101
|
Prenatal exposure to a novel antipsychotic quetiapine: Impact on neuro‐architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats. Int J Dev Neurosci 2015; 42:59-67. [DOI: 10.1016/j.ijdevneu.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/31/2015] [Accepted: 02/21/2015] [Indexed: 01/28/2023] Open
|
102
|
Thornton C, Hagberg H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 2015; 451:35-8. [PMID: 25661091 PMCID: PMC4661434 DOI: 10.1016/j.cca.2015.01.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/26/2022]
Abstract
Hypoxic–ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure. Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. Hypoxia–ischemia creates a toxic intracellular environment including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition, hypoxia–ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed of RIP1, RIP3 and MLKL), both of which converge at the mitochondria. Hypoxic-ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure and excitotoxicity. Hypoxia-ischemia triggers accumulation of reactive oxygen species andintracellular calcium, which induces mitochondrial dysfunction. Mitochondrial impairment can cause Bax-dependent mitochondrial permeabilization, which triggers release of pro-apoptotic proteins and cell death. During the recovery phase, Inflammation is produced leading to death receptor activation and induction of necroptosis.
Collapse
Affiliation(s)
- Claire Thornton
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Perinatal Center, Department of Clinical Sciences & Physiology and Neuroscience, Sahlgrenska Academy, Gothenburg University, Sweden
| |
Collapse
|
103
|
Thatipamula S, Al Rahim M, Zhang J, Hossain MA. Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia. Neurobiol Dis 2014; 75:15-30. [PMID: 25554688 DOI: 10.1016/j.nbd.2014.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is a leading cause of mortality and morbidity in infants and children for which there is no promising therapy at present. Previously, we reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of the long-pentraxin family, following HI injury in neonatal brain. Here, we report that genetic deletion of NP1 expression prevents HI injury in neonatal brain. Elevated expression of NP1 was observed in neurons, not in astrocytes, of the ipsilateral cortical layers (I-IV) and in the hippocampal CA1 and CA3 areas of WT brains following hypoxia-ischemia; brain areas that developed infarcts (at 24-48 h), showed significantly increased numbers of TUNEL-(+) cells and tissue loss (at 7 days). In contrast, NP1-KO mice showed no evidence of brain infarction and tissue loss after HI. The immunofluorescence staining of brain sections with mitochondrial protein COX IV and subcellular fractionation analysis showed increased accumulation of NP1 in mitochondria, pro-death protein Bax activation and NP1 co-localization with activated caspase-3 in WT, but not in the NP1-KO brains; corroborating NP1 interactions with the mitochondria-derived pro-death pathways. Disruption of NP1 translocation to mitochondria by NP1-siRNA in primary cortical cultures significantly reduced ischemic neuronal death. NP1 was immunoprecipitated with activated Bax [6A7] proteins; HI caused increased interactions of NP1 with Bax, thereby, facilitating Bax translocation to mitochondrial and neuronal death. To further delineate the specificity of NPs, we found that NP1 but not the NP2 induction is specifically involved in brain injury mechanisms and that knockdown of NP1 only results in neuroprotection. Furthermore, live in vivo T2-weighted magnetic resonance imaging (MRI) including fractional anisotropy (FA) mapping showed no sign of delayed brain injury or tissue loss in the NP1-KO mice as compared to the WT at different post-HI periods (4-24 weeks) examined; indicating a long-term neuroprotective efficacy of NP1 gene deletion. Collectively, our results demonstrate a novel mechanism of neuronal death and predict that inhibition of NP1 expression is a promising strategy to prevent hypoxic-ischemic injury in immature brain.
Collapse
Affiliation(s)
| | - Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mir Ahamed Hossain
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
104
|
Koh PO. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury. Neurosci Lett 2014; 588:18-23. [PMID: 25543028 DOI: 10.1016/j.neulet.2014.12.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
Abstract
Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, South Korea.
| |
Collapse
|
105
|
Singh M, Singh K, Shukla S, Dikshit M. Assessment of
in‐utero
venlafaxine induced, ROS‐mediated, apoptotic neurodegeneration in fetal neocortex and neurobehavioral sequelae in rat offspring. Int J Dev Neurosci 2014; 40:60-9. [DOI: 10.1016/j.ijdevneu.2014.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/18/2023] Open
Affiliation(s)
- Manish Singh
- Institute of Nano Science and TechnologyMohaliIndia
| | - K.P. Singh
- Neurobiology LabDepartment of ZoologyUniversity of AllahabadAllahabadIndia
| | | | | |
Collapse
|
106
|
Tang Q, Han R, Xiao H, Li J, Shen J, Luo Q. Protective effect of tanshinone IIA on the brain and its therapeutic time window in rat models of cerebral ischemia-reperfusion. Exp Ther Med 2014; 8:1616-1622. [PMID: 25289069 PMCID: PMC4186358 DOI: 10.3892/etm.2014.1936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022] Open
Abstract
The aims of the present study were to investigate the protective effect of tanshinone IIA on the brain and its therapeutic time window in a rat model of cerebral ischemia-reperfusion. The rat model of cerebral ischemia-reperfusion was established by suture occlusion. In an initial experiment, male Sprague-Dawley (SD) rats were randomly divided into control cerebral ischemia-reperfusion rat model, tanshinone IIA1 (TSA1), tanshinone IIA4 (TSA4), tanshinone IIA6 (TSA6) and tanshinone IIA12 (TSA12) groups (n=8 per group). The rats in the control group were given 4 ml phosphate-buffered saline (PBS) intraperitoneally following suture occlusion. The other groups were respectively treated with 25 mg/kg tanshinone IIA intraperitoneally at 1, 4, 6 and 12 h following the initiation of reperfusion and once a day for a total of three days. The grades of neurologic impairment and volume of cerebral infarction of each group were measured 72 h after suture occlusion. In another experiment, 16 male SD rats were randomly divided into a 6 h reperfusion group and a 24 h reperfusion group following drug administration. The rats in each group were further divided into a control subgroup (4 ml PBS) and a tanshinone IIA subgroup (25 mg/kg). The rats were immediately administered their respective treatments following the establishment of the model. The rats were decapitated 6 and 24 h after the initiation of reperfusion. The expression levels of cytoplasmic thioredoxin (Trx-1) and mitochondrial thioredoxin (Trx-2) in the ischemic penumbra were determined by western blot analysis. The nitric oxide (NO) levels, and total NO synthase (tNOS) and inducible NO synthase (iNOS) activities in the rat blood were measured using a reagent kit. The changes in cerebral blood flow were evaluated by Doppler imaging. The grade of neurological impairment of the TSA1 group was statistically lower than that of the other groups (P<0.05). The cerebral infarction volume results showed that the volumes of infarction in the TSA1 and TSA4 groups were lower than those in the other groups (P<0.05). Tanshinone IIA significantly increased cerebral blood flow compared with that of the control group (P<0.05). Moreover, tanshinone IIA significantly increased the expression levels of Trx-1 and Trx-2 compared with those in the control group (P<0.05). Tanshinone IIA significantly decreased the NO levels and iNOS and tNOS activities compared with those of the control group (P<0.05). However, the iNOS activity in the rats in the 6 h reperfusion group was not statistically significantly different from that of the respective control group (P>0.05). Tanshinone IIA has a protective effect on the cranial nerves when administered during the initial stages of cerebral ischemia. This protective effect is associated with an improvement of cerebral blood flow as well as an increase in anti-oxygen radical and anti-inflammatory activities.
