101
|
Wang L, Wang X, Guo Z, Xia Y, Geng M, Liu D, Zhang Z, Yang Y. Nano-Microemulsions of CaCO3-Encapsulated Curcumin Ester Derivatives With High Antioxidant and Antimicrobial Activities and pH Sensitivity. Front Vet Sci 2022; 9:857064. [PMID: 36032301 PMCID: PMC9403415 DOI: 10.3389/fvets.2022.857064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we synthesized nano-microemulsions of calcium carbonate (CaCO3)-encapsulated curcumin (Cur)-Ferulic acid (FA) ester derivatives of diverse mass ratios by using the solution casting approach. The structures, antioxidant and antimicrobial activities, physical properties, and potential of hydrogen (pH) sensitivity of these products were examined. Compared with microparticles of CaCO3, those of CaCO3@Cur-FA exhibited excellent antimicrobial and antioxidant properties. Response to pH was indicated through the release of Cur-FA from CaCO3@Cur-FA in solutions having different pH values. The results demonstrated that Cur-FA was released more quickly from CaCO3@Cur-FA at pH 5.5 than at pH 7.4. CaCO3@Cur-FA demonstrated good antioxidant capacities through its ability to scavenge 2,2′-amino-di(2-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS+) and 1,1-diphenyl-2-picrylhydrazyl (DPPH). These activities were three-fold more than those observed in CaCO3 microparticle control groups; additionally, the antimicrobial activity against Aspergillus niger and Escherichia coli increased by 40.5 and 54.6%, respectively. Overall, the microparticles of CaCO3@Cur-FA outperformed Cur-FA in terms of antimicrobial properties by inhibiting the growth of certain zoonotic pathogens.
Collapse
Affiliation(s)
- Lian Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xuefei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhiwei Guo
- Inner Mongolia Autonomous Region Comprehensive Centre for Disease Control and Prevention, Hohhot, China
| | - Yajuan Xia
- Inner Mongolia Autonomous Region Comprehensive Centre for Disease Control and Prevention, Hohhot, China
| | - Minjie Geng
- Baotou City Primary Health Service Guidance Centre, Baotou, China
| | - Dan Liu
- Bayannaoer City Centre for Disease Control and Prevention, Bayannaoer, China
| | - Zhiqiang Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
- Zhiqiang Zhang
| | - Ying Yang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- *Correspondence: Ying Yang
| |
Collapse
|
102
|
Chen J, Luo L, Cen C, Liu Y, Li H, Wang Y. The nano antibacterial composite film carboxymethyl chitosan/gelatin/nano ZnO improves the mechanical strength of food packaging. Int J Biol Macromol 2022; 220:462-471. [PMID: 35952819 DOI: 10.1016/j.ijbiomac.2022.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/24/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022]
Abstract
The carboxymethyl chitosan (CMCS)/fish skin gelatin (Gel) based novel nanocomposite film was developed with nano ZnO for potential food packaging applications. The SEM and FT-IR results indicated that the nano ZnO was success composited with CMCS/Gel film. The X-ray diffraction result revealed that the total crystallinity of the CMCS/Gel/nano ZnO achieved 94.92 %, improving the crystallinity of the original substrate. Compared with CMCS/nano ZnO and Gel/nano ZnO, the water solubility of CMCS/Gel/nano ZnO decreased to 23 %. Moreover, its contact angle reached 91°, representing that the composite film showed better solvent resistance and can be widely used in food packaging, especially in foods with high water content. After nano-ZnO was compounded with CMCS/Gel film, the physical properties were further improved. Furthermore, CMCS/Gel/nano ZnO has higher elasticity and ductility than CMCS/nano ZnO and Gel/nano ZnO. For food packages, CMCS/Gel films incorporated with nano ZnO depicted strong against Escherichia coli (99.20 %) and Staphylococcus aureus (84.70 %) for food packages. The CMCS/Gel film with the addition of ZnO was optimal for producing nanocomposite films with higher water-insolubility, elasticity and ductility, and higher antibacterial properties.
Collapse
Affiliation(s)
- Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Lichun Luo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Congnan Cen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanan Liu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
103
|
Gelatin/Cellulose Nanofiber-Based Functional Nanocomposite Film Incorporated with Zinc Oxide Nanoparticles. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel bio-based nanocomposite film was developed using the combination of gelatine and cellulose nanofiber (CNF) as a polymer matrix and zinc oxide nanoparticles (ZnONP) as nanofillers. The nanocomposite film solution was developed using simple solution mixing and film prepared by the following casting methods. The fabricated nanocomposite film containing 2 wt% of ZnONP shows excellent UV-light barrier properties (>95%) and high transparency (>75%). The presence of ZnONP also improves the mechanical strength of the film by ~30% compared to pristine gelatin/CNF-based film, while the flexibility and rigidity of the nanocomposite film were also slightly improved. The addition of ZnONP slightly increased (~10%) the hydrophobicity while the water vapor barrier properties remain unaltered. The hydrodynamic properties of the bio-based film were also changed in the presence of ZnONP, moisture content and the swelling ratio slightly enhanced, whereas water solubility was decreased. Moreover, the integration of ZnONP introduced antibacterial activity toward foodborne pathogens. The fabricated bio-based nanocomposite film could be useful in active packaging applications.
Collapse
|
104
|
Alterary SS, El-Tohamy MF, Mostafa GAE, Alrabiah H. Atropine-Phosphotungestate Polymeric-Based Metal Oxide Nanoparticles for Potentiometric Detection in Pharmaceutical Dosage Forms. NANOMATERIALS 2022; 12:nano12132313. [PMID: 35808148 PMCID: PMC9268402 DOI: 10.3390/nano12132313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023]
Abstract
The new research presents highly conductive polymeric membranes with a large surface area to volume ratio of metal oxide nanoparticles that were used to determine atropine sulfate (AT) in commercial dosage forms. In sensing and biosensing applications, the nanomaterials zinc oxide (ZnONPs) and magnesium oxide (MgONPs) were employed as boosting potential electroactive materials. The electroactive atropine phosphotungstate (AT-PT) was created by combining atropine sulfate and phosphotungstic acid (PTA) and mixing it with polymeric polyvinyl chloride (PVC) with the plasticizer o-nitrophenyl octyl ether (o-NPOE). The modified sensors AT-PT-ZnONPs or AT-PT-MgONPs showed excellent selectivity and sensitivity for the measurements of atropine with a linear concentration range of 6.0 × 10−8 − 1.0 × 10−3 and 8.0 × 10−8 − 1.0 × 10−3 mol L−1 with regression equations of E(mV) = (56 ± 0.5) log [AT] − 294 and E(mV) = (54 ± 0.5) log [AT] − 422 for AT-PT-NPs or AT-PT-MgONPs sensors, respectively. The AT-PT coated wire sensor, on the other hand, showed a Nernstian response at 4.0 × 10−6 − 1.0 × 10−3 mol L−1 and a regression equation E(mV) = (52.1 ± 0.2) log [AT] + 198. The methodology-recommended guidelines were used to validate the suggested modified potentiometric systems against various criteria.
