101
|
Song H, Zhang H, He Y, Gao R, Wang Y, Wang W, Pfefferle LD, Tang X, Tang Y. Novel bayberry-and-honeycomb-like magnetic surface molecularly imprinted polymers for the selective enrichment of rutin from Sophora japonica. Food Chem 2021; 356:129722. [PMID: 33836357 DOI: 10.1016/j.foodchem.2021.129722] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Rutin (RT), a widely distributed natural flavonoid compound, has been generally utilized as an important active ingredient owing to its considerable biomedical and economic value. Inspired by the structure features of densely-packed bayberry and well-orientated honeycomb, a novel type of magnetic molecularly imprinted polymers (HB-TI-MMIPs) with abundant high-affinity and uniformly-distributed binding sites was rationally constructed for the selective enrichment of RT from Sophora japonica. The polymerization conditions, physicochemical properties, and adsorption performance of the imprinted nanomaterials were systematically investigated. The optimized HB-TI-MMIPs display a high adsorption capacity, fast adsorption rate, and satisfactory selectivity towards RT. Meanwhile, the proposed analytical methodology using HPLC, with HB-TI-MMIPs as adsorbents, successfully applied to enrich and detect RT from Sophora japonica with high recoveries (87.2-94.6%) and good RSDs (lower than 4.3%). Therefore, the fabricated HB-TI-MMIPs with a fast magnetic responsivity and desirable adsorption performance would be attractive in plant active ingredients extraction fields.
Collapse
Affiliation(s)
- Huijia Song
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haipin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yulian He
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenting Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lisa D Pfefferle
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Xiaoshuang Tang
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
102
|
Chanioti S, Katsouli M, Tzia C. Novel Processes for the Extraction of Phenolic Compounds from Olive Pomace and Their Protection by Encapsulation. Molecules 2021; 26:molecules26061781. [PMID: 33810031 PMCID: PMC8005142 DOI: 10.3390/molecules26061781] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.
Collapse
|
103
|
Lanjekar KJ, Rathod VK. Green extraction of Glycyrrhizic acid from Glycyrrhiza glabra using choline chloride based natural deep eutectic solvents (NADESs). Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
104
|
Fan XH, Wang LT, Chang YH, An JY, Zhu YW, Yang Q, Meng D, Fu YJ. Application of green and recyclable menthol-based hydrophobic deep eutectic solvents aqueous for the extraction of main taxanes from Taxus chinensis needles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
105
|
Aslan Türker D, Doğan M. Application of deep eutectic solvents as a green and biodegradable media for extraction of anthocyanin from black carrots. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
106
|
Doldolova K, Bener M, Lalikoğlu M, Aşçı YS, Arat R, Apak R. Optimization and modeling of microwave-assisted extraction of curcumin and antioxidant compounds from turmeric by using natural deep eutectic solvents. Food Chem 2021; 353:129337. [PMID: 33752120 DOI: 10.1016/j.foodchem.2021.129337] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Natural deep eutectic solvents (NADES) have recently come to the fore as new green solvents for foods, cosmetics and pharmaceuticals due to their unique solvation power and low toxicity. Turmeric extracts were prepared using the microwave assisted extraction method (MAE) using five NADES containing binary combinations of choline chloride, lactic acid, fructose, and sucrose. The MAE method was optimized and modeled by using response surface methodology to obtain maximum total antioxidant capacity (TAC) and curcumin contents (CC) in extracts for each NADES. All NADES extracts, except NADES-1 containing fructose and cholin chloride, exhibited higher TAC and CC than those in 80% methanol:water which was the preferred solvent in literature. NADES solvents did not interfere with subsequent antioxidant capacity measurements using the CUPRAC method. The proposed MAE is a potentially efficient and sustainable procedure in pharmaceutical and food industries for the extraction of antioxidants and curcumin from turmeric.
Collapse
Affiliation(s)
- Khadija Doldolova
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Turkey
| | - Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34126, Istanbul, Turkey
| | - Melisa Lalikoğlu
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcilar 34320, Istanbul, Turkey
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih 34126, Istanbul, Turkey
| | - Refik Arat
- Istanbul Kultur University, Department of Civil Engineering, Bakirkoy 34156, Istanbul, Turkey
| | - Reşat Apak
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar 34320, Istanbul, Turkey.
| |
Collapse
|
107
|
Santos MCB, Barouh N, Durand E, Baréa B, Robert M, Micard V, Lullien-Pellerin V, Villeneuve P, Cameron LC, Ryan EP, Ferreira MSL, Bourlieu-Lacanal C. Metabolomics of Pigmented Rice Coproducts Applying Conventional or Deep Eutectic Extraction Solvents Reveal a Potential Antioxidant Source for Human Nutrition. Metabolites 2021; 11:metabo11020110. [PMID: 33671946 PMCID: PMC7919034 DOI: 10.3390/metabo11020110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/29/2022] Open
Abstract
Rice bran (RB) corresponds to the outer layers of whole grain rice and contains several phenolic compounds (PCs) that make it an interesting functional food ingredient. PC richness is enhanced in pigmented RB varieties and requires effective ways of extraction of these compounds. Therefore, we investigated conventional and deep eutectic solvents (DES) extraction methods to recover a wide array of PCs from red and black RB. The RB were extracted with ethanol/water (60:40, v/v) and two DES (choline chloride/1.2-propanediol/water, 1:1:1 and choline chloride/lactic acid, 1:10, mole ratios), based on Generally Recognized as Safe (GRAS) components. Besides the quantification of the most typical phenolic acids of cereals, nontargeted metabolomic approaches were applied to PCs profiling in the extracts. Globally, metabolomics revealed 89 PCs belonging to flavonoids (52%), phenolic acids (33%), other polyphenols (8%), lignans (6%) and stilbenes (1%) classes. All extracts, whatever the solvents, were highly concentrated in the main phenolic acids found in cereals (37–66 mg/100 g in black RB extracts vs. 6–20 mg/100 g in red RB extracts). However, the PC profile was highly dependent on the extraction solvent and specific PCs were extracted using the acidic DES. The PC-enriched DES extracts demonstrated interesting DPPH scavenging activity, which makes them candidates for novel antioxidant formulations.
