s)
- Cheng-Gang Ren
- Jiangsu Engineering and Technology Research Center for Industrialization of
Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional
Genomics, College of Life Science, Nanjing Normal University, Nanjing,
210046, P.R. China
| | - Chuan-Chao Dai
- Jiangsu Engineering and Technology Research Center for Industrialization of
Microbial Resources, Jiangsu Key Laboratory for Microbes and Functional
Genomics, College of Life Science, Nanjing Normal University, Nanjing,
210046, P.R. China
| |
Collapse
|
115
|
Artanti N, Tachibana S, Kardono LBS, Sukiman H. Isolation of alpha-glucosidase inhibitors produced by an endophytic fungus, Colletotrichum sp. TSC13 from Taxus sumatrana. Pak J Biol Sci 2012; 15:673-679. [PMID: 24171248 DOI: 10.3923/pjbs.2012.673.679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colletotrichum sp. have potential to act as antidiabetic agent, due to its alpha-glucosidase inhibitory. Therefore, the objective of present study was to isolate and identify the bioactive compounds responsible for the alpha-glucosidase inhibitory activity in Colletotrichum sp. TSC13. The methanol extract of TSC13 mycelia, was partitioned with n-hexane, chloroform and ethyl acetate. The n-hexane fraction exhibited the strongest alpha-glucosidase inhibitory activity. Column chromatography of this fraction resulted in 8 sub-fractions (F1-8). Fraction 3 (F3) which showed 71.4 +/- 2.4% inhibition was analysed further. Analysis using GC-MS after methylation of F3 and comparison to spectra databases and confirmation using authentic sample standards showed that F3 had two saturated fatty acid methyl esters, palmitic acid and stearic acid methyl esters and three unsaturated fatty acid methyl esters, oleic acid, linoleic acid and linoleinic acid methyl esters. Unsaturated fatty acids showed higher activity than the saturated fatty acids and the methyl esters form of unsaturated fatty acids showed slightly less active than the free acids. Further analysis using an ethyl acetate extract, it was confirmed that most of the fatty acids were present in the form of free acids. Therefore, it was concluded that the alpha-glucosidase inhibitor compounds in Colletotrichum sp. TSC13 were unsaturated fatty acids. This is the first report that a Colletotrichum sp. from T. sumatrana has alpha-glucosidase inhibitory activity.
Collapse
Affiliation(s)
- Nina Artanti
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong 15314, Indonesia
| | | | | | | |
Collapse
|
116
|
Fávaro LCDL, Sebastianes FLDS, Araújo WL. Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 2012; 7:e36826. [PMID: 22675473 PMCID: PMC3366970 DOI: 10.1371/journal.pone.0036826] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/14/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. METHODOLOGY/PRINCIPAL FINDINGS We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. CONCLUSIONS/SIGNIFICANCE Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this ubiquitous endophyte with the host plant, and also to a better use of microbial endophytes in agriculture.
Collapse
|
117
|
Wu LS, Hu CL, Han T, Zheng CJ, Ma XQ, Rahman K, Qin LP. Cytotoxic metabolites from Perenniporia tephropora, an endophytic fungus from Taxus chinensis var. mairei. Appl Microbiol Biotechnol 2012; 97:305-15. [PMID: 22660771 DOI: 10.1007/s00253-012-4189-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 05/03/2012] [Accepted: 05/15/2012] [Indexed: 10/28/2022]
Abstract
Based on bioactivity-oriented isolation, the EtOAc extract of a culture broth of the endophytic fungus Perenniporia tephropora Z41 from Taxus chinensis var. mairei, with strong anti-Pyricularia oryzae activity, afforded a new sesquiterpenoid, perenniporin A (1), together with three known compounds, ergosterol (2), rel-(+)-(2aR,5R,5aR,8S,8aS,8bR)-decahydro-2,2,5,8-tetramethyl-2H-naphtho[1,8-bc]genfuran-5-ol (3), and albicanol (4). Their structures were elucidated by means of spectroscopic methods. All the isolated compounds and the EtOAc extract of P. tephropora Z41 (EPT) were evaluated for their cytotoxic activity against three human cancer cell lines (HeLa, SMMC-7721, and PANC-1). EPT demonstrated significant cytotoxicity with IC(50) values ranging from 2 to 15 μg/mL. Compound 2 was the most cytotoxic constituent against the tested cell lines with IC(50) values of 1.16, 11.63, and 11.80 μg/mL, respectively, while compounds 1, 3, and 4 exhibited moderate cytotoxicity with IC(50) values ranging from 6 to 58 μg/mL. We conclude that the endophytic fungus P. tephropora is a promising source of novel and cytotoxic metabolites.