Collapse
Affiliation(s)
- Seham S. Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.S.A.); (M.F.E.-T.)
| | - Maha F. El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia; (S.S.A.); (M.F.E.-T.)
| | - Gamal A. E. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (G.A.E.M.); (H.A.)
| | - Haitham Alrabiah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (G.A.E.M.); (H.A.)
| |
Collapse
|
105
|
Zhang L, Wang W, Ni Y, Yang C, Jin X, Wang Y, yang Y, Jin Y, Sun J, Wang J. ZnO/C-mediated k-carrageenan based pseudo-pasteurization films for kumquat preservation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
106
|
Naumoska K, Jug U, Kõrge K, Oberlintner A, Golob M, Novak U, Vovk I, Likozar B. Antioxidant and Antimicrobial Biofoil Based on Chitosan and Japanese Knotweed ( Fallopia japonica, Houtt.) Rhizome Bark Extract. Antioxidants (Basel) 2022; 11:antiox11061200. [PMID: 35740097 PMCID: PMC9219676 DOI: 10.3390/antiox11061200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
A 70% ethanol(aq) extract of the rhizome bark of the invasive alien plant species Japanese knotweed (JKRB) with potent (in the range of vitamin C) and stable antioxidant activity was incorporated in 1% w/v into a chitosan biofoil, which was then characterized on a lab-scale. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay confirmed the antioxidant activity of the JKRB biofoil upon contact with the food simulants A, B, C, and D1 (measured half-maximal inhibitory concentrations—IC50) and supported the Folin–Ciocalteu assay result. The migration of the antioxidant marker, (−)-epicatechin, into all food simulants (A, B, C, D1, D2, and E) was quantified using liquid chromatography hyphenated to mass spectrometry (LC-MS). Calculations showed that 1 cm2 of JKRB biofoil provided antioxidant activity to ~0.5 L of liquid food upon 1 h of contact. The JKRB biofoil demonstrated antimicrobial activity against Gram-positive bacteria. The incorporation of JKRB into the chitosan biofoil resulted in improved tensile strength from 0.75 MPa to 1.81 MPa, while elongation decreased to 28%. JKRB biofoil’s lower moisture content compared to chitosan biofoil was attributed to the formation of hydrogen bonds between chitosan biofoil and JKRB compounds, further confirmed with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The JKRB biofoil completely degraded in compost in 11 days. The future upscaled production of JKRB biofoil from biowastes for active packaging may support the fights against plastic waste, food waste, and the invasiveness of Japanese knotweed, while greatly contributing to the so-called ‘zero-waste’ strategy and the reduction in greenhouse gas emissions.
Collapse
Affiliation(s)
- Katerina Naumoska
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (U.J.); Tel.: +386-1-4760 521 (K.N. & U.J.)
| | - Urška Jug
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
- Correspondence: (K.N.); (U.J.); Tel.: +386-1-4760 521 (K.N. & U.J.)
| | - Kristi Kõrge
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Ana Oberlintner
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva ulica 60, 1000 Ljubljana, Slovenia;
| | - Uroš Novak
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| | - Irena Vovk
- Laboratory for Food Chemistry, Department of Analytical Chemistry, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia;
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; (K.K.); (A.O.); (U.N.); (B.L.)
| |
Collapse
|
107
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
108
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
109
|
Terra ALM, Contessa CR, Rasia TA, Vaz BDS, Moraes CC, de Medeiros Burkert JF, Costa JAV, de Morais MG, Moreira JB. Nanotechnology Perspectives for Bacteriocin Applications in Active Food Packaging. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2022.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ana Luiza Machado Terra
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Camila Ramão Contessa
- Laboratory Bioprocess Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, RS Brazil
| | - Thays Arpino Rasia
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Bruna da Silva Vaz
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Caroline Costa Moraes
- Laboratory of Microbiology and Food Toxicology, Federal University of Pampa, Bagé, Brazil
| | | | - Jorge Alberto Vieira Costa
- Laboratory of Biochemical Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Michele Greque de Morais
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Botelho Moreira
- Laboratory of Microbiology and Biochemistry, College of Chemistry and Food Engineering, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
110
|
Xu H, Cheng H, McClements DJ, Chen L, Long J, Jin Z. Enhancing the physicochemical properties and functional performance of starch-based films using inorganic carbon materials: A review. Carbohydr Polym 2022; 295:119743. [DOI: 10.1016/j.carbpol.2022.119743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
|
111
|
Correlating in silico elucidation of interactions between hydroxybenzoic acids and casein with in vitro release kinetics for designing food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
112
|
Suvarna V, Nair A, Mallya R, Khan T, Omri A. Antimicrobial Nanomaterials for Food Packaging. Antibiotics (Basel) 2022; 11:729. [PMID: 35740136 PMCID: PMC9219644 DOI: 10.3390/antibiotics11060729] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Food packaging plays a key role in offering safe and quality food products to consumers by providing protection and extending shelf life. Food packaging is a multifaceted field based on food science and engineering, microbiology, and chemistry, all of which have contributed significantly to maintaining physicochemical attributes such as color, flavor, moisture content, and texture of foods and their raw materials, in addition to ensuring freedom from oxidation and microbial deterioration. Antimicrobial food packaging systems, in addition to their function as conventional food packaging, are designed to arrest microbial growth on food surfaces, thereby enhancing food stability and quality. Nanomaterials with unique physiochemical and antibacterial properties are widely explored in food packaging as preservatives and antimicrobials, to extend the shelf life of packed food products. Various nanomaterials that are used in food packaging include nanocomposites composing nanoparticles such as silver, copper, gold, titanium dioxide, magnesium oxide, zinc oxide, mesoporous silica and graphene-based inorganic nanoparticles; gelatin; alginate; cellulose; chitosan-based polymeric nanoparticles; lipid nanoparticles; nanoemulsion; nanoliposomes; nanosponges; and nanofibers. Antimicrobial nanomaterial-based packaging systems are fabricated to exhibit greater efficiency against microbial contaminants. Recently, smart food packaging systems indicating the presence of spoilage and pathogenic microorganisms have been investigated by various research groups. The present review summarizes recent updates on various nanomaterials used in the field of food packaging technology, with potential applications as antimicrobial, antioxidant equipped with technology conferring smart functions and mechanisms in food packaging.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Arya Nair
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India; (A.N.); (R.M.)