Collapse
Affiliation(s)
- Millena Cristina Barros Santos
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Nathalie Barouh
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Erwann Durand
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Bruno Baréa
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Mélina Robert
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Valérie Micard
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | | | - Pierre Villeneuve
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
| | - Luiz Claudio Cameron
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Mariana Simões Larraz Ferreira
- LabBio, Laboratory of Bioactives, Food and Nutrition Graduate Program, PPGAN, Federal University of State of Rio de Janeiro, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- IMasS-LBP, Center of Innovation in MS-Laboratory of Protein Biochemistry, UNIRIO, Rio de Janeiro 22290-240, Brazil;
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| | - Claire Bourlieu-Lacanal
- CIRAD, UMR IATE, 34398 Montpellier, France; (N.B.); (E.D.); (B.B.); (M.R.); (P.V.)
- IATE, Univ Montpellier, INRAE, Institut Agro, 34000 Montpellier, France; (V.M.); (V.L.-P.)
- Correspondence: (M.S.L.F.); (C.B.-L.); Tel.: +55-21-25427269 (M.S.L.F.); +33-(0)-4-67-61-49-77 (C.B.-L.)
| |
Collapse
|
108
|
Đorđević BS, Todorović ZB, Troter DZ, Stanojević LP, Stojanović GS, Đalović IG, Mitrović PM, Veljković VB. Extraction of phenolic compounds from black mustard (Brassica nigra L.) seed by deep eutectic solvents. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00772-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
109
|
An JY, Wang LT, Lv MJ, Wang JD, Cai ZH, Wang YQ, Zhang S, Yang Q, Fu YJ. An efficiency strategy for extraction and recovery of ellagic acid from waste chestnut shell and its biological activity evaluation. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105616] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
110
|
Patil SS, Pathak A, Rathod VK. Optimization and kinetic study of ultrasound assisted deep eutectic solvent based extraction: A greener route for extraction of curcuminoids from Curcuma longa. ULTRASONICS SONOCHEMISTRY 2021; 70:105267. [PMID: 32920301 PMCID: PMC7786552 DOI: 10.1016/j.ultsonch.2020.105267] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/08/2020] [Accepted: 07/18/2020] [Indexed: 05/21/2023]
Abstract
The use of deep eutectic solvents (DESs) as a new extraction medium is a step towards the development of green and sustainable technology. In the present study, nine DESs based on choline chloride acids, alcohols, and sugar were screened to study the extraction of curcuminoids from Curcuma longa L. Choline chloride and lactic acid DES at 1:1 M ratio gave the maximum extent of extraction. Further, DES based extraction was intensified using ultrasound. The impact of various process parameters such as % (v/v) water in DES, % (w/v) solid loading, particle size, ultrasound power intensity, and pulse mode operation of ultrasound was studied. The maximum curcuminoids yield of 77.13 mg/g was achieved using ultrasound assisted DES (UA-DES) based extraction in 20% water content DES at 5% solid loading and 0.355 mm particle size with 70.8 W/cm2 power intensity and 60% (6 sec ON and 4 sec OFF) duty cycle at 30 ± 2 °C in 20 min of irradiation time. Kinetics of UA-DES extraction was explained using Peleg's model and concluded that it is compatible with the experimental data. Additionally, anti-solvent (water) precipitation technique was applied, which resulted in 41.97% recovery of curcuminoids with 82.22% purity from UA-DES extract in 8 h of incubation at 0 °C. The comparison was made between conventional Soxhlet, batch, DES and UA-DES based processes on the basis of yield, time, solvent requirement, temperature, energy consumption, and process cost. The developed UA-DES based extraction can be an efficient, cost effective, and green alternative to conventional solvent extraction for curcuminoids.
Collapse
Affiliation(s)
- Sujata S Patil
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India
| | - Ajay Pathak
- Konark Herbals and Health Care, Lower Parel, Mumbai 400013, India
| | - Virendra K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga (E), Mumbai 400019, India.
| |
Collapse
|
111
|
Glycerol and Glycerol-Based Deep Eutectic Mixtures as Emerging Green Solvents for Polyphenol Extraction: The Evidence So Far. Molecules 2020; 25:molecules25245842. [PMID: 33322032 PMCID: PMC7763859 DOI: 10.3390/molecules25245842] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
The acknowledgement that uncontrolled and excessive use of fossil resources has become a prime concern with regard to environmental deterioration, has shifted the orientation of economies towards the implementation of sustainable routes of production, through the valorization of biomass. Green chemistry plays a key role in this regard, defining the framework of processes that encompass eco-friendly methodologies, which aim at the development of highly efficient production of numerous bioderived chemicals, with minimum environmental aggravation. One of the major concerns of the chemical industry in establishing sustainable routes of production, is the replacement of fossil-derived, volatile solvents, with bio-based benign ones, with low vapor pressure, recyclability, low or no toxicity, availability and low cost. Glycerol is a natural substance, inexpensive and non-toxic, and it is a principal by-product of biodiesel industry resulting from the transesterification process. The ever-growing market of biodiesel has created a significant surplus of glycerol production, resulting in a concomitant drop of its price. Thus, glycerol has become a highly available, low-cost liquid, and over the past decade its use as an alternative solvent has been gaining unprecedented attention. This review summarizes the utilization of glycerol and glycerol-based deep eutectic mixtures as emerging solvents with outstanding prospect in bioactive polyphenol extraction.