Collapse
Affiliation(s)
- Qiqiang Tang
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruodong Han
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Han Xiao
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jilong Shen
- Institute of Clinical Pharmacology, Anhui Medical University, The Key Laboratories of Zoonoses and Pathogen Biology, Hefei, Anhui 230022, P.R. China
| | - Qingli Luo
- Institute of Clinical Pharmacology, Anhui Medical University, The Key Laboratories of Zoonoses and Pathogen Biology, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
107
|
Kuzmanić Šamija R, Primorac D, Rešić B, Pavlov V, Čapkun V, Punda H, Lozić B, Zemunik T. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy. Braz J Med Biol Res 2014; 47:869-75. [PMID: 25140814 PMCID: PMC4181222 DOI: 10.1590/1414-431x20143938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/02/2014] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.
Collapse
Affiliation(s)
| | - D Primorac
- School of Medicine Split, University of Split, Split, Croatia
| | - B Rešić
- School of Medicine Split, University of Split, Split, Croatia
| | - V Pavlov
- Department of Neonatology, University Hospital Split, Split, Croatia
| | - V Čapkun
- Department of Nuclear Medicine, University Hospital Split, Split, Croatia
| | - H Punda
- School of Medicine Split, University of Split, Split, Croatia
| | - B Lozić
- Department of Pediatrics, University Hospital Split, Split, Croatia
| | - T Zemunik
- Department of Medical Biology, School of Medicine Split, University of Split, Split, Croatia
| |
Collapse
|
108
|
Sheldon RA, Lee CL, Jiang X, Knox RN, Ferriero DM. Hypoxic preconditioning protection is eliminated in HIF-1α knockout mice subjected to neonatal hypoxia-ischemia. Pediatr Res 2014; 76:46-53. [PMID: 24713818 PMCID: PMC4167022 DOI: 10.1038/pr.2014.53] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/16/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoxic preconditioning (HPc) protects the neonatal brain in the setting of hypoxia-ischemia (HI). The mechanisms of protection may depend on activation of hypoxia-inducible factor (HIF-1α). This study sought to clarify the role of HIF-1α after HPc and HI. METHODS To induce HPc, HIF-1α knockout and wild-type (WT) mice were exposed to hypoxia at postnatal day 6. At day 7, the mice underwent HI. Brain injury was determined by histology. HIF-1α, downstream targets, and markers of cell death were measured by western blot. RESULTS HPc protected the WT brain compared with WT without HPc, but did not protect the HIF-1α knockout brain. In WT, HIF-1α increased after hypoxia and after HI, but not with HPc. The HIF-1α knockout showed no change in HIF-1α after hypoxia, HI, or HPc/HI. After HI, spectrin 145/150 was higher in HIF-1α knockout, but after HPc/HI, it was higher in WT. Lysosome-associated membrane protein was higher in WT early after HI, but not later. After HPc/HI, lysosome-associated membrane protein was higher in HIF-1α knockout. CONCLUSION These results indicate that HIF-1α is necessary for HPc protection in the neonatal brain and may affect cell death after HI. Different death and repair mechanisms depend on the timing of HPc.
Collapse
Affiliation(s)
- R. Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Christina L. Lee
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
| | - Xiangning Jiang
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Renatta N. Knox
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, US
- Newborn Brain Research Institute, University of California San Francisco, San Francisco, CA, US
- Department of Neurology, University of California San Francisco, San Francisco, CA, US
| |
Collapse
|
109
|
Akamatsu T, Dai H, Mizuguchi M, Goto YI, Oka A, Itoh M. LOX-1 Is a Novel Therapeutic Target in Neonatal Hypoxic-Ischemic Encephalopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1843-52. [DOI: 10.1016/j.ajpath.2014.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/31/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
|
110
|
Back SA, Rosenberg PA. Pathophysiology of glia in perinatal white matter injury. Glia 2014; 62:1790-815. [PMID: 24687630 DOI: 10.1002/glia.22658] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/13/2014] [Accepted: 02/27/2014] [Indexed: 12/12/2022]
Abstract
Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants.
Collapse
Affiliation(s)
- Stephen A Back
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon; Department of Neurology, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
111
|
Neuroprotective Effect of Diphenyl Diselenide in a Experimental Stroke Model: Maintenance of Redox System in Mitochondria of Brain Regions. Neurotox Res 2014; 26:317-30. [DOI: 10.1007/s12640-014-9463-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 01/07/2023]
|
112
|
Strickland AD. Prevention of cerebral palsy, autism spectrum disorder, and attention deficit-hyperactivity disorder. Med Hypotheses 2014; 82:522-8. [PMID: 24581674 DOI: 10.1016/j.mehy.2014.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 12/31/2022]
Abstract
This hypothesis states that cerebral palsy (CP), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD) are all caused by an exaggerated central nervous system inflammatory response to a prenatal insult. This prenatal insult may be one or more episodes of ischemia-reperfusion, an infectious disease of the mother or the fetus, or other causes of maternal inflammation such as allergy or autoimmune disease. The resultant fetal inflammatory hyper-response injures susceptible neurons in the developing white matter of the brain in specific areas at specific gestational ages. The exaggerated neuroinflammatory response is theorized to occur between about 19 and 34 post-conception weeks for CP, about 32 and 40 weeks for ADHD, and about 36 and 48 weeks (i.e. 2 months after delivery) for ASD. The exaggerated inflammatory response is hypothesized to occur because present diets limit intake of effective antioxidants and omega-3 polyunsaturated fatty acids while increasing intake of omega-6 polyunsaturated fatty acids. Oxidation products of the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) limit neuroinflammation while oxidation products of the omega-6 fatty acid arachidonic acid exacerbate inflammation. Preventative treatment should begin in all pregnant women during the first trimester and should include both DHA and an effective antioxidant for prevention of neuroinflammation. The suggested antioxidant would be N-acetylcysteine, though melatonin could be chosen instead. Combined DHA and NAC therapy is theorized to decrease the incidence of the three disorders by more than 75%.
