101
|
Global analysis of RNA oxidation in Saccharomyces cerevisiae. Biotechniques 2012; 52:109-11. [PMID: 22313409 DOI: 10.2144/000113801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/22/2011] [Indexed: 01/23/2023] Open
Abstract
Oxidative RNA damage has been linked to loss of RNA function and to the development of many human age-related diseases. Consequently, a need exists for methods to identify and quantify the extent of RNA oxidation on a genome-wide basis. We developed such a method by combining affinity selection of mRNA containing 8-hydroxyguanine with high throughput DNA sequencing. We demonstrate that this assay is suitable for detecting differences in the extent of oxidation between RNA transcripts. We applied this method to the yeast Saccharomyces cerevisiae grown under physiological conditions and in response to hydrogen peroxide, and detected significantly oxidized RNA transcripts.
Collapse
|
102
|
|
103
|
Brun P, Brun P, Vono M, Venier P, Tarricone E, Deligianni V, Martines E, Zuin M, Spagnolo S, Cavazzana R, Cardin R, Castagliuolo I, Valerio ALG, Leonardi A. Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 2012; 7:e33245. [PMID: 22432007 PMCID: PMC3303808 DOI: 10.1371/journal.pone.0033245] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 02/13/2012] [Indexed: 01/05/2023] Open
Abstract
Background Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology/Principal Findings We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2′,7′-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2), was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses.
Collapse
Affiliation(s)
- Paola Brun
- Histology Unit, Department of Biomedical Sciences, University of Padua, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Stathis D, Lischke U, Koch SC, Deiml CA, Carell T. Discovery and mutagenicity of a guanidinoformimine lesion as a new intermediate of the oxidative deoxyguanosine degradation pathway. J Am Chem Soc 2012; 134:4925-30. [PMID: 22329783 DOI: 10.1021/ja211435d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidative degradation of DNA is a major mutagenic process. Reactive oxygen species (ROS) produced in the course of oxidative phosphorylation or by exogenous factors are known to attack preferentially deoxyguanosine. The latter decomposes to give mutagenic lesions, which under physiological conditions are efficiently repaired by specialized maintenance systems in the cell. Although many intermediates of the degradation pathway are today well-known, we report in this study the discovery of a new intermediate with an interesting guanidinoformimine structure. The structure elucidation of the new lesion was possible by using HPLC-MS techniques and organic synthesis. Finally we report the mutagenic potential of the new lesion in comparison to the known lesions imidazolone and oxazolone using primer extension and pyrosequencing experiments.
Collapse
Affiliation(s)
- Dimitrios Stathis
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität, Munich, Butenandtstraße 5-13, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
105
|
Hajas G, Bacsi A, Aguilerra-Aguirre L, German P, Radak Z, Sur S, Hazra TK, Boldogh I. Biochemical identification of a hydroperoxide derivative of the free 8-oxo-7,8-dihydroguanine base. Free Radic Biol Med 2012; 52:749-56. [PMID: 22198182 PMCID: PMC3267897 DOI: 10.1016/j.freeradbiomed.2011.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 01/14/2023]
Abstract
8-Oxo-7,8-dihydroguanine is one the most abundant base lesions in pro- and eukaryotic DNA. In mammalian cells, it is excised by the 8-oxoguanine DNA glycosylase (OGG1) during DNA base-excision repair, and the generated free 8-oxoG base is one of the DNA-derived biomarkers of oxidative stress in biological samples. The modification of 8-oxoG in the context of nucleoside and DNA has been the subject of many studies; however, the oxidative transformation of the free 8-oxoG base has not been described. By using biochemical and cell biological assays, we show that in the presence of molecular oxygen, the free 8-oxoG base transforms to a highly reactive hydroperoxide (8-oxoG*). Specifically, 8-oxoG* oxidizes Amplex red to resorufin, H(2)DCF to DCF, Fe(2+) to Fe(3+), and GSH to GSSG. This property of 8-oxoG* was diminished by treatment with catalase and glutathione peroxidase, but not superoxide dismutase. 8-OxoG* formation was prevented by reducing agents or nitrogen atmosphere. Its addition to CM-H(2)DCF-DA-loaded cells rapidly increased intracellular DCF fluorescence. There were no such properties observed for 8-oxodeoxyguanosine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 2'-deoxyguanosine, guanine, adenine, guanosine, and 8-hydroxyadenine. These data imply that a free 8-oxoG base is more susceptible to oxidation than is its nucleoside form and, consequently, it stands as unique among intact and oxidatively modified purines.