Collapse
|
112
|
Farooq MQ, Abbasi NM, Anderson JL. Deep eutectic solvents in separations: Methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A 2020; 1633:461613. [DOI: 10.1016/j.chroma.2020.461613] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
|
113
|
Highly efficient extraction of mulberry anthocyanins in deep eutectic solvents: Insights of degradation kinetics and stability evaluation. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
114
|
Naseem Z, Iqbal J, Zahid M, Shaheen A, Hussain S, Yaseen W. Use of hydrogen-bonded supramolecular eutectic solvents for eco-friendly extraction of bioactive molecules from Cymbopogon citratus using Box–Behnken design. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00744-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
115
|
Bajkacz S, Rusin K, Wolny A, Adamek J, Erfurt K, Chrobok A. Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach. Molecules 2020; 25:E4736. [PMID: 33076445 PMCID: PMC7587567 DOI: 10.3390/molecules25204736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022] Open
Abstract
A novel, efficient extraction procedure based on natural deep eutectic solvents (NADES) and ionic liquids (ILs) for determination of 20-hydroxyecdysone (20-E) in spinach has been developed. NADES, the first green extraction agent, with different hydrogen bond donors and acceptors are screened in order to determine extraction efficiencies. NADES consisting of lactic acid and levulinic acid at a molar ratio of 1:1 exhibits the highest yields. ILs, the second green extraction agent, with various cations and anions are also investigated, where [TEA] [OAc]·AcOH, χAcOH = 0.75 displays the highest recovery. Moreover, NADES-SLE and IL-SLE (SLE, solid-liquid extraction) parameters are investigated. Using the obtained optimized method, the recoveries of the target compound in spinach are above 93% and 88% for NADES-SLE and IL-SLE procedure, respectively. The methods display good linearity within the range of 0.5-30 μg/g and LODs of 0.17 µg/g. The proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV procedures can be applied to the analysis of 20-E in real spinach samples, making it a potentially promising technique for food matrix. The main advantage of this study is the superior efficiency of the new, green extraction solvents, which results in a significant reduction of extraction time and solvents as compared to those in the literature.
Collapse
Affiliation(s)
- Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland;
- Biotechnology Center of Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Kornelia Rusin
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Anna Wolny
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.); (K.E.); (A.C.)
| | - Jakub Adamek
- Biotechnology Center of Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
- Department of Organic and Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| | - Karol Erfurt
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.); (K.E.); (A.C.)
| | - Anna Chrobok
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (A.W.); (K.E.); (A.C.)
| |
Collapse
|
116
|
He T, Zhou T, Wan H, Han Q, Ma Y, Tan T, Wan Y. One-step deep eutectic solvent strategy for efficient analysis of aflatoxins in edible oils. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4840-4848. [PMID: 32483821 DOI: 10.1002/jsfa.10544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/11/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Aflatoxins, a kind of carcinogen, have attracted increasing attention due to their toxicity and harmfulness to human health. Traditional methods for aflatoxins analysis usually involve tedious extraction steps with a subsequent derivatization process. Herein, a simple and efficient liquid-phase microextraction method based on deep eutectic solvents (DESs) for direct analysis of aflatoxins was developed. RESULTS Adopting DESs as the extractant, we surprisingly found out that DESs could either achieve good extraction performance or play a similar role to the derivatization agent, achieving an enhancement of fluorescence intensity for direct analysis of aflatoxins by high-performance liquid chromatography combined with fluorescent detection. Under optimal conditions obtained by response surface methodology, the method provided satisfactory linear ranges (0.01-0.75 μg kg-1 for AFB1 and AFG1, 0.003-0.25 μg kg-1 for AFB2 and AFG2) with good determination coefficients (R2 > 0.9988), a low detection limit (0.0005-0.003 μg kg-1 ), and good recovery rates (72.05-113.54%). CONCLUSION These results highlighted superiorities of the one-step DES strategy for analysis of aflatoxins in edible oils, providing insights for future development of efficient methods in food analysis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tingting He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
| | - Tong Zhou
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
| | - Hao Wan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yaqian Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Ting Tan
- Center of Analysis and Testing, Nanchang University, Nanchang, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Center of Analysis and Testing, Nanchang University, Nanchang, China
| |
Collapse
|
117
|
Li X, Yuan T, Zhao T, Wu X, Yang Y. An Effective Acid-Base-Induced Liquid-Liquid Microextraction Based on Deep Eutectic Solvents for Determination of Testosterone and Methyltestosterone in Milk. J Chromatogr Sci 2020; 58:880-886. [PMID: 32798218 DOI: 10.1093/chromsci/bmaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 06/11/2020] [Accepted: 07/23/2020] [Indexed: 11/14/2022]
Abstract
An environmentally friendly method for the determination of testosterone and methyltestosterone by acid-base-induced deep eutectic solvents liquid-liquid microextraction (DES-ABLLME) combining with high-performance liquid chromatography was established. The deep eutectic solvent (DES) consisting of menthol:lauric acid:decanoic acid (3:1:1) can act as both hydrogen bond donor and hydrogen bond acceptor. In this approach, ammonia solution (NH3•H2O) is used as an emulsifier to react with DESs in the extraction process to generate salt and form milky white solution, achieving high extraction efficiency. Hydrochloric acid was used as a phase separator to change the emulsification state and promote the separation of extraction agent from water phase. A series of parameters were optimized including the volume of DES and the emulsifying agent, glucose concentration as well as hydrochloric acid volume. The method was linear in the range 0.5-100 μg mL-1 with a correlation coefficient (R) of 0.9999, and the limits of detection were 0.067 and 0.2 μg mL-1 for testosterone and methyltestosterone, respectively. This method was applied to analyze testosterone and methyltestosterone in milk samples, and the recoveries were between 89.2 and 108.2%.
