101
|
Protective effects of Cordyceps sinensis exopolysaccharide‑selenium nanoparticles on H2O2-induced oxidative stress in HepG2 cells. Int J Biol Macromol 2022; 213:339-351. [DOI: 10.1016/j.ijbiomac.2022.05.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/05/2022] [Accepted: 05/26/2022] [Indexed: 01/07/2023]
|
102
|
Liu A, Liang C, Liu J, Huang Y, Wang M, Wang L. Reactive Oxygen Species─Responsive Lipid Nanoparticles for Effective RNAi and Corneal Neovascularization Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17022-17031. [PMID: 35380773 DOI: 10.1021/acsami.1c23412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Corneal neovascularization (CNV) is a common disease that affects the vision ability of more than 1 million people annually. Small interfering RNA (siRNA) delivery nanoparticle platforms are a promising therapeutic modality for CNV treatment. However, the efficient delivery of siRNA into cells and the effective release of siRNA from delivery vehicles in a particular cell type challenge effective RNAi clinical application for CNV suppression. This study reports the design of a novel reactive oxygen species (ROS)-responsive lipid nanoparticle for siRNA delivery into corneal lesions for enhanced RNAi as a potential CNV treatment. We demonstrated that lipid nanoparticles could efficiently deliver siRNA into human umbilical vein endothelial cells and release siRNA for enhanced gene silencing by using the upregulated ROS of CNV to promote lipid nanoparticle degradation. Moreover, the subconjunctival injection of siRNA nanocomplexes into corneal lesions effectively knocked down vascular endothelial growth factor expression and suppressed CNV formation in an alkali burn model. Thus, we believe that the strategy of using ROS-responsive lipid nanoparticles for enhanced RNAi in CNV could be further extended to a promising clinical therapeutic approach to attenuate CNV formation.
Collapse
Affiliation(s)
- Anqi Liu
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Chunjing Liang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Huang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqiang Wang
- Department of Ophthalmology, Chinese People's Liberation Army General Hospital, Beijing 100039, China
| |
Collapse
|
103
|
Song R, Dasgupta C, Mulder C, Zhang L. MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction. Circulation 2022; 145:1140-1153. [PMID: 35296158 PMCID: PMC9007902 DOI: 10.1161/circulationaha.121.056929] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ischemic heart disease remains a leading cause of death worldwide. In this study, we test the hypothesis that microRNA-210 protects the heart from myocardial ischemia-reperfusion (IR) injury by controlling mitochondrial bioenergetics and reactive oxygen species (ROS) flux. METHODS Myocardial infarction in an acute setting of IR was examined through comparing loss- versus gain-of-function experiments in microRNA-210-deficient and wild-type mice. Cardiac function was evaluated by echocardiography. Myocardial mitochondria bioenergetics was examined using a Seahorse XF24 Analyzer. RESULTS MicroRNA-210 deficiency significantly exaggerated cardiac dysfunction up to 6 weeks after myocardial IR in male, but not female, mice. Intravenous injection of microRNA-210 mimic blocked the effect and recovered the increased myocardial IR injury and cardiac dysfunction. Analysis of mitochondrial metabolism revealed that microRNA-210 inhibited mitochondrial oxygen consumption, increased glycolytic activity, and reduced mitochondrial ROS flux in the heart during IR injury. Inhibition of mitochondrial ROS with MitoQ consistently reversed the effect of microRNA-210 deficiency. Mechanistically, we showed that mitochondrial glycerol-3-phosphate dehydrogenase is a novel target of microRNA-210 in the heart, and loss-of-function and gain-of-function experiments revealed that glycerol-3-phosphate dehydrogenase played a key role in the microRNA-210-mediated effect on mitochondrial metabolism and ROS flux in the setting of heart IR injury. Knockdown of glycerol-3-phosphate dehydrogenase negated microRNA-210 deficiency-induced increases in mitochondrial ROS production and myocardial infarction and improved left ventricular fractional shortening and ejection fraction after the IR treatment. CONCLUSIONS MicroRNA-210 targeting glycerol-3-phosphate dehydrogenase controls mitochondrial bioenergetics and ROS flux and improves cardiac function in a murine model of myocardial infarction in the setting of IR injury. The findings suggest new insights into the mechanisms and therapeutic targets for treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Cassidy Mulder