Collapse
|
113
|
Sharma J, Johnston MV, Hossain MA. Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neurosci 2014; 15:9. [PMID: 24410996 PMCID: PMC3898007 DOI: 10.1186/1471-2202-15-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/31/2013] [Indexed: 12/05/2022] Open
Abstract
Background Mitochondrial dysfunction has been linked to neuronal death and a wide array of neurodegenerative diseases. Previously, we have shown sex differences in mitochondria-mediated cell death pathways following hypoxia-ischemia. However, the role of mitochondrial biogenesis in hypoxic-ischemic brain injury between male vs. female has not been studied yet. Results Primary cerebellar granule neurons (CGNs), isolated from P7 male and female mice (CD-1) segregated based on visual inspection of sex, were exposed to 2 h of oxygen glucose deprivation (OGD) followed by 6–24 h of reoxygenation (Reox). Mitochondrial membrane potential (ΔΨm) and cellular ATP levels were reduced significantly in XX CGNs as compared to XY CGNs. Mitochondrial DNA (mtDNA) content was increased (>2-fold) at 2 h OGD in XY CGNs and remained increased up to 24 h of Reox compared to XX neurons and normoxia controls. The expression of mitochondrial transcription factor A (Tfam), the nuclear respiratory factor-1 (NRF-1) and the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, were up-regulated (2-fold, ***p < 0.001) in XY CGNs but slightly reduced or remained unchanged in XX neurons. Similarly, the TFAM and PGC-1α protein levels and the mitochondrial proteins HSP60 and COXIV were increased in XY neurons only. Supportively, a balanced stimulation of fusion (Mfn 1and Mfn 2) and fission (Fis 1 and Drp 1) genes and enhanced formation of donut-shaped mitochondria were observed in XY CGNs vs. XX neurons (**p < 0.01). Conclusions Our results demonstrate that OGD/Reox alters mitochondrial biogenesis and morphological changes in a sex-specific way, influencing neuronal injury/survival differently in both sexes.
Collapse
Affiliation(s)
| | | | - Mir Ahamed Hossain
- Department of Neurology, The Hugo W, Moser Research Institute at Kennedy Krieger, Baltimore, MD, USA.
| |
Collapse
|
114
|
Donoso P, Finkelstein JP, Montecinos L, Said M, Sánchez G, Vittone L, Bull R. Stimulation of NOX2 in isolated hearts reversibly sensitizes RyR2 channels to activation by cytoplasmic calcium. J Mol Cell Cardiol 2014; 68:38-46. [PMID: 24417961 DOI: 10.1016/j.yjmcc.2013.12.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/25/2013] [Accepted: 12/31/2013] [Indexed: 01/25/2023]
Abstract
The response of ryanodine receptor (RyR) channels to cytoplasmic free calcium concentration ([Ca(2+)]) is redox sensitive. Here, we report the effects of a mild oxidative stress on cardiac RyR (RyR2) channels in Langendorff perfused rat hearts. Single RyR2 channels from control ventricles displayed the same three responses to Ca(2+) reported in other mammalian tissues, characterized by low, moderate, or high maximal activation. A single episode of 5 min of global ischemia, followed by 1 min of reperfusion, enhanced 2.3-fold the activity of NOX2 compared to controls and changed the frequency distribution of the different responses of RyR2 channels to calcium, favoring the more active ones: high activity response increased and low activity response decreased with respect to controls. This change was fully prevented by perfusion with apocynin or VAS 2870 before ischemia and totally reversed by the extension of the reperfusion period to 15 min. In vitro activation of NOX2 in control SR vesicles mimicked the effect of the ischemia/reperfusion episode on the frequencies of emergence of single RyR2 channel responses to [Ca(2+)] and increased 2.2-fold the rate of calcium release in Ca(2+)-loaded SR vesicles. In vitro changes were reversed at the single channel level by DTT and in isolated SR vesicles by glutaredoxin. Our results indicate that in whole hearts a mild oxidative stress enhances the response of cardiac RyR2 channels to calcium via NOX2 activation, probably by S-glutathionylation of RyR2 protein. This change is transitory and fully reversible, suggesting a possible role of redox modification in the physiological response of cardiac RyR2 to cellular calcium influx.
Collapse
Affiliation(s)
- Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - José Pablo Finkelstein
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Matilde Said
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, Argentina
| | - Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Leticia Vittone
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, Argentina
| | - Ricardo Bull
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
115
|
Bhalala US, Koehler RC, Kannan S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr 2014; 2:144. [PMID: 25642419 PMCID: PMC4294124 DOI: 10.3389/fped.2014.00144] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022] Open
Abstract
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
Collapse
Affiliation(s)
- Utpal S Bhalala
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Raymond C Koehler
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Sujatha Kannan
- Department of Anesthesiology, Johns Hopkins University School of Medicine , Baltimore, MD , USA ; Department of Critical Care Medicine, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| |
Collapse
|
116
|
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2013; 106-107:1-16. [PMID: 23583307 PMCID: PMC3737272 DOI: 10.1016/j.pneurobio.2013.04.001] [Citation(s) in RCA: 1468] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/03/2013] [Accepted: 04/03/2013] [Indexed: 12/13/2022]
Abstract
Hypoxic-ischemic and traumatic brain injuries are leading causes of long-term mortality and disability in infants and children. Although several preclinical models using rodents of different ages have been developed, species differences in the timing of key brain maturation events can render comparisons of vulnerability and regenerative capacities difficult to interpret. Traditional models of developmental brain injury have utilized rodents at postnatal day 7-10 as being roughly equivalent to a term human infant, based historically on the measurement of post-mortem brain weights during the 1970s. Here we will examine fundamental brain development processes that occur in both rodents and humans, to delineate a comparable time course of postnatal brain development across species. We consider the timing of neurogenesis, synaptogenesis, gliogenesis, oligodendrocyte maturation and age-dependent behaviors that coincide with developmentally regulated molecular and biochemical changes. In general, while the time scale is considerably different, the sequence of key events in brain maturation is largely consistent between humans and rodents. Further, there are distinct parallels in regional vulnerability as well as functional consequences in response to brain injuries. With a focus on developmental hypoxic-ischemic encephalopathy and traumatic brain injury, this review offers guidelines for researchers when considering the most appropriate rodent age for the developmental stage or process of interest to approximate human brain development.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sweden
- Department of Pediatrics, Queen Silvia's Children's Hospital, University of Gothenburg, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Q2:07, SE 171 76 Stockholm, Sweden
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
| | - Donna M. Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, 513 Parnassus Avenue, Room HSE-722, San Francisco, CA 94143-0112, USA
- Department of Physical Therapy and Rehabilitation Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
117
|
Galkina OV. The specific features of free-radical processes and the antioxidant defense in the adult brain. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413020025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Powers CM, Bale AS, Kraft AD, Makris SL, Trecki J, Cowden J, Hotchkiss A, Gillespie PA. Developmental neurotoxicity of engineered nanomaterials: identifying research needs to support human health risk assessment. Toxicol Sci 2013; 134:225-42. [PMID: 23708405 DOI: 10.1093/toxsci/kft109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increasing use of engineered nanomaterials (ENM) in consumer products and commercial applications has helped drive a rise in research related to the environmental health and safety (EHS) of these materials. Within the cacophony of information on ENM EHS to date are data indicating that these materials may be neurotoxic in adult animals. Evidence of elevated inflammatory responses, increased oxidative stress levels, alterations in neuronal function, and changes in cell morphology in adult animals suggests that ENM exposure during development could elicit developmental neurotoxicity (DNT), especially considering the greater vulnerability of the developing brain to some toxic insults. In this review, we examine current findings related to developmental neurotoxic effects of ENM in the context of identifying research gaps for future risk assessments. The basic risk assessment paradigm is presented, with an emphasis on problem formulation and assessments of exposure, hazard, and dose response for DNT. Limited evidence suggests that in utero and postpartum exposures are possible, while fewer than 10 animal studies have evaluated DNT, with results indicating changes in synaptic plasticity, gene expression, and neurobehavior. Based on the available information, we use current testing guidelines to highlight research gaps that may inform ENM research efforts to develop data for higher throughput methods and future risk assessments for DNT. Although the available evidence is not strong enough to reach conclusions about DNT risk from ENM exposure, the data indicate that consideration of ENM developmental neurotoxic potential is warranted.