Collapse
Affiliation(s)
- Xiao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.,Institute of Basic and Clinical Medicine, Provincial Key Laboratory for Virology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.,Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Tao Yuan
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Ting Zhao
- Institute of Basic and Clinical Medicine, Provincial Key Laboratory for Virology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China.,Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Xiaomei Wu
- Department of Gynaecology, The First People's Hospital of Yunnan Province, Kunming 650032, Yunnan Province, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
118
|
Gullón P, Gullón B, Astray G, Munekata PES, Pateiro M, Lorenzo JM. Value-Added Compound Recovery from Invasive Forest for Biofunctional Applications: Eucalyptus Species as a Case Study. Molecules 2020; 25:E4227. [PMID: 32942656 PMCID: PMC7570642 DOI: 10.3390/molecules25184227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
From ancient times, the medicinal properties of the different Eucalyptus species are well known. In fact, plants from this family have been used in folk medicine as antiseptics, and to treat different ailments of the upper respiratory tract such as sinus congestion, common cold, or influenza. Moreover, other biological activities were described for Eucalyptus species such as antioxidant and antimicrobial properties. In the last few decades, numerous investigations revealed that the compounds responsible for these properties are secondary metabolites that belonging to the group of phenolic compounds and are present in different parts of the plants such as leaves, bark, wood, fruits, and stumps. The increasing demand for natural compounds that can substitute synthetic antioxidants and the increase in resistance to traditional antibiotics have boosted the intense search for renewable natural sources containing substances with such bioactivities, as well as greener extraction technologies and avant-garde analytical methods for the identification of the target molecules. The literature data used in this paper were collected via Scopus (2001-2020) using the following search terms: Eucalyptus, extraction methods, phenolic compounds, and biological activities. This review collects the main studies related to the recovery of value-added compounds from different Eucalyptus species, as well as their biofunctional applications.
Collapse
Affiliation(s)
- Patricia Gullón
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain;
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
| | - Gonzalo Astray
- Department of Physical Chemistry, Faculty Science, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus Auga, University of Vigo, 32004 Ourense, Spain
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
119
|
Phytomass Valorization by Deep Eutectic Solvents—Achievements, Perspectives, and Limitations. CRYSTALS 2020. [DOI: 10.3390/cryst10090800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In recent years, a plethora of extraction processes have been performed by a novel class of green solvents known as deep eutectic solvents (DESs), possessing several environmental, operational, and economic advantages proven by experience when compared to organic solvents and ionic liquids. The present review provides an organized overview of the use of DESs as extraction agents for the recovery of valuable substances and compounds from the original plant biomass, waste from its processing, and waste from the production and consumption of plant-based food. For the sake of simplicity and speed of orientation, the data are, as far as possible, arranged in a table in alphabetical order of the extracted substances. However, in some cases, the isolation of several substances is described in one paper and they are, therefore, listed together. The table further contains a description of the extracted phytomass, DES composition, extraction conditions, and literature sources. With regard to extracted value-added substances, this review addresses their pharmacological, therapeutic, and nutritional aspects. The review also includes an evaluation of the possibilities and limitations of using DESs to obtain value-added substances from phytomass.
Collapse
|
120
|
Saha SK, Chakraborty R. Effect of deep eutectic solvent’s characteristics on extraction and bioactivity of polyphenols from Sapodilla pulp. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
121
|
Wu L, Li L, Chen S, Wang L, Lin X. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117014] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
122
|
Secondary Bioactive Metabolites from Plant-Derived Food Byproducts through Ecopharmacognostic Approaches: A Bound Phenolic Case Study. PLANTS 2020; 9:plants9091060. [PMID: 32825034 PMCID: PMC7569828 DOI: 10.3390/plants9091060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022]
Abstract
The climate emergency and the risks to biodiversity that the planet is facing nowadays, have made the management of food resources increasingly complex but potentially interesting. According to FAO, one-third of the edible parts of food produced throughout the whole food supply chain gets lost or wasted globally every year. At the same time, demographic growth makes it necessary to change course toward sustainable economic development in order to satisfy market demands. The European Union supported the idea of a Circular Economy from 2015 and arranged annual Action Plans toward a greener, climate-neutral economy. Following the biorefinery concept, food waste becomes byproducts that can be recovered and exploited as high added-value materials for industrial applications. The use of sustainable extraction processes to manage food byproducts is a task that research has to support through the development of low environmental impact strategies. This review, therefore, aims to take stock of the possibilities of extracting molecules from food waste biomass following ecopharmacognostic approaches inspired by green chemistry guidelines. In particular, the use of innovative hybrid techniques to maximize yields and minimize the environmental impact of processes is reviewed, with a focus on bound phenolic extractions.
Collapse
|
123
|
Santana AP, Andrade DF, Guimarães TG, Amaral CD, Oliveira A, Gonzalez MH. Synthesis of natural deep eutectic solvents using a mixture design for extraction of animal and plant samples prior to ICP-MS analysis. Talanta 2020; 216:120956. [DOI: 10.1016/j.talanta.2020.120956] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
|
124
|
Wang L, Wang L, Li Z, Gao Y, Cui SW, Wang T, Qiu J. Diverse effects of rutin and quercetin on the pasting, rheological and structural properties of Tartary buckwheat starch. Food Chem 2020; 335:127556. [PMID: 32738529 DOI: 10.1016/j.foodchem.2020.127556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
We investigated the interactions of two main phenolics, rutin and quercetin, with starch, the primary component of Tartary buckwheat. The addition of rutin or quercetin significantly affected the structural and physicochemical properties of the starch, and rutin showed a stronger effect than quercetin, particularly at a dose of 6% (w/w). Rutin better enhanced the aggregation of starch pastes and gel formation than quercetin according to our pasting, rheological and thermal property analyses. A scanning electron microscopy analysis of its morphology showed that rutin was more easily dispersed in starchy matrix than quercetin and acted as rigid fillers for gels. The nuclear magnetic resonance results showed different binding sites due to the steric hindrance of the rutin disaccharide groups (rutinose). These findings provide fundamental information about applying rutin during the whole grain processing of Tartary buckwheat.