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
113
|
'Click' synthesized non-substituted triazole modified chitosan from CaC2 as a novel antibacterial and antioxidant polymer. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03032-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
114
|
Song Z, Liu H, Huang A, Zhou C, Hong P, Deng C. Collagen/zein electrospun films incorporated with gallic acid for tilapia (Oreochromis niloticus) muscle preservation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
115
|
Marzano M, Borbone N, Amato F, Oliviero G, Fucile P, Russo T, Sannino F. 3D Chitosan-Gallic Acid Complexes: Assessment of the Chemical and Biological Properties. Gels 2022; 8:gels8020124. [PMID: 35200505 PMCID: PMC8872007 DOI: 10.3390/gels8020124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/02/2023] Open
Abstract
Three-dimensional chitosan-gallic acid complexes were proposed and prepared for the first time by a simple adsorption process of gallic acid (GA) on three-dimensional chitosan structures (3D chitosan). Highly porous 3D devices facilitate a high GA load, up to 2015 mmol/kg at pH 4.0. The preservation of the redox state of GA released from 3D chitosan was confirmed by spectroscopic analyses. The antioxidant activity of 3D chitosan-GA complexes was assessed using the DPPH radical scavenging assay and was found to be dramatically higher than that of free chitosan. The mechanical property of 3D chitosan–GA complexes was also evaluated using a compression test. Finally, 3D chitosan–GA complexes showed a significant antimicrobial capacity against E. coli and S. aureus, selected, respectively, as a model strain for Gram-negative and Gram-positive bacteria. Our study demonstrated a new, simple, and eco-friendly approach to prepare functional chitosan-based complexes for nutraceutical, cosmeceutical, and pharmaceutical applications.
Collapse
Affiliation(s)
- Maria Marzano
- Institute of Applied Sciences and Intelligent Systems Unit of Naples, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
- ISBE-IT, University of Naples Federico II, 80138 Naples, Italy;
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80131 Naples, Italy
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, 80138 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Pierpaolo Fucile
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy;
| | - Teresa Russo
- Institute of Polymers, Composites and Biomaterials, National Research Council, Viale J. F. Kennedy 54, Pad. 20 Mostra d’Oltremare, 80125 Naples, Italy;
| | - Filomena Sannino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy
- Correspondence:
| |
Collapse
|
116
|
Xie Y, Pan Y, Cai P. Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging. Food Chem 2022; 368:130784. [PMID: 34411864 DOI: 10.1016/j.foodchem.2021.130784] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
Biodegradable and antimicrobial films without antibiotics are of great significance for the application associated with food packaging meanwhile minimizing the negative impact on environments. In this work, cellulose-based films with the surface tailor-constructed with ZnO nanopillars (ZnO NPs@Zn2+/Cel films) were prepared via chemical crosslinking in conjunction with a hydrothermal process for in-situ growth of ZnO NPs. As a packaging material, ZnO NPs@Zn2+/Cel films possess excellent mechanical properties, oxygen and water vapor barrier, food preservation, biodegradability and low Zn2+ migration. Moreover, ZnO NPs@Zn2+/Cel films show remarkable antimicrobial activity, especially for Staphylococcus aureus (gram-positive bacteria) and Escherichia coli (gram-negative bacteria). The antimicrobial mechanism of ZnO NPs@Zn2+/Cel films is studied using the controlled variable method, and results showed that the film without UV pretreatment killed bacterial cells mainly by mechanical rupture, while the film with UV pretreatment killed bacterial cells mainly via the synergistic effect of photocatalytic oxidation and mechanical rupture.
Collapse
Affiliation(s)
- Yuanjian Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 China
| | - Yuanfeng Pan
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 China.
| | - Pingxiong Cai
- College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011 China
| |
Collapse
|
117
|
Nanocarriers for Sustainable Active Packaging: An Overview during and Post COVID-19. COATINGS 2022. [DOI: 10.3390/coatings12010102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lockdown has been installed due to the fast spread of COVID-19, and several challenges have occurred. Active packaging was considered a sustainable option for mitigating risks to food systems during COVID-19. Biopolymeric-based active packaging incorporating the release of active compounds with antimicrobial and antioxidant activity represents an innovative solution for increasing shelf life and maintaining food quality during transportation from producers to consumers. However, food packaging requires certain physical, chemical, and mechanical performances, which biopolymers such as proteins, polysaccharides, and lipids have not satisfied. In addition, active compounds have low stability and can easily burst when added directly into biopolymeric materials. Due to these drawbacks, encapsulation into lipid-based, polymeric-based, and nanoclay-based nanocarriers has currently captured increased interest. Nanocarriers can protect and control the release of active compounds and can enhance the performance of biopolymeric matrices. The aim of this manuscript is to provide an overview regarding the benefits of released active compound-loaded nanocarriers in developing sustainable biopolymeric-based active packaging with antimicrobial and antioxidant properties. Nanocarriers improve physical, chemical, and mechanical properties of the biopolymeric matrix and increase the bioactivity of released active compounds. Furthermore, challenges during the COVID-19 pandemic and a brief post-COVID-19 scenario were also mentioned.
