101
|
Tyrosol and Hydroxytyrosol Determination in Extra Virgin Olive Oil with Direct Liquid Electron Ionization-Tandem Mass Spectrometry. SEPARATIONS 2021. [DOI: 10.3390/separations8100173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Extra virgin olive oil (EVOO) is one of the main ingredients of the Mediterranean diet. It is claimed as a functional food for its unique content of health-promoting compounds. Tyrosol (Tyr), Hydroxytyrosol (Htyr), and their phenolic derivatives present in EVOO show beneficial properties, and their identification and quantification, both in their free form and after the hydrolysis of more complex precursors, are important to certify its quality. An alternative method for quantifying free and total Tyr and Htyr in EVOO is presented using an LC–MS interface based on electron ionization (EI), called liquid electron ionization (LEI). This method requires neither sample preparation nor chromatography; the sample is diluted and injected. The selectivity and sensitivity were assessed in multiple reaction monitoring mode (MRM), obtaining confirmation and quantification in actual samples ranging from 5 to 11 mg/Kg for the free forms and from 32 to 80 mg/Kg for their total amount after hydrolysis. Two MS/MS transitions were acquired for both compounds using the Q/q ratios as confirmatory parameters. Standard addition calibration curves demonstrated optimal linearity and negligible matrix effects, allowing a correct quantification even without expensive and difficult to find labeled internal standards. After several weeks of operation, the system’s repeatability was excellent, with an intraday RSD (%) spanning from five to nine and an interday RSD (%) spanning from 9 to 11.
Collapse
|
102
|
Otero P, Garcia-Oliveira P, Carpena M, Barral-Martinez M, Chamorro F, Echave J, Garcia-Perez P, Cao H, Xiao J, Simal-Gandara J, Prieto M. Applications of by-products from the olive oil processing: Revalorization strategies based on target molecules and green extraction technologies. Trends Food Sci Technol 2021; 116:1084-1104. [DOI: 10.1016/j.tifs.2021.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
103
|
Yeste N, Gómez N, Vázquez-Gómez M, García-Contreras C, Pumarola M, González-Bulnes A, Bassols A. Polyphenols and IUGR Pregnancies: Intrauterine Growth Restriction and Hydroxytyrosol Affect the Development and Neurotransmitter Profile of the Hippocampus in a Pig Model. Antioxidants (Basel) 2021; 10:1505. [PMID: 34679640 PMCID: PMC8532848 DOI: 10.3390/antiox10101505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine growth restriction (IUGR) refers to poor growth of a fetus during pregnancy due to deficient maternal nutrition or oxygen supply. Supplementation of a mother's diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of IUGR. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of the total gestational period), and fetuses were sampled at day 100 of gestation. Fetuses were classified as normal body weight (NBW) or low body weight (LBW) as a consequence of IUGR, constituting four groups: NBW-Control, NBW-HTX, LBW-Control, and LBW-HTX. The brain was removed, and the hippocampus, amygdala, and prefrontal cortex were rapidly dissected. Neuronal markers were studied by immunohistochemistry, and a decrease in the number of mature neurons in the hippocampal Cornu Ammonis subfield 1 (CA1) and the Dentate Gyrus (DG) regions was observed in LBW fetuses together with a higher number of immature neurons and other alterations in neuronal morphology. Furthermore, IUGR conditions altered the neurotransmitter (NT) profile, since an increase in the serotonin (5-HT) pathway was observed in LBW fetuses. Supplementation with HTX was able to reverse the morphological and neurochemical changes, leading both characteristics to values similar to those of NBW fetuses.
Collapse
Affiliation(s)
- Natalia Yeste
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| | - Néstor Gómez
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| | - Marta Vázquez-Gómez
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (A.G.-B.)
| | | | - Martí Pumarola
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
| | - Antonio González-Bulnes
- Faculty of Veterinary Sciences, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain; (M.V.-G.); (A.G.-B.)
- Comparative Physiology Group, INIA, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (N.Y.); (N.G.)
| |
Collapse
|
104
|
Abstract
Hydroxytyrosol (HT) is the main bioactive compound in olive leaves. However, olive leaves contain a lower level of HT and the extraction process of HT was rarely optimized. In this study, compared with two extraction methods, ultrasound was found to have a positive effect on improving the yield of HT. Therefore, ultrasound was used to assist hydrolysis of hydrochloric acid to extract HT from olive leaves. Response surface method and macroporous resins were applied to optimize the extraction process as well as enrichment of HT. The results showed that ultrasonic extraction time had a significant effect on the yield and the optimal extraction conditions were obtained: ultrasonic time was 120 min, hydrochloric acid concentration was 1.60 mol/L and the liquid-to-material ratio was 60.00 mL/g. Under the optimal extraction condition, the yield of HT was 14.11 ± 0.12 mg/g. NKA-Ⅱ macroporous resin was proved to be a suitable resin to enrich HT from extraction solution. The optimal condition for enriching HY was 250 mL of loading solution at the flow rate of 1.5 mL/min with 40 mL volume of 75% ethanol–eluent at a flow rate of 1.0 mL/min. The concentration of HT changed from 2.27% to 9.25% after enrichment by macroporous resin.
Collapse
|
105
|
De La Cruz Cortés JP, Pérez de Algaba I, Martín-Aurioles E, Arrebola MM, Ortega-Hombrados L, Rodríguez-Pérez MD, Fernández-Prior MÁ, Bermúdez-Oria A, Verdugo C, González-Correa JA. Extra Virgin Oil Polyphenols Improve the Protective Effects of Hydroxytyrosol in an In Vitro Model of Hypoxia-Reoxygenation of Rat Brain. Brain Sci 2021; 11:brainsci11091133. [PMID: 34573155 PMCID: PMC8471209 DOI: 10.3390/brainsci11091133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is the component primarily responsible for the neuroprotective effect of extra virgin olive oil (EVOO). However, it is less effective on its own than the demonstrated neuroprotective effect of EVOO, and for this reason, it can be postulated that there is an interaction between several of the polyphenols of EVOO. The objective of the study was to assess the possible interaction of four EVOO polyphenols (HT, tyrosol, dihydroxyphenylglycol, and oleocanthal) in an experimental model of hypoxia-reoxygenation in rat brain slices. The lactate dehydrogenase (LDH) efflux, lipid peroxidation, and peroxynitrite production were determined as measures of cell death, oxidative stress, and nitrosative stress, respectively. First, the polyphenols were incubated with the brain slices in the same proportions that exist in EVOO, comparing their effects with those of HT. In all cases, the cytoprotective and antioxidant effects of the combination were greater than those of HT alone. Second, we calculated the concentration-effect curves for HT in the absence or presence of each polyphenol. Tyrosol did not significantly modify any of the variables inhibited by HT. Dihydroxyphenylglycol only increased the cytoprotective effect of HT at 10 µM, while it increased its antioxidant effect at 50 and 100 µM and its inhibitory effect on peroxynitrite formation at all the concentrations tested. Oleocanthal increased the cytoprotective and antioxidant effects of HT but did not modify its inhibitory effect on nitrosative stress. The results of this study show that the EVOO polyphenols DHPG and OLC increase the cytoprotective effect of HT in an experimental model of hypoxia-reoxygenation in rat brain slices, mainly due to a possibly synergistic effect on HT's antioxidant action. These results could explain the greater neuroprotective effect of EVOO than of the polyphenols alone.
Collapse
Affiliation(s)
- José Pedro De La Cruz Cortés
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
- Correspondence: ; Tel.: +34-952-131-567
| | | | | | | | - Laura Ortega-Hombrados
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María Dolores Rodríguez-Pérez
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - María África Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Alejandra Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Ctra. Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (M.Á.F.-P.); (A.B.-O.)
| | - Cristina Verdugo
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| | - José Antonio González-Correa
- Departmento de Farmacología, Facultad de Medicina, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; (L.O.-H.); (M.D.R.-P.); (C.V.); (J.A.G.-C.)
| |
Collapse
|
106
|
Santana-Garrido Á, Reyes-Goya C, Milla-Navarro S, de la Villa P, André H, Vázquez CM, Mate A. Anti-Inflammatory Action of Dietary Wild Olive (Acebuche) Oil in the Retina of Hypertensive Mice. Foods 2021; 10:foods10091993. [PMID: 34574102 PMCID: PMC8466332 DOI: 10.3390/foods10091993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a crucial role in the course of eye diseases, including many vascular retinopathies. Although olive oil is known to have beneficial effects against inflammatory processes, there is no information available on the anti-inflammatory potential of the wild olive tree (namely, acebuche (ACE) for the primitive Spanish lineages). Here we investigate the anti-inflammatory effects of ACE oil in the retina of a mouse model of arterial hypertension, which was experimentally induced by administration of L-NAME (NG-nitro-L-arginine-methyl-ester). The animals were fed supplements of ACE oil or extra virgin olive oil (EVOO, for comparative purposes). Retinal function was assessed by electroretinography (ERG), and different inflammation-related parameters were measured in the retina and choroid. Besides significant prevention of retinal dysfunction shown in ERG recordings, ACE oil-enriched diet upregulated the expression of the anti-inflammatory markers PPARγ, PPARα and IL-10, while reducing that of major proinflammatory biomarkers, IL-1β, IL-6, TNF-α and COX-2. This is the first report to highlight the anti-inflammatory properties of an ACE oil-enriched diet against hypertension-related retinal damage. Noteworthy, dietary supplementation with ACE oil yielded better results compared to a reference EVOO.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
| | - Santiago Milla-Navarro
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
| | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, 28871 Madrid, Spain; (S.M.-N.); (P.d.l.V.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, 11282 Stockholm, Sweden;
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; (Á.S.-G.); (C.R.-G.); (C.M.V.)