Collapse
Affiliation(s)
- Christina M Powers
- Office of Research and Development, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Marks KA. Hypoxic–ischemic brain injury and neuroprotection in the newborn infant. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent clinical trials have confirmed that in term infants with moderate-to-severe hypoxic–ischemic encephalopathy, death and severe developmental disability can be reduced by early treatment with hypothermia. However, meta-analysis of these trials has confirmed that two-thirds of the survivors remain seriously impaired. The search for new neuroprotective interventions has therefore continued. Extensive research has identified the important biochemical pathways that result in neuronal loss, and the subsequent repair and regeneration processes. The most promising neuroprotective agents that limit the former, and promote the latter, are being tested in animal models of hypoxic–ischemic brain injury and are awaiting clinical trials. It is likely that a ‘cocktail’ of agents, affecting a number of pathways, will ultimately prove to be the most effective intervention. The latest additions to a long list of proposed substances are various stem cells that promote neurogenesis by releasing trophic substances into the injured brain. Future clinical trials are likely to employ early biomarkers, of which MRI and proton spectroscopy are probably the most predictive of long-term neurodevelopmental outcome. In conclusion, the exponential increase in knowledge in this field can be expected to provide many more neuroprotective agents within the next decade.
Collapse
Affiliation(s)
- Kyla-Anna Marks
- Department of Neonatal Medicine, Soroka University Medical Centre, PO Box 151, Beersheva, Israel
| |
Collapse
|
120
|
Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci 2013; 14:9379-95. [PMID: 23629670 PMCID: PMC3676788 DOI: 10.3390/ijms14059379] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023] Open
Abstract
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Collapse
|
121
|
Olsen RHJ, Johnson LA, Zuloaga DG, Limoli CL, Raber J. Enhanced hippocampus-dependent memory and reduced anxiety in mice over-expressing human catalase in mitochondria. J Neurochem 2013; 125:303-13. [PMID: 23383735 PMCID: PMC3676474 DOI: 10.1111/jnc.12187] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/05/2013] [Accepted: 01/31/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT-generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5- to 6-month-old mice over-expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus-dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8-hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over-expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.
Collapse
Affiliation(s)
- Reid H J Olsen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Lance A Johnson
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Damian G Zuloaga
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles L Limoli
- Department of Radiation Oncology and Cancer Research Institute, University of California, Irvine, California, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
- Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
- Division of Neuroscience, ONPRC, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
122
|
Honoré JC, Kooli A, Hamel D, Alquier T, Rivera JC, Quiniou C, Hou X, Kermorvant-Duchemin E, Hardy P, Poitout V, Chemtob S. Fatty acid receptor Gpr40 mediates neuromicrovascular degeneration induced by transarachidonic acids in rodents. Arterioscler Thromb Vasc Biol 2013; 33:954-61. [PMID: 23520164 DOI: 10.1161/atvbaha.112.300943] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Nitro-oxidative stress exerts a significant role in the genesis of hypoxic-ischemic (HI) brain injury. We previously reported that the ω-6 long chain fatty acids, transarachidonic acids (TAAs), which are nitrative stress-induced nonenzymatically generated arachidonic acid derivatives, trigger selective microvascular endothelial cell death in neonatal neural tissue. The primary molecular target of TAAs remains unidentified. GPR40 is a G protein-coupled receptor activated by long chain fatty acids, including ω-6; it is highly expressed in brain, but its functions in this tissue are largely unknown. We hypothesized that TAAs play a significant role in neonatal HI-induced cerebral microvascular degeneration through GPR40 activation. APPROACH AND RESULTS Within 24 hours of a HI insult to postnatal day 7 rat pups, a cerebral infarct and a 40% decrease in cerebrovascular density was observed. These effects were associated with an increase in nitrative stress markers (3-nitrotyrosine immunoreactivity and TAA levels) and were reduced by treatment with nitric oxide synthase inhibitor. GPR40 was expressed in rat pup brain microvasculature. In vitro, in GPR40-expressing human embryonic kidney (HEK)-293 cells, [(14)C]-14E-AA (radiolabeled TAA) bound specifically, and TAA induced calcium transients, extracellular signal-regulated kinase 1/2 phosphorylation, and proapoptotic thrombospondin-1 expression. In vivo, intracerebroventricular injection of TAAs triggered thrombospondin-1 expression and cerebral microvascular degeneration in wild-type mice, but not in GPR40-null congeners. Additionally, HI-induced neurovascular degeneration and cerebral infarct were decreased in GPR40-null mice. CONCLUSIONS GPR40 emerges as the first identified G protein-coupled receptor conveying actions of nonenzymatically generated nitro-oxidative products, specifically TAAs, and is involved in (neonatal) HI encephalopathy.
Collapse
Affiliation(s)
- Jean-Claude Honoré
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Shim SY, Kim HS. Oxidative stress and the antioxidant enzyme system in the developing brain. KOREAN JOURNAL OF PEDIATRICS 2013; 56:107-11. [PMID: 23559971 PMCID: PMC3611043 DOI: 10.3345/kjp.2013.56.3.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 12/17/2012] [Indexed: 12/02/2022]
Abstract
Preterm infants are vulnerable to the oxidative stress due to the production of large amounts of free radicals, antioxidant system insufficiency, and immature oligodendroglial cells. Reactive oxygen species (ROS) play a pivotal role in the development of periventricular leukomalacia. The three most common ROS are superoxide (O2•-), hydroxyl radical (OH•), and hydrogen peroxide (H2O2). Under normal physiological conditions, a balance is maintained between the production of ROS and the capacity of the antioxidant enzyme system. However, if this balance breaks down, ROS can exert toxic effects. Superoxide dismutase, glutathione peroxidase, and catalase are considered the classical antioxidant enzymes. A recently discovered antioxidant enzyme family, peroxiredoxin (Prdx), is also an important scavenger of free radicals. Prdx1 expression is induced at birth, whereas Prdx2 is constitutively expressed, and Prdx6 expression is consistent with the classical antioxidant enzymes. Several antioxidant substances have been studied as potential therapeutic agents; however, further preclinical and clinical studies are required before allowing clinical application.