Collapse
Affiliation(s)
- Gyorgy Hajas
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Attila Bacsi
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
- Department of Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Leopoldo Aguilerra-Aguirre
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Peter German
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Zsolt Radak
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
- Research Institute of Sport Science, Semmelweis University, Budapest, Hungary
| | - Sanjiv Sur
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Tapas K. Hazra
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
- Sealy Center for Molecular Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas 77555
| |
Collapse
|
106
|
Reduced expression of DNA repair genes (XRCC1, XPD, and OGG1) in squamous cell carcinoma of head and neck in North India. Tumour Biol 2011; 33:111-9. [PMID: 22081374 DOI: 10.1007/s13277-011-0253-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 10/18/2011] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the sixth most common cancer globally, and in India, it accounts for 30% of all cancer cases. Epidemiological studies have shown a positive association between defective DNA repair capacity and SCCHN. The underlying mechanism of their involvement is not well understood. In the present study, we have analyzed the relationship between SCCHN and the expression of DNA repair genes namely X-ray repair cross-complementing group 1 (XRCC1), xeroderma pigmentosum group D (XPD), and 8-oxoguanine DNA glycosylase (OGG1) in 75 SCCHN cases and equal number of matched healthy controls. Additionally, levels of DNA adduct [8-hydroxyguanine (8-OHdG)] in 45 SCCHN cases and 45 healthy controls were also determined, to ascertain a link between mRNA expression of these three genes and DNA adducts. The relative expression of XRCC1, XPD, and OGG1 in head and neck cancer patients was found to be significantly low as compared to controls. The percent difference of mean relative expression between cases and controls demonstrated maximum lowering in OGG1 (47.3%) > XPD (30.7%) > XRCC1 (25.2%). A negative Spearmen correlation between XRCC1 vs. 8-OHdG in cases was observed. In multivariate logistic regression analysis (adjusting for age, gender, smoking status, and alcohol use), low expression of XRCC1, XPD, and OGG1 was associated with a statistically significant increased risk of SCCHN [crude odds ratios (ORs) (95%CI) OR 2.10; (1.06-4.17), OR 2.76; (1.39-5.49), and 5.24 (2.38-11.52), respectively]. In conclusion, our study demonstrated that reduced expression of XRCC1, XPD, and OGG1 is associated with more than twofold increased risk in SCCHN.
Collapse
|
107
|
Hegde ML, Hegde PM, Rao KS, Mitra S. Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword. J Alzheimers Dis 2011; 24 Suppl 2:183-98. [PMID: 21441656 DOI: 10.3233/jad-2011-110281] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The neurons in the central nervous system (CNS) with high O2 consumption and prolonged life span are chronically exposed to high levels of reactive oxygen species (ROS). Accumulation of ROS-induced genome damage in the form of oxidized bases and single-strand breaks (SSBs) as well as their defective or reduced repair in the brain has been implicated in the etiology of various neurological disorders including Alzheimer's/Parkinson's diseases (AD/PD). Although inactivating mutations in some DNA repair genes have been linked to hereditary neurodegenerative diseases, the underlying mechanisms of repair deficiencies for the sporadic diseases is not understood. The ROS-induced DNA damage is predominantly repaired via the highly conserved and regulated base excision/SSB repair (BER/SSBR) pathway. We recently made an interesting discovery that the transition metals iron and copper, which accumulate excessively in the brains of AD, PD, and other neurodegenerative diseases, act as a 'double-edged sword' by inducing genotoxic ROS and inhibiting DNA damage repair at the same time. These metals inhibit the base excision activity of NEIL family DNA glycosylases by oxidizing them, changing their structure, and inhibiting their binding to downstream repair proteins. Metal chelators and reducing agents partially reverse the inhibition, while curcumin with both chelating and reducing activities reverses the inhibition nearly completely. In this review, we have discussed the possible etiological linkage of BER/SSBR defects to neurodegenerative diseases and the therapeutic potential of metal chelators in restoring DNA repair capacity.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-1079, USA.
