101
|
De Filippis B, Fabbri A, Simone D, Canese R, Ricceri L, Malchiodi-Albedi F, Laviola G, Fiorentini C. Modulation of RhoGTPases improves the behavioral phenotype and reverses astrocytic deficits in a mouse model of Rett syndrome. Neuropsychopharmacology 2012; 37:1152-63. [PMID: 22157810 PMCID: PMC3306877 DOI: 10.1038/npp.2011.301] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/09/2022]
Abstract
RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Alessia Fabbri
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Daiana Simone
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Rossella Canese
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Laura Ricceri
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | - Giovanni Laviola
- Department Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | - Carla Fiorentini
- Department Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
102
|
Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. GENES AND NUTRITION 2012; 7:447-58. [PMID: 22399313 DOI: 10.1007/s12263-012-0285-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/30/2012] [Indexed: 01/15/2023]
Abstract
Evidence of enhanced oxidative stress (O.S.) and lipid peroxidation has been reported in patients with Rett syndrome (RTT), a relatively rare neurodevelopmental disorder progressing in 4-stages, and mainly caused by loss-of-function mutations in the methyl-CpG-binding protein 2. No effective therapy for preventing or arresting the neurologic regression in the disease in its various clinical presentations is available. Based on our prior evidence of enhanced O.S. and lipid peroxidation in RTT patients, herein we tested the possible therapeutic effects of ω-3 polyunsaturated fatty acids (ω-3 PUFAs), known antioxidants with multiple effects, on the clinical symptoms and O.S. biomarkers in the earliest stage of RTT. A total of 20 patients in stage I were randomized (n = 10 subjects per arm) to either oral supplementation with ω-3 PUFAs-containing fish oil (DHA: 72.9 ± 8.1 mg/kg b.w./day; EPA: 117.1 ± 13.1 mg/kg b.w./day; total ω-3 PUFAs: 246.0 ± 27.5 mg/kg b.w./day) for 6 months or no treatment. Primary outcomes were potential changes in clinical symptoms, with secondary outcomes including variations for five O.S. markers in plasma and/or erythrocytes (nonprotein bound iron, F(2)-dihomo-isoprostanes, F(3)-isoprostanes, F(4)-neuroprostanes, and F(2)-isoprostanes). A significant reduction in the clinical severity (in particular, motor-related signs, nonverbal communication deficits, and breathing abnormalities) together with a significant decrease in all the examined O.S. markers was observed in the ω-3 PUFAs supplemented patients, whereas no significant changes were evidenced in the untreated group. For the first time, these findings strongly suggest that a dietary intervention in this genetic disease at an early stage of its natural history can lead to a partial clinical and biochemical rescue.
Collapse
|
103
|
Parellada M, Moreno C, Mac-Dowell K, Leza JC, Giraldez M, Bailón C, Castro C, Miranda-Azpiazu P, Fraguas D, Arango C. Plasma antioxidant capacity is reduced in Asperger syndrome. J Psychiatr Res 2012; 46:394-401. [PMID: 22225920 DOI: 10.1016/j.jpsychires.2011.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/06/2023]
Abstract
Recent evidence suggests that children with autism have impaired detoxification capacity and may suffer from chronic oxidative stress. To our knowledge, there has been no study focusing on oxidative metabolism specifically in Asperger syndrome (a milder form of autism) or comparing this metabolism with other psychiatric disorders. In this study, total antioxidant status (TAOS), non-enzymatic (glutathione and homocysteine) and enzymatic (catalase, superoxide dismutase, and glutathione peroxidase) antioxidants, and lipid peroxidation were measured in plasma or erythrocyte lysates in a group of adolescent patients with Asperger syndrome, a group of adolescents with a first episode of psychosis, and a group of healthy controls at baseline and at 8-12 weeks. TAOS was also analyzed at 1 year. TAOS was reduced in Asperger individuals compared with healthy controls and psychosis patients, after covarying by age and antipsychotic treatment. This reduced antioxidant capacity did not depend on any of the individual antioxidant variables measured. Psychosis patients had increased homocysteine levels in plasma and decreased copper and ceruloplasmin at baseline. In conclusion, Asperger patients seem to have chronic low detoxifying capacity. No impaired detoxifying capacity was found in the first-episode psychosis group in the first year of illness.