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Sevilla, Spain
- Correspondence:
| |
Collapse
|
107
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
108
|
Hydroxytyrosol Selectively Affects Non-Enzymatic Glycation in Human Insulin and Protects by AGEs Cytotoxicity. Antioxidants (Basel) 2021; 10:antiox10071127. [PMID: 34356360 PMCID: PMC8301023 DOI: 10.3390/antiox10071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Hydroxytyrosol (HT), the major phenolic compound in olive oil, is attracting increasing interest for its beneficial properties including a notable antioxidant and anti-inflammatory power. In this study, using a combination of biophysical and cell biology techniques, we have tested the role of HT in the formation of advanced glycation end-products (AGEs). AGEs have a key role in clinical sciences as they have been associated to diabetes, neurodegenerative and cardiovascular diseases. In addition, as the incidence of Alzheimer’s disease (AD) is strongly increased in diabetic patients, AGE formation is supposed to be involved in the development of the pathological hallmarks of AD. Our data show that HT selectively inhibits protein glycation reaction in human insulin, and it is able to counteract the AGE-induced cytotoxicity in human neurotypical cells by acting on SIRT1 level and oxidative stress, as well as on inflammatory response. This study identifies new beneficial properties for HT and suggests it might be a promising molecule in protecting against the AGE-induced toxicity, a key mechanism underlying the development and progression of neurodegenerative disorders.
Collapse
|
109
|
|
110
|
Identification of Tyrosyl Oleate as a Novel Olive Oil Lipophenol with Proliferative and Antioxidant Properties in Human Keratinocytes. Antioxidants (Basel) 2021; 10:antiox10071051. [PMID: 34209968 PMCID: PMC8300722 DOI: 10.3390/antiox10071051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Lipophenols are an emerging subclass of phenolic compounds characterized by the presence of a lipid moiety. Recently, hydroxytyrosyl oleate (HtyOle), a derivative of hydroxytyrosol, has been identified in olive oil and by-products. Furthermore, HtyOle possesses anti-inflammatory, antioxidant, and tissue regenerating properties. In this work, the potential occurrence of tyrosyl oleate (TyOle) in olive oil was investigated based on the hypothesis that its precursors tyrosol and oleic acid, both present in relatively high amount can be coupled together. Moreover, TyOle effects have been investigated in human keratinocytes to verify its proliferative and antioxidant properties. The quantitative determination of TyOle was carried out by the external standard method in liquid chromatography coupled with mass spectrometry (LC/MS), in negative mode using multiple reaction monitoring (MRM). The proliferative properties of TyOle on immortalized human keratinocytes (HaCat) were evaluated by 3-(4,5-dimethylthiasol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological changes were observed by fluorescent staining with phalloidin (for F-actin) or 4,6-diamidino-2-phenylindole (DAPI, for chromatin) dye. The antioxidant activity was assessed at the level of production of mitochondrial reactive oxygen species (ROS) induced with UV exposure. TyOle was identified in all the oil samples investigated. Interestingly, TyOle concentration was higher in defective or low-quality oils than in extra virgin oils. The formation of TyOle likely occurs during the crushing and kneading processes and its concentration is related to the increase of rancidity and of the concentration of free precursors. Herein we show that TyOle induced an increase in the viability of HaCat cells and cytoskeletal remodeling.
Collapse
|
111
|
Hidrox ® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants (Basel) 2021; 10:antiox10071046. [PMID: 34209690 PMCID: PMC8300770 DOI: 10.3390/antiox10071046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.
Collapse
|
112
|
Taheri M, Amiri-Farahani L. Anti-Inflammatory and Restorative Effects of Olives in Topical Application. Dermatol Res Pract 2021; 2021:9927976. [PMID: 34257643 PMCID: PMC8257351 DOI: 10.1155/2021/9927976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
METHODS A literature search was conducted (1990-2021) in Medline, Embase, CINAHL, Google Scholar, Science Direct, SID, IranDoc, and Magiran databases. From the 102 reviewed articles, 17 articles were selected to be included in the current article. RESULTS Various forms of olive have long been used to accelerate the healing of various wounds and skin damage such as diabetic foot ulcers, atopic dermatitis, diaper dermatitis, episiotomy wound, and nipple ulcer but there are still no credible documents or articles that provide reliable evidence of topical use. CONCLUSION According to the information obtained from the articles reviewed, olive oil appears to be an effective, safe, and available treatment. This study suggests that olive oil is an alternative remedy to minimize the frequent use of chemical-based treatments. More research may be beneficial to reach certainty in terms of curative properties of olive oil in similar or different injuries in different populations.
Collapse
Affiliation(s)
- Mahdiyeh Taheri
- Department of Reproductive Health and Midwifery, Faculty of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Amiri-Farahani
- Department of Reproductive Health and Midwifery, Nursing Care Research Center, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
113
|
Zhao YT, Zhang L, Yin H, Shen L, Zheng W, Zhang K, Zeng J, Hu C, Liu Y. Hydroxytyrosol alleviates oxidative stress and neuroinflammation and enhances hippocampal neurotrophic signaling to improve stress-induced depressive behaviors in mice. Food Funct 2021; 12:5478-5487. [PMID: 33998633 DOI: 10.1039/d1fo00210d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydroxytyrosol (HT), the main phenolic compound in olives and olive products, has antioxidative, anti-inflammatory, neuroprotective, and other physiological functions. The effects of HT on depression are unclear. The aim of this study was to explore the effects of HT on chronic unpredictable mild stress (CUMS) induced depressive-like behaviors. Mice were exposed to CUMS for 9 weeks and then treated with HT beginning in the second week and continuing for 7 weeks. Behavioral, biochemical, and molecular tests were conducted at the end of the experiment. The sucrose preference was significantly decreased in the CUMS group versus the healthy control group. Also, immobility times in forced swimming and tail suspension tests were increased in CUMS-induced mice, but treatment with HT significantly reversed this change. HT ameliorated oxidative stress in CUMS-exposed mice by enhancing superoxide dismutase activity and reducing reactive oxygen species and malondialdehyde levels in the hippocampus. HT administration significantly suppressed microglia activation and inhibited the expression of tumor necrosis factor alpha and interleukin 1 beta in the hippocampus versus the untreated group. The expression level of glial fibrillary acidic protein (GFAP) and the number of GFAP-immunoreactive astrocytes in the hippocampus were significantly augmented by HT. Furthermore, HT treatment increased the expression of hippocampal brain-derived neurotrophic factor (BDNF), phosphorylated tropomyosin receptor kinase B (p-TrkB), and phosphorylated c-AMP response element binding protein (p-CREB) compared with the untreated CUMS group. Overall, HT improved CUMS-induced depressive-like behaviors in mice by alleviating oxidative stress and neuroinflammation and by enhancing the BDNF/TrkB/CREB signaling pathway.
Collapse
Affiliation(s)
- Yun-Tao Zhao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China. and Shenzhen Research Institute, Guangdong Ocean University, Shenzhen, 518108, P.R. China
| | - Lulu Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Haowen Yin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Ling Shen
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, P.R. China
| | - Wenjing Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Kun Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Jian Zeng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| | - Chuanyin Hu
- Department of Biology, Guangdong Medical University, Zhanjiang, 524023, P.R. China.
| | - You Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, P.R. China.
| |
Collapse
|
114
|
Mursaleen L, Noble B, Somavarapu S, Zariwala MG. Micellar Nanocarriers of Hydroxytyrosol Are Protective against Parkinson's Related Oxidative Stress in an In Vitro hCMEC/D3-SH-SY5Y Co-Culture System. Antioxidants (Basel) 2021; 10:antiox10060887. [PMID: 34073115 PMCID: PMC8226543 DOI: 10.3390/antiox10060887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Hydroxytyrosol (HT) is a natural phenolic antioxidant which has neuroprotective effects in models of Parkinson’s disease (PD). Due to issues such as rapid metabolism, HT is unlikely to reach the brain at therapeutic concentrations required for a clinical effect. We have previously developed micellar nanocarriers from Pluronic F68® (P68) and dequalinium (DQA) which have suitable characteristics for brain delivery of antioxidants and iron chelators. The aim of this study was to utilise the P68 + DQA nanocarriers for HT alone, or in combination with the iron chelator deferoxamine (DFO), and assess their physical characteristics and ability to pass the blood–brain barrier and protect against rotenone in a cellular hCMEC/D3-SH-SY5Y co-culture system. Both HT and HT + DFO formulations were less than 170 nm in size and demonstrated high encapsulation efficiencies (up to 97%). P68 + DQA nanoformulation enhanced the mean blood–brain barrier (BBB) passage of HT by 50% (p < 0.0001, n = 6). This resulted in increased protection against rotenone induced cytotoxicity and oxidative stress by up to 12% and 9%, respectively, compared to the corresponding free drug treatments (p < 0.01, n = 6). This study demonstrates for the first time the incorporation of HT and HT + DFO into P68 + DQA nanocarriers and successful delivery of these nanocarriers across a BBB model to protect against PD-related oxidative stress. These nanocarriers warrant further investigation to evaluate whether this enhanced neuroprotection is exhibited in in vivo PD models.
Collapse
Affiliation(s)
- Leah Mursaleen
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Cure Parkinson’s, 120 New Cavendish Street, Fitzrovia, London W1W 6XX, UK
| | - Brendon Noble
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK
- Correspondence: (S.S.); (M.G.Z.)
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (L.M.); (B.N.)
- Correspondence: (S.S.); (M.G.Z.)
| |
Collapse
|
115
|
Polyphenols and IUGR Pregnancies: Effects of the Antioxidant Hydroxytyrosol on Brain Neurochemistry and Development in a Porcine Model. Antioxidants (Basel) 2021; 10:antiox10060884. [PMID: 34073097 PMCID: PMC8227239 DOI: 10.3390/antiox10060884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022] Open
Abstract
Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.
Collapse
|
116
|
Hidrox ® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050818. [PMID: 34065584 PMCID: PMC8161307 DOI: 10.3390/antiox10050818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients’ quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer’s Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.