Collapse
Affiliation(s)
- So-Yeon Shim
- Division of Neonatology, Department of Pediatrics, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | | |
Collapse
|
124
|
Lara-Celador I, Goñi-de-Cerio F, Alvarez A, Hilario E. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury. Neural Regen Res 2013; 8:731-44. [PMID: 25206720 PMCID: PMC4146074 DOI: 10.3969/j.issn.1673-5374.2013.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/07/2013] [Indexed: 12/30/2022] Open
Abstract
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- I. Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| | - F. Goñi-de-Cerio
- GAIKER Technology Centre, Bizkaia Science and Technology Park, Building 202, Zamudio 48170, Bizkaia, Spain
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa 48949, Bizkaia, Spain
| |
Collapse
|
125
|
Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger PL, Gressens P, Renolleau S, Baud O. Nitric oxide signaling in the brain: A new target for inhaled nitric oxide? Ann Neurol 2013; 73:442-8. [DOI: 10.1002/ana.23842] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/24/2012] [Accepted: 12/21/2012] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Hoa Pham
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | - Gauthier Loron
- Paris Diderot University, Sorbonne Paris Cité, INSERM U676; Paris; France
| | | | | | | | | |
Collapse
|
126
|
Cerio FGD, Lara-Celador I, Alvarez A, Hilario E. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury. Brain Sci 2013; 3:191-214. [PMID: 24961314 PMCID: PMC4061821 DOI: 10.3390/brainsci3010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Felipe Goñi de Cerio
- Biotechnology Area, GAIKER Technology Centre, Parque Tecnológico de Zamudio Ed 202, 48170 Zamudio, Vizcaya, Spain.
| | - Idoia Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| |
Collapse
|
127
|
Blomgren K, Hagberg H. Injury and repair in the immature brain. Transl Stroke Res 2013; 4:135-6. [PMID: 24323273 DOI: 10.1007/s12975-013-0256-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden,
| | | |
Collapse
|
128
|
Lobo N, Yang B, Rizvi M, Ma D. Hypothermia and xenon: Novel noble guardians in hypoxic-ischemic encephalopathy? J Neurosci Res 2013; 91:473-8. [DOI: 10.1002/jnr.23178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/25/2012] [Accepted: 10/19/2012] [Indexed: 01/13/2023]
|
129
|
Castaño Guerrero Y, González Fraguela M, Fernández Verdecia I, Horruitiner Gutiérrez I, Piedras Carpio S. Changes in oxidative metabolism and memory and learning in a cerebral hypoperfusion model in rats. NEUROLOGÍA (ENGLISH EDITION) 2013. [DOI: 10.1016/j.nrleng.2012.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
130
|
Sabir H, Scull-Brown E, Liu X, Thoresen M. Immediate Hypothermia Is Not Neuroprotective After Severe Hypoxia-Ischemia and Is Deleterious When Delayed by 12 Hours in Neonatal Rats. Stroke 2012; 43:3364-70. [DOI: 10.1161/strokeaha.112.674481] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hemmen Sabir
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Emma Scull-Brown
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Xun Liu
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| | - Marianne Thoresen
- From the School of Clinical Sciences, University of Bristol, St Michael’s Hospital, Bristol, United Kingdom (H.S., E.S.-B., X.L., M.T.); Department of Physiology, University of Oslo, Institute of Basic Medical Sciences, Oslo, Norway (M.T.)
| |
Collapse
|
131
|
Pan R, Rong Z, She Y, Cao Y, Chang LW, Lee WH. Sodium pyruvate reduces hypoxic-ischemic injury to neonatal rat brain. Pediatr Res 2012; 72:479-89. [PMID: 22885415 PMCID: PMC3596790 DOI: 10.1038/pr.2012.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to HI, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy, but its effects have not been evaluated in appropriate animal models for hypoxic-ischemic encephalopathy. METHODS This investigation used primary cortical neuron cultures derived from neonatal rats subjected to oxygen and glucose deprivation (OGD) and a well-established neonatal rat HI model. RESULTS HI caused brain tissue loss and impaired sensorimotor function and spatial memory whereas SP significantly reduced brain damage and improved neurological performance. These neuroprotective effects of SP are likely the result of improved cerebral metabolism as demonstrated by maintaining adenosine triphosphate (ATP) levels and preventing an increase in intracellular reactive oxygen species (ROS) levels. SP treatment also decreased levels of Bax, a death signal for immature neurons, blocked caspase-3 activation, and activated a key survival signaling kinase, Akt, both in vitro and in vivo. CONCLUSION SP protected neonatal brain from hypoxic-ischemic injury through maintaining cerebral metabolism and mitochondrial function.
Collapse
Affiliation(s)
- Rui Pan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Zhihui Rong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Yun She
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Yuan Cao
- Department of General Surgery, Pu Ai Hospital of Wuhan City, Hubei, China 430033
| | - Li-Wen Chang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China 430030
| | - Wei-Hua Lee
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
132
|
Inhaled Nitric Oxide Protects Males But not Females from Neonatal Mouse Hypoxia–Ischemia Brain Injury. Transl Stroke Res 2012; 4:201-7. [DOI: 10.1007/s12975-012-0217-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/22/2022]
|
133
|
Al Rahim M, Thatipamula S, Hossain MA. Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury. Neurobiol Dis 2012; 50:59-68. [PMID: 23069675 DOI: 10.1016/j.nbd.2012.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/07/2012] [Accepted: 10/03/2012] [Indexed: 12/24/2022] Open
Abstract
Developing brain is highly susceptible to hypoxic-ischemic (HI) injury leading to severe neurological disabilities in surviving infants and children. Previously, we have reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of long-pentraxin family, following HI neuronal injury. Here, we investigated how this specific signal is propagated to cause the HI neuronal death. We used wild-type (WT) and NP1 knockout (NP1-KO) mouse hippocampal cultures, modeled in vitro following exposure to oxygen glucose deprivation (OGD), and in vivo neonatal (P9-10) mouse model of HI brain injury. Our results show induction of NP1 in primary hippocampal neurons following OGD exposure (4-8 h) and in the ipsilateral hippocampal CA1 and CA3 regions at 24-48 h post-HI compared to the contralateral side. We also found increased PTEN activity concurrent with OGD time-dependent (4-8 h) dephosphorylation of Akt (Ser473) and GSK-3β (Ser9). OGD also caused a time-dependent decrease in the phosphorylation of Bad (Ser136), and Bax protein levels. Immunofluorescence staining and subcellular fractionation analyses revealed increased mitochondrial translocation of Bad and Bax proteins from cytoplasm following OGD (4 h) and simultaneously increased release of Cyt C from mitochondria followed by activation of caspase-3. NP1 protein was immunoprecipitated with Bad and Bax proteins; OGD caused increased interactions of NP1 with Bad and Bax, thereby, facilitating their mitochondrial translocation and dissipation of mitochondrial membrane potential (ΔΨ(m)). This NP1 induction preceded the increased mitochondrial release of cytochrome C (Cyt C) into the cytosol, activation of caspase-3 and OGD time-dependent cell death in WT primary hippocampal neurons. In contrast, in NP1-KO neurons there was no translocation of Bad and Bax from cytosol to the mitochondria, and no evidence of ΔΨ(m) loss, increased Cyt C release and caspase-3 activation following OGD; which resulted in significantly reduced neuronal death. Our results indicate a regulatory role of NP1 in Bad/Bax-dependent mitochondrial release of Cyt C and caspase-3 activation. Together our findings demonstrate a novel mechanism by which NP1 regulates mitochondria-driven hippocampal cell death; suggesting NP1 as a potential therapeutic target against HI brain injury in neonates.
Collapse
Affiliation(s)
- Md Al Rahim
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
134
|
Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci 2012; 13:11718-11752. [PMID: 23109880 PMCID: PMC3472772 DOI: 10.3390/ijms130911718] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/31/2012] [Accepted: 09/06/2012] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disabling disease of the central nervous system commonly affecting young adults. Pathologically, there are patches of inflammation (plaques) with demyelination of axons and oligodendrocyte loss. There is a global latitude gradient in MS prevalence, and incidence of MS is increasing (particularly in females). These changes suggest a major role for environmental factors in causation of disease. We have reviewed the evidence and potential mechanisms of action for three exposures: vitamin D, Epstein Barr virus and cigarette smoking. Recent advances supporting gene-environment interactions are reviewed. Further research is needed to establish mechanisms of causality in humans and to explore preventative strategies.
