101
|
Smeriglio A, Denaro M, Barreca D, D'Angelo V, Germanò MP, Trombetta D. Polyphenolic profile and biological activities of black carrot crude extract (Daucus carota L. ssp. sativus var. atrorubens Alef.). Fitoterapia 2017; 124:49-57. [PMID: 29050970 DOI: 10.1016/j.fitote.2017.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Black carrot (Daucus carota L. ssp. sativus var. atrorubens Alef.) is a valuable source of carbohydrates, minerals and vitamins and contains also high amounts of anthocyanins giving the characteristic deep-purple color. These latter compounds are known as natural dyes used in the food and pharmaceutical industry that have recently attracted much attention for their healthful properties. The aim of this work was to investigate for the first time the polyphenolic profile and biological properties of a black carrot crude extract (BCCE) through an in-depth analysis of the main polyphenolic classes evaluating its antioxidant, cytoprotective and anti-angiogenic properties. Twenty five polyphenols were quantified by LC-DAD-FLD-MS/MS analysis (anthocyanins 78.06%, phenolic acids 17.89% and other flavonoids 4.06%) with polyglycosylated cyanidins as major components. In addition, BCCE showed a strong antioxidant and free radical scavenging activity particularly in the hydrogen transfer-based assays (ORAC and β-carotene bleaching) and a significant increase in the cell viability. Furthermore, BCCE exhibited a strong anti-angiogenic activity at the highest concentration assayed on the chick chorioallantoic membrane (50μg/egg). In conclusion, the obtained results demonstrated the antioxidant, cytoprotective and anti-angiogenic properties of BCCE, which highlight that the higher biological activity of BCCE is probably due to the synergic effects exerted by various polyphenolic classes.
Collapse
Affiliation(s)
- A Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - M Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - D Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - V D'Angelo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - M P Germanò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy.
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| |
Collapse
|
102
|
Determination of pistachio (Pistacia vera L.) hull (exo- and mesocarp) phenolics by HPLC-DAD-ESI/MSn and UHPLC-DAD-ELSD after ultrasound-assisted extraction. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
103
|
Almond Skin Extracts Abrogate HSV-1 Replication by Blocking Virus Binding to the Cell. Viruses 2017; 9:v9070178. [PMID: 28698509 PMCID: PMC5537670 DOI: 10.3390/v9070178] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of the present research was to determine the effect of almond skin extracts on herpes simplex virus 1 (HSV-1) replication. Drug-resistant strains of HSV frequently develop following therapeutic treatment. Therefore, the discovery of novel anti-HSV drugs deserves great effort. Here, we tested both natural (NS) and blanched (BS) polyphenols-rich almond skin extracts against HSV-1. HPLC analysis showed that the prevalent compounds in NS and BS extracts contributing to their antioxidant activity were quercetin, epicatechin and catechin. Results of cell viability indicated that NS and BS extracts were not toxic to cultured Vero cells. Furthermore, NS extracts were more potent inhibitors of HSV-1 than BS extracts, and this trend was in agreement with different concentrations of flavonoids. The plaque forming assay, Western blot and real-time PCR were used to demonstrate that NS extracts were able to block the production of infectious HSV-1 particles. In addition, the viral binding assay demonstrated that NS extracts inhibited HSV-1 adsorption to Vero cells. Our conclusion is that natural products from almond skin extracts are an extraordinary source of antiviral agents and provide a novel treatment against HSV-1 infections.
Collapse
|
104
|
Barreca D, Gattuso G, Bellocco E, Calderaro A, Trombetta D, Smeriglio A, Laganà G, Daglia M, Meneghini S, Nabavi SM. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017; 43:495-506. [PMID: 28497905 DOI: 10.1002/biof.1363] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 12/26/2022]
Abstract
Citrus fruit and juices represent one of the main sources of compounds with a high potential for health promoting properties. Among these compounds, flavanones (such as hesperetin, naringenin, eriodictyol, isosakuranetin, and their respective glycosides), which occur in quantities ranging from ∼180 to 740 mg/L (depending on the Citrus species and cultivar) are responsible for many biological activities. These compounds support and enhance the body's defenses against oxidative stress and help the organism in the prevention of cardiovascular diseases, atherosclerosis, and cancer. Moreover, among other properties, they also show anti-inflammatory, antiviral, and antimicrobial activities. This review analyzes the biochemistry, pharmacology, and biology of Citrus flavanones, emphasizing the occurrence in Citrus fruits and juices and their bioavailability, structure-function correlations and ability to modulate signal cascades both in vitro and in vivo. © 2017 BioFactors, 43(4):495-506, 2017.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Silvia Meneghini
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
105
|
In Vitro Evaluation of the Antioxidant, Cytoprotective, and Antimicrobial Properties of Essential Oil from Pistacia vera L. Variety Bronte Hull. Int J Mol Sci 2017; 18:ijms18061212. [PMID: 28587291 PMCID: PMC5486035 DOI: 10.3390/ijms18061212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 01/06/2023] Open
Abstract
Although the chemical composition and biological properties of some species of the genus Pistacia has been investigated, studies on hull essential oil of Pistacia vera L. variety Bronte (HEO) are currently lacking. In this work, we have carried out an in-depth phytochemical profile elucidation by Gas Chromatography-Mass Spectrometry (GC-MS) analysis, and an evaluation of antioxidant scavenging properties of HEO, using several different in vitro methods, checking also its cytoprotective potential on lymphocytes treated with tert-butyl hydroperoxide. Moreover, the antimicrobial activity against Gram-positive and Gram-negative strains, both American Type Culture Collection (ATCC) and clinical isolates, was also investigated. GC-MS analysis highlighted the richness of this complex matrix, with the identification of 40 derivatives. The major components identified were 4-Carene (31.743%), α-Pinene (23.584%), d-Limonene (8.002%), and 3-Carene (7.731%). The HEO showed a strong iron chelating activity and was found to be markedly active against hydroxyl radical, while scarce effects were found against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. Moreover, pre-treatment with HEO was observed to significantly increase the cell viability, decreasing the lactate dehydrogenase (LDH) release. HEO was bactericidal against all the tested strains at the concentration of 7.11 mg/mL, with the exception of Pseudomonas aeruginosa ATCC 9027. The obtained results demonstrate the strong free-radical scavenging activity of HEO along with remarkable cytoprotective and antimicrobial properties.