| | | | | | | |
Collapse
|
108
|
Wang J, Wang Q, Watson LJ, Jones SP, Epstein PN. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am J Physiol Heart Circ Physiol 2011; 301:H2073-80. [PMID: 21873502 DOI: 10.1152/ajpheart.00157.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac failure is associated with increased levels of oxidized DNA, especially mitochondrial (mtDNA). It is not known if oxidized mtDNA contributes to cardiac dysfunction. To test if protection of mtDNA can reduce cardiac injury, we produced transgenic mice with cardiomyocyte-specific overexpression of the DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) isoform 2a. In one line of mice, the transgene increased OGG1 activity by 115% in mitochondria and by 28% in nuclei. OGG1 transgenic mice demonstrated significantly lower cardiac mitochondrial levels of the DNA guanine oxidation product 7,8-dihydro-8-oxoguanine (8-oxo-dG) under basal conditions, after doxorubicin administration, or after transaortic constriction (TAC), but the transgene produced no detectable reduction in nuclear 8-oxo-dG content. OGG1 mice were tested for protection from the cardiac effects of TAC 13 wk after surgery. Compared with FVB-TAC mice, hearts from OGG1-TAC mice had lower levels of β-myosin heavy chain mRNA but they did not display significant differences in the ratio of heart weight to tibia length or protection of cardiac function measured by echocardiography. The principle benefit of OGG1 overexpression was a significant decrease in TAC-induced cardiac fibrosis. This protection was indicated by reduced Sirius red staining on OGG1 cardiac sections and by significantly decreased induction of collagen 1 and 3 mRNA expression in OGG1 hearts after TAC surgery. These results provide a new model to assess the damaging cardiac effects of 8-oxo-dG formation and suggest that increased repair of 8-oxo-dG in mtDNA decreases cardiac pathology.
Collapse
Affiliation(s)
- Jianxun Wang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
109
|
Age-associated neurodegeneration and oxidative damage to lipids, proteins and DNA. Mol Aspects Med 2011; 32:305-15. [DOI: 10.1016/j.mam.2011.10.010] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/11/2011] [Indexed: 01/08/2023]
|
110
|
Radak Z, Bori Z, Koltai E, Fatouros IG, Jamurtas AZ, Douroudos II, Terzis G, Nikolaidis MG, Chatzinikolaou A, Sovatzidis A, Kumagai S, Naito H, Boldogh I. Age-dependent changes in 8-oxoguanine-DNA glycosylase activity are modulated by adaptive responses to physical exercise in human skeletal muscle. Free Radic Biol Med 2011; 51:417-23. [PMID: 21569841 PMCID: PMC3775599 DOI: 10.1016/j.freeradbiomed.2011.04.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/25/2023]
Abstract
8-Oxo-7,8-dihydroguanine (8-oxoG) accumulates in the genome over time and is believed to contribute to the development of aging characteristics of skeletal muscle and various aging-related diseases. Here, we show a significantly increased level of intrahelical 8-oxoG and 8-oxoguanine-DNA glycosylase (OGG1) expression in aged human skeletal muscle compared to that of young individuals. In response to exercise, the 8-oxoG level was lastingly elevated in sedentary young and old subjects, but returned rapidly to preexercise levels in the DNA of physically active individuals independent of age. 8-OxoG levels in DNA were inversely correlated with the abundance of acetylated OGG1 (Ac-OGG1), but not with total OGG1, apurinic/apyrimidinic endonuclease 1 (APE1), or Ac-APE1. The actual Ac-OGG1 level was linked to exercise-induced oxidative stress, as shown by changes in lipid peroxide levels and expression of Cu,Zn-SOD, Mn-SOD, and SIRT3, as well as the balance between acetyltransferase p300/CBP and deacetylase SIRT1, but not SIRT6 expression. Together these data suggest that that acetylated form of OGG1, and not OGG1 itself, correlates inversely with the 8-oxoG level in the DNA of human skeletal muscle, and the Ac-OGG1 level is dependent on adaptive cellular responses to physical activity, but is age independent.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Semmelweis University, Budapest H-1123, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711:193-201. [DOI: 10.1016/j.mrfmmm.2010.12.016] [Citation(s) in RCA: 644] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/22/2010] [Accepted: 12/31/2010] [Indexed: 04/08/2023]
|
112
|
Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C. Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. THE PLANT CELL 2011; 23:2196-208. [PMID: 21642546 PMCID: PMC3160027 DOI: 10.1105/tpc.111.086694] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/18/2011] [Accepted: 05/24/2011] [Indexed: 05/18/2023]
Abstract
After-ripening is the mechanism by which dormant seeds become nondormant during their dry storage after harvest. The absence of free water in mature seeds does not allow detectable metabolism; thus, the processes associated with dormancy release under these conditions are largely unknown. We show here that sunflower (Helianthus annuus) seed alleviation of dormancy during after-ripening is associated with mRNA oxidation and that this oxidation is prevented when seeds are maintained dormant. In vitro approaches demonstrate that mRNA oxidation results in artifacts in cDNA-amplified fragment length polymorphim analysis and alters protein translation. The oxidation of transcripts is not random but selective, and, using microarrays, we identified 24 stored mRNAs that became highly oxidized during after-ripening. Oxidized transcripts mainly correspond to genes involved in responses to stress and in cell signaling. Among them, protein phosphatase 2C PPH1, mitogen-activated protein kinase phosphatase 1, and phenyl ammonia lyase 1 were identified. We propose that targeted mRNA oxidation during dry after-ripening of dormant seeds could be a process that governs cell signaling toward germination in the early steps of seed imbibition.