Collapse
|
117
|
Fusco R, Salinaro AT, Siracusa R, D’Amico R, Impellizzeri D, Scuto M, Ontario ML, Crea R, Cordaro M, Cuzzocrea S, Di Paola R, Calabrese V. Hidrox ® Counteracts Cyclophosphamide-Induced Male Infertility through NRF2 Pathways in a Mouse Model. Antioxidants (Basel) 2021; 10:antiox10050778. [PMID: 34068924 PMCID: PMC8156985 DOI: 10.3390/antiox10050778] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Every year, men use cyclophosphamide to treat various cancers and autoimmune diseases. On the one hand, this chemotherapy often has the beneficial effect of regressing the tumor, but on the other hand, it leads to infertility due to excessive oxidative stress and apoptosis in the testes caused by its metabolite, acrolein. METHODS The objective of this study was to evaluate the beneficial power of a new compound called Hidrox®, containing 40-50% hydroxytyrosol, in counteracting the damage related to fertility induced by cyclophosphamide. The study was conducted using a single intraperitoneal injection of cyclophosphamide at a dose of 200 mg/kg b.w, in distilled water at 10 mL/kg b.w. The treatment was administered via the oral administration of Hidrox® at a dose of 50 mg/kg. RESULTS Our study confirms that the use of cyclophosphamide causes a series of sperm and histological alterations strongly connected with oxidative stress, lipid peroxidation, and apoptosis. CONCLUSION Our results demonstrate for the first time that Hidrox® protects testes from CYP-induced alterations by the modulation of physiological antioxidant defenses.
Collapse
Affiliation(s)
- Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| | - Roberto Crea
- Oliphenol LLC, 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (M.C.); (S.C.); Tel.: +39-090-676-5208 (M.C. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
- Correspondence: (M.C.); (S.C.); Tel.: +39-090-676-5208 (M.C. & S.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.F.); (R.S.); (R.D.); (D.I.); (R.D.P.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95131 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (V.C.)
| |
Collapse
|
118
|
Cordaro M, Trovato Salinaro A, Siracusa R, D’Amico R, Impellizzeri D, Scuto M, Ontario ML, Interdonato L, Crea R, Fusco R, Cuzzocrea S, Di Paola R, Calabrese V. Hidrox ® and Endometriosis: Biochemical Evaluation of Oxidative Stress and Pain. Antioxidants (Basel) 2021; 10:720. [PMID: 34064310 PMCID: PMC8147870 DOI: 10.3390/antiox10050720] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022] Open
Abstract
Endometriosis is a gynecological and painful condition affecting women of reproductive age. It is characterized by dysfunctional endometrium-like implants outside of the uterine cavity. The purpose of this study was to evaluate the effects of Hidrox®, an aqueous extract of olive pulp containing hydroxytyrosol, on endometriotic lesions associated with pro-oxidative alterations and pain-like behaviors. Endometriosis was induced by intraperitoneal injection of uterine fragments, and Hidrox® was administered daily. At the end of the 14-day treatment, behavioral alterations were assessed and hippocampal tissues were collected. Laparotomy was performed, and the endometrial implants were harvested for histological and biochemical analysis. Hidrox® treatment reduced endometriotic implant area, diameter and volumes. Vehicle-treated rats showed lesional fibrosis, epithelial-mesenchymal transition and fibroblast-myofibroblast transdifferentiation, angiogenesis and pro-oxidative alterations in the peritoneal cavity. Hidrox® treatment reduced the aniline blue-stained area, α-smooth muscle actin (α-sma) and CD34 positive expressions. Moreover, it reduced mast cell recruitment into the lesions, myeloperoxidase activity and lipid peroxidation and increased superoxide dismutase (SOD) activity and glutathione levels in the endometrial explants. In the peritoneal fluid, Hidrox® treatment reduced interleukin (IL)-1β, IL2, IL6, tumor necrosis factor-α (TNF-α) and vascular endothelial grow factor (VEGF) levels increased by the disease. Hidrox® administration also reduced peripheral and visceral sensibility as shown by the behavioral tests (open field test, hot plate test, elevated plus maze test and acetic-acid-induced abdominal contractions). Animals treated with Hidrox® also showed reduced blood-brain barrier permeability and mast cell infiltration in the hippocampus, as well as astrocyte and microglia activation and brain oxidative status restoring brain-derived neurotrophic factor (BDNF) protein expression and increasing Nuclear factor erythroid 2-related factor 2 (Nfr2) nuclear translocation. In conclusion, Hidrox® displayed potential ameliorative effects on endometriotic implants and related pain-induced behaviors due to its potent antioxidative properties.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.S.); (R.D.); (D.I.); (L.I.)
| | - Rosanna Di Paola
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| | - Vittorio Calabrese
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (M.C.); (R.D.P.); (V.C.)
| |
Collapse
|
119
|
Salarbashi D, Tafaghodi M, Bazzaz BSF, Mohammad Aboutorabzade S, Fathi M. pH-sensitive soluble soybean polysaccharide/SiO 2 incorporated with curcumin for intelligent packaging applications. Food Sci Nutr 2021; 9:2169-2179. [PMID: 33841833 PMCID: PMC8020962 DOI: 10.1002/fsn3.2187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
In the present work, the effect of various concentrations of SiO2 nanoparticles (5, 10, and 15%) on physicochemical and antimicrobial properties of soluble soybean polysaccharide (SSPS)-based film was investigated. Then, the migration of SiO2 nanoparticles to ethanol as a food simulant was evaluated. Subsequently, curcumin was added to the nanocomposite formulation to sense the pH changes. Finally, the cytotoxicity of the developed packaging system was investigated. With increasing nanoparticle concentration, the film thickness, water solubility, and water vapor permeability decreased and mechanical performance of the films improved. SSPS/SiO2 nanocomposite did not show antibacterial activity. SEM analysis showed that SiO2 nanoparticles are uniformly distributed in the SSPS matrix; however, some outstanding spots can be observed in the matrix. A very homogeneous surface was observed for neat SSPS film with R a and R q values of 3.48 and 4.26, respectively. With the incorporation of SiO2 (15%) into SSPS film, R a and R q values increased to 5.67 and 5.98, respectively. Small amount of SiO2 nanoparticles was released in food simulant. The nanocomposite incorporated with curcumin showed good physical properties and antibacterial activity. A strong positive correlation was observed between TVBN content of shrimp and a* values of the films during storage time (Pearson's correlation = 0.985).
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterSchool of MedicineGonabad University of Medical SciencesGonabadIran
- Department of Food Science and NutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Control DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Morteza Fathi
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
120
|
Tundis R, Conidi C, Loizzo MR, Sicari V, Romeo R, Cassano A. Concentration of Bioactive Phenolic Compounds in Olive Mill Wastewater by Direct Contact Membrane Distillation. Molecules 2021; 26:molecules26061808. [PMID: 33806935 PMCID: PMC8004892 DOI: 10.3390/molecules26061808] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/29/2022] Open
Abstract
Olive mill wastewater (OMW), generated as a by-product of olive oil production, is considered one of the most polluting effluents produced by the agro-food industry, due to its high concentration of organic matter and nutrients. However, OMW is rich in several polyphenols, representing compounds with remarkable biological properties. This study aimed to analyze the chemical profile as well as the antioxidant and anti-obesity properties of concentrated fractions obtained from microfiltered OMW treated by direct contact membrane distillation (DCMD). Ultra-high performance liquid chromatography (UHPLC) analyses were applied to quantify some phenols selected as phytochemical markers. Moreover, α-Amylase, α-glucosidase, and lipase inhibitory activity were investigated together with the antioxidant activity by means of assays, namely β-carotene bleaching, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) acid (ABTS) diammonium salts, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, and Ferric Reducing Activity Power (FRAP) tests. MD retentate—which has content of about five times greater of hydroxytyrosol and verbascoside and about 7 times greater of oleuropein than the feed—was more active as an antioxidant in all applied assays. Of interest is the result obtained in the DPPH test (an inhibitory concentration 50% (IC50) of 9.8 μg/mL in comparison to the feed (IC50 of 97.2 μg/mL)) and in the ABTS assay (an IC50 of 0.4 μg/mL in comparison to the feed (IC50 of 1.2 μg/mL)).
Collapse
Affiliation(s)
- Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Carmela Conidi
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
| | - Monica R. Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (R.T.); (M.R.L.)
| | - Vincenzo Sicari
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Rosa Romeo
- Department of Agricultural Science, Mediterranean University of Reggio Calabria, 89123 Reggio Calabria, Italy; (V.S.); (R.R.)