Collapse
Affiliation(s)
- Ling-Shang Wu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
118
|
Sánchez Márquez S, Bills GF, Herrero N, Zabalgogeazcoa Í. Non-systemic fungal endophytes of grasses. FUNGAL ECOL 2012. [DOI: 10.1016/j.funeco.2010.12.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
119
|
Shi J, Zeng Q, Liu Y, Pan Z. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotechnol 2012; 95:369-79. [PMID: 22526800 DOI: 10.1007/s00253-012-4045-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 01/03/2023]
Abstract
Due to its potential in preventing or slowing the occurrence of many diseases, resveratrol (3,5,4'-trihydroxystilbene) has attracted great research interest. The objective of this study was to identify microorganisms from selected plants that produce resveratrol and to optimize the conditions for resveratrol production. Endophytes from Merlot wine grapes (Vitis vinifera L. cv. Merlot), wild Vitis (Vitis quinquangularis Rehd.), and Japanese knotweed (Polygonum cuspidatum Siebold & Zucc.) were isolated, and their abilities to produce resveratrol were evaluated. A total of 65 isolates were obtained and 21 produced resveratrol (6-123 μg/L) in liquid culture. The resveratrol-producing isolates belonged to seven genera, Botryosphaeria, Penicillium, Cephalosporium, Aspergillus, Geotrichum, Mucor, and Alternaria. The resveratrol-producing capability decreased or was completely lost in most isolates after three rounds of subculture. It was found that only the strain Alternaria sp. MG1 (isolated from cob of Merlot using GA1 medium) had stable and high resveratrol-producing capability in all subcultures. During liquid cultivation of Alternaria sp. MG1 in potato dextrose medium, the synthesis of resveratrol began on the first day, increased to peak levels on day 7, and then decreased sharply thereafter. Cell growth increased during cultivation and reached a stable and high level of biomass after 5 days. The best fermentation conditions for resveratrol production in liquid cultures of Alternaria sp. MG1 were an inoculum size of 6 %, a medium volume of 125 mL in a 250-mL flask, a rotation speed of 101 rpm, and a temperature of 27 °C.
Collapse
Affiliation(s)
- Junling Shi
- College of Food Science and Engineering, Northwest A & F University, 28 Xinong Road, Yangling, Shaanxi Province, China.
| | | | | | | |
Collapse
|
120
|
Abstract
Fungal endophytes were isolated from 4 species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, 8 within the Ascomycota and 4 within the Basidiomycota, were identified based on PCR amplification and sequencing of the internal transcribed spacer sequences of nuclear ribosomal DNA (ITS rDNA) with taxonomic identity assigned using the NCBI nucleotide megablast search tool. Endophytes are known to produce a large number of metabolites, some of which may contribute to the protection and survival of the host. We speculate that endophyte-infected Sarracenia may benefit from their fungal associates by their influence on nutrient availability from within pitchers and, possibly, by directly influencing the biota within pitchers.