Collapse
Affiliation(s)
- Mara Parellada
- Child and Adolescent Psychiatry, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Centro de Investigación en Red de Salud Mental, CIBERSAM, Dr Esquerdo 46, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Hayashi M, Miyata R, Tanuma N. Oxidative Stress in Developmental Brain Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:278-90. [DOI: 10.1007/978-1-4614-0653-2_21] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
105
|
Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep 2011; 16:145-53. [PMID: 21888765 DOI: 10.1179/1351000211y.0000000004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES Rett syndrome (RTT) is an X-linked autism spectrum disorder caused by mutations in the MeCP2 gene in the great majority of cases. Evidence suggests a potential role of oxidative stress (OS) in its pathogenesis. Here, we investigated the potential value of OS markers (non-protein-bound iron (NPBI) and F2-isoprostanes (F2-IsoPs)) in explaining natural history, genotype-phenotype correlation, and clinical heterogeneity of RTT, and gauging the response to omega-3 polyunsaturated fatty acids (ω-3 PUFAs). METHODS RTT patients (n=113) and healthy controls were assayed for plasma NPBI and F2-IsoPs, and intraerythrocyte NPBI. Forty-two patients with typical RTT were randomly assigned to ω-3 PUFAs supplementation for 12 months. NPBI was measured by HPLC and F2-IsoPs using a gas chromatography/negative ion chemical ionization tandem mass spectrometry (GC/NICI-MS/MS) technique. RESULTS F2-IsoPs were significantly higher in the early stages as compared with the late natural progression of classic RTT. MeCP2 mutations related to more severe phenotypes exhibited higher OS marker levels than those of milder phenotypes. Higher OS markers were observed in typical RTT and early seizure variant as compared with the preserved speech and congenital variants. Significant reduction in OS markers levels and improvement of severity scores were observed after ω-3 PUFAs supplementation. DISCUSSION OS is a key modulator of disease expression in RTT.
Collapse
Affiliation(s)
- Silvia Leoncini
- Department of Pathophysiology, Experimental Medicine & Public Health, University of Siena, and Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Senese, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
106
|
LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res 2011; 346:383-91. [PMID: 22160459 DOI: 10.1007/s00441-011-1289-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
Abstract
Long interspersed element-1s (LINE-1 or L1s) are abundant retrotransposons that occur in mammalian genomes and that can cause insertional mutagenesis and genomic instability. L1 activity is generally repressed in most cells and tissues but has been found in some embryonic cells and, in particular, in neural progenitors. Moreover, L1 retrotransposition can be induced by several DNA-damaging agents. We have carried out experiments to verify whether L1 retrotransposition is affected by oxidative DNA damage, which plays a role in a range of human diseases, including cancer and inflammatory and neurodegenerative disease. To this purpose, BE(2)C neuroblastoma cells, which are thought to represent embryonic precursors of sympathetic neurons, have been treated with hydrogen peroxide and subjected to an in vitro retrotransposition assay involving an episomal L1(RP) element tagged with enhanced green fluorescent protein. Our results indicate that hydrogen peroxide treatment induces an increase in the retrotransposition of transiently transfected L1(RP) and an increase in the expression of endogenous L1 transcripts. An increase of γ-H2AX foci and changes in the mRNA levels of MRE11, RAD50, NBN and ERCC1 (all involved in DNA repair) have also been found. Thus, oxidative stress can cause L1 dysregulation.