Collapse
|
118
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
119
|
Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
120
|
Xu K, Dai Q, Dong K, Wei N, Qin Z. Double noncovalent network chitosan/hyperbranched polyethylenimine/Fe3+ films with high toughness and good antibacterial activity. RSC Adv 2022; 12:5255-5264. [PMID: 35425565 PMCID: PMC8981483 DOI: 10.1039/d1ra08121g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
The application of pure chitosan films is significantly limited due to their poor mechanical properties. In this study, a novel type of chitosan/hyperbranched polyethylenimine (CHP) and chitosan/hyperbranched polyethylenimine/Fe3+ (CHPF) films with high toughness and good antibacterial activity were prepared through a noncovalent crosslinking method. From the tensile test results, the strain and toughness of the CHP film increased by 798.1% and 292.3%, respectively, compared with pure chitosan film, after the addition of 20% hyperbranched polyethylenimine (HPEI). The addition of trace metal iron ions (3 mg) forms a metal coordination bond with the amine group on HPEI, as well as the hydroxyl group and amine group on chitosan, and develops a double noncovalent bond network structure with hydrogen bonding, which further enhances the mechanical tensile strength of the chitosan-based film, with an increase of 48.4%. Interestingly, HPEI and Fe3+ can be used as switches to increase and decrease the fluorescence property of chitosan, respectively. Furthermore, the CHP and CHPF films showed good antibacterial activity against S. aureus and E. coli. Double noncovalent network chitosan/hyperbranched polyethylenimine/Fe3+ films.![]()
Collapse
Affiliation(s)
- Kaijie Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Qingyin Dai
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kaiqiang Dong
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Ningsi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhiyong Qin
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
121
|
Al-nemrawi N, Alkhatib RQ, Ayyad H, Alshraiedeh N. Formulation and Characterization of Tobramycin-Chitosan Nanoparticles Coated with Zinc Oxide Nanoparticles. Saudi Pharm J 2022; 30:454-461. [PMID: 35527830 PMCID: PMC9068742 DOI: 10.1016/j.jsps.2022.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
Herein we describe the preparation, characterization and the antibacterial effect of Tobramycin-chitosan nanoparticles (TOB-CS NPs) coated with zinc oxide nanoparticles (ZnO NPs). Four formulations of TOB-CS NPs (A-D) were prepared to study the effect of experimental variables on the NPs behavior. Two formulations of ZnO NPs were prepared using the solvothermal and the precipitation methods (ZnO1 and ZnO2), and then characterized. TOB-CS NPs (Formula d) was coated with the ZnO1. Moreover, the antibacterial activity of TOB-CS NPs, ZnO NPs and the coated nanoparticles against S. aureus and E. coli was examined. Changing the variables in preparing TOB-CS NPs resulting in variabilities in sizes (297.6–1116.3 nm), charges (+8.29–+39.00 mV), entrapment (51.95–90.60%). Further, TOB release was sustained over four days. ZnO NPs have sizes of 47.44 and 394.4 nm and charges of −62.3 and 89.4 mV when prepared by solvothermal and precipitation technique, respectively. Coated TOB-CS NPs had a size of 342 nm, a charge of +4.39 and released 100 µg/ mL of the drug after four days. The antimicrobial activity of TOB-CS NPs was lower than free TOB against S. aureus and E. coli. The coated NPs showed higher antimicrobial effect in comparison to formula D and ZnO1. In conclusion, coating TOB-CS NPs with ZnO NPs exhibited a great antibacterial effect that may be sustained for days.
Collapse
|
122
|
Huang BH, Li SY, Chiou YJ, Chojniak D, Chou SC, Wong VCM, Chen SY, Wu PW. Electrophoretic fabrication of a robust chitosan/polyethylene glycol/polydopamine composite film for UV-shielding application. Carbohydr Polym 2021; 273:118560. [PMID: 34560971 DOI: 10.1016/j.carbpol.2021.118560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/20/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023]
Abstract
The film-forming process of chitosan composite films is an important issue because it affects their experimental design, chemicals used, and feasibility of large-scaled fabrication. In this work, electrophoresis is employed to produce chitosan composite films with significantly reduced processing time and environmentally friendly chemicals. With the addition of hydrogen peroxide and polyethylene glycol, the parasitic hydrogen bubble formation during the electrophoresis of chitosan and polydopamine is effectively inhibited that leads to the formation of a defectless chitosan/polyethylene glycol/polydopamine composite film which could be removed from the substrate readily. In addition, the chitosan/polyethylene glycol/polydopamine composite film reveals significantly improved tensile strength and a slower decomposition rate as compared to those of chitosan film and chitosan/polyethylene glycol composite film. This is attributed to the strong interaction between chitosan and polydopamine. Lastly, the chitosan/polyethylene glycol/polydopamine composite film exhibits excellent UV-shielding ability without compromising its visible transparency.
Collapse
Affiliation(s)
- Bo-Han Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Shih-Yuan Li
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Yu-Jie Chiou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - David Chojniak
- Department of Mechanical Engineering, Reutlingen University, Reutlingen 72762, Germany; Division Photovoltaics, Group III-V Cell and Module Characterization, Fraunhofer-Institut für Solare Energiesysteme ISE, Heidenhofstraße 2, 79110 Freiburg, Germany
| | - Shih-Cheng Chou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC
| | - Vienna Chi Man Wong
- School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC; Graduate Institute of Biomedical Science, China Medical University, Taichung 406, Taiwan, ROC
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan, ROC.
| |
Collapse
|
123
|
Aguilar-Pérez KM, Ruiz-Pulido G, Medina DI, Parra-Saldivar R, Iqbal HMN. Insight of nanotechnological processing for nano-fortified functional foods and nutraceutical-opportunities, challenges, and future scope in food for better health. Crit Rev Food Sci Nutr 2021; 63:4618-4635. [PMID: 34817310 DOI: 10.1080/10408398.2021.2004994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the twenty-first century food sector, nanotechnological processing is a new frontier that has vibrant impact on enhancing the food quality, nutritional value, food safety, and nano-fortified functional foods aspects. In addition, the added-value of various robust nano-scale materials facilitates the targeted delivery of nutraceutical ingredients and treatment of obesity and comorbidities. The recent advancement in nanomaterial-assisted palatability enhancement of healthy foods opened up a whole new area of research and development in food nanoscience. However, there is no comprehensive review available on promises of nanotechnology in the food industry in the existing literature. Thus, herein, an effort has been made to cover this leftover literature gap by spotlighting the new nanotechnological frontier and their future scope in food engineering for better health. Following a brief introduction, promises of nanotechnology have revolutionized the twenty-first century food sector of the modern world. Next, recent and relevant examples discuss the exploitation and deployment of nanomaterials in food to attain certain health benefits. A detailed insight is also given by discussing the role of nano-processing in nutraceutical delivery to treat obesity and comorbidities. The latter half of the work focuses on improving healthy foods' palatability and food safety aspects to meet the growing consumer demands. Furthermore, marketed products and public acceptance of nanotechnologically designed food items as well as future prospects are also covered herein.
Collapse
Affiliation(s)
- Katya M Aguilar-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza, Estado de Mexico, Mexico
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
124
|
Madhan G, Begam AA, Varsha LV, Ranjithkumar R, Bharathi D. Facile synthesis and characterization of chitosan/zinc oxide nanocomposite for enhanced antibacterial and photocatalytic activity. Int J Biol Macromol 2021; 190:259-269. [PMID: 34419540 DOI: 10.1016/j.ijbiomac.2021.08.100] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022]
Abstract
In this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD. Morphological analysis through FE-SEM and TEM showed a rod like appearance for ZnO NPs and agglomerated grains with rod shaped morphology was observed for the CS/ZnO nanocomposite. The peaks around 400-800 cm-1 in the IR spectrum of nanocomposite indicated the vibrations of metal-oxygen (ZnO), whereas bands at 1659 cm-1 and 1546 cm-1 indicated the presence of amine groups, which confirms the CS in the synthesized CS/ZnO nanocomposite. The CS/ZnO nanocomposite exhibited remarkable growth inhibition activity against B. subtilis and E. coli with 22 ± 0.3 and 16.5 ± 0.5 mm zone of inhibitions. In addition, CS/ZnO nanocomposite treated cotton fabrics also exhibited antibacterial activity against B. subtilis and E. coli. Furthermore, the ZnO NPs and nanocomposite showed time depended photodegradation activity and revealed 76% and 91% decomposition of CR under sunlight irradiation. In conclusion, our study revealed that the functionalization of biopolymer CS to the inorganic ZnO enhances the bio and catalytic properties.