Collapse
Affiliation(s)
- Anthony Glenn
- Toxicology and Mycotoxin Research Unit, Russell Research Center, United State Department of Agriculture Agricultural Research Service, Athens, Georgia, United States of America
| | - Michael S. Bodri
- Department of Biology, North Georgia College & State University, Dahlonega, Georgia, United States of America
| |
Collapse
|
121
|
Activation of the dormant secondary metabolite production by introducing gentamicin-resistance in a marine-derived Penicillium purpurogenum G59. Mar Drugs 2012; 10:559-582. [PMID: 22611354 PMCID: PMC3347015 DOI: 10.3390/md10030559] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 11/16/2022] Open
Abstract
A new approach to activate silent gene clusters for dormant secondary metabolite production has been developed by introducing gentamicin-resistance to an originally inactive, marine-derived fungal strain Penicillium purpurogenum G59. Upon treatment of the G59 spores with a high concentration of gentamicin in aqueous DMSO, a total of 181 mutants were obtained by single colony isolation. In contrast to the strain G59, the EtOAc extracts of nine mutant cultures showed inhibitory effects on K562 cells, indicating that the nine mutants had acquired capability to produce antitumor metabolites. This was evidenced by TLC and HPLC analysis of EtOAc extracts of G59 and the nine mutants. Further isolation and characterization demonstrated that four antitumor secondary metabolites, janthinone (1), fructigenine A (2), aspterric acid methyl ester (3) and citrinin (4), were newly produced by mutant 5-1-4 compared to the parent strain G59, and which were also not found in the secondary metabolites of other Penicillium purpurogenum strains. However, Compounds 1–4 inhibited the proliferation of K562 cells with inhibition rates of 34.6% (1), 60.8% (2), 31.7% (3) and 67.1% (4) at 100 μg/mL, respectively. The present study demonstrated the effectiveness of a simple, yet practical approach to activate the production of dormant fungal secondary metabolites by introducing acquired resistance to aminoglycoside antibiotics, which could be applied to the studies for eliciting dormant metabolic potential of fungi to obtain cryptic secondary metabolites.
Collapse
|
122
|
Damare S, Singh P, Raghukumar S. Biotechnology of marine fungi. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2012; 53:277-97. [PMID: 22222837 DOI: 10.1007/978-3-642-23342-5_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous fungi are the most widely used eukaryotes in industrial and pharmaceutical applications. Their biotechnological uses include the production of enzymes, vitamins, polysaccharides, pigments, lipids and others. Marine fungi are a still relatively unexplored group in biotechnology. Taxonomic and habitat diversity form the basis for exploration of marine fungal biotechnology. This review covers what is known of the potential applications of obligate and marine-derived fungi obtained from coastal to the oceanic and shallow water to the deep-sea habitats. Recent studies indicate that marine fungi are potential candidates for novel enzymes, bioremediation, biosurfactants, polysaccharides, polyunsaturated fatty acids and secondary metabolites. Future studies that focus on culturing rare and novel marine fungi, combined with knowledge of their physiology and biochemistry will provide a firm basis for marine mycotechnology.
Collapse
Affiliation(s)
- Samir Damare
- Marine Biotechnology Laboratory, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India,
| | | | | |
Collapse
|
123
|
Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens. Curr Genet 2011; 58:21-33. [DOI: 10.1007/s00294-011-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 02/01/2023]
|
124
|
Enhancement of diosgenin production in Dioscorea zingiberensis cell cultures by oligosaccharides from its endophytic fungus Fusarium oxysporum Dzf17. Molecules 2011; 16:10631-44. [PMID: 22183887 PMCID: PMC6264283 DOI: 10.3390/molecules161210631] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 01/23/2023] Open
Abstract
The effects of the oligosaccharides from the endophytic fungus Fusarium oxysporum Dzf17 as elicitors on diosgenin production in cell suspension cultures of its host Dioscorea zingiberensis were investigated. Three oligosaccharides, DP4, DP7 and DP10, were purified from the oligosaccharide fractions DP2-5, DP5-8 and DP8-12, respectively, which were prepared from the water-extracted mycelial polysaccharide of the endophytic fungus F. oxysporum Dzf17. When the cell cultures were treated with fraction DP5-8 at 20 mg/L on day 26 and harvested on day 32, the maximum diosgenin yield (2.187 mg/L) was achieved, which was 5.65-fold of control (0.387 mg/L). When oligosaccharides DP4, DP7 and DP10 were individually added to 26-day-old D. zingiberensis cell cultures at concentrations of 2, 4, 6, 8 and 10 mg/L in medium, DP7 at 6 mg/L was found to significantly enhance diosgenin production, with a yield of 3.202 mg/L, which was 8.27-fold of control. When the cell cultures were treated with DP7 twice on days 24 and 26, and harvested on day 30, both diosgenin content and yield were significantly increased and reached the maximums of 1.159 mg/g dw and 4.843 mg/L, both of which were higher than those of single elicitation, and were 9.19- and 12.38-fold of control, respectively.