Collapse
|
107
|
De Felice C, Maffei S, Signorini C, Leoncini S, Lunghetti S, Valacchi G, D'Esposito M, Filosa S, Della Ragione F, Butera G, Favilli R, Ciccoli L, Hayek J. Subclinical myocardial dysfunction in Rett syndrome. Eur Heart J Cardiovasc Imaging 2011; 13:339-45. [PMID: 22113206 DOI: 10.1093/ejechocard/jer256] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Rett syndrome (RTT) is a rare neurodevelopmental disorder frequently linked to methyl-CpG-binding protein 2 (MeCP2) gene mutations. RTT is associated with a 300-fold increased risk of sudden cardiac death. Rhythm abnormalities and cardiac dysautonomia do not to fully account for cardiac mortality. Conversely, heart function in RTT has not been explored to date. Recent data indicate a previously unrecognized role of MeCP2 in cardiomyocytes development. Besides, increased oxidative stress markers (OS) have been found in RTT. We hypothesized that (i) RTT patients present a subclinical biventricular dysfunction and (ii) the myocardial dysfunction correlate with OS. METHODS AND RESULTS We evaluated typical (n = 72) and atypical (n = 20) RTT female and healthy controls (n = 92). Main outcome measurements were (i) echocardiographic biventricular systo-diastolic parameters; (ii) correlation between echocardiographic measures and OS levels, i.e. plasma and intra-erythrocyte non-protein-bound iron (NPBI) and plasma F2-Isoprostanes (F2-IsoPs). A significant reduction in longitudinal biventricular function (tricuspid annular plane systolic excursion, mitral annular plane systolic excursion, S' of lateral and septal mitral annulus, S' of tricuspidal annulus) was evidenced in RTT patients vs. controls. No significant changes in the LV ejection fraction were found. Peak-early filling parameters (E, E' of lateral mitral annulus, E' of tricuspidal annulus) and right ventricular systolic pressure were reduced. A-wave, E/A, and E/E' were normal. OS markers were increased, but only F2-IsoPs correlated to LV systolic dysfunction. CONCLUSION These data indicate a previously unrecognized subclinical systo-diastolic biventricular myocardial dysfunction in typical and atypical RTT patients. A reduced preload is evidenced. The biventricular dysfunction is partially related to OS damage.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, University General Hospital, Azienda Ospedaliera Universitaria Senese, Viale M. Bracci 16, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, Galano JM, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Pecorelli A, Valacchi G, Hayek J. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res 2011; 52:2287-2297. [PMID: 21917727 DOI: 10.1194/jlr.p017798] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidative damage has been reported in Rett syndrome (RTT), a pervasive developmental disorder caused in up to 95% of cases by mutations in the X-linked methyl-CpG binding protein 2 gene. Herein, we have synthesized F(2)-dihomo-isoprostanes (F(2)-dihomo-IsoPs), peroxidation products from adrenic acid (22:4 n-6), a known component of myelin, and tested the potential value of F(2)-dihomo-IsoPs as a novel disease marker and its relationship with clinical presentation and disease progression. F(2)-dihomo-IsoPs were determined by gas chromatography/negative-ion chemical ionization tandem mass spectrometry. Newly synthesized F(2)-dihomo-IsoP isomers [ent-7(RS)-F(2t)-dihomo-IsoP and 17-F(2t)-dihomo-IsoP] were used as reference standards. The measured ions were the product ions at m/z 327 derived from the [M-181](-) precursor ions (m/z 597) produced from both the derivatized ent-7(RS)-F(2t)-dihomo-IsoP and 17-F(2t)-dihomo-IsoP. Average plasma F(2)-dihomo-IsoP levels in RTT were about one order of magnitude higher than those in healthy controls, being higher in typical RTT as compared with RTT variants, with a remarkable increase of about two orders of magnitude in patients at the earliest stage of the disease followed by a steady decrease during the natural clinical progression. hese data indicate for the first time that quantification of F(2)-dihomo-IsoPs in plasma represents an early marker of the disease and may provide a better understanding of the pathogenic mechanisms behind the neurological regression in patients with RTT.