| | - Alfredo Cassano
- Institute on Membrane Technology, ITM-CNR, 87036 Rende, CS, Italy;
- Correspondence: ; Tel.: +39-0984-492067
| |
Collapse
|
121
|
Fan L, Peng Y, Wang J, Ma P, Zhao L, Li X. Total glycosides from stems of Cistanche tubulosa alleviate depression-like behaviors: bidirectional interaction of the phytochemicals and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153471. [PMID: 33636477 DOI: 10.1016/j.phymed.2021.153471] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND As the most frequently used kidney-yang tonifying herb in traditional Chinese medicine, dried succulent stems of Cistanche tubulosa (Schenk) Wight (CT) have been shown to be effective in the treatment of depression. However, the antidepressant components and their underlying mechanism remain unclear. PURPOSE To explore the active components of CT against depression, as well as the potential mechanisms. STUDY DESIGN AND METHODS Behavioral despair tests were used to assess the antidepressant activities of polysaccharides, oligosaccharides and different glycoside-enriched fractions separated from CT, as well as the typical gut microbiota metabolites including 3-hydroxyphenylpropionic acid (3-HPP) and hydroxytyrosol (HT). Furthermore, the effects of bioactive fractions and metabolites on chronic unpredictable mild stress (CUMS) model were explored with multiple pharmacodynamics and biochemical analyses. Changes in colonic histology and the intestinal barrier were observed by staining and immunohistochemical analysis. Gut microbial features and tryptophan-kynurenine metabolism were explored using 16S rRNA sequencing and western-blotting, respectively. RESULTS Total glycosides (TG) dramatically alleviated depression-like behaviors compared to different separated fractions, reflecting in the synergistic effects of phenylethanoid and iridoid glycosides on the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, severe neuro- and peripheral inflammation, and deficiencies in 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor in the hippocampus. Moreover, TG mitigated low-grade inflammation in the colon and intestinal barrier disruption, and the abundances of several bacterial genera highly correlated with the HPA axis and inflammation in CUMS rats. Consistently, the expression of indoleamine 2, 3-dioxygenase 1 (IDO1) in the colon was significantly reduced after TG administration, accompanied by the suppression of tryptophan-kynurenine metabolism. On the other hand, HT also exerted a marked antidepressant effect by ameliorating HPA axis function, pro-inflammatory cytokine release, and tryptophan-kynurenine metabolism, while it was unable to largely adjust the disordered gut microbiota in the same manner as TG. Surprisingly, superior to fluoxetine, TG and HT could further improve dysfunction of the hypothalamic-pituitary-gonadal axis and abnormal cyclic nucleotide metabolism. CONCLUSION TG are primarily responsible for the antidepressant activity of CT; its effect might be achieved through the bidirectional interaction of the phytochemicals and gut microbiota, and reflect the advantage of CT in the treatment of depression.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jingwen Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lijuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
122
|
Abate M, Citro M, Pisanti S, Caputo M, Martinelli R. Keratinocytes Migration Promotion, Proliferation Induction, and Free Radical Injury Prevention by 3-Hydroxytirosol. Int J Mol Sci 2021; 22:ijms22052438. [PMID: 33670966 PMCID: PMC7957601 DOI: 10.3390/ijms22052438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022] Open
Abstract
3-hydroxytyrosol (HT) is the main phenolic compound found in olive oil with known antioxidant, anti-inflammatory, and antimicrobial properties in several dermatological conditions, both when taken in the form of olive oil or pure in cosmeceutical formulations. To date, its direct effect on the wound healing process and the molecular mechanisms involved have not yet been elucidated. Thus, in the present study, we aimed to explore its effects in vitro in epidermal keratinocyte cultures focusing on the molecular mechanism implied. HT was able to induce keratinocyte proliferation in the low micromolar range, increasing the expression of cyclin dependent kinases fundamental for cell cycle progression such as CDK2 and CDK6. Furthermore, it increased cell migration through the activation of tissue remodeling factors such as matrix metalloproteinase-9 (MMP-9) protein. Then, we evaluated whether HT also showed antioxidant activity at this concentration range, protecting from H2O2-induced cytotoxicity. The HT prevented the activation of ATM serine/threonine kinase (ATM), Checkpoint kinase 1 (Chk1), Checkpoint kinase 2 (Chk2), and p53, reducing the number of apoptotic cells. Our study highlighted novel pharmacological properties of HT, providing the first evidence of its capability to induce keratinocyte migration and proliferation required for healing processes and re-epithelialization.
Collapse
|
123
|
Hydroxy-tyrosol as a Free Radical Scavenging Molecule in Polymeric Hydrogels Subjected to Gamma-Ray Irradiation. Processes (Basel) 2021. [DOI: 10.3390/pr9030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomedical engineering is employing hydrogels with increasingly exciting possibilities for the treatment and regeneration of pathologically altered, degenerated, or traumatized tissues. Still, the sterilization processes may undesirably change the chemical and physical properties of hydrogels through cross-linking reactions. This work aims to characterize a new method of producing polyethylene oxide (PEO) hydrogels exploiting hydroxy-tyrosol (HT), an anti-oxidant molecule derived from olive leaf and olive oil, as a free radical scavenger to either prevent or limit gamma-ray-induced cross-linking. For this purpose, we produced hydrogels with PEO with two different buffer solutions (phosphate and citrate), varying HT concentration. We analyzed hydrogel preparations before and after gamma-ray irradiation, assessing the viscosity through rheological analysis and the chemical changes through IR analysis. We performed high-performance liquid chromatography (HPLC) analysis to measure residual HT in hydrogels after irradiation. The obtained results show that radiation-induced cross-linking and increase in viscosity of PEO hydrogels can be prevented by tailoring the concentration of HT as a free radical scavenging agent. Irradiation only consumes small amounts of HT; its presence in polymeric hydrogels can significantly impact biomedical applications by its anti-oxidant and anti-microbial activities.
Collapse
|
124
|
Noce A, Di Lauro M, Di Daniele F, Pietroboni Zaitseva A, Marrone G, Borboni P, Di Daniele N. Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients 2021; 13:630. [PMID: 33669163 PMCID: PMC7919668 DOI: 10.3390/nu13020630] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Metabolic syndrome (MetS) is a clinical manifestation characterized by a plethora of comorbidities, including hyperglycemia, abdominal obesity, arterial hypertension, and dyslipidemia. All MetS comorbidities participate to induce a low-grade inflammation state and oxidative stress, typical of this syndrome. MetS is related to an increased risk of cardiovascular diseases and early death, with an important impact on health-care costs. For its clinic management a poly-pharmaceutical therapy is often required, but this can cause side effects and reduce the patient's compliance. For this reason, finding a valid and alternative therapeutic strategy, natural and free of side effects, could represent a useful tool in the fight the MetS. In this context, the use of functional foods, and the assumption of natural bioactive compounds (NBCs), could exert beneficial effects on body weight, blood pressure and glucose metabolism control, on endothelial damage, on the improvement of lipid profile, on the inflammatory state, and on oxidative stress. This review focuses on the possible beneficial role of NBCs in the prevention and in the clinical management of MetS and its comorbidities.
Collapse
Affiliation(s)
- Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Anna Pietroboni Zaitseva
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
- PhD School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Patrizia Borboni
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.D.L.); (F.D.D.); (A.P.Z.); (N.D.D.)
| |
Collapse
|
125
|
Fotiadou R, Chatzikonstantinou AV, Hammami MA, Chalmpes N, Moschovas D, Spyrou K, Polydera AC, Avgeropoulos A, Gournis D, Stamatis H. Green Synthesized Magnetic Nanoparticles as Effective Nanosupport for the Immobilization of Lipase: Application for the Synthesis of Lipophenols. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:458. [PMID: 33670153 PMCID: PMC7916844 DOI: 10.3390/nano11020458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022]
Abstract
In this work, hybrid zinc oxide-iron oxide (ZnOFe) magnetic nanoparticles were synthesized employing Olea europaea leaf aqueous extract as a reducing/chelating and capping medium. The resulting magnetic nanoparticles were characterized by basic spectroscopic and microscopic techniques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform infrared (FTIR) and atomic force microscopy (AFM), exhibiting a spherical shape, average size of 15-17 nm, and a functionalized surface. Lipase from Thermomyces lanuginosus (TLL) was efficiently immobilized on the surface of ZnOFe nanoparticles through physical absorption. The activity of immobilized lipase was found to directly depend on the enzyme to support the mass ratio, and also demonstrated improved pH and temperature activity range compared to free lipase. Furthermore, the novel magnetic nanobiocatalyst (ZnOFe-TLL) was applied to the preparation of hydroxytyrosyl fatty acid esters, including derivatives with omega-3 fatty acids, in non-aqueous media. Conversion yields up to 90% were observed in non-polar solvents, including hydrophobic ionic liquids. Different factors affecting the biocatalyst performance were studied. ZnOFe-TLL was reutilized for eight subsequent cycles, exhibiting 90% remaining esterification activity (720 h of total operation at 50 °C). The green synthesized magnetic nanoparticles, reported here for the first time, are excellent candidates as nanosupports for the immobilization of enzymes with industrial interest, giving rise to nanobiocatalysts with elevated features.
Collapse
Affiliation(s)
- Renia Fotiadou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Alexandra V. Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Mohamed Amen Hammami
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Dimitrios Moschovas
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Angeliki C. Polydera
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| | - Apostolos Avgeropoulos
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece; (N.C.); (D.M.); (K.S.); (A.A.); (D.G.)
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece; (R.F.); (A.V.C.); (A.C.P.)
| |
Collapse
|
126
|
Taghinia P, Abdolshahi A, Sedaghati S, Shokrollahi B. Smart edible films based on mucilage of lallemantia iberica seed incorporated with curcumin for freshness monitoring. Food Sci Nutr 2021; 9:1222-1231. [PMID: 33598206 PMCID: PMC7866608 DOI: 10.1002/fsn3.2114] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
The objective of the present work was first to develop a smart packaging system based on Lallemantia iberica seed gum (LISG)/curcumin and, subsequently, investigate its physicochemical characteristics and biological activity. Finally, the response of LISG/curcumin films against pH change and the spoilage of shrimp were tested. The barrier properties and mechanical performance of the films improved as the curcumin concentration increased. FT-IR analysis revealed the formation of physical interaction between LISG and curcumin. LISG/curcumin films showed a continuous and steady release of curcumin. The incorporation of curcumin into LISG matrix imparts antioxidant and antibacterial/mold activity to the films. A strong positive correlation was observed between total volatile base nitrogen (TVBN) content of shrimp and a* (redness) during storage time (Pearson correlation = 0.975). Eventually, LISG/curcumin film could be a promising smart packaging system capable of detecting food spoilage.