Collapse
Affiliation(s)
- Jérémie Bazin
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
| | - Nicolas Langlade
- Laboratoire Interactions Plantes Microorganismes, Institut National de la Recherche Agronomique, 31326 Castanet Tolosan, France
| | - Patrick Vincourt
- Laboratoire Interactions Plantes Microorganismes, Institut National de la Recherche Agronomique, 31326 Castanet Tolosan, France
| | - Sandrine Arribat
- Equipe Génomique Fonctionnelle d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Université d’Evry Val d’Essonne, ERL Centre National de la Recherche Scientifique 8196, F-91057 Evry Cedex, France
| | - Sandrine Balzergue
- Equipe Génomique Fonctionnelle d’Arabidopsis, Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique 1165, Université d’Evry Val d’Essonne, ERL Centre National de la Recherche Scientifique 8196, F-91057 Evry Cedex, France
| | - Hayat El-Maarouf-Bouteau
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
| | - Christophe Bailly
- UR5 EAC7180 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Paris 06, 75005 Paris, France
- Address correspondence to
| |
Collapse
|
113
|
Taniguchi Y, Kawaguchi R, Sasaki S. Adenosine-1,3-diazaphenoxazine derivative for selective base pair formation with 8-oxo-2'-deoxyguanosine in DNA. J Am Chem Soc 2011; 133:7272-5. [PMID: 21524070 DOI: 10.1021/ja200327u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective detection of 8-oxo-2'-deoxyguanosine (8-oxo-dG) in DNA without chemical or enzymatic treatment is an attractive tool for genomic research. We designed and synthesized the non-natural nucleoside analogue, the adenosine-1,3-diazaphenoxazine (Adap) derivative, for selective recognition of 8-oxo-dG in DNA. This study clearly showed that Adap has a highly selective stabilizing effect on the duplex containing the Adap-8-oxo-dG base pair. Furthermore, the fluorescent property of Adap was shown to be useful for the selective detection of 8-oxo-dG in the duplex DNA. To the best of our knowledge, this is the first successful demonstration of a non-natural nucleoside with a high selectivity for 8-oxo-dG in DNA.
Collapse
Affiliation(s)
- Yosuke Taniguchi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582 Japan
| | | | | |
Collapse
|
114
|
Mazzei F, Guarrera S, Allione A, Simonelli V, Narciso L, Barone F, Minoprio A, Ricceri F, Funaro A, D’Errico M, Vogel U, Matullo G, Dogliotti E. 8-Oxoguanine DNA-glycosylase repair activity and expression: A comparison between cryopreserved isolated lymphocytes and EBV-derived lymphoblastoid cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 718:62-7. [DOI: 10.1016/j.mrgentox.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/08/2010] [Accepted: 10/09/2010] [Indexed: 01/20/2023]
|
115
|
Saliques S, Zeller M, Lorin J, Lorgis L, Teyssier JR, Cottin Y, Rochette L, Vergely C. Telomere length and cardiovascular disease. Arch Cardiovasc Dis 2010; 103:454-9. [PMID: 21074124 DOI: 10.1016/j.acvd.2010.08.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/19/2010] [Accepted: 08/21/2010] [Indexed: 12/23/2022]
Abstract
Telomeres are structures composed of deoxyribonucleic acid repeats that protect the end of chromosomes, but shorten with each cell division. They have been the subject of many studies, particularly in the field of oncology, and more recently their role in the onset, development and prognosis of cardiovascular disease has generated considerable interest. It has already been shown that these structures may deteriorate at the beginning of the atherosclerotic process, in the onset and development of arterial hypertension or during myocardial infarction, in which their length may be a predictor of outcome. As telomere length by its nature is a marker of cell senescence, it is of particular interest when studying the lifespan and fate of endothelial cells and cardiomyocytes, especially so because telomere length seems to be regulated by various factors notably certain cardiovascular risk factors, such as smoking, sex and obesity that are associated with high levels of oxidative stress. To gain insights into the links between telomere length and cardiovascular disease, and to assess the usefulness of telomere length as a new marker of cardiovascular risk, it seems essential to review the considerable amount of data published recently on the subject.
Collapse
Affiliation(s)
- Sébastien Saliques
- IFR Santé-STIC, UFR de Médecine et Pharmacie, Laboratoire de Physiopathologie et Pharmacologie Cardiovasculaires Expérimentales (LPPCE), Université de Bourgogne, 7, Boulevard Jeanne-d'Arc, 21000 Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|