Collapse
Affiliation(s)
- Claudio De Felice
- Neonatal Intensive Care Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| | - Cinzia Signorini
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS - UM I - UM II, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS - UM I - UM II, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS - UM I - UM II, Montpellier, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS - UM I - UM II, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS - UM I - UM II, Montpellier, France
| | - Lucia Ciccoli
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | - Silvia Leoncini
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso," CNR, Napoli, Italy; Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Stefania Filosa
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso," CNR, Napoli, Italy; Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Alessandra Pecorelli
- Department of Pathophysiology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul, Korea; Department of Evolutionary Biology, University of Ferrara, Ferrara, Italy; and
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
109
|
Zhang X, Su J, Cui N, Gai H, Wu Z, Jiang C. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome. Am J Physiol Cell Physiol 2011; 301:C729-38. [PMID: 21307341 PMCID: PMC3174562 DOI: 10.1152/ajpcell.00334.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/07/2011] [Indexed: 01/14/2023]
Abstract
People with Rett syndrome (RTT) have breathing instability in addition to other neuropathological manifestations. The breathing disturbances contribute to the high incidence of unexplained death and abnormal brain development. However, the cellular mechanisms underlying the breathing abnormalities remain unclear. To test the hypothesis that the central CO(2) chemoreception in these people is disrupted, we studied the CO(2) chemosensitivity in a mouse model of RTT. The Mecp2-null mice showed a selective loss of their respiratory response to 1-3% CO(2) (mild hypercapnia), whereas they displayed more regular breathing in response to 6-9% CO(2) (severe hypercapnia). The defect was alleviated with the NE uptake blocker desipramine (10 mg·kg(-1)·day(-1) ip, for 5-7 days). Consistent with the in vivo observations, in vitro studies in brain slices indicated that CO(2) chemosensitivity of locus coeruleus (LC) neurons was impaired in Mecp2-null mice. Two major neuronal pH-sensitive Kir currents that resembled homomeric Kir4.1 and heteromeric Ki4.1/Kir5.1 channels were identified in the LC neurons. The screening of Kir channels with real-time PCR indicated the overexpression of Kir4.1 in the LC region of Mecp2-null mice. In a heterologous expression system, an overexpression of Kir4.1 resulted in a reduction in the pH sensitivity of the heteromeric Kir4.1-Kir5.1 channels. Given that Kir4.1 and Kir5.1 subunits are also expressed in brain stem respiration-related areas, the Kir4.1 overexpression may not allow CO(2) to be detected until hypercapnia becomes severe, leading to periodical hyper- and hypoventilation in Mecp2-null mice and, perhaps, in people with RTT as well.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Dept. of Biology, Georgia State Univ., Atlanta, 30303, USA
| | | | | | | | | | | |
Collapse
|
110
|
Signorini C, De Felice C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Della Ragione F, Rossi M, Pecorelli A, Valacchi G, Ciccoli L, Hayek J. F₄-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta 2011; 412:1399-406. [PMID: 21530498 DOI: 10.1016/j.cca.2011.04.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/11/2011] [Accepted: 04/11/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is a pervasive development disorder, mainly caused by mutations in the methyl-CpG binding protein 2 (MeCP2) gene. No reliable biochemical markers of the disease are available. Here we assess F₄-neuroprostanes (F₄-NeuroPs), lipid peroxidation products of the docosahexaenoic acid, as a novel disease marker in RTT and correlate it with clinical presentation, MeCP2 mutation type, and disease progression. In addition, we investigate on the impact of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) supplementation on F₄-NeuroPs levels. METHODS A case-control study design was used. A cohort of RTT patients (n=144) exhibiting