Collapse
Affiliation(s)
- Pouya Taghinia
- Department of Food Science and TechnologyIslamic Azad UniversitySariIran
| | - Anna Abdolshahi
- Food safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| | - Sahebeh Sedaghati
- Department of Food Science and TechnologyFerdowsi University of Mashhad (FUM)MashhadIran
| | - Behdad Shokrollahi
- Food safety Research Center (salt)Semnan University of Medical SciencesSemnanIran
| |
Collapse
|
127
|
The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
128
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
129
|
Lankelma J, van Iperen DJ, van der Sluis PJ. Towards using high-performance liquid chromatography at home. J Chromatogr A 2021; 1639:461925. [PMID: 33556779 DOI: 10.1016/j.chroma.2021.461925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/26/2022]
Abstract
In order to make high-performance liquid chromatography (HPLC) more widely available at home and in small-scale settings, we have simplified two of its most costly modules, namely the pump and the detector. This should make the setup affordable for home or small laboratory use. A manual HPLC pump was constructed so as to fit into a caulk gun from a local hardware store enabling the generation of 100-150 bar of pressure. In order to limit the pressure drop during the running of a chromatogram, a pulse dampener was developed. We further modified the electrochemical detection (ECD) system so as to use a cheap boron-doped diamond electrode with an overlay of thin filter paper, causing an eluent flow over the electrode by wicking and gravity. Both the pump and the detector are at least ten times cheaper than conventional HPLC modules. Using a home-packed JupiterⓇ Proteo reversed phase capillary column we show how this low-cost HPLC system generates well resolving chromatograms after direct injection of fresh urine. The ECD did not lose its sensitivity during regular use over more than half a year. For homovanillic acid (HVA), which is of medical interest, we measured a linear dynamic range of two orders of magnitude, a detection limit of HVA in the injected sample of 3 μM and a coefficient of variation <10%. The contribution to peak broadening by the detector was much smaller than the contributions by the injector and by the column. After consumption of table olives containing hydroxytyrosol (HT), its metabolite HVA in the corresponding urine could be measured quantitatively. An approach to quantify HT in table olives is presented, as well. This method provides a new tool for investigating physiology of oneself or of dear ones at home.
Collapse
Affiliation(s)
- Jan Lankelma
- Department of Molecular Cell Physiology, VU University Amsterdam, O
- 2 Lab Building, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; Foundation for Chromatography at home, Demonstrator Lab, Amsterdam, The Netherlands.
| | - Dirck J van Iperen
- Department of Fine mechanics and Engineering VU - Bèta, VU University Amsterdam, The Netherlands
| | - Paul J van der Sluis
- Foundation for Chromatography at home, Demonstrator Lab, Amsterdam, The Netherlands
| |
Collapse
|
130
|
Borjan D, Leitgeb M, Knez Ž, Hrnčič MK. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020; 25:E5946. [PMID: 33334001 PMCID: PMC7765412 DOI: 10.3390/molecules25245946] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
According to many reports, phenolic compounds isolated from olive leaves have very good biological activities, especially antimicrobial. Presently, the resistance of microorganisms to antibiotics is greater than ever. Therefore, there are numerous recent papers about alternative solutions for inhibiting their influence on human health. Olive leaf is studied as an important source of antimicrobials with low cost and used in medicine. Numerous publications on involving green technologies for isolation of active compounds from olive leaves have appeared over the past few decades. The present review reports on current knowledge of the most isolated phenolic compounds from olive leaf extract as well as methods for their isolation and characterization. This paper uses recent research findings with a wide range of study models to describe the antimicrobial potential of phenolic compounds. It also describes the vast range of information about methods for determination of antimicrobial potential focusing on effects on different microbes. Additionally, it serves to highlight the role of olive leaf extract as an antioxidants and presents methods for determination of antioxidant potential. Furthermore, it provides an overview of presence of enzymes. The significance of olive leaves as industrial and agricultural waste is emphasized by means of explaining their availability, therapeutic and nutritional effects, and research conducted on this field.
Collapse
Affiliation(s)
- Dragana Borjan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.B.); (M.L.); (Ž.K.)
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.B.); (M.L.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.B.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Knez Hrnčič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.B.); (M.L.); (Ž.K.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
131
|
Silva AFR, Resende D, Monteiro M, Coimbra MA, Silva AMS, Cardoso SM. Application of Hydroxytyrosol in the Functional Foods Field: From Ingredient to Dietary Supplements. Antioxidants (Basel) 2020; 9:antiox9121246. [PMID: 33302474 PMCID: PMC7763879 DOI: 10.3390/antiox9121246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Hydroxytyrosol (HT) is an amphipathic functional phenol found in the olive tree, both in its leaves and fruits, in free or bound forms, as well as in olive oil and by-products of olive oil manufacture. The European Food Safety Authority recommends regular consumption of HT due to its several beneficial effects on human health, which are closely associated to its antioxidant activity. These reasons make HT an excellent candidate for application as a functional ingredient in the design of novel food products. Patents already exist for methodologies of extraction, purification, and application of HT in supplements and food products. The present review discusses the impact of HT incorporation on food properties and its effects on consumers, based on relevant data related to the use of HT as a functional ingredient, both as a pure compound or in the form of HT-rich extracts, in various food products, namely in edible oils, beverages, bakery products, as well animal-based foods such as meat, fishery and dairy products.
Collapse
|
132
|
Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. BIOLOGY 2020; 9:biology9120450. [PMID: 33291288 PMCID: PMC7762183 DOI: 10.3390/biology9120450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Olive oil is the most common vegetable oil used for human nutrition, and its production represents a major economic sector in Mediterranean countries. The milling industry generates large amounts of liquid and solid residues, whose disposal is complicated and costly due to their polluting properties. However, olive mill waste (OMW) may also be seen as a source of valuable biomolecules including plant nutrients, anthocyanins, flavonoids, polysaccharides, and phenolic compounds. This review describes recent advances and multidisciplinary approaches in the identification and isolation of valuable natural OMW-derived bioactive molecules. Such natural compounds may be potentially used in numerous sustainable applications in agriculture such as fertilizers, biostimulants, and biopesticides in alternative to synthetic substances that have a negative impact on the environment and are harmful to human health. Abstract Olive oil production generates high amounts of liquid and solid wastes. For a long time, such complex matrices were considered only as an environmental issue, due to their polluting properties. On the other hand, olive mill wastes (OMWs) exert a positive effect on plant growth when applied to soil due to the high content of organic matter and mineral nutrients. Moreover, OMWs also exhibit antimicrobial activity and protective properties against plant pathogens possibly due to the presence of bioactive molecules including phenols and polysaccharides. This review covers the recent advances made in the identification, isolation, and characterization of OMW-derived bioactive molecules able to influence important plant processes such as plant growth and defend against pathogens. Such studies are relevant from different points of view. First, basic research in plant biology may benefit from the isolation and characterization of new biomolecules to be potentially applied in crop growth and protection against diseases. Moreover, the valorization of waste materials is necessary for the development of a circular economy, which is foreseen to drive the future development of a more sustainable agriculture.
Collapse
|
133
|
Quiles JL, Rivas-García L, Varela-López A, Llopis J, Battino M, Sánchez-González C. Do nutrients and other bioactive molecules from foods have anything to say in the treatment against COVID-19? ENVIRONMENTAL RESEARCH 2020; 191:110053. [PMID: 32835682 PMCID: PMC7442575 DOI: 10.1016/j.envres.2020.110053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 05/03/2023]
Abstract
The repositioning of therapeutic agents already approved by the regulatory agencies for the use of drugs is very interesting due to the immediacy of their use; similarly, the possibility of using molecules derived from foods, whether nutrients or not, is of great importance, also because of their immediate therapeutic applicability. Candidates for these natural therapies against COVID-19 should show certain effects, such as restoring mitochondrial function and cellular redox balance. This would allow reducing the susceptibility of risk groups and the cascade of events after SARS-CoV-2 infection, responsible for the clinical picture, triggered by the imbalance towards oxidation, inflammation, and cytokine storm. Possible strategies to follow through the use of substances of food origin would include: a) the promotion of mitophagy to remove dysfunctional mitochondria originating from free radicals, proton imbalance and virus evasion of the immune system; b) the administration of transition metals whose redox activity would lead to their own oxidation and the consequent generation of a reduced environment, which would normalize the oxidative state and the intracellular pH; c) the administration of molecules with demonstrated antioxidant capacity; d) the administration of compounds with anti-inflammatory and vasodilatory activity; e) the administration of immunomodulatory compounds.