Collapse
Affiliation(s)
- Gunasekaran Madhan
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - A Ayisha Begam
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | - L Vetri Varsha
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India
| | | | - Devaraj Bharathi
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, Tamilnadu 6410028, India.
| |
Collapse
|
125
|
Liu J, Huang J, Hu Z, Li G, Hu L, Chen X, Hu Y. Chitosan-based films with antioxidant of bamboo leaves and ZnO nanoparticles for application in active food packaging. Int J Biol Macromol 2021; 189:363-369. [PMID: 34450140 DOI: 10.1016/j.ijbiomac.2021.08.136] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
The function of chitosan film was reinforced by ZnO nanoparticles and antioxidant of bamboo leaves (AOB) for food packaging application. The results of structural characterization indicated the good compatibility among chitosan, ZnO nanoparticles and AOB. The chitosan film had the best mechanical strength and the highest light transmittance. The addition of AOB remarkably reduced the UV light transmittance and significantly enhanced the antioxidant activity of the films. Meanwhile, AOB and ZnO nanoparticles synergistically enhanced the antibacterial activity against E. coli and S. aureus. Our results suggested that the chitosan/ZnO/AOB films could be applied as potential active packaging materials in food industry to extend the shelf-life of packaged food.
Collapse
Affiliation(s)
- Jialin Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jiayin Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Zhiheng Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Gaoshang Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Lingping Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Xin Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| | - Yaqin Hu
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China.
| |
Collapse
|
126
|
Pal K, Bharti D, Sarkar P, Anis A, Kim D, Chałas R, Maksymiuk P, Stachurski P, Jarzębski M. Selected Applications of Chitosan Composites. Int J Mol Sci 2021; 22:ijms222010968. [PMID: 34681625 PMCID: PMC8535947 DOI: 10.3390/ijms222010968] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
- Correspondence: (K.P.); (M.J.); Tel.: +91-824-924-7377 (K.P.); +48-535-255-775 (M.J.)
| | - Deepti Bharti
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Doman Kim
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang 25354, Gangwon-do, Korea;
| | - Renata Chałas
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (R.C.); (P.M.)
| | - Paweł Maksymiuk
- Department of Oral Medicine, Medical University of Lublin, 20-093 Lublin, Poland; (R.C.); (P.M.)
| | - Piotr Stachurski
- Chair and Department of Pediatric Dentistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Poznan University of Life Sciences, 60-637 Poznań, Poland
- Correspondence: (K.P.); (M.J.); Tel.: +91-824-924-7377 (K.P.); +48-535-255-775 (M.J.)
| |
Collapse
|
127
|
Biomimetic amphiphilic FAAP NPs nanoparticles: Synthesis, characterization and antivirus activity. Int Immunopharmacol 2021; 101:108047. [PMID: 34619499 DOI: 10.1016/j.intimp.2021.108047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022]
Abstract
Antiviral agents based on natural products have attracted substantial attention in clinical applications for their distinct biological activities,molecular structuralmultiformities, and low biotoxicities. Ferulic acid (FA) with apigenin propaneto form an esterified FA derivative (FAAP).Herein, we designed a CsPbBr3-modified chitosan oligosaccharide, a biomimetic nanoplatform that could load with FAAP. After self-assembly by combining FAAP with CsPbBr3-modified chitosan oligosaccharide (FAAP NPs), the resulting nanoparticles (FAAP NPs) showed high antioxidant and anti-inflammatory activities for enhancing the inhibition of porcineparvovirus.FAAP NPs exhibited no signs of acute toxicity in vitro or in vivo. DPPH and ABST are widely used for quantitative determination of antioxidant capacity. FAAP NPs exhibited excellent DPPH and ABTS radical scavenging abilities. In addition, we found that FAAP NPs inhibited PPV infection-induced PK-15 cell apoptosis, which was associated with regulating antioxidant and anti-inflammatory signaling pathways. Importantly, we showed that FAAP NPs blocked PPV infection-induced mitochondrial apoptosis in PK-15 cells via a p53/BH3 domain molecular-dependent mechanism.
Collapse
|
128
|
Santos TA, Oliveira ACS, Lago AMT, Yoshida MI, Dias MV, Borges SV. Properties of chitosan–papain biopolymers reinforced with cellulose nanofibers. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Maria Irene Yoshida
- Department of Chemistry Federal University of Minas Gerais Belo Horizonte Brazil
| | | | | |
Collapse
|
129
|
Charles APR, Jin TZ, Mu R, Wu Y. Electrohydrodynamic processing of natural polymers for active food packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:6027-6056. [PMID: 34435448 DOI: 10.1111/1541-4337.12827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/14/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The active packaging materials fabricated using natural polymers is increasing in recent years. Electrohydrodynamic processing has drawn attention in active food packaging due to its potential in fabricating materials with advanced structural and functional properties. These materials have the significant capability in enhancing food's quality, safety, and shelf-life. Through electrospinning and electrospray, fibers and particles are encapsulated with bioactive compounds for active packaging applications. Understanding the principle behind electrohydrodynamics provides fundamentals in modulating the material's physicochemical properties based on the operating parameters. This review provides a deep understanding of electrospray and electrospinning, along with their advantages and recent innovations, from food packaging perspectives. The natural polymers suitable for developing active packaging films and coatings through electrohydrodynamics are intensely focused. The critical properties of the packaging system are discussed with characterization techniques. Furthermore, the limitations and prospects for natural polymers and electrohydrodynamic processing in active packaging are summarized.
Collapse
Affiliation(s)
- Anto Pradeep Raja Charles
- Food and Animal Sciences Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Richard Mu
- Interdisciplinary Graduate Engineering Research Institute, Tennessee State University, Nashville, Tennessee, USA
| | - Ying Wu
- Food and Animal Sciences Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee, USA
| |
Collapse
|
130
|
Babaei-Ghazvini A, Acharya B, Korber DR. Antimicrobial Biodegradable Food Packaging Based on Chitosan and Metal/Metal-Oxide Bio-Nanocomposites: A Review. Polymers (Basel) 2021; 13:2790. [PMID: 34451327 PMCID: PMC8402091 DOI: 10.3390/polym13162790] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Finding a practical alternative to decrease the use of conventional polymers in the plastic industry has become an acute concern since industrially-produced plastic waste, mainly conventional food packaging, has become an environmental crisis worldwide. Biodegradable polymers have attracted the attention of researchers as a possible alternative for fossil-based plastics. Chitosan-based packaging materials, in particular, have become a recent focus for the biodegradable food packaging sector due to their biodegradability, non-toxic nature, and antimicrobial properties. Chitosan, obtained from chitin, is the most abundant biopolymer in nature after cellulose. Chitosan is an ideal biomaterial for active packaging as it can be fabricated alone or combined with other polymers as well as metallic antimicrobial particles, either as layers or as coacervates for examination as functional components of active packaging systems. Chitosan-metal/metal oxide bio-nanocomposites have seen growing interest as antimicrobial packaging materials, with several different mechanisms of inhibition speculated to include direct physical interactions or chemical reactions (i.e., the production of reactive oxygen species as well as the increased dissolution of toxic metal cations). The use of chitosan and its metal/metal oxide (i.e., titanium dioxide, zinc oxide, and silver nanoparticles) bio-nanocomposites in packaging applications are the primary focus of discussion in this review.