different clinical presentations, disease stages, and MeCP2 gene mutations were evaluated. F₄-NeuroPs were measured in free form using a GC/NICI-MS/MS technique. Plasma F₄-NeuroPs levels in patients were compared to healthy controls and related to RTT forms, disease progression, and response to ω-3 PUFAs supplementation. RESULTS Plasma F₄-NeuroPs levels were i) higher in RTT than in controls; ii) increased with the severity of neurological symptoms; iii) significantly elevated during the typical disease progression; iv) higher in MeCP2-nonsense as compared to missense mutation carriers; v) higher in typical RTT as compared to RTT variants; and vi) decreased in response to 12 months ω-3 PUFAs oral supplementation. CONCLUSIONS Quantification of plasma F₄-NeuroPs provides a novel RTT marker, related to neurological symptoms severity, mutation type and clinical presentation.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Pathophysiology, Experimental Medicine & Public Health, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Tamiji J, Crawford DA. The neurobiology of lipid metabolism in autism spectrum disorders. Neurosignals 2011; 18:98-112. [PMID: 21346377 DOI: 10.1159/000323189] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/29/2010] [Indexed: 01/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by impairments in communication and reciprocal social interaction, coupled with repetitive behavior, which typically manifests by 3 years of age. Multiple genes and early exposure to environmental factors are the etiological determinants of the disorder that contribute to variable expression of autism-related traits. Increasing evidence indicates that altered fatty acid metabolic pathways may affect proper function of the nervous system and contribute to autism spectrum disorders. This review provides an overview of the reported abnormalities associated with the synthesis of membrane fatty acids in individuals with autism as a result of insufficient dietary supplementation or genetic defects. Moreover, we discuss deficits associated with the release of arachidonic acid from the membrane phospholipids and its subsequent metabolism to bioactive prostaglandins via phospholipase A(2)-cyclooxygenase biosynthetic pathway in autism spectrum disorders. The existing evidence for the involvement of lipid neurobiology in the pathology of neurodevelopmental disorders such as autism is compelling and opens up an interesting possibility for further investigation of this metabolic pathway.
Collapse
Affiliation(s)
- Javaneh Tamiji
- Department of Biology, York University, Toronto, Ont., Canada
| | | |
Collapse
|
112
|
Pecorelli A, Ciccoli L, Signorini C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Hayek J, De Felice C, Valacchi G. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. Clin Biochem 2011; 44:368-71. [PMID: 21276437 DOI: 10.1016/j.clinbiochem.2011.01.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Rett syndrome (RTT) is a neurological disorder and a leading cause of mental retardation in females. It is caused by mutations in methyl-CpG-binding protein 2 (MeCP2) gene and more rarely in cyclin-dependent kinase-like 5 (CDKL5) and forkhead box protein G1 (FOXG1) genes. Increased oxidative stress (OS) has been documented in MeCP2-RTT patients. Here, we evaluated the levels of 4-hydroxynonenal plasma protein adducts (4HNE-PAs) in MeCP2-, CDKL5-, and FOXG1-RTT and in their clinical variants. DESIGN AND METHODS 4HNE-PAs were determined by Western blot in plasma from healthy subjects and RTT patients. RESULTS 4HNE-PAs levels were increased in MeCP2- and CDKL5-related RTT but not in FOXG1-related RTT. CONCLUSION These results showed that OS is present in RTT clinical variants and could play a key role in RTT pathogenesis. Under the OS point of view FOXG1-related RTT appears to be distinct from the MeCP2/CDKL5, suggesting a distinct mechanism involved in its pathogenesis.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
De Felice C, Guazzi G, Rossi M, Ciccoli L, Signorini C, Leoncini S, Tonni G, Latini G, Valacchi G, Hayek J. Unrecognized Lung Disease in Classic Rett Syndrome. Chest 2010; 138:386-92. [DOI: 10.1378/chest.09-3021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
114
|