Collapse
Affiliation(s)
- José L Quiles
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. Del Conocimiento S/n, 18100, Armilla, Granada, Spain; College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Lorenzo Rivas-García
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. Del Conocimiento S/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre. University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain
| | - Alfonso Varela-López
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. Del Conocimiento S/n, 18100, Armilla, Granada, Spain
| | - Juan Llopis
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. Del Conocimiento S/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre. University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica Delle Marche, 60131, Ancona, Italy; Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI University of Vigo, 36310, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Cristina Sánchez-González
- Biomedical Research Centre, Institute of Nutrition and Food Technology "José Mataix Verdú", Department of Physiology, Faculty of Pharmacy, University of Granada, Avda. Del Conocimiento S/n, 18100, Armilla, Granada, Spain; Sport and Health Research Centre. University of Granada, C/. Menéndez Pelayo 32, 18016, Armilla, Granada, Spain
| |
Collapse
|
134
|
Zhang W, Man R, Yu X, Yang H, Yang Q, Li J. Hydroxytyrosol enhances cisplatin-induced ototoxicity: Possible relation to the alteration in the activity of JNK and AIF pathways. Eur J Pharmacol 2020; 887:173338. [PMID: 32781170 DOI: 10.1016/j.ejphar.2020.173338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Hydroxytyrosol (HT), a polyphenol widely contained as an ester in olive fruits and olive leaves, exhibits a broad spectrum of effectiveness. The present study was designed to investigate the effect of HT alone as well as in the combination with cisplatin on the House Ear Institute-Organ of Corti 1 cells (HEI-OC1) and C57BL/6 cochlear hair cells in vitro. The cell viability was measured by cell counting kit-8 (CCK8) assay. The levels of reactive oxygen species were evaluated by Dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. The expression of phosphorylated Jun N-terminal kinase (p-JNK) and cleaved-caspase 3 was assessed by Western blotting. The apoptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. The distribution of apoptosis inducing factor (AIF) was determined by immunofluorescent staining. HT alleviated the levels of reactive oxygen species in both untreated state and after cisplatin stimulus. However, HT at concentration of 100 μM decreased the cell viability of HEI-OC1 from 100 ± 17.38% in control group to 50.17 ± 1.89% and increased the expression of p-JNK and c-caspase 3 from 0.62 ± 0.10, 0.20 ± 0.050 in the control group to 1.24 ± 0.18, 0.85 ± 0.18 in the group treated with 30 μM cisplatin, as well as to 1.64 ± 0.14, 1.44 ± 0.12 in the group with 30 μM cisplatin +100 μM HT, respectively. Meanwhile, HT triggered AIF transferring to nuclei and, also, led to cochlear HCs arranging disorderly and missing. Moreover, HT elevated the expression of p-JNK and c-caspase 3 from 1.00 ± 0.27, 1.00 ± 0.26 in the control group to 2.23 ± 0.24, 22.87 ± 3.80 in the group with 30 μM cisplatin, and to 2.75 ± 0.23, 31.56 ± 3.86 in the group with 30 μM cisplatin+100 μM HT correspondingly. Taken together, data from this work reveal that HT itself possesses toxic effect on HCs mainly thorough AIF-dependent apoptosis, while, it aggravates the ototoxicity-caused by cisplatin via both JNK and AIF pathways related apoptosis. Findings from this work offer clear evidence that that HT might not be recommended to utilize for preventing cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Department of Otorhinolaryngology Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, PR China
| | - Rongjun Man
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, Shandong, PR China
| | - Xiaoyu Yu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Institute of Eye and ENT, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
135
|
Hermans MP, Lempereur P, Salembier JP, Maes N, Albert A, Jansen O, Pincemail J. Supplementation Effect of a Combination of Olive ( Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants (Basel) 2020; 9:antiox9090872. [PMID: 32942738 PMCID: PMC7554871 DOI: 10.3390/antiox9090872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of herbal products in the prevention of cardiovascular disease requires supporting evidence. This open pilot study assessed the effect of 2-month supplementation of a combination of olive leaf and fruit extracts (Tensiofytol®, Tilman SA, Baillonville, Belgium) in the clinical management of hypertension and metabolic syndrome (MetS). METHODS A total of 663 (pre)-hypertensive patients were enrolled by general practitioners and supplemented for two months with Tensiofytol®, two capsules per day (100 mg/d of oleuropein and 20 mg/d of hydroxytyrosol). Systolic and diastolic blood pressures (SBP/DBP) were measured before and after treatment. Markers of MetS, high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), fasting blood glucose (FG) and waist circumference (WC), were also examined. RESULTS Significant reductions (p < 0.0001) in SBP/DBP (13 ± 10/7.1 ± 6.6 mmHg) were observed and similarly in pre-diabetic and diabetic patients. Improvements in SBP/DPB were independent of age and gender but greater for elevated baseline SBP/DBP. Tensiofytol® supplementation also significantly improved markers of MetS, with a decrease of TG (11%), WC (1.4%) and FG (4.8%) and an increase of HDL-C (5.3%). Minor side effects were reported in 3.2% patients. CONCLUSIONS This real-life, observational, non-controlled, non-randomized pilot study shows that supplementation of a combination of olive leaf and fruit extracts may be used efficiently and safely in reducing hypertension and MetS markers.
Collapse
Affiliation(s)
- Michel P. Hermans
- Service d’Endocrinologie et de Nutrition and Pôle Endocrinologie, Diabète et Nutrition (EDIN), Institut de Recherche expérimentale et clinique, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Lempereur
- Service de Cardiologie, Centre Hospitalier Bois de l’Abbaye, 4100 Seraing, Belgium;
| | - Jean-Paul Salembier
- Service de Cardiologie, CHU UCL Namur - site Sainte-Elisabeth, 5000 Namur, Belgium;
| | - Nathalie Maes
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Olivia Jansen
- Laboratoire de Pharmacognosie, Centre Interdisciplinaire de Recherche sur le Médicament (CIRM), Université de Liège, 4000 Liège, Belgium;
| | - Joël Pincemail
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
136
|
Siracusa R, Scuto M, Fusco R, Trovato A, Ontario ML, Crea R, Di Paola R, Cuzzocrea S, Calabrese V. Anti-inflammatory and Anti-oxidant Activity of Hidrox ® in Rotenone-Induced Parkinson's Disease in Mice. Antioxidants (Basel) 2020; 9:antiox9090824. [PMID: 32899274 PMCID: PMC7576486 DOI: 10.3390/antiox9090824] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In developed countries, the extension of human life is increasingly accompanied by a progressive increase in neurodegenerative diseases, most of which do not yet have effective therapy but only symptomatic treatments. In recent years, plant polyphenols have aroused considerable interest in the scientific community. The mechanisms currently hypothesized for the pathogenesis of Parkinson's disease (PD) are neuroinflammation, oxidative stress and apoptosis. Hydroxytyrosol (HT), the main component of Hidrox® (HD), has been shown to have some of the highest free radical evacuation and anti-inflammatory activities. Here we wanted to study the role of HD on the neurobiological and behavioral alterations induced by rotenone. METHODS A study was conducted in which mice received HD (10 mg/kg, i.p.) concomitantly with rotenone (5 mg/kg, o.s.) for 28 days. RESULTS Locomotor activity, catalepsy, histological damage and several characteristic markers of the PD, such as the dopamine transporter (DAT) content, tyrosine hydroxylase (TH) and accumulation of α-synuclein, have been evaluated. Moreover, we observed the effects of HD on oxidative stress, neuroinflammation, apoptosis and inflammasomes. Taken together, the results obtained highlight HD's ability to reduce the loss of dopaminergic neurons and the damage associated with it by counteracting the three main mechanisms of PD pathogenesis. CONCLUSION HD is subject to fewer regulations than traditional drugs to improve patients' brain health and could represent a promising nutraceutical choice to prevent PD.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
| | - Angela Trovato
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| | - Roberto Crea
- Oliphenol LLC., 26225 Eden Landing Road, Unit C, Hayward, CA 94545, USA;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Correspondence: (A.T.); (R.D.P.); Tel.: +39-09-5478-1165 (A.T.); +39-09-0676-5208 (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (R.S.); (R.F.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy; (M.S.); (M.L.O.); (V.C.)
| |
Collapse
|
137
|
Mehmood A, Usman M, Patil P, Zhao L, Wang C. A review on management of cardiovascular diseases by olive polyphenols. Food Sci Nutr 2020; 8:4639-4655. [PMID: 32994927 PMCID: PMC7500788 DOI: 10.1002/fsn3.1668] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Noncommunicable diseases have increasingly grown the cause of morbidities and mortalities worldwide. Among them, cardiovascular diseases (CVDs) continue to be the major contributor to deaths. CVDs are common in the urban community population due to the substandard living conditions, which have a significant impact on the healthcare system, and over 23 million human beings are anticipated to suffer from the CVDs before 2030. At the moment, CVD physicians are immediately advancing both primary and secondary prevention modalities in high-risk populations. The cornerstone of CVD prevention is a healthy lifestyle that is more cost-effective than the treatments after disease onset. In fact, in the present scenario, comprehensive research conducted on food plant components is potentially efficacious in reducing some highly prevalent CVD risk factors, such as hypercholesterolemia, hypertension, and atherosclerosis. Polyphenols of olive oil (OO), virgin olive oil (VOO), and extra virgin olive oil contribute an essential role for the management of CVDs. Olive oil induces cardioprotective effects due to the presence of a plethora of polyphenolic compounds, for example, oleuropein (OL), tyrosol, and hydroxytyrosol. The present study examines the bioavailability and absorption of major olive bioactive compounds, for instance, oleacein, oleocanthal, OL, and tyrosol. This review also elucidates the snobbish connection of olive polyphenols (OP) and the potential mechanism involved in combating various CVD results taken up from the in vitro and in vivo studies, such as animal and human model studies.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Prasanna Patil
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- Beijing Engineering and Technology Research Center of Food AdditivesSchool of Food and Chemical TechnologyBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
138
|
Wide Biological Role of Hydroxytyrosol: Possible Therapeutic and Preventive Properties in Cardiovascular Diseases. Cells 2020; 9:cells9091932. [PMID: 32825589 PMCID: PMC7565717 DOI: 10.3390/cells9091932] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
The growing incidence of cardiovascular disease (CVD) has promoted investigations of natural molecules that could prevent and treat CVD. Among these, hydroxytyrosol, a polyphenolic compound of olive oil, is well known for its antioxidant, anti-inflammatory, and anti-atherogenic effects. Its strong antioxidant properties are due to the scavenging of radicals and the stimulation of synthesis and activity of antioxidant enzymes (SOD, CAT, HO-1, NOS, COX-2, GSH), which also limit the lipid peroxidation of low-density lipoprotein (LDL) cholesterol, a hallmark of atherosclerosis. Lowered inflammation and oxidative stress and an improved lipid profile were also demonstrated in healthy subjects as well as in metabolic syndrome patients after hydroxytyrosol (HT) supplementation. These results might open a new therapeutic scenario through personalized supplementation of HT in CVDs. This review is the first attempt to collect together scientific literature on HT in both in vitro and in vivo models, as well as in human clinical studies, describing its potential biological effects for cardiovascular health.