Collapse
|
125
|
Artanti N, Tachibana S, Kardono LBS, Sukiman H. Screening of endophytic fungi having ability for antioxidative and alpha-glucosidase inhibitor activities isolated from Taxus sumatrana. Pak J Biol Sci 2011; 14:1019-1023. [PMID: 22514879 DOI: 10.3923/pjbs.2011.1019.1023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endophytic microbes are considered as an important source of natural products. They show antibiotic, anticancer, antioxidative and antidiabetic activities. Therefore, there are many reports on the isolation and bioactivity screening of endophytic fungi from various plants including Taxus species. Taxus sumatrana (Miq.) de Laub is found in Indonesia. The objective of this study is to conduct an in vitro screening of 14 endophytic fungi isolated from Taxus sumatrana having antioxidative and alpha-glucosidase inhibitor activities. Each endophytic fungus was cultured for 7 days and the fungal mycelium and medium were extracted with methanol and ethyl acetate, respectively, to produce each extract. The antioxidative activity of each extract was tested by DPPH free radical scavenging activity and beta-carotene bleaching assays, whereas antidiabetic activity was tested based on alpha-glucosidase inhibitor activity. The screening results showed that fungal mycelia of TSC 13 had the best alpha-glucosidase inhibitor activity and TSC 24 had the best antioxidative activity. Isolation of bioactive compounds from TSC 13 and TSC 24 is being conducted. This is the first report that endophytic fungi isolated from T. sumatrana exhibited anti alpha-glucosidase inhibitory and anti oxidative activities.
Collapse
Affiliation(s)
- N Artanti
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong, 15314, Indonesia
| | | | | | | |
Collapse
|
126
|
Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl Microbiol Biotechnol 2011; 93:1475-83. [DOI: 10.1007/s00253-011-3613-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/05/2011] [Accepted: 09/28/2011] [Indexed: 11/25/2022]
|
127
|
An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 2011; 28:1287-94. [DOI: 10.1007/s11274-011-0876-2] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
|
128
|
Yin H, Sun YH. Vincamine-producing endophytic fungus isolated from Vinca minor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:802-805. [PMID: 21315568 DOI: 10.1016/j.phymed.2011.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/06/2010] [Accepted: 01/04/2011] [Indexed: 05/30/2023]
Abstract
Vinca minor is a plant containing the alkaloid vincamine, which is used in the pharmaceutical industry as a cerebral stimulant and vasodilator. The objective of this study was to determine whether endophytic fungi isolated from V. minor produce vincamine. Primary screening was carried out using Dragendorff's and Mayer's reactions, and strain re-selection was made by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) to identify the fermentation products of the selected strain. We isolated 10 endophytic fungal strains from V. minor. An extract from one (Vm-J2), showed positive reactions with both Dragendorff's and Mayer's reagents. The strain had a component with the same TLC R(f) value and HPLC retention time as authentic vincamine. Therefore, the fungus appeared to produce the same bioactive ingredient, vincamine, as the host plant. The prospect of using endophytic fungi to produce the phytoactive compound by fungal fermentation is discussed.
Collapse
Affiliation(s)
- Hong Yin
- College of Life Science, Northwest University, Xi'an, Shaanxi, China.