The physiological behaviour of IMR-32 neuroblastoma cells is affected by a 12-h hypoxia/24-h reoxygenation period. Neurochem Res 2010; 35:1691-9. [PMID: 20640916 DOI: 10.1007/s11064-010-0231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Nervous system cells are highly dependent on adequate tissue oxygenation and are very susceptible to hypoxia, which causes mitochondrial dysfunctions involved in apoptosis and necrosis. In this paper, we examine the effect of a 12-h incubation of differentiated IMR-32 neuroblastoma cells in a hypoxic environment (73% N(2): 2% O(2): 5% CO(2), v:v) by evaluating cell viability, modifications of NO, intracellular Ca(2+) concentration [Ca(2+)](i) and membrane potential, the production of phosphorylated ERK, desferoxamine-chelatable free iron and esterified F2-isoprostane levels. The same parameters were evaluated after a subsequent 24-h re-oxygenation period. The NO concentration increased significantly immediately after hypoxia and returned to values similar to those of controls after the reoxygenation period. At the same time, we observed a significant increase of [Ca(2+)](i) immediately after hypoxia. Phosphorylated ERK proteins increased significantly during the first 2 h of hypoxia, then decreased, and remained practically unmodified after 12 h hypoxia and the following reoxygenation period. Moreover, IMR-32 cell mitochondria were significantly depolarized after hypoxia, while membrane potential returned to normal after the reoxygenation period. Finally, desferoxamine-chelatable free iron and F2-isoprostane levels also increased significantly after hypoxia. Our results indicate that 2% O(2) hypoxia induces variations of NO and [Ca(2+)](i) with subsequent mitochondrial depolarization, and it is responsible for oxidative stress, represented by increased free iron and F2-isoprostane, protein carbonyls and 4 hydroxynonenal protein adducts levels.
Collapse
|
115
|
Buoni S, Zannolli R, De Felice C, De Nicola A, Guerri V, Guerra B, Casali S, Pucci B, Corbini L, Mari F, Renieri A, Zappella M, Hayek J. EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome. Clin Neurophysiol 2010; 121:652-7. [PMID: 20153689 DOI: 10.1016/j.clinph.2010.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To assess the presence/absence of peculiar EEG features and epilepsy in MECP2-mutated Rett patients with the Zappella-Rett variant (Z-RTT) also known as preserved speech variant. METHODS Retrospective analysis of 16 (age 19.4+/-8.4years; range 8-38years) MECP2 mutated Z-RTT cases, including 11 high or intermediate performance (HIP), and five low-performance (LP) patients was performed. Peculiar EEG features were analyzed as a function of the HIP or LP Z-RTT categories: (1) centro-temporal spikes, (2) multifocal EEG activity, (3) EEG encephalopathy (i.e. multifocal EEG activity associated with the presence of background slowing and diffuse slow activity), (4) spindles and K-complex. Furthermore, we assessed the occurrence of epilepsy. Correlations between electroclinical features and category of Z-RTT genotype (missense or truncation mutation) were also tested. RESULTS The Z-RTT HIP group showed a very abnormal EEG (presence of centro-temporal spikes: p=0.004808), although the cases studied were not epileptogenic and did not develop encephalopathy. The LP group showed multifocal EEG activity (p=0.000229), EEG encephalopathy (p=0.000229) and epilepsy (p=0.299451). No significant differences between the prevalence of centro-temporal spikes, multifocal EEG activity, EEG encephalopathy, and epilepsy between the patients with the truncation or missense mutation were observed. CONCLUSIONS EEG electrophysiological patterns and epileptogenic susceptibility differ in Z-RTT according to the level of performance (i.e. HIP or LP). SIGNIFICANCE These results indicate that HIP and LP Z-RTT should be considered as distinct entities, not only on a clinical basis, but also as it concerns EEG features and epileptogenic susceptibility. These results could offer support in the practical management of patients and family counseling.
Collapse
Affiliation(s)
- Sabrina Buoni
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Child Neurology and Psychiatry Pediatrics, Azienda Ospedaliera Universitaria Senese, S. Maria alle Scotte Hospital, Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|