Collapse
|
106
|
Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. Int J Mol Sci 2017; 18:ijms18040797. [PMID: 28398235 PMCID: PMC5412381 DOI: 10.3390/ijms18040797] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 11/18/2022] Open
Abstract
The antioxidant activity and the phenolic and α-tocopherol content of 10 Northern Italian mono- and multi-varietal extra virgin olive oils (EVOOs), after early and late olive harvests, was analyzed. A hierarchical cluster analysis was used to evaluate sample similarity. Secoiridoids (SIDs), lignans and flavonoids were the most abundant phenolic compounds identified. The organic Casaliva (among mono-cultivar) and the organic multi-varietal (among blended oils) EVOOs had the higher total phenol content both in early (263.13 and 326.19 mg/kg, respectively) and late harvest (241.88 and 292.34 mg/kg, respectively) conditions. In comparison to late harvest EVOOs, early harvest EVOOs, in particular the organic mono-cultivar Casaliva, showed both higher antioxidant capacity (up to 1285.97 Oxygen Radicals Absorbance Capacity/ORAC units), probably due to the higher SID fraction (54% vs. 40%), and higher α-tocopherol content (up to 280.67 mg/kg). Overall, these results suggest that SIDs and α-tocopherol mainly contribute to antioxidant properties of the studied EVOOs. In light of this, the authors conclude that early harvest, organic mono-cultivar Casaliva EVOO represents the most interesting candidate to explicate healthy effects ascribed to these functional constituents, particularly regarding oxidative stress-related pathologies.
Collapse
|
107
|
Rafiee Z, Barzegar M, Sahari MA, Maherani B. Nanoliposomal carriers for improvement the bioavailability of high – valued phenolic compounds of pistachio green hull extract. Food Chem 2017; 220:115-122. [DOI: 10.1016/j.foodchem.2016.09.207] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/25/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023]
|
108
|
Papalia T, Barreca D, Panuccio MR. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy. Int J Mol Sci 2017; 18:ijms18030660. [PMID: 28335473 PMCID: PMC5372672 DOI: 10.3390/ijms18030660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/20/2022] Open
Abstract
Jatropha (Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.
Collapse
Affiliation(s)
- Teresa Papalia
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy.
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Maria Rosaria Panuccio
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy.
| |
Collapse
|
109
|
Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016; 5:E88. [PMID: 28231183 PMCID: PMC5302437 DOI: 10.3390/foods5040088] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.
Collapse
Affiliation(s)
- Theodoros Varzakas
- TEI Peloponnese, Department of Food Technology, Kalamata 24100, Greece.
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
| | | | - Francis Verpoort
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.