Collapse
Affiliation(s)
- Libo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Lijuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Zaigui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China.
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, P. O. Box 40, No. 17 Qinghuadonglu, Haidian, Beijing 100083, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Tongtong Wang
- Institute of Quality Standard and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Food Safety and Quality, Ministry of Agriculture and Rural Affaris, Beijing 100081, China
| | - Ju Qiu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affaris, Haidian, Beijing 100081, China.
| |
Collapse
|
125
|
Batch Stirred-Tank Green Extraction of Salvia fruticosa Mill. Polyphenols Using Newly Designed Citrate-Based Deep Eutectic Solvents and Ultrasonication Pretreatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A series of citrate salts were tested as hydrogen bond acceptors to synthesize deep eutectic solvents (DES) based on lactic acid and glycerol, used as hydrogen bond donors. The DES produced were then screened to identify the highest performing system for the effective extraction of polyphenolic phytochemicals from the medicinal plant Salvia fruticosa Mill. (Greek sage). The most efficacious DES was the one composed of lactic acid and sodium citrate dibasic, at a molar ratio of 15:1 (LA-SCDB15). Furthermore, for the first time there has been evidence concerning DES pH and extraction efficiency. Using this solvent, a batch, stirred-tank extraction process was developed, by employing ultrasonication pretreatment and response surface methodology. The optimal settings determined were stirring speed 900 rpm, proportion of DES/water 77% (w/v), and ultrasonication pretreatment time 15 min. By adjusting these optimal settings, the predicted maximum total polyphenol yield was calculated to be 79.93 ± 1.92 mg gallic acid equivalents g−1 dry mass. The examination of temperature effects demonstrated that the batch, stirred-tank extraction stage was very energy-efficient, with a barrier of 7.64 kJ mol−1. Comparison of the extraction of Salvia fruticosa polyphenols with other green processes previously developed, illustrated the high extraction capacity of LA-SCDB15. The major polyphenols identified in the extracts produced under optimized settings were chlorogenic acid, luteolin 7-O-glucuronide and rosmarinic acid.
Collapse
|
126
|
Wang Y, Hu Y, Wang H, Tong M, Gong Y. Green and enhanced extraction of coumarins from Cortex Fraxini by ultrasound-assisted deep eutectic solvent extraction. J Sep Sci 2020; 43:3441-3448. [PMID: 32579249 DOI: 10.1002/jssc.202000334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/02/2020] [Accepted: 06/21/2020] [Indexed: 01/16/2023]
Abstract
Green and enhanced extraction of bioactive ingredients from medicinal plants has become a hot research field, and deep eutectic solvents have been considered as a novel kind of sustainable solvents in the extraction process. In this study, hydrogen bond acceptor (choline chloride, etc.) and hydrogen bond donor (l-malic acid, etc.) were used to prepare different kinds of deep eutectic solvents to extract coumarins from Cortex Fraxini. The extraction conditions, including the composition and moisture content of deep eutectic solvents, extraction time, and liquid-solid ratio, were systematically optimized basing on the extraction yield of coumarins. To further investigate the extraction mechanism, Fourier transform infrared spectroscopy was performed, and the microstructures of Cortex Fraxini powders were observed before and after extraction using scanning electron microscope. Results showed that the novel ultrasound-assisted extraction with conditions of deep eutectic solvent containing betaine/glycerin (1:3), aqueous solution (20%), solid-liquid ratio (15 mg/mL), and extraction time (30 min) exhibited the best extraction yields for the four target coumarins and much better extraction efficiency than with conventional solvent extractions. This suggests that the new ultrasound-assisted deep eutectic solvent extraction could be used as a green and high-efficient approach for extraction of the main coumarins from Cortex Fraxini.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Youhui Hu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hui Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Minghui Tong
- Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Yinhan Gong
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.,Key Laboratory of New Drug Research and Clinical Pharmacy of Jiangsu Province, School of Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| |
Collapse
|
127
|
Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
128
|
Naseem Z, Zahid M, Hanif MA, Shahid M. Green extraction of ethnomedicinal compounds from Cymbopogon citratus Stapf using hydrogen-bonded supramolecular network. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1781894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zubera Naseem
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
129
|
Yue Y, Huang Q, Fu Y, Chang J. A quick selection of natural deep eutectic solvents for the extraction of chlorogenic acid from herba artemisiae scopariae. RSC Adv 2020; 10:23403-23409. [PMID: 35520333 PMCID: PMC9054731 DOI: 10.1039/d0ra03786a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 12/03/2022] Open
Abstract
Natural deep eutectic solvents (NADES) were successfully employed as green alternatives to the traditional ones for the extraction of chlorogenic acid from herba artemisiae scopariae. Significantly, the method of solvent effect theory chemical calculation assistance to guide the NADES selection for the extraction was proposed. Proline-malic acid was successfully screened as the suitable solvent using the calculation results and it gave the best chlorogenic acid yield of 3.77 mg g-1 among the NADES tested with a solvation free energy of -5.86 × 106 kJ mol-1 from the calculation. The calculation-assisted method saves costs and material resources for the applications of the green alternative NADES and provides a research route that can be used for the extraction of target active molecules in the traditional Chinese medicine and food industry.