Collapse
Affiliation(s)
- Amin Babaei-Ghazvini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Darren R. Korber
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada;
| |
Collapse
|
131
|
Anvar AA, Ahari H, Ataee M. Antimicrobial Properties of Food Nanopackaging: A New Focus on Foodborne Pathogens. Front Microbiol 2021; 12:690706. [PMID: 34322104 PMCID: PMC8312271 DOI: 10.3389/fmicb.2021.690706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022] Open
Abstract
Food products contaminated by foodborne pathogens (bacteria, parasites, and viruses) cause foodborne diseases. Today, great efforts are being allocated to the development of novel and effective agents against food pathogenic microorganisms. These efforts even might have a possible future effect in coronavirus disease 2019 (COVID-19) pandemic. Nanotechnology introduces a novel food packaging technology that creates and uses nanomaterials with novel physiochemical and antimicrobial properties. It could utilize preservatives and antimicrobials to extend the food shelf life within the package. Utilizing the antimicrobial nanomaterials into food packaging compounds typically involves incorporation of antimicrobial inorganic nanoparticles such as metals [Silver (Ag), Copper (Cu), Gold (Au)], and metal oxides [Titanium dioxide (TiO2), Silicon oxide (SiO2), Zinc oxide (ZnO)]. Alternatively, intelligent food packaging has been explored for recognition of spoilage and pathogenic microorganisms. This review paper focused on antimicrobial aspects of nanopackaging and presented an overview of antibacterial properties of inorganic nanoparticles. This article also provides information on food safety during COVID-19 pandemic.
Collapse
Affiliation(s)
- Amir Ali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ataee
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
132
|
Jabłońska J, Onyszko M, Konopacki M, Augustyniak A, Rakoczy R, Mijowska E. Fabrication of Paper Sheets Coatings Based on Chitosan/Bacterial Nanocellulose/ZnO with Enhanced Antibacterial and Mechanical Properties. Int J Mol Sci 2021; 22:7383. [PMID: 34299003 PMCID: PMC8305840 DOI: 10.3390/ijms22147383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Here, we designed paper sheets coated with chitosan, bacterial cellulose (nanofibers), and ZnO with boosted antibacterial and mechanical activity. We investigated the compositions, with ZnO exhibiting two different sizes/shapes: (1) rods and (2) irregular sphere-like particles. The proposed processing of bacterial cellulose resulted in the formation of nanofibers. Antimicrobial behavior was tested using E. coli ATCC® 25922™ following the ASTM E2149-13a standard. The mechanical properties of the paper sheets were measured by comparing tearing resistance, tensile strength, and bursting strength according to the ISO 5270 standard. The results showed an increased antibacterial response (assigned to the combination of chitosan and ZnO, independent of its shape and size) and boosted mechanical properties. Therefore, the proposed composition is an interesting multifunctional mixture for coatings in food packaging applications.
Collapse
Affiliation(s)
- Joanna Jabłońska
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Magdalena Onyszko
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 42, 71-065 Szczecin, Poland; (M.K.); (A.A.); (R.R.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastow Ave. 49, 71-065 Szczecin, Poland; (M.O.); (E.M.)
| |
Collapse
|
133
|
Biodegradable Alginate Films with ZnO Nanoparticles and Citronella Essential Oil-A Novel Antimicrobial Structure. Pharmaceutics 2021; 13:pharmaceutics13071020. [PMID: 34371712 PMCID: PMC8309085 DOI: 10.3390/pharmaceutics13071020] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/29/2023] Open
Abstract
The petroleum-based materials could be replaced, at least partially, by biodegradable packaging. Adding antimicrobial activity to the new packaging materials can also help improve the shelf life of food and diminish the spoilage. The objective of this research was to obtain a novel antibacterial packaging, based on alginate as biodegradable polymer. The antibacterial activity was induced to the alginate films by adding various amounts of ZnO nanoparticles loaded with citronella (lemongrass) essential oil (CEO). The obtained films were characterized, and antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella Typhi) and two Gram-positive (Bacillus cereus and Staphylococcus aureus) bacterial strains. The results suggest the existence of synergy between antibacterial activities of ZnO and CEO against all tested bacterial strains. The obtained films have a good antibacterial coverage, being efficient against several pathogens, the best results being obtained against Bacillus cereus. In addition, the films presented better UV light barrier properties and lower water vapor permeability (WVP) when compared with a simple alginate film. The preliminary tests indicate that the alginate films with ZnO nanoparticles and CEO can be used to successfully preserve the cheese. Therefore, our research evidences the feasibility of using alginate/ZnO/CEO films as antibacterial packaging for cheese in order to extend its shelf life.
Collapse
|
134
|
|
135
|
Electrospun Nanosystems Based on PHBV and ZnO for Ecological Food Packaging. Polymers (Basel) 2021; 13:polym13132123. [PMID: 34203404 PMCID: PMC8272170 DOI: 10.3390/polym13132123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
The electrospun nanosystems containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and 1 wt% Fe doped ZnO nanoparticles (NPs) (with the content of dopant in the range of 0–1 wt% Fe) deposited onto polylactic acid (PLA) film were prepared for food packaging application. They were investigated by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), antimicrobial analysis, and X-ray photoelectron spectrometry (XPS) techniques. Migration studies conducted in acetic acid 3% (wt/wt) and ethanol 10% (v/v) food simulants as well as by the use of treated ashes with 3% HNO3 solution reveal that the migration of Zn and Fe falls into the specific limits imposed by the legislation in force. Results indicated that the PLA/PHBV/ZnO:Fex electrospun nanosystems exhibit excellent antibacterial activity against the Pseudomonas aeruginosa (ATCC-27853) due to the generation of a larger amount of perhydroxyl (˙OOH) radicals as assessed using electron paramagnetic resonance (EPR) spectroscopy coupled with a spin trapping method.