| | | |
Collapse
|
129
|
Bhimba BV, Franco DAAD, Jose GM, Mathew JM, Joel EL. Characterization of cytotoxic compound from mangrove derived fungi Irpex hydnoides VB4. Asian Pac J Trop Biomed 2011; 1:223-6. [PMID: 23569763 PMCID: PMC3609188 DOI: 10.1016/s2221-1691(11)60031-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/25/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the cytotoxic activity of endophytic fungi isolated from mangrove fungi. METHODS In the present study the DNA was isolated and the ITS region of 5.8s rRNA was amplified using specific primers ITS 1 and ITS4 and sequence was determined using automated sequencers. Blast search sequence similarity was found against the existing non redundant nucleotide sequence database thus, identified as Aspergilus flavus, Hyporcaea lixii, Aspergillus niger, Eutorium amstelodami, Irpex hydnoides and Neurospora crassa. Among the seven isolates, one fungi Irpex hydnoides was selected for further studies. The fungi were grown in sabouraud broth for five days and filtrate were separated and subjected to ethyl acetate for further studies. RESULTS Nearly half (49.25%) of the extracts showed activity (IC50 of 125µg/mL). These values were within the cutoff point of the National Cancer Institute criteria for cytotoxicity (IC50<20 µg/mL) in the screening of crude plant extracts. The GC MS analysis revealed that the active principals might be Tetradecane (6.26%) with the RT 8.606. CONCLUSIONS It is clear from the present study that mangrove fungi with bioactive metabolites can be expected to provide high quality biological material for high throughout biochemical, anti cancer screening programmes. The results help us conclude that the potential of using metabolic engineering and post genomic approaches to isolate more novel bioactive compounds and to make their possible commercial application is not far off.
Collapse
|
130
|
Aly AH, Debbab A, Proksch P. Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 2011; 90:1829-45. [PMID: 21523479 DOI: 10.1007/s00253-011-3270-y] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/23/2011] [Accepted: 03/23/2011] [Indexed: 01/22/2023]
Abstract
Fungal endophytes residing in the internal tissues of living plants occur in almost every plant on earth from the arctic to the tropics. The endophyte-host relationship is described as a balanced symbiotic continuum ranging from mutualism through commensalism to parasitism. This overview will highlight selected aspects of endophyte diversity, host specificity, endophyte-host interaction and communication as well as regulation of secondary metabolite production with emphasis on advanced genomic methods and their role in improving our current knowledge of endophytic associations. Furthermore, the chemical potential of endophytic fungi for drug discovery will be discussed with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, selected examples of bioactive metabolites reported in recent years (2008-2010) from fungal endophytes residing in terrestrial plants are presented grouped according to their reported biological activities.
Collapse
Affiliation(s)
- Amal Hassan Aly
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| | | | | |
Collapse
|
131
|
Zhao J, Zheng B, Li Y, Shan T, Mou Y, Lu S, Li P, Zhou L. Enhancement of diepoxin ζ production by yeast extract and its fractions in liquid culture of Berkleasmium-like endophytic fungus Dzf12 from Dioscorea zingiberensis. Molecules 2011; 16:847-56. [PMID: 21248666 PMCID: PMC6259239 DOI: 10.3390/molecules16010847] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/07/2011] [Accepted: 01/18/2011] [Indexed: 11/16/2022] Open
Abstract
This study was to examine the effects of yeast extract (YE) and its fractions (YE1 and YE2) on the growth and diepoxin ζ (a spirobisnaphthalene with a diversity of bioactivities) production in liquid culture of Berkleasmium-like endophytic fungus Dzf12 from Dioscorea zingiberensis. When YE was applied to the liquid medium at 10 g/L on day 3 of culture, the diepoxin ζ production was most effectively enhanced 3.2-fold (378.70 mg/L versus 120.09 mg/L in control) after another 10 days culture. Feeding with 15 g/L of YE on day 9, the mycelia biomass reached 16.44 g/L, about 2.3-fold in comparison with the control (7.15 g/L). The polysaccharide fraction (YE1) was mainly responsible for stimulating diepoxin ζ accumulation, and the non-polysaccharide fraction (YE2) was mainly responsible for promoting mycelia growth. The results showed that the diepoxin ζ production in liquid culture of endophyte Dzf12 could be effectively enhanced by YE and its fractions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ligang Zhou
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86 10 62731199
| |
Collapse
|
132
|
|
133
|
Antimicrobial activity from the extracts of fungal isolates of soil and dung samples from Kaziranga National Park, Assam, India. J Mycol Med 2010. [DOI: 10.1016/j.mycmed.2010.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
134
|
Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 2010; 89:457-73. [DOI: 10.1007/s00253-010-2923-6] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 09/24/2010] [Accepted: 09/26/2010] [Indexed: 01/23/2023]
|
135
|
|