Collapse
Affiliation(s)
- Yingying Yue
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Qingwen Huang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Yan Fu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Jie Chang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| |
Collapse
|
130
|
Liquid chromatography-mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations. Food Chem 2020; 331:127354. [PMID: 32569973 DOI: 10.1016/j.foodchem.2020.127354] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/19/2020] [Accepted: 06/14/2020] [Indexed: 01/15/2023]
Abstract
Polyphenols (flavonoids and anthraquinones) are one of the most important phytochemicals in Fagopyrum tataricum L. Gaertn. (tartary buckwheat). However, the relationship between the polyphenols of tartary buckwheat seeds and their morphological variations is unclear. We developed a liquid chromatography-mass spectrometry-based targeted metabolomics method to study the chemical profiles of 60 flavonoids and 11 anthraquinones in 40 seed cultivars (groats and hulls). Both flavonoids and anthraquinones were related to variations in seed color; the fold change from yellowish-brown to black seeds was 1.24-1.55 in groats and 0.26-0.76 in hulls. Only flavonoids contributed to significant differences in seed shape; the fold change from long to short seeds was 1.29-1.78 in groats and 1.39-1.44 in hulls. Some differential metabolites were identified at higher concentrations in hulls than in groats. This study provides new insights into differences in polyphenols among tartary buckwheat seeds with different color and shape.
Collapse
|
131
|
Investigation of Total Phenolic Content and Antioxidant Activities of Spruce Bark Extracts Isolated by Deep Eutectic Solvents. CRYSTALS 2020. [DOI: 10.3390/cryst10050402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Extracts from spruce bark obtained using different deep eutectic solvents were screened for their total phenolic content (TPC) and antioxidant activities. Water containing choline chloride-based deep eutectic solvents (DESs) with lactic acid and 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol, with different molar ratios, were used as extractants. Basic characteristics of the DESs (density, viscosity, conductivity, and refractive index) were determined. All the DESs used behave as Newtonian liquids. The extractions were performed for 2 h at 60 °C under continuous stirring. TPC was determined spectrophotometrically, using the Folin-Ciocalteu reagent, and expressed as gallic acid equivalent (GAE). The antioxidant activity was determined spectrophotometrically by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The TPC varied from 233.6 to 596.2 mg GAE/100 g dry bark; radical scavenging activity (RSA) ranged between 81.4% and 95%. This study demonstrated that deep eutectic solvents are suitable solvents for extracting phenolic compounds from spruce bark.
Collapse
|
132
|
Hsieh YH, Li Y, Pan Z, Chen Z, Lu J, Yuan J, Zhu Z, Zhang J. Ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger. ULTRASONICS SONOCHEMISTRY 2020; 63:104915. [PMID: 31945581 DOI: 10.1016/j.ultsonch.2019.104915] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 05/22/2023]
Abstract
An ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents (DESs) is described. Several DESs were synthesized simultaneously under the same conditions. The prepared DESs were used for the extraction of gingerols from ginger powder via ultrasonication-assisted extraction. Notably, some of the prepared DESs exhibited superior extraction performance than those in traditional organic solvents. The viscosity of the DESs, which was suggested to be typically lower than 100 mPa*s had a critical effect on extraction performance. However, the higher gingerol contents in the extracts did not translate to higher active antioxidant abilities. The extraction temperature was found to be a key determinant of the antioxidant capability of the extracted gingerols while the use of higher temperatures (>50 °C) induced degradation and loss of phenolic compounds during extraction. Response surface methodology was applied for determining the optimal extraction conditions to achieve maximum antioxidant capacity with suitable gingerol content. All compounds used for the preparation of the DESs in this study have been widely employed in cosmetic and pharmaceutical fields. Therefore, the extracts in these DES solutions can be considered for direct application development without further product isolation.
Collapse
Affiliation(s)
- Yun-Hao Hsieh
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Yuanbin Li
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Zuchen Pan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Biomaterials Research Center, Zhuhai, China
| | - Jiahai Lu
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Biomaterials Research Center, Zhuhai, China
| | - Jumao Yuan
- Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Biomaterials Research Center, Zhuhai, China
| | - Zhenye Zhu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China; Zhuhai Institute of Advanced Technology Chinese Academy of Sciences, Biomaterials Research Center, Zhuhai, China.