Collapse
|
135
|
Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One 2012; 7:e43178. [PMID: 22912820 PMCID: PMC3422282 DOI: 10.1371/journal.pone.0043178] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 07/20/2012] [Indexed: 01/26/2023] Open
Abstract
A broad spectrum of beneficial effects has been ascribed to creatine (Cr), phosphocreatine (PCr) and their cyclic analogues cyclo-(cCr) and phospho-cyclocreatine (PcCr). Cr is widely used as nutritional supplement in sports and increasingly also as adjuvant treatment for pathologies such as myopathies and a plethora of neurodegenerative diseases. Additionally, Cr and its cyclic analogues have been proposed for anti-cancer treatment. The mechanisms involved in these pleiotropic effects are still controversial and far from being understood. The reversible conversion of Cr and ATP into PCr and ADP by creatine kinase, generating highly diffusible PCr energy reserves, is certainly an important element. However, some protective effects of Cr and analogues cannot be satisfactorily explained solely by effects on the cellular energy state. Here we used mainly liposome model systems to provide evidence for interaction of PCr and PcCr with different zwitterionic phospholipids by applying four independent, complementary biochemical and biophysical assays: (i) chemical binding assay, (ii) surface plasmon resonance spectroscopy (SPR), (iii) solid-state 31P-NMR, and (iv) differential scanning calorimetry (DSC). SPR revealed low affinity PCr/phospholipid interaction that additionally induced changes in liposome shape as indicated by NMR and SPR. Additionally, DSC revealed evidence for membrane packing effects by PCr, as seen by altered lipid phase transition. Finally, PCr efficiently protected against membrane permeabilization in two different model systems: liposome-permeabilization by the membrane-active peptide melittin, and erythrocyte hemolysis by the oxidative drug doxorubicin, hypoosmotic stress or the mild detergent saponin. These findings suggest a new molecular basis for non-energy related functions of PCr and its cyclic analogue. PCr/phospholipid interaction and alteration of membrane structure may not only protect cellular membranes against various insults, but could have more general implications for many physiological membrane-related functions that are relevant for health and disease.
Collapse
|
136
|
Castaño Guerrero Y, González Fraguela ME, Fernández Verdecia I, Horruitiner Gutiérrez I, Piedras Carpio S. Changes in oxidative metabolism and memory and learning in an cerebral hypoperfusion model in rats. Neurologia 2012; 28:1-8. [PMID: 22795923 DOI: 10.1016/j.nrl.2012.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 01/04/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Chronic hypoperfusion in rats produces memory and learning impairments due to permanent occlusion of commun carotid arteries (POCCA). Molecular mechanisms leading to behavioural disorders have been poorly studied. For this reason, the aim of the present study was to characterise oxidative metabolism disorders and their implications in memory and learning impairments. METHODS Superoxide dismutase (SOD) and catalase (CAT) activities were determined in cortex, hippocampus and striatum homogenates at 24 hours and at 22 days after the lesion. Haematoxylin-eosin staining and glial fibrillary acidic protein (GFAP) immunoreactivity were performed on coronal sections. Behavioural impairments were explored using the Morris water maze (MWM). Escape latencies were determined in all behavioural studies. RESULTS The lesion induced a significant increase (P<.01) in CAT activity in the cortex at 24 hours, while SOD activity was significantly higher (P<.01) in the cortex and hippocampus at 22 days. An intense vacuolization was observed in the cortex and striatum as a result of the lesion. A neuronal loss in the striatum and hippocampus was observed. The glial reaction increased in the cortex and striatum. Visual alterations were observed in the lesion group with the lowest evolution time (P<.001). Escape latencies, corresponding to MWM schemes for long-term and short-term memory evaluation increased significantly (P<.05) in both groups of lesioned animals. CONCLUSION It was concluded that changes in SOD and CAT activities indicate a possible implication of oxidative imbalance in the pathology associated with chronic cerebral hypoperfusion. In addition, the POCCA model in rats is useful for understanding mechanisms by which cerebral hypoperfusion produces memory and learning impairments.
Collapse
Affiliation(s)
- Y Castaño Guerrero
- Departamento de Virología, Laboratorio de Diagnóstico, Instituto de Medicina Tropical Pedro Kourí, La Habana, Cuba.
| | | | | | | | | |
Collapse
|
137
|
Partition of metals in the maternal/fetal unit and lead-associated decreases of fetal iron and manganese: an observational biomonitoring approach. Arch Toxicol 2012; 86:1571-81. [DOI: 10.1007/s00204-012-0869-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/15/2012] [Indexed: 01/05/2023]
|
138
|
Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury. Neurol Res Int 2012; 2012:257563. [PMID: 22666585 PMCID: PMC3362209 DOI: 10.1155/2012/257563] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/02/2012] [Indexed: 12/16/2022] Open
Abstract
Despite the introduction of therapeutic hypothermia, neonatal hypoxic ischemic (HI) brain injury remains a common cause of developmental disability. Development of rational adjuvant therapies to hypothermia requires understanding of the pathways of cell death and survival modulated by HI. The conceptualization of the apoptosis-necrosis “continuum” in neonatal brain injury predicts mechanistic interactions between cell death and hydrid forms of cell death such as programmed or regulated necrosis. Many of the components of the signaling pathway regulating programmed necrosis have been studied previously in models of neonatal HI. In some of these investigations, they participate as part of the apoptotic pathways demonstrating clear overlap of programmed death pathways. Receptor interacting protein (RIP)-1 is at the crossroads between types of cellular death and survival and RIP-1 kinase activity triggers formation of the necrosome (in complex with RIP-3) leading to programmed necrosis. Neuroprotection afforded by the blockade of RIP-1 kinase following neonatal HI suggests a role for programmed necrosis in the HI injury to the developing brain. Here, we briefly review the state of the knowledge about the mechanisms behind programmed necrosis in neonatal brain injury recognizing that a significant proportion of these data derive from experiments in cultured cell and some from in vivo adult animal models. There are still more questions than answers, yet the fascinating new perspectives provided by the understanding of programmed necrosis in the developing brain may lay the foundation for new therapies for neonatal HI.