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
104
|
Xu L, Wang F. LINC00936 exacerbated myocardial infarction progression via miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. Perfusion 2022; 38:706-716. [PMID: 35410528 DOI: 10.1177/02676591221076788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE LncRNAs show great potential in diagnosing and treating myocardial infarction (MI). Clarifying the mechanism of lncRNAs on MI is of great significance for the application of MI biomarkers. Therefore, this report intended to determine the role and mechanism of LINC00936 on MI by biological and imaging methods. METHODS Hypoxia H9C2 model was established by hypoxia treatment. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay detected the apoptosis of H9C2. H2DCFDA staining and enzyme-linked immunosorbent assay (ELISA) was used to detect the reactive oxygen species (ROS) accumulation and Lactate dehydrogenase (LDH) contents, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect LINC00936, Wnt3a and miR-4795-3p levels. Western blot detected Wnt3a protein expression. Dual luciferase reporter assays detected the relationship of miR-4795-3p to LINC00936 or Wnt3a. Echocardiography analysis detected cardiac function. 2,3,5-Triphenyltetrazolium chloride (TTC) detected the infarct size. Masson staining detected the pathological changes. RESULTS LINC00936 level was elevated in the MI patients compared with the controls. Overexpression of LINC00936 promoted apoptosis and ROS accumulation in hypoxia H9C2 model and exacerbated MI progression in vivo. miR-4795-3p bound with LINC00936 in H9C2 cells and miR-4795-3p mimics inhibited apoptosis and ROS accumulation in hypoxia H9C2 model regulated by LINC00936. Wnt3a was targeted by miR-4795-3p and Wnt3a elevation promoted apoptosis and ROS accumulation in hypoxia H9C2 model. CONCLUSION In this report, we illustrated that LINC00936 exacerbated MI progression via the miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. These findings might provide potential molecular target for the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Lvyun Xu
- Department of Emergency, Affiliated Taikang Xianlin Drum Tower Hospital, 117559Medical School of Nanjing University, Nanjing, China
| | - Fan Wang
- Department of Radiology, Nanjing BenQ Medical Center, 189779The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
105
|
Wang Z, Lu H, Garcia-Barrio M, Guo Y, Zhang J, Chen YE, Chang L. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacol Res 2022; 178:106183. [PMID: 35306139 DOI: 10.1016/j.phrs.2022.106183] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022]
Abstract
Most blood vessels are surrounded by perivascular adipose tissue (PVAT), which is a unique adipose tissue that plays critical roles in vascular physiology and pathophysiology. PVAT displays regional differences that impact vascular homeostasis. Angiotensin II (Ang II) is the main biologically active component of the renin-angiotensin-aldosterone system (RAAS), which has been extensively studied in vascular biology. However, the effects of Ang II on PVAT are less explored and remain to be elucidated. In this study, we systematically investigated the regional heterogeneity of three portions of aortic PVAT, i.e., ascending thoracic aortic PVAT (ATA-PVAT), descending thoracic aortic PVAT (DTA-PVAT) and abdominal aortic PVAT (AA-PVAT), and their responses to 7-day Ang II infusion using RNA sequencing. We found that AA-PVAT is clearly distinguished from both ATA-PVAT and DTA-PVAT, with significantly down-regulated oxidative phosphorylation and up-regulated inflammatory response pathways. Furthermore, AA-PVAT expresses lower levels of brown adipocyte marker genes, such as Ucp1, Cidea, Cox8b, Dio2 and Pgc1α, but expresses higher levels of proinflammatory genes, such as Ccl2, Il1β and Tnfα, and components of the RAAS, including Agt, Ace and Agtr1a. Ang II infusion significantly down-regulated oxidative phosphorylation in all regions of aortic PVAT and significantly up-regulated inflammatory response specifically in ATA-PVAT and DTA-PVAT. Moreover, ATA-PVAT was most responsive to Ang II induced inflammation. We further used CDGSH iron-sulfur domain-containing protein 1 (a.k.a. mitoNEET) transgenic mice that exhibit enhanced brown adipose tissue (BAT)-like phenotype in aortic PVAT, as indicated by elevated expression levels of brown adipocyte marker genes, and found that the enhanced BAT-like phenotype of aortic PVAT could counterbalance Ang II induced inflammatory and oxidative effects.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI, United States.