Collapse
|
136
|
Paidari S, Zamindar N, Tahergorabi R, Kargar M, Ezzati S, shirani N, Musavi SH. Edible coating and films as promising packaging: a mini review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00979-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
137
|
Mechanical Properties and Tribological Behavior of MoS 2-Enhanced Cellulose-Based Biocomposites for Food Packaging. Polymers (Basel) 2021; 13:polym13111838. [PMID: 34206123 PMCID: PMC8199513 DOI: 10.3390/polym13111838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023] Open
Abstract
Synthetic polymers are the most commonly used polymers in daily life. Therefore, it is necessary to develop environmentally friendly polymers. Hydroxypropyl methylcellulose (HPMC) is a potential candidate for a biopolymer, owing to its unique properties. However, HPMC biopolymers have some disadvantages compared to synthetic polymers. In this study, the mechanical properties and tribological performance of MoS2 additive-enhanced cellulose matrix biocomposites were investigated in order to improve the properties of HPMC. MoS2 was incorporated into the HPMC matrix as a strengthening additive. The mechanical properties, bonding, and water vapor permeability of the composites were analyzed. The mechanical and vapor barrier properties of the HPMC films were significantly enhanced. The ultimate tensile strength and Young’s modulus of the composite films increased with the addition of up to 1 wt% MoS2. The water vapor permeability of HPMC films reduced when additives were incorporated. The wear test proves that the MoS2 additives can improve the tribological performance of the HPMC composite while reducing the friction coefficient. The main reason for enhanced tribological performance is the improvement in load capacity of the composite coating by the MoS2 additive. This MoS2/HPMC biocomposite can be used in food packaging.
Collapse
|
138
|
Effects of double layer membrane loading eugenol on postharvest quality of cucumber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
139
|
Biodegradable Chitosan Films with ZnO Nanoparticles Synthesized Using Food Industry By-Products—Production and Characterization. COATINGS 2021. [DOI: 10.3390/coatings11060646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This work aimed to produce bionanocomposites of chitosan incorporated with zinc oxide nanoparticles (ZnO NPs) synthesized using food industry by-products and to characterize them. Such nanoparticles are highlighted due to their low cost, antimicrobial activity, accessibility, and sustainability synthesis. Four different levels of ZnO NPs (0, 0.5, 1.0, and 2.0% w/w of chitosan) were tested, and the bionanocomposites were characterized in terms of their hydrophobicity, mechanical, optical, and barrier properties. Overall, the incorporation of ZnO NPs changed the composites from brittle to ductile, with enhanced elongation at break and reduced Young Modulus and tensile strength. Thus, ZnO NPs acted as plasticizer, turning the films more flexible, due to the presence of organic compounds on the NPs. This also favored permeability of oxygen and of water vapor, but the good barrier properties were maintained. Optical properties did not change statistically with the ZnO NPs incorporation. Thus, the characterization presented in this paper may contribute to support a decision on the choice of the material’s final application.
Collapse
|
140
|
Smart Hydrogel Bilayers Prepared by Irradiation. Polymers (Basel) 2021; 13:polym13111753. [PMID: 34072009 PMCID: PMC8197863 DOI: 10.3390/polym13111753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Environment-responsive hydrogel actuators have attracted tremendous attention due to their intriguing properties. Gamma radiation has been considered as a green cross-linking process for hydrogel synthesis, as toxic cross-linking agents and initiators were not required. In this work, chitosan/agar/P(N-isopropyl acrylamide-co-acrylamide) (CS/agar/P(NIPAM-co-AM)) and CS/agar/Montmorillonite (MMT)/PNIPAM temperature-sensitive hydrogel bilayers were synthesized via gamma radiation at room temperature. The mechanical properties and temperature sensitivity of hydrogels under different agar content and irradiation doses were explored. The enhancement of the mechanical properties of the composite hydrogel can be attributed to the presence of agar and MMT. Due to the different temperature sensitivities provided by the two layers of hydrogel, they can move autonomously and act as a flexible gripper as the temperature changes. Thanks to the antibacterial properties of the hydrogel, their storage time and service life may be improved. The as prepared hydrogel bilayers have potential applications in control devices, soft robots, artificial muscles and other fields.
Collapse
|
141
|
Alvarado N, Abarca RL, Linares-Flores C. Two Fascinating Polysaccharides: Chitosan and Starch. Some Prominent Characterizations for Applying as Eco-Friendly Food Packaging and Pollutant Remover in Aqueous Medium. Progress in Recent Years: A Review. Polymers (Basel) 2021; 13:1737. [PMID: 34073343 PMCID: PMC8198307 DOI: 10.3390/polym13111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The call to use biodegradable, eco-friendly materials is urgent. The use of biopolymers as a replacement for the classic petroleum-based materials is increasing. Chitosan and starch have been widely studied with this purpose: to be part of this replacement. The importance of proper physical characterization of these biopolymers is essential for the intended application. This review focuses on characterizations of chitosan and starch, approximately from 2017 to date, in one of their most-used applications: food packaging for chitosan and as an adsorbent agent of pollutants in aqueous medium for starch.
Collapse
Affiliation(s)
- Nancy Alvarado
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile
| | - Romina L. Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
| | - Cristian Linares-Flores
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile;
| |
Collapse
|
142
|
Ni Y, Shi S, Li M, Zhang L, Yang C, Du T, Wang S, Nie H, Sun J, Zhang W, Wang J. Visible light responsive, self-activated bionanocomposite films with sustained antimicrobial activity for food packaging. Food Chem 2021; 362:130201. [PMID: 34090044 DOI: 10.1016/j.foodchem.2021.130201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The research on a new type of low-cost, less-loss and adjustable sustained antibacterial activity food packaging films with self-activation ability and great industrialization potentiality is of great scientific and technological interest. Herein, a novel chitosan/negatively charged graphitic carbon nitride self-activation bionanocomposite films was prepared by one-step electrostatic self-assembly. First, the antibacterial efficiency of this film could reach to 99.8 ± 0.26% against E. coli and 99.9 ± 0.04% against S. aureus through self-activated under visible light. Second, this film can effectively extend the shelf life of tangerines to 24 days. Hemolysis and cell experiment test proved that this film was safe and nontoxic. Finally, negatively charged graphitic carbon nitride with low-cost can improve the mechanical, thermal and hydrophobic properties of neat chitosan films. This work can provide a new pathway for the preparation of low-cost packaging films with excellent visible light responsive property and sustainable antibacterial activity.