Collapse
|
139
|
Chavez-Valdez R, Martin LJ, Flock DL, Northington FJ. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience 2012; 219:192-203. [PMID: 22579794 DOI: 10.1016/j.neuroscience.2012.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
Receptor interacting protein (RIP)-1 kinase activity mediates a novel pathway that signals for regulated necrosis, a form of cell death prominent in traumatic and ischemic brain injury. Recently, we showed that an allosteric inhibitor of RIP-1 kinase activity, necrostatin-1 (Nec-1), provides neuroprotection in the forebrain following neonatal hypoxia-ischemia (HI). Because Nec-1 also prevents early oxidative injury, we hypothesized that mechanisms involved in this neuroprotection may involve preservation of mitochondrial function and prevention of secondary energy failure. Therefore, our objective was to determine if Nec-1 treatment following neonatal HI attenuates oxidative stress and mitochondrial injury. Postnatal day (p) 7 mice exposed to HI were injected intracerebroventricularly with 0.1 μL (80 μmol) of Nec-1 or vehicle. Nec-1 treatment prevented nitric oxide (NO•), inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine increase, and attenuated glutathione oxidation that was found in vehicle-treated mice at 3h following HI. Similarly, Nec-1 following HI prevented: (i) up-regulation of hypoxia inducible factor-1 alpha (HIF-1α) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) expression, (ii) decline in mitochondrial complex-I activity, (iii) decrease in ATP levels, and (iv) mitochondrial structural pathology in astrocytes and in neurons. Up-regulation of glial fibrillary acidic protein (GFAP) following HI was also prevented by Nec-1 treatment. No differences by gender were observed. We conclude that Nec-1 immediately after HI, is strongly mitoprotective and prevents secondary energy failure by blocking early NO• accumulation, glutathione oxidation and attenuating mitochondrial dysfunction.
Collapse
Affiliation(s)
- R Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, Johns Hopkins Medical Institutions, Johns Hopkins Hospital, 600 N. Wolfe Street, CMSC 6-104, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
140
|
Cerebral white matter oxidation and nitrosylation in young rodents with kaolin-induced hydrocephalus. J Neuropathol Exp Neurol 2012; 71:274-88. [PMID: 22437339 DOI: 10.1097/nen.0b013e31824c1b44] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydrocephalus is associated with reduced blood flow in periventricular white matter. To investigate hypoxic and oxidative damage in the brains of rats with hydrocephalus, kaolin was injected into the cisterna magna of newborn 7- and 21-day-old Sprague-Dawley rats, and ventricle size was assessed by magnetic resonance imaging at 7, 21, and 42 days of age. In-situ evidence of hypoxia in periventricular capillaries and glial cells was shown by pimonidazole hydrochloride binding. Biochemical assay of thiobarbituric acid reaction and immunohistochemical detection of malondialdehyde and 4-hydroxy-2-nonenal indicated the presence of lipid peroxidation in white matter. Biochemical assay of nitrite indicated increased nitric oxide production. Nitrotyrosine immunohistochemistry showed nitrosylated proteins in white matter reactive microglia and astrocytes. Activities of the antioxidant enzymes catalase and glutathione peroxidase were not increased, and altered hypoxia-inducible factor 1α was not detected by quantitative reverse transcription-polymerase chain reaction. Cerebral vascular endothelial growth factor expression determined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay was not changed, but vascular endothelial growth factor immunoreactivity was increased in reactive astrocytes of hydrocephalic white matter. To determine if nitric oxide synthase is involved in the pathogenesis, we induced hydrocephalus in 7-day-old wild-type and neuronal nitric oxide synthase-deficient mice. At 7 days, the wild-type and mutant mice exhibited equally severe ventriculomegaly and no behavioral differences, although increased glial fibrillary acidic protein was less in the mutant mice. We conclude that hypoxia, via peroxidation and nitrosylation, contributes to brain changes in young rodents with hydrocephalus and that compensatory mechanisms are negligible.
Collapse
|
141
|
Savignon T, Costa E, Tenorio F, Manhães AC, Barradas PC. Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS One 2012; 7:e35786. [PMID: 22540005 PMCID: PMC3335161 DOI: 10.1371/journal.pone.0035786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 03/22/2012] [Indexed: 12/03/2022] Open
Abstract
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model.
Collapse
Affiliation(s)
- Tiago Savignon
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Everton Costa
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frank Tenorio
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha C. Barradas
- Departamento de Farmacologia e Psicobiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
142
|
Bednarek N, Mathur A, Inder T, Wilkinson J, Neil J, Shimony J. Impact of therapeutic hypothermia on MRI diffusion changes in neonatal encephalopathy. Neurology 2012; 78:1420-7. [PMID: 22517107 DOI: 10.1212/wnl.0b013e318253d589] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The objective of this work was to determine the impact of therapeutic hypothermia (TH) on the magnitude and time course of mean diffusivity (MD) changes following hypoxic-ischemic encephalopathy (HIE) in newborns. METHODS Cerebral MRI scans of infants undergoing whole body TH for HIE from 2007 to 2010 were retrospectively reviewed. The data were analyzed identically to a control group of newborns with HIE previously published, prior to the development of TH. Anatomic injury was defined on T1- and T2-weighted ("late") MRI obtained after the fifth day of life. Since MD values vary regionally, the ratios of MD values for injured and normal tissue were calculated for areas of injury. Normal values were obtained from corresponding brain regions of 12 infants undergoing TH who had no injury on MRI studies. RESULTS Twenty-three of 59 infants who underwent TH and MRI displayed cerebral injury on late MRI and were included in the study. MD ratios were decreased in all injured infants within the first 7 days of life. The return of MD to normal (pseudonormalization) occurred after the tenth day as compared to 6-8 days in the control group. Infants with severest injury demonstrated greater reduction in MD, but no difference in time to pseudonormalization. CONCLUSION TH slows the evolution of diffusion abnormalities on MRI following HIE in term infants.
Collapse
Affiliation(s)
- N Bednarek
- Neonatology Unit, Alix de Champagne, Reims, France
| | | | | | | | | | | |
Collapse
|
143
|
McCranor BJ, Bozym RA, Vitolo MI, Fierke CA, Bambrick L, Polster BM, Fiskum G, Thompson RB. Quantitative imaging of mitochondrial and cytosolic free zinc levels in an in vitro model of ischemia/reperfusion. J Bioenerg Biomembr 2012; 44:253-63. [PMID: 22430627 DOI: 10.1007/s10863-012-9427-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 12/17/2011] [Indexed: 01/25/2023]
Abstract
The role of zinc ion in cytotoxicity following ischemic stroke, prolonged status epilepticus, and traumatic brain injury remains controversial, but likely is the result of mitochondrial dysfunction. We describe an excitation ratiometric fluorescence biosensor based on human carbonic anhydrase II variants expressed in the mitochondrial matrix, permitting free zinc levels to be quantitatively imaged therein. We observed an average mitochondrial matrix free zinc concentration of 0.2 pM in the PC12 rat pheochromacytoma cell culture line. Cytoplasmic and mitochondrial free zinc levels were imaged in a cellular oxygen glucose deprivation (OGD) model of ischemia/reperfusion. We observed a significant increase in mitochondrial zinc 1 h following 3 h OGD, at a time point when cytosolic zinc levels were depressed. Following the increase, mitochondrial zinc levels returned to physiological levels, while cytosolic zinc increased gradually over a 24 h time period in viable cells. The increase in intramitochondrial zinc observed during reoxygenation after OGD may contribute to bioenergetic dysfunction and cell death that occurs with both in vitro and in vivo models of reperfusion.