Collapse
|
139
|
Fonollá J, Maldonado-Lobón JA, Luque R, Rodríguez C, Bañuelos Ó, López-Larramendi JL, Olivares M, Blanco-Rojo R. Effects of a Combination of Extracts from Olive Fruit and Almonds Skin on Oxidative and Inflammation Markers in Hypercholesterolemic Subjects: A Randomized Controlled Trial. J Med Food 2020; 24:479-486. [PMID: 32816626 PMCID: PMC8140357 DOI: 10.1089/jmf.2020.0088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hydroxytyrosol (HT) from olives and polyphenols from almond skin (ASPs) possess cardioprotective properties. This pilot study evaluates the effect of supplementation with a combination of olive fruit and almond skin extracts on low-density lipoprotein (LDL) cholesterol oxidation, lipid homeostasis, and inflammatory parameters in adults with moderate hypercholesterolemia. A randomized, parallel, double-blind, placebo-controlled pilot study of 8 weeks was performed. The extract group (EG) received the supplement with 7.5 mg HT +210 mg ASPs, and the control group (CG) received a placebo composed of maltodextrin. Oxidized LDL (oxLDL) levels and the oxLDL/LDL ratio were lower in the EG than in the CG after 8 weeks of treatment (18.76 ± 3.91 vs. 10.34 ± 4.22, P < .001 and 0.151 ± 0.025 vs. 0.08 ± 0.023, P < .001, respectively). Interleukin-1β levels were significantly higher in the CG than in the EG at week 4 (P = .004), IL-6 was significantly higher in the CG than in the EG at week 4 (P = .049), and IL-10 was significantly increased at week 4 in both groups (P = .002 for CG and P = .001 for EG). In conclusion, daily consumption of a combination of an olive fruit extract and an almond skin extract for 8 weeks seems to protect LDL from oxidation and to prevent inflammatory status in moderately hypercholesterolemic subjects.
Collapse
Affiliation(s)
- Juristo Fonollá
- Research and Development Department, Biosearch Life, Granada, Spain.,Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Roberto Luque
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Carlos Rodríguez
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Óscar Bañuelos
- Research and Development Department, Biosearch Life, Granada, Spain
| | | | - Mónica Olivares
- Research and Development Department, Biosearch Life, Granada, Spain
| | - Ruth Blanco-Rojo
- Research and Development Department, Biosearch Life, Granada, Spain
| |
Collapse
|
140
|
Francioso A, Federico R, Maggiore A, Fontana M, Boffi A, D’Erme M, Mosca L. Green Route for the Isolation and Purification of Hyrdoxytyrosol, Tyrosol, Oleacein and Oleocanthal from Extra Virgin Olive Oil. Molecules 2020; 25:molecules25163654. [PMID: 32796621 PMCID: PMC7464626 DOI: 10.3390/molecules25163654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Extra virgin olive oil (EVOO) phenols represent a significant part of the intake of antioxidants and bioactive compounds in the Mediterranean diet. In particular, hydroxytyrosol (HTyr), tyrosol (Tyr), and the secoiridoids oleacein and oleocanthal play central roles as anti-inflammatory, neuro-protective and anti-cancer agents. These compounds cannot be easily obtained via chemical synthesis, and their isolation and purification from EVOO is cumbersome. Indeed, both processes involve the use of large volumes of organic solvents, hazardous reagents and several chromatographic steps. In this work we propose a novel optimized procedure for the green extraction, isolation and purification of HTyr, Tyr, oleacein and oleocanthal directly from EVOO, by using a Natural Deep Eutectic Solvent (NaDES) as an extracting phase, coupled with preparative high-performance liquid chromatography. This purification method allows the total recovery of the four components as single pure compounds directly from EVOO, in a rapid, economic and ecologically sustainable way, which utilizes biocompatible reagents and strongly limits the use or generation of hazardous substances.
Collapse
Affiliation(s)
- Antonio Francioso
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
- Correspondence: ; Tel.: +39-06-4991-0987
| | - Rodolfo Federico
- MOLIROM s.r.l, via Carlo Bartolomeo Piazza 8, 00161 Rome, Italy;
| | - Anna Maggiore
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Mario Fontana
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Alberto Boffi
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
- MOLIROM s.r.l, via Carlo Bartolomeo Piazza 8, 00161 Rome, Italy;
| | - Maria D’Erme
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| | - Luciana Mosca
- Department of Biochemical Sciences, “Sapienza” University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (M.F.); (A.B.); (M.D.); (L.M.)
| |
Collapse
|
141
|
Hydroxytyrosol as a Promising Ally in the Treatment of Fibromyalgia. Nutrients 2020; 12:nu12082386. [PMID: 32784915 PMCID: PMC7468876 DOI: 10.3390/nu12082386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia (FM) is a chronic and highly disabling syndrome, which is still underdiagnosed, with controversial treatment. Although its aetiology is unknown, a number of studies have pointed to the involvement of altered mitochondrial metabolism, increased oxidative stress and inflammation. The intake of extra virgin olive oil, and particularly of one of its phenolic compounds, hydroxytyrosol (HT), has proven to be protective in terms of redox homeostatic balance and the reduction of inflammation. In this context, using a proteomic approach with nanoscale liquid chromatography coupled to tandem mass spectrometry, the present study analysed: (i) Changes in the proteome of dermal fibroblasts from a patient with FM versus a healthy control, and (ii) the effect of the treatment with a nutritional relevant dose of HT. Our results unveiled that fibroblast from FM show a differential expression in proteins involved in the turnover of extracellular matrix and oxidative metabolism that could explain the inflammatory status of these patients. Moreover, a number of these proteins results normalized by the treatment with HT. In conclusion, our results support that an HT-enriched diet could be highly beneficial in the management of FM.
Collapse
|
142
|
Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast strain, initial tyrosine concentration and initial must. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
143
|
Medina S, Domínguez-Perles R, Auñón D, Moine E, Durand T, Crauste C, Ferreres F, Gil-Izquierdo Á. Targeted Lipidomics Profiling Reveals the Generation of Hydroxytyrosol-Fatty Acids in Hydroxytyrosol-Fortified Oily Matrices: New Analytical Methodology and Cytotoxicity Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7789-7799. [PMID: 32603105 DOI: 10.1021/acs.jafc.0c01938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipophenols have been stressed as an emerging class of functional compounds. However, little is known about their diversity. Thus, this study is aimed at developing a new method for the extraction, cleanup, and ultrahigh-performance liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS)-based analysis of the lipophenols derived from hydroxytyrosol (HT): α-linolenic (HT-ALA), linoleic acid (HT-LA), and oleic acid (HT-OA). The method validated provides reliable analytical data and practical applications. It was applied to an array of oily (extra virgin olive oil, refined olive oil, flaxseed oil, grapeseed oil, and margarine) and aqueous (pineapple juice) matrices, nonfortified and fortified with HT. Also, the present work reported the formation of fatty acid esters of HT (HT-FAs) that seem to be closely dependent on the fatty acid profile of the food matrix, encouraging the further exploration of the theoretical basis for the generation of HT-FAs, as well as their contribution to the healthy attributions of plant-based foods.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - David Auñón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Espérance Moine
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Céline Crauste
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, 34093 Montpellier, France
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, Campus Los Jerónimos, s/n., 30107 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
144
|
Madureira J, Dias MI, Pinela J, Calhelha RC, Barros L, Santos-Buelga C, Margaça FMA, Ferreira ICFR, Cabo Verde S. The use of gamma radiation for extractability improvement of bioactive compounds in olive oil wastes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138706. [PMID: 32330728 DOI: 10.1016/j.scitotenv.2020.138706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Olive pomace is an environmentally detrimental waste from olive oil industry, containing large amounts of bioactive compounds that might be used by the food industry. In this work, the effects of gamma radiation on phenolic compounds and bioactive properties (antioxidant, antimicrobial activities and hepatotoxicity) of Crude Olive Pomace (COP) and Extracted Olive Pomace (EOP) extracts were evaluated. Hydroxytyrosol was the main phenolic compound identified in both olive pomace extracts (24-25 mg/g). The gamma radiation treatment of olive pomace improved at least 2-fold the extractability of phenolic compounds. Moreover, results suggested that gamma radiation at 5 kGy increased the antioxidant activity in EOP, while keeping the ability to protect erythrocytes against oxidation-induced haemolysis. Gamma radiation at 5 kGy could be a suitable technology for olive oil pomaces waste valorization, contributing to enhance extraction of phenolic compounds and bioactive properties, especially when applied on extracted material.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
145
|
Li P, Xiao Z, Sun J, Oyang X, Xie X, Li Z, Tian X, Li J. Metabolic regulations in lettuce root under combined exposure to perfluorooctanoic acid and perfluorooctane sulfonate in hydroponic media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138382. [PMID: 32481221 DOI: 10.1016/j.scitotenv.2020.138382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been detected in many agricultural products in contaminated fields and in supply chains. Roots are the main organ in plants to uptake and bio-accumulate PFASs, but the changes of metabolic regulation in roots by PFASs are largely unexplored. Here, lettuce exposed to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at different concentrations (500, 1000, 2000 and 5000 ng/L) was investigated via metabolomics. Many key metabolites, such as antioxidants, lipids, amino acids, fatty acids, carbohydrates, linolenic acid derivatives, purine and nucleosides, were significantly altered. Tyrosine metabolism, purine metabolism, isoquinoline alkaloid biosynthesis and terpenoid backbone biosynthesis were altered in roots by PFOA and PFOS. Tricarboxylic acid cycle was perturbed by 5000 ng/L exposure. Activation of antioxidant defense pathways, reallocation of carbon and nitrogen metabolism, regulation of energy metabolism and purine metabolism were reprogrammed in roots. Lettuce employed multiple strategies to increase tolerance to PFOA and PFOS, which includes the adjustment of membrane composition, elevation of inorganic nitrogen fixation and respiration, accumulation of sucrose and regulation of signaling molecules. The results of this study offer insights into the molecular reprogramming of plant roots in response to PFAS exposure and provide important information for the risk assessment of PFASs in environment.