Collapse
Affiliation(s)
- Yongsheng Ni
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongqing Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
143
|
Sani MA, Azizi-Lalabadi M, Tavassoli M, Mohammadi K, McClements DJ. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1331. [PMID: 34070054 PMCID: PMC8158105 DOI: 10.3390/nano11051331] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
Interest in the development of smart and active biodegradable packaging materials is increasing as food manufacturers try to improve the sustainability and environmental impact of their products, while still maintaining their quality and safety. Active packaging materials contain components that enhance their functionality, such as antimicrobials, antioxidants, light blockers, or oxygen barriers. Smart packaging materials contain sensing components that provide an indication of changes in food attributes, such as alterations in their quality, maturity, or safety. For instance, a smart sensor may give a measurable color change in response to a deterioration in food quality. This article reviews recent advances in the development of active and smart biodegradable packaging materials in the food industry. Moreover, studies on the application of these packaging materials to monitor the freshness and safety of food products are reviewed, including dairy, meat, fish, fruit and vegetable products. Finally, the potential challenges associated with the application of these eco-friendly packaging materials in the food industry are discussed, as well as potential future directions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, School of Public Health, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah 6719851552, Iran;
| | - Milad Tavassoli
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran;
| | - Keyhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
| | | |
Collapse
|
144
|
DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L, Min Y, Scholar EMA. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr Rev Food Sci Food Saf 2021; 20:3093-3134. [PMID: 33949079 DOI: 10.1111/1541-4337.12750] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/29/2022]
Abstract
Illness as the result of ingesting bacterially contaminated foodstuffs represents a significant annual loss of human quality of life and economic impact globally. Significant research investment has recently been made in developing new materials that can be used to construct food contacting tools and surfaces that might minimize the risk of cross-contamination of bacteria from one food item to another. This is done to mitigate the spread of bacterial contamination and resultant foodborne illness. Internet-based literature search tools such as Web of Science, Google Scholar, and Scopus were utilized to investigate publishing trends within the last 10 years related to the development of antimicrobial and antifouling surfaces with potential use in food processing applications. Technologies investigated were categorized into four major groups: antimicrobial agent-releasing coatings, contact-based antimicrobial coatings, superhydrophobic antifouling coatings, and repulsion-based antifouling coatings. The advantages for each group and technical challenges remaining before wide-scale implementation were compared. A diverse array of emerging antimicrobial and antifouling technologies were identified, designed to suit a wide range of food contact applications. Although each poses distinct and promising advantages, significant further research investment will likely be required to reliably produce effective materials economically and safely enough to equip large-scale operations such as farms, food processing facilities, and kitchens.
Collapse
Affiliation(s)
- William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Andrew R White
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | | | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.,Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Ethan M A Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
145
|
Esmaeili M, Khodanazary A. Effects of pectin/chitosan composite and bi-layer coatings combined with Artemisia dracunculus essential oil on the mackerel’s shelf life. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00879-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
146
|
Elemike EE, Onwudiwe DC, Mbonu JI. Green Synthesis, Structural Characterization and Photocatalytic Activities of Chitosan-ZnO Nano‐composite. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01988-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
147
|
Rangaraj VM, Rambabu K, Banat F, Mittal V. Effect of date fruit waste extract as an antioxidant additive on the properties of active gelatin films. Food Chem 2021; 355:129631. [PMID: 33799252 DOI: 10.1016/j.foodchem.2021.129631] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
In this work, date-fruit syrup waste extract (DSWE) was used as an antioxidant additive to develop active gelatin films with enhanced food preservation properties. The effect of DSWE content (5, 10, 15, and 25 wt%) on the mechanical, physical, and antioxidant properties of the gelatin films were analyzed. Total phenolic content and antioxidant assay analysis revealed that the active compounds in blend films are highly migrated to the aqueous phase than the fatty medium. In the canola oil stability studies, gelatin/25 wt% DSWE film immersed oil sample exhibited low peroxide (POV) and p-anisidine (PV) values of 28.6 and 7.1, respectively, compared to the control oil (POV = 41.7 and PV = 13.1) in the air atmosphere and 45 °C for 30 days. Totox values of canola oil samples were decreased as a function of DSWE content in the films, indicating that polyphenols in DSWE are significantly resistant to oil's lipid oxidation.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical Engineering, PI Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - K Rambabu
- Department of Chemical Engineering, PI Campus, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, PI Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Vikas Mittal
- Department of Chemical Engineering, PI Campus, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
148
|
Fabrication, characterization, and anti‐free radical performance of edible packaging‐chitosan film synthesized from shrimp shell incorporated with ginger essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00875-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
149
|
Understanding the Barrier and Mechanical Behavior of Different Nanofillers in Chitosan Films for Food Packaging. Polymers (Basel) 2021; 13:polym13050721. [PMID: 33653012 PMCID: PMC7956210 DOI: 10.3390/polym13050721] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The continuous petroleum-based plastics manufacturing generates disposal issues, spreading the problem of plastic pollution and its rise in the environment. Recently, innovative techniques and scientific research promoted biopolymers as the primary alternative for traditional plastics, raising and expanding global bioplastic production. Due to its unmatched biological and functional attributes, chitosan (Ch) has been substantially explored and employed as a biopolymeric matrix. Nevertheless, the hydrophilicity and the weak mechanical properties associated with this biopolymer represent a significant intrinsic restriction to its implementation into some commercial applications, namely, in food packaging industries. Distinct methodologies have been utilized to upgrade the mechanical and barrier properties of Ch, such as using organic or inorganic nanofillers, crosslinkers, or blends with other polymers. This review intends to analyze the most recent works that combine the action of different nanoparticle types with Ch films to reinforce their mechanical and barrier properties.
Collapse
|
150
|
Primožič M, Knez Ž, Leitgeb M. (Bio)nanotechnology in Food Science-Food Packaging. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:292. [PMID: 33499415 PMCID: PMC7911006 DOI: 10.3390/nano11020292] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 01/10/2023]
Abstract
Background: Bionanotechnology, as a tool for incorporation of biological molecules into nanoartifacts, is gaining more and more importance in the field of food packaging. It offers an advanced expectation of food packaging that can ensure longer shelf life of products and safer packaging with improved food quality and traceability. Scope and approach: This review recent focuses on advances in food nanopackaging, including bio-based, improved, active, and smart packaging. Special emphasis is placed on bio-based packaging, including biodegradable packaging and biocompatible packaging, which presents an alternative to most commonly used non-degradable polymer materials. Safety and environmental concerns of (bio)nanotechnology implementation in food packaging were also discussed including new EU directives. Conclusions: The use of nanoparticles and nanocomposites in food packaging increases the mechanical strength and properties of the water and oxygen barrier of packaging and may provide other benefits such as antimicrobial activity and light-blocking properties. Concerns about the migration of nanoparticles from packaging to food have been expressed, but migration tests and risk assessment are unclear. Presumed toxicity, lack of additional data from clinical trials and risk assessment studies limit the use of nanomaterials in the food packaging sector. Therefore, an assessment of benefits and risks must be defined.
Collapse
Affiliation(s)
- Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (M.P.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|