| |
Collapse
|
133
|
Wang Y, Peng B, Zhao J, Wang M, Zhao L. Efficient extraction and determination of prenylflavonol glycosides in Epimedium pubescens Maxim. using deep eutectic solvents. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:375-383. [PMID: 31773856 DOI: 10.1002/pca.2904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 09/06/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Epimedium herb, Yinyanghuo in Chinese, is a famous Chinese herbal medicine. In this study, an efficient extraction method was developed for the extraction of major bioactive constituent epimedin A, epimedin B, epimedin C and icariin from E. pubescens Maxim. using deep eutectic solvents (DESs). METHODOLOGY A series of choline chloride-based DESs were synthesised for the extraction of four target compounds. DES composed of lactic acid and choline chloride with the ratio of 2:1 was selected as the most promising. Three vital factors affecting the extraction yields including water content, volume of DES aqueous solution and extraction time were optimised systematically by Box-Behnken experimental design in combination with response surface methodology. A high-performance liquid chromatography ultraviolet (HPLC-UV) method was developed for the sensitive and accurate quantification. RESULTS The optimal extraction conditions were obtained as follows: water content of 17.5% (v/v), volume of DES aqueous solution 3.14 ml, and extraction time of 21 min. Under the optimal extraction conditions, the developed DES method could supply almost the same extraction yield as 50% ethanol, which were 98%, 99%, 97%, 96% for epimedin A, epimedin B, epimedin C and icariin, respectively. CONCLUSION The present study exhibited high efficiency in extraction of prenylflavonol glycosides in E. pubescens Maxim. Thus, DESs could be used as an alternative for efficient extraction and quantification of biologically active components from natural medical plants.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Bin Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Jing Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Mengting Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P. R. China
| |
Collapse
|
134
|
Shikov AN, Kosman VM, Flissyuk EV, Smekhova IE, Elameen A, Pozharitskaya ON. Natural Deep Eutectic Solvents for the Extraction of Phenyletanes and Phenylpropanoids of Rhodiola rosea L. Molecules 2020; 25:E1826. [PMID: 32316279 PMCID: PMC7221623 DOI: 10.3390/molecules25081826] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The extraction of Rhodiola rosea rhizomes using natural deep eutectic solvent (NADES) consisting of lactic acid, glucose, fructose, and water was investigated. A two-level Plackett-Burman design with five variables, followed by the steepest ascent method, was undertaken to determine the optimal extraction conditions. Among the five parameters tested, particle size, extraction modulus, and water content were found to have the highest impact on the extrability of phenyletanes and phenylpropanoids. The concentration of active compounds was analyzed by HPLC. The predicted results showed that the extraction yield of the total phenyletanes and phenylpropanoids (25.62 mg/g) could be obtained under the following conditions: extraction time of 154 min, extraction temperature of 22 °C, extraction modulus of 40, molar water content of 5:1:11 (L-lactic acid:fructose:water, mol/mol), and a particle size of rhizomes of 0.5-1 mm. These predicted values were further verified by validation experiments in predicted conditions. The experimental yields of salidroside, tyrosol, rosavin, rosin, cinnamyl alcohol and total markers (sum of phenyletanes and phenylpropanoids in mg/g) were 11.90 ± 0.02, 0.36 ± 0.02, 12.23 ± 0.21, 1.41 ± 0.01, 0.20 ± 0.01, and 26.10 ± 0.27 mg/g, respectively, which corresponded well with the predicted values from the models.
Collapse
Affiliation(s)
- Alexander N. Shikov
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Vera M. Kosman
- St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, Kuzmolovo P 245, 188663 Saint-Petersburg, Russia;
| | - Elena V. Flissyuk
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | - Irina E. Smekhova
- St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; (E.V.F.); (I.E.S.)
| | | | - Olga N. Pozharitskaya
- Murmansk Marine Biological Institute of the Kola Science Center of the Russian Academy of Sciences (MMBI KSC RAS), Vladimirskaya, 17, 183010 Murmansk, Russia;
| |
Collapse
|
135
|
|
136
|
Altunay N, Elik A, Gürkan R. Preparation and application of alcohol based deep eutectic solvents for extraction of curcumin in food samples prior to its spectrophotometric determination. Food Chem 2020; 310:125933. [DOI: 10.1016/j.foodchem.2019.125933] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
|
137
|
|
138
|
Yang D, Wang Y, Li H, Yang Y. Acid-base-governed deep eutectic solvent-based microextraction combined with magnetic solid-phase extraction for determination of phenolic compounds. Mikrochim Acta 2020; 187:124. [DOI: 10.1007/s00604-020-4109-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 01/29/2023]
|
139
|
Gençdağ E, Görgüç A, Yılmaz FM. Recent Advances in the Recovery Techniques of Plant-Based Proteins from Agro-Industrial By-Products. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2019.1709203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
140
|
Green and Efficient Ultrasonic-Assisted Extraction of Bioactive Components from Salvia miltiorrhiza by Natural Deep Eutectic Solvents. Molecules 2019; 25:molecules25010140. [PMID: 31905777 PMCID: PMC6983008 DOI: 10.3390/molecules25010140] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/19/2023] Open
Abstract
Natural deep eutectic solvents (NaDESs) are recently developed green solvent alternatives to conventional fossil solvents. The present work systematically screened 22 different NaDESs for the ultrasonic-assisted extraction of bioactive components from Salvia miltiorrhiza (SM), a widely used traditional Chinese medical plant. The suitable solvent and extraction condition were optimized in a two-round screening. In comparison with fossil solvents, NaDESs, especially L-proline-lactic acid (L-Pro-Lac) showed significant advantages in the extraction of salvianolic acid B (SAB), tanshinone IIA (TIIA) and cryptotanshinone (CYT). The optimized yields of the three targeting compounds were 42.05, 1.485 and 0.839 mg/g, respectively. The present method was also applied to the pretreatment of SM samples from different geographic origins. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities of NaDES extracts were determined in the study to prove the feasibility of NaDES in bioactive component extraction. The application of NaDESs in the extraction of both hydrophilic and hydrophobic small molecules from SM is proved to be a green and efficient method for pretreatment of herbal materials.