Collapse
Affiliation(s)
- Bryan J McCranor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Rousset CI, Baburamani AA, Thornton C, Hagberg H. Mitochondria and perinatal brain injury. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:35-8. [PMID: 22348594 DOI: 10.3109/14767058.2012.666398] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Secondary brain injury after hypoxia-ischemia is associated with delayed loss of high energy phosphates implicating bioenergetic mitochondrial failure at least partly related to deregulation of the energy sensor adenosine monophosphate-activated protein kinase. Furthermore, the toxic intracellular environment (accumulation of reactive oxygen/nitrosative species and intracellular calcium) during post-ischemic reperfusion triggers Bax-dependent mitochondrial permeabilization (MP) leading to activation of caspase-dependent and apoptosis-inducing factor dependent cell death. We still do not understand how MP is induced but some data suggest that mitochondrial fusion/fission as well as migration play a critical role. Mitochondrial dynamics also seem critical for brain development as genetic deficiency of proteins involved in mitochondrial fusion and fission results in malformations including microcephaly, abnormal brain development and dysmyelination. In this brief review, we update the critical role of mitochondria in brain development and the decision of cell fate after hypoxia-ischemia in the immature CNS.
Collapse
Affiliation(s)
- Catherine I Rousset
- Centre for the Developing Brain, Institute of Reproductive and Developmental biology, Department of Surgery & Cancer, Imperial College, Hammersmith Campus, London, UK
| | | | | | | |
Collapse
|
145
|
Alonso-Alconada D, Hilario E, Álvarez FJ, Álvarez A. Apoptotic cell death correlates with ROS overproduction and early cytokine expression after hypoxia-ischemia in fetal lambs. Reprod Sci 2012; 19:754-63. [PMID: 22378862 DOI: 10.1177/1933719111432868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite advances in neonatology, the hypoxic-ischemic injury in the perinatal period remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Using a sheep model of intrauterine asphyxia, we evaluated the correlation between reactive oxygen species (ROS) overproduction, cytokine expression, and apoptotic cell death. Fetal lambs were assigned to sham group, nonasphyctic animals; and hypoxia-ischemia (HI) group, lambs subjected to 60 minutes of HI) by partial cord occlusion and sacrificed 3 hours later. Different brain regions were separated to quantify the number of apoptotic cells and the same territories were dissociated for flow cytometry studies. Our results suggest that the overproduction of ROS and the early increase in cytokine production after HI in fetal lambs correlate in a significant manner with the apoptotic index, as well as with each brain region evaluated.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain.
| | | | | | | |
Collapse
|
146
|
Lobo Torres LH, Moreira WL, Tamborelli Garcia RC, Annoni R, Nicoletti Carvalho AL, Teixeira SA, Pacheco-Neto M, Muscará MN, Camarini R, de Melo Loureiro AP, Yonamine M, Mauad T, Marcourakis T. Environmental tobacco smoke induces oxidative stress in distinct brain regions of infant mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:971-80. [PMID: 22852847 DOI: 10.1080/15287394.2012.695985] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Collapse
Affiliation(s)
- Larissa Helena Lobo Torres
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Miller SL, Wallace EM, Walker DW. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 2012; 96:13-23. [PMID: 22377769 DOI: 10.1159/000336378] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/30/2011] [Indexed: 11/19/2022]
Abstract
Pregnancies complicated by impaired placentation, acute severe reductions in oxygen supply to the fetus, or intrauterine infection are associated with oxidative stress to the mother and developing baby. Such oxidative stress is characterized as an upregulation in the production of oxidative or nitrative free radicals and a concomitant decrease in the availability of antioxidant species, thereby creating a state of fetoplacental oxidative imbalance. Recently, there has been a good deal of interest in the potential for the use of antioxidant therapies in the perinatal period to protect the fetus, particularly the developing brain, against oxidative stress in complications of pregnancy and birth. This review will examine why the immature brain is particularly susceptible to oxidative imbalance and will provide discussion on antioxidant treatments currently receiving attention in the adult and perinatal literature - allopurinol, melatonin, α-lipoic acid, and vitamins C and E. In addition, we aim to address the interaction between oxidative stress and the fetal inflammatory response, an interaction that may be vital when proposing antioxidant or other neuroprotective strategies.
Collapse
Affiliation(s)
- S L Miller
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Vic., Australia
| | | | | |
Collapse
|
148
|
Endonuclease VIII-like 3 (Neil3) DNA glycosylase promotes neurogenesis induced by hypoxia-ischemia. Proc Natl Acad Sci U S A 2011; 108:18802-7. [PMID: 22065741 DOI: 10.1073/pnas.1106880108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural stem/progenitor cell proliferation and differentiation are required to replace damaged neurons and regain brain function after hypoxic-ischemic events. DNA base lesions accumulating during hypoxic-ischemic stress are removed by DNA glycosylases in the base-excision repair pathway to prevent cytotoxicity and mutagenesis. Expression of the DNA glycosylase endonuclease VIII-like 3 (Neil3) is confined to regenerative subregions in the embryonic and perinatal brains. Here we show profound neuropathology in Neil3-knockout mice characterized by a reduced number of microglia and loss of proliferating neuronal progenitors in the striatum after hypoxia-ischemia. In vitro expansion of Neil3-deficient neural stem/progenitor cells revealed an inability to augment neurogenesis and a reduced capacity to repair for oxidative base lesions in single-stranded DNA. We propose that Neil3 exercises a highly specialized function through accurate molecular repair of DNA in rapidly proliferating cells.
Collapse
|
149
|
Esipova TV, Karagodov A, Miller J, Wilson DF, Busch TM, Vinogradov SA. Two new "protected" oxyphors for biological oximetry: properties and application in tumor imaging. Anal Chem 2011; 83:8756-65. [PMID: 21961699 DOI: 10.1021/ac2022234] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report the synthesis, calibration, and examples of application of two new phosphorescent probes, Oxyphor R4 and Oxyphor G4, optimized specifically for in vivo oxygen imaging by phosphorescence quenching. These "protected" dendritic probes can operate in either albumin-rich (blood plasma) or albumin-free (interstitial space) environments at all physiological oxygen concentrations, from normoxic to deep hypoxic conditions. Oxyphors R4 and G4 are derived from phosphorescent Pd-meso-tetra-(3,5-dicarboxyphenyl)-porphyrin (PdP) or Pd-meso-tetra-(3,5-dicarboxyphenyl)-tetrabenzoporphyrin (PdTBP), respectively, and possess features common for protected dendritic probes, i.e., hydrophobic dendritic encapsulation of phosphorescent metalloporphyrins and hydrophilic PEGylated periphery. The new Oxyphors are highly soluble in aqueous environments and do not permeate biological membranes. The probes were calibrated under physiological conditions (pH 6.4-7.8) and temperatures (22-38 °C), showing high stability, reproducibility of signals, and lack of interactions with biological solutes. Oxyphor G4 was used to dynamically image intravascular and interstitial oxygenation in murine tumors in vivo. The physiological relevance of the measurements was demonstrated by dynamically recording changes in tissue oxygenation during application of anesthesia (isofluorane). These experiments revealed that changes in isofluorane concentration significantly affect tissue oxygenation.
Collapse
Affiliation(s)
- Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
150
|
The Cannabinoid WIN 55212-2 Mitigates Apoptosis and Mitochondrial Dysfunction After Hypoxia Ischemia. Neurochem Res 2011; 37:161-70. [DOI: 10.1007/s11064-011-0594-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/29/2011] [Accepted: 09/02/2011] [Indexed: 12/25/2022]
|