Collapse
Affiliation(s)
- Pengyang Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China; Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China
| | - Zhiyong Xiao
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Jiang Sun
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xihui Oyang
- Laboratory of Quality and Safety Risk Assessments for Agro-products on Environmental Factors (Beijing), Ministry of Agriculture and Rural Affairs, 100029, China; Beijing Municipal Station of Agro-Environmental Monitoring, 100029, China
| | - Xiaocan Xie
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhifang Li
- Department of Vegetable Science, Beijing Key laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
146
|
Di Lecce G, Piochi M, Pacetti D, Frega NG, Bartolucci E, Scortichini S, Fiorini D. Eleven Monovarietal Extra Virgin Olive Oils from Olives Grown and Processed under the Same Conditions: Effect of the Cultivar on the Chemical Composition and Sensory Traits. Foods 2020; 9:foods9070904. [PMID: 32660116 PMCID: PMC7404457 DOI: 10.3390/foods9070904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Eleven Italian monovarietal extra virgin olive oils (MEVOOs) (Carboncella, Coratina, Frantoio, Leccino, Marzio, Maurino, Moraiolo, Piantone di Falerone, Pendolino, Rosciola, Sargano di Fermo) from olives grown in the same experimental olive orchard, under the same conditions (fertilization, irrigation), and processed with the same technology (three-way continuous plant) were investigated. As a result, the impact of the olive cultivar on fatty acid and triacylglycerols composition, oxidative stability, polar phenolic profile and sensory properties (panel test) of the oil was assessed. Pendolino, Maurino and Marzio oils presented the highest levels (p < 0.01) of palmitic, linoleic and linolenic acids % and the lowest oleic:linoleic ratio. Within triacylglycerols, triolein (OOO) strongly varied among the oils, with Coratina and Leccino having the highest content. Frantoio showed the lowest 1-Stearoyl-2-palmitoyl-3-oleylglycerol and 1,3-Distearoyl-2-oleylglycerol amounts. Rosciola showed the highest level (p < 0.01) for two of the most abundant secoiridoid derivatives (the dialdehydic forms of decarboxymethyl elenolic acid linked to hydroxytyrosol and tyrosol). A good correlation was found between total phenolic content and oxidative stability, indicating Marzio and Leccino respectively as the richest and poorest genotypes. Sensory variability among varieties was mainly linked to perceived bitterness, pungency and fruitiness, while no effects were found on secondary flavors.
Collapse
Affiliation(s)
- Giuseppe Di Lecce
- Independent Researcher, Expert in Food Science and Technology, 26100 Cremona, Italy;
| | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo, Italy;
| | - Deborah Pacetti
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
- Correspondence: ; Tel.: +39-07-1220-4307
| | - Natale G. Frega
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
| | - Edoardo Bartolucci
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
| | - Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, V.S. Agostino 1, I-62032 Camerino, Italy; (S.S.); (D.F.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V.S. Agostino 1, I-62032 Camerino, Italy; (S.S.); (D.F.)
| |
Collapse
|
147
|
Hydroxytyrosol Inhibits Protein Oligomerization and Amyloid Aggregation in Human Insulin. Int J Mol Sci 2020; 21:ijms21134636. [PMID: 32629793 PMCID: PMC7370040 DOI: 10.3390/ijms21134636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Hydroxytyrosol (HT), one of the main phenolic components of olive oil, has attracted considerable interest for its biological properties, including a remarkable antioxidant and anti-inflammatory power and, recently, for its ability to interfere with the amyloid aggregation underlying several human diseases. We report here a broad biophysical approach and cell biology techniques that allowed us to characterize the molecular mechanisms by which HT affects insulin amyloid aggregation and the related cytotoxicity. Our data show that HT is able to fully inhibit insulin amyloid aggregation and this property seems to be ascribed to the stabilization of the insulin monomeric state. Moreover, HT completely reverses the toxic effect produced by amyloid insulin aggregates in neuroblastoma cell lines by fully inhibiting the production of toxic amyloid species. These findings suggest that the beneficial effects of olive oil polyphenols, including HT, may arise from multifunctional activities and suggest possible a application of this natural compound in the prevention or treatment of amyloid-associated diseases.
Collapse
|
148
|
Delivery Systems for Hydroxytyrosol Supplementation: State of the Art. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review aims to highlight the benefits and limitations of the main colloid-based available delivery systems for hydroxytyrosol. Hydroxytyrosol is a phenolic compound with clear biological activities for human wellness. Olive fruits, leaves and extra-virgin oil are the main food sources of hydroxytyrosol. Moreover, olive oil mill wastewaters are considered a potential source to obtain hydroxytyrosol to use in the food industry. However, recovered hydroxytyrosol needs adequate formulations and delivery systems to increase its chemical stability and bioavailability. Therefore, the application of hydroxytyrosol delivery systems in food sector is still a fascinating challenge. Principal delivery systems are based on the use of colloids, polymers able to perform gelling, thickening and stabilizing functions in various industrial sectors, including food manufacturing. Here, we review the recipes for the available hydroxytyrosol systems and their relative production methods, as well as aspects relative to system characteristics and hydroxytyrosol effectiveness.
Collapse
|
149
|
Alemán-Jiménez C, Domínguez-Perles R, Medina S, Prgomet I, López-González I, Simonelli-Muñoz A, Campillo-Cano M, Auñón D, Ferreres F, Gil-Izquierdo Á. Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. Eur J Nutr 2020; 60:905-915. [PMID: 32524230 DOI: 10.1007/s00394-020-02295-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Several studies have demonstrated the properties of hydroxytyrosol, a phenolic compound present in olive oils and olives with a well-characterized impact on human health. Nevertheless, some knowledge gaps remain on its bioavailability and metabolism; overall concerning to the real rate per cent of absorption and biovailability of dietary hydroxytyrosol and the influence of the dietary food-containing hydroxytyrosol on it. METHODS A double-blind study was performed including 20 volunteers who ingested 5 mg of hydroxytyrosol through diverse food matrices, to discover the influence on pharmacokinetics and bioavailability of HT metabolites (hydroxytyrosol acetate, 3,4-dihydroxyphenylacetic acid (DOPAC), tyrosol, and homovanillic alcohol) of the distinct matrices by UHPLC-ESI-QqQ-MS/MS. RESULTS The HT pharmacokinetics after consumption of different food matrices was strongly dependent on the food matrix. In this aspect, the intake of extra virgin olive exhibited significantly higher plasma concentrations after 30 min of oral intake (3.79 ng/mL) relative to the control. Regarding the hydroxytyrosol bioavailability, the intake of extra virgin olive oil, as well as fortified refined olive, flax, and grapeseed oils provided significantly higher urinary contents (0.86, 0.63, 0.55, and 0.33 µg/mg creatinine, respectively) compared with basal urine, whereas hydroxytyrosol metabolites showed no significant changes. No differences were found between men and women. CONCLUSIONS The metabolic profile of hydroxytyrosol is influenced by the food matrix in which is incorporated, with the oily nature for the final bioavailability being relevant. Extra virgin olive oil was identified as the best matrix for this compound. The results described contribute to the understanding of the relevance of the food matrices for the final absorption of hydroxytyrosol and hence, the achievement of the highest health protection potential.
Collapse
Affiliation(s)
- Carolina Alemán-Jiménez
- E.U. Human and Dietetic Nutrition, San Antonio Catholic University, Campus Los Jerónimos, s/n, 30107, Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Edif. 25, 30100, Espinardo, Murcia, Spain.
| | - Iva Prgomet
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-Os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Iván López-González
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Agustín Simonelli-Muñoz
- E.U. Human and Dietetic Nutrition, San Antonio Catholic University, Campus Los Jerónimos, s/n, 30107, Murcia, Spain
| | - Maria Campillo-Cano
- E.U. Human and Dietetic Nutrition, San Antonio Catholic University, Campus Los Jerónimos, s/n, 30107, Murcia, Spain
| | - David Auñón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation Group (REM), San Antonio Catholic University, Campus Los Jerónimos, s/n, 30107, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
150
|
Liang J, Pitsillou E, Man AYL, Madzima S, Bresnehan SM, Nakai ME, Hung A, Karagiannis TC. Utilisation of the OliveNet™ Library to investigate phenolic compounds using molecular modelling studies in the context of Alzheimer's disease. Comput Biol Chem 2020; 87:107271. [PMID: 32521495 DOI: 10.1016/j.compbiolchem.2020.107271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that affects over 47 million people worldwide, and is the most common form of dementia. There is a vast body of literature demonstrating that the disease is caused by an accumulation of toxic extracellular amyloid-β (Aβ) peptides and intracellular neurofibrillary tangles that consist of hyperphosphorylated tau. Adherence to the Mediterranean diet has been shown to reduce the incidence of AD and the phenolic compounds in extra virgin olive oil, including oleocanthal, have gained a significant amount of attention. A large number of these ligands have been described in the pre-existing literature and 222 of these compounds have been characterised in the OliveNet™ database. In this study, molecular docking was used to screen the 222 phenolic compounds from the OliveNet™ database and assess their ability to bind to various forms of the Aβ and tau proteins. The phenolic ligands were found to be binding strongly to the hairpin-turn of the Aβ1-40 and Aβ1-42 monomers, and binding sites were also identified in the tau fibril protein structures. Luteolin-4'-O-rutinoside, oleuricine A, isorhoifolin, luteolin-7-O-rutinoside, cyanidin-3-O-rutinoside and luteolin-7,4-O-diglucoside were predicted to be novel lead compounds. Molecular dynamics (MD) simulations performed using well-known olive ligands bound to Aβ1-42 oligomers highlighted that future work may examine potential anti-aggregating properties of novel compounds in the OliveNet™ database. This may lead to the development and evaluation of new compounds that may have efficacy against Alzheimer's disease.
Collapse
Affiliation(s)
- Julia Liang
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; School of Science, RMIT University, VIC 3001, Australia
| | - Eleni Pitsillou
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Department of Microbiology and Immunology (Pathology), The University of Melbourne, Parkville, VIC 3052, Australia
| | - Abella Y L Man
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sibonginkosi Madzima
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Department of Microbiology and Immunology (Pathology), The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah M Bresnehan
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Department of Microbiology and Immunology (Pathology), The University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael E Nakai
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Department of Microbiology and Immunology (Pathology), The University of Melbourne, Parkville, VIC 3052, Australia
| | - Andrew Hung
- School of Science, RMIT University, VIC 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Prahran, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|