| |
Collapse
|
110
|
Bellocco E, Barreca D, Laganà G, Calderaro A, El Lekhlifi Z, Chebaibi S, Smeriglio A, Trombetta D. Cyanidin-3- O -galactoside in ripe pistachio ( Pistachia vera L. variety Bronte) hulls: Identification and evaluation of its antioxidant and cytoprotective activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
111
|
Sciubba F, Avanzato D, Vaccaro A, Capuani G, Spagnoli M, Di Cocco ME, Tzareva IN, Delfini M. Monitoring of pistachio (Pistacia Vera) ripening by high field nuclear magnetic resonance spectroscopy. Nat Prod Res 2016; 31:765-772. [DOI: 10.1080/14786419.2016.1242003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fabio Sciubba
- Dipartimento di Chimica, Sapienza Università di Roma, Roma Italy
| | | | - Angela Vaccaro
- CRA-FRU- Centro di Ricerca per la Frutticoltura, Roma, Italy
| | - Giorgio Capuani
- Dipartimento di Chimica, Sapienza Università di Roma, Roma Italy
| | | | | | | | - Maurizio Delfini
- Dipartimento di Chimica, Sapienza Università di Roma, Roma Italy
| |
Collapse
|
112
|
Erşan S, Güçlü Üstündağ Ö, Carle R, Schweiggert RM. Identification of Phenolic Compounds in Red and Green Pistachio (Pistacia vera L.) Hulls (Exo- and Mesocarp) by HPLC-DAD-ESI-(HR)-MS(n). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5334-5344. [PMID: 27292533 DOI: 10.1021/acs.jafc.6b01745] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Phenolic constituents of the nonlignified red and green pistachio hulls (exo- and mesocarp) were assessed by HPLC-DAD-ESI-MS(n) as well as by HR-MS. A total of 66 compounds was identified in the respective aqueous methanolic extracts. Among them, gallic acid, monogalloyl glucoside, monogalloyl quinic acid, penta-O-galloyl-β-d-glucose, hexagalloyl hexose, quercetin 3-O-galactoside, quercetin 3-O-glucoside, quercetin 3-O-glucuronide, and (17:1)-, (13:0)-, and (13:1)-anacardic acids were detected at highest signal intensity. The main difference between red and green hulls was the presence of anthocyanins in the former ones. Differently galloylated hydrolyzable tannins, anthocyanins, and minor anacardic acids were identified for the first time. Pistachio hulls were thus shown to be a source of structurally diverse and potentially bioactive phenolic compounds. They therefore represent a valuable byproduct of pistachio processing having potential for further utilization as raw material for the recovery of pharmaceutical, nutraceutical, and chemical products.
Collapse
Affiliation(s)
- Sevcan Erşan
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstrasse 25, 70599 Stuttgart, Germany
- Department of Food Engineering, Faculty of Engineering, Yeditepe University , 26 Ağustos Yerleşimi, Kayışdağı Caddesi, 34755, Istanbul, Turkey
| | - Özlem Güçlü Üstündağ
- Department of Food Engineering, Faculty of Engineering, Yeditepe University , 26 Ağustos Yerleşimi, Kayışdağı Caddesi, 34755, Istanbul, Turkey
| | - Reinhold Carle
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstrasse 25, 70599 Stuttgart, Germany
- Biological Science Department, King Abdulaziz University , P.O. Box 80257, Jeddah 21589, Saudi Arabia
| | - Ralf M Schweiggert
- Chair of Plant Foodstuff Technology and Analysis, Institute of Food Science and Biotechnology, University of Hohenheim , Garbenstrasse 25, 70599 Stuttgart, Germany
| |
Collapse
|
113
|
Rostampour M, Hadipour E, Oryan S, Soltani B, Saadat F. Anxiolytic-like effect of hydroalcoholic extract of ripe pistachio hulls in adult female Wistar rats and its possible mechanisms. Res Pharm Sci 2016; 11:454-460. [PMID: 28003838 PMCID: PMC5168881 DOI: 10.4103/1735-5362.194870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The present study was designed to study the preventive effect of hydroalcoholic extract of ripe pistachio hulls (RPH) in the elevated plus maze model of anxiety. One hundred twenty female wistar rats in their estrous cycle were divided into 15 groups of 8 each and received various concentrations of hydroalcoholic extract of RPH except the control groups. Elevated plus maze was used to measure the level of anxiety. Percentage of time spent in the open arms (%OAT), percentage of the number of entries into the open arms (%OAE), locomotor activity, and time spent in the closed arms (CAT), and the number of entries in to the closed arms (CAE) were measured and compared. Dose-response experiments showed that only 10 mg/kg dose of RPH extract significantly increased %OAT (P < 0.001) and %OAE (P < 0.05) compared to the control group, indicating anti-anxiety effects of the extract. Also, pentylenetetrazol and an estrogen receptor antagonist (ERA) tamoxifen could block anti-anxiety effects of the extract (P < 0.001). It was also noticed that tamoxifen was able to significantly reduce locomotor activity. As the RPH extract showed a preventive effect in experimental model of anxiety, it might be concomitantly administered with other anxiolytic medications.
Collapse
Affiliation(s)
- Mohammad Rostampour
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, I.R. Iran; Department of Physiology, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Elham Hadipour
- Department of Biology, Faculty of Science, Kharazmy University. Tehran, I.R. Iran
| | - Shahrbano Oryan
- Department of Biology, Faculty of Science, Kharazmy University. Tehran, I.R. Iran
| | - Bahram Soltani
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, I.R. Iran; Department of Pharmacology, Guilan University of Medical Sciences, Rasht, I.R. Iran
| | - Farshid Saadat
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, I.R. Iran; Department of Immunology, Guilan University of Medical Sciences, Rasht, I.R. Iran
| |
Collapse
|