| |
Collapse
|
106
|
Mohan Manu T, Anand T, Sharath Babu GR, Patil MM, Khanum F. Bacopa monniera extract mitigates isoproterenol-induced cardiac stress via Nrf2/Keap1/NQO1 mediated pathway. Arch Physiol Biochem 2022; 128:341-351. [PMID: 31755309 DOI: 10.1080/13813455.2019.1683583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study was aimed to investigate the effect of standardised hydroalcoholic extract of Bacopa monniera (BME) against isoproterenol (ISO) induced cardiac stress. Isoproterenol (85 mg/kg body weight) was administered intraperitoneally to induce cardiac stress in rats. Bacopa monniera extract (BME75 and 150 mg/kg) was orally administered for 21 days followed by ISO on 22nd and 23rd experimental days. ISO caused significant cardiac damage, which was concomitant with increased apoptosis and attenuated expressions of Nrf2, HO-1, and regulating apoptotic protein expressions of Bax, Bcl2 and NOS2. Treatment with BME in rats significantly improved cardiac dysfunction by maintaining cardiac rhythm, myocardial integrity. Decreased oxidative stress by restored expressions of Nrf2, NQO1 and HO-1 followed by elevating antioxidant enzymes and total glutathione levels. Our present results suggest that the BME treatment strengthening the endogenous defence system through Nrf2 modulation and played a key role against cardiac oxidative stress induced by ISO in rats.
Collapse
Affiliation(s)
- T Mohan Manu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - G R Sharath Babu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - Mahantesh M Patil
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory, Mysuru, India
| |
Collapse
|
107
|
Song Y, Jing H, Vong LB, Wang J, Li N. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
108
|
Cunha PM, Ribeiro AS, Padilha C, Nunes JP, Schoenfeld BJ, Cyrino LT, Tomeleri CM, Nascimento MA, Antunes M, Fernandes RR, Barbosa DS, Venturini D, Burini RC, Sardinha LB, Cyrino ES. Improvement of Oxidative Stress in Older Women Is Dependent on Resistance Training Volume: Active Aging Longitudinal Study. J Strength Cond Res 2022; 36:1141-1146. [PMID: 35104066 DOI: 10.1519/jsc.0000000000003602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Cunha, PM, Ribeiro, AS, Padilha, C, Nunes, JP, Schoenfeld, BJ, Cyrino, LT, Tomeleri, CM, Nascimento, MA, Antunes, M, Fernandes, RR, Barbosa, DS, Venturini, D, Burini, RC, Sardinha, LB, and Cyrino, ES. Improvement of oxidative stress in older women is dependent on resistance training volume: Active aging longitudinal study. J Strength Cond Res 36(4): 1141-1146, 2022-The purpose of the present study was to investigate the effects of resistance training (RT) performed with a higher versus lower training volume on oxidative stress (OS) biomarkers in older women. Thirty-eight older women (≥60 years) were randomly assigned to 1 of 2 groups: a group that performed 1 set per exercise (low volume [LV], n = 18) or 3 sets per exercise (high volume [HV], n = 20). The whole-body RT consisted of a 12-week RT program involving 8 exercises performed with sets of 10-15 repetitions maximum, 3 days per week. Advanced oxidation protein products (AOPP), total radical-trapping antioxidant parameter (TRAP), and ferrous oxidation-xylenol orange (FOX) were used as OS biomarkers. The composite Z-score of the percentage changes from pre- to posttraining of OS biomarkers according to groups was calculated. A significant main effect of time (p < 0.05) was found for AOPP (LV = -7.3% vs. HV = -12.2%) and TRAP (LV = +1.5% vs. HV = +15.5%) concentrations, without a statistical difference between the groups (p > 0.05). A significant group vs. time interaction (p < 0.001) was revealed for FOX (LV = +6.4% vs. HV = -8.9%). The overall analysis indicated higher positive changes for HV than LV (composed Z-score: HV = 0.41 ± 1.22 vs. LV = -0.37 ± 1.03; p < 0.05). Our results suggest that a greater volume of RT seems to promote superior improvements on OS biomarkers in older women.
Collapse
Affiliation(s)
- Paolo M Cunha
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Alex S Ribeiro
- Center for Research in Health Sciences, University of Northern Paraná, Londrina, Brazil
| | - Camila Padilha