Collapse
|
141
|
Zhao R, Pei D, Yu P, Wei J, Wang N, Di D, Liu Y. Aqueous two‐phase systems based on deep eutectic solvents and their application in green separation processes. J Sep Sci 2019; 43:348-359. [DOI: 10.1002/jssc.201900991] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 11/03/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Rong‐tao Zhao
- Institute of Nutrition and Food Hygiene, School of Public HealthLanzhou University Lanzhou P. R. China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| | - Dong Pei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| | - Pei‐liang Yu
- University of Chinese Academy of Sciences Nanning P. R. China
| | - Jan‐teng Wei
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| | - Ning‐li Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| | - Duo‐Long Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| | - Ye‐wei Liu
- Institute of Nutrition and Food Hygiene, School of Public HealthLanzhou University Lanzhou P. R. China
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu ProvinceLanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou P. R. China
- Center of Resource Chemical & New Material Qingdao P. R. China
| |
Collapse
|
142
|
Functional deep eutectic solvent-based chaotic extraction of phycobiliprotein using microwave-assisted liquid-liquid micro-extraction from Spirulina (Arthrospira platensis) and its biological activity determination. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101709] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
143
|
Green Solvents for the Extraction of High Added-Value Compounds from Agri-food Waste. FOOD ENGINEERING REVIEWS 2019. [DOI: 10.1007/s12393-019-09206-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
144
|
Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants (Basel) 2019; 8:antiox8120586. [PMID: 31775333 PMCID: PMC6943498 DOI: 10.3390/antiox8120586] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023] Open
Abstract
The current investigation was undertaken to examine saffron processing waste (SPW) as a bioresource, which could be valorized to produce extracts rich in antioxidant polyphenols, using a green, natural deep eutectic solvent (DES). Initially, there was an appraisal of the molar ratio of hydrogen bond donor/hydrogen bond acceptor in order to come up with the most efficient DES composed of L-lactic acid/glycine (5:1). The following step was the optimization of the extraction process using response surface methodology. The optimal conditions thus determined were a DES concentration of 55% (w/v), a liquid-to-solid ratio of 60 mL g−1, and a stirring speed of 800 rounds per minute. Under these conditions, the extraction yield in total polyphenols achieved was 132.43 ± 10.63 mg gallic acid equivalents per g of dry mass. The temperature assay performed within a range of 23 to 80 °C, suggested that extracts displayed maximum yield and antioxidant activity at 50–60 °C. Liquid chromatography-mass spectrometry analysis of the SPW extract obtained under optimal conditions showed that the predominant flavonol was kaempferol 3-O-sophoroside and the major anthocyanin delphinidin 3,5-di-O-glucoside. The results indicated that SPW extraction with the DES used is a green and efficient methodology and may afford extracts rich flavonols and anthocyanins, which are considered to be powerful antioxidants.
Collapse
|
145
|
Kalhor P, Ghandi K. Deep Eutectic Solvents for Pretreatment, Extraction, and Catalysis of Biomass and Food Waste. Molecules 2019; 24:E4012. [PMID: 31698717 PMCID: PMC6891572 DOI: 10.3390/molecules24224012] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Valorization of lignocellulosic biomass and food residues to obtain valuable chemicals is essential to the establishment of a sustainable and biobased economy in the modern world. The latest and greenest generation of ionic liquids (ILs) are deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs); these have shown great promise for various applications and have attracted considerable attention from researchers who seek versatile solvents with pretreatment, extraction, and catalysis capabilities in biomass- and biowaste-to-bioenergy conversion processes. The present work aimed to review the use of DESs and NADESs in the valorization of biomass and biowaste as pretreatment or extraction solvents or catalysis agents.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China;
| | - Khashayar Ghandi
- Department of Chemistry, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
146
|
Balaraman HB, Rathnasamy SK. Selective purification of protease from ginger and sodom apple by ultrasound assisted liquid-liquid microextraction using natural deep eutectic solvent. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
147
|
El Kantar S, Rajha HN, Boussetta N, Vorobiev E, Maroun RG, Louka N. Green extraction of polyphenols from grapefruit peels using high voltage electrical discharges, deep eutectic solvents and aqueous glycerol. Food Chem 2019; 295:165-171. [DOI: 10.1016/j.foodchem.2019.05.111] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
|
148
|
Li H, Zhao C, Tian H, Yang Y, Li W. Liquid–Liquid Microextraction Based on Acid–Base-Induced Deep Eutectic Solvents for Determination of β-Carotene and Lycopene in Fruit Juices. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01639-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
149
|
Mansur AR, Song NE, Jang HW, Lim TG, Yoo M, Nam TG. Optimizing the ultrasound-assisted deep eutectic solvent extraction of flavonoids in common buckwheat sprouts. Food Chem 2019; 293:438-445. [DOI: 10.1016/j.foodchem.2019.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
|
150
|
Yang D, Wang Y, Peng J, Xun C, Yang Y. A green deep eutectic solvents microextraction coupled with acid-base induction for extraction of trace phenolic compounds in large volume water samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:130-136. [PMID: 31002967 DOI: 10.1016/j.ecoenv.2019.04.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
A simple, effective and convenient method for determination of phenolic compounds by acid-base induced deep eutectic solvents (DESs) microextraction was developed. The binary and ternary DESs were prepared by a range of fatty acids (C8-C12), which can act as hydrogen bond donors and hydrogen bond acceptors simultaneously. The gas-assisted mixing customization provides excellent mixing performance and concentration efficiency through the bubble adsorption mechanism for the handling of large-volume aqueous sample. In extraction process, NH3·H2O can act as the emulsifier agent and reacted with DESs to form salts with a cloudy solution, which can obviously improve the extraction efficiency. HCl can act as the phase separation agent, and there is no need to centrifuge, which increases the efficiency of analysis procedure. The factors affected on extraction efficiency were carefully optimized. At optimum conditions and molar ratio of C8:C9:C12 (3:2:1), the limit of detections (LODs), the preconcentration factor, the repeatability (RSDs%) were in the range of 0.22-0.53 μg L-1, 235-244, and 2.6-6.7%, respectively. Finally, the proposed method was applied to analyze four phenolic compounds in real water samples and the recoveries were between 87.4% and 106.6%.
Collapse
Affiliation(s)
- Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Yunnan Province, 650500, China
| | - Yingdong Wang
- College of Basic Medical Sciences, Shenyang Medical College, Liaoning Province, 110000, China
| | - Jianbo Peng
- Yunnan Salt Industry Co., Ltd., Yunnan Province, 650200, China
| | - Chun Xun
- Yunnan Salt Industry Co., Ltd., Yunnan Province, 650200, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province, 650500, China.
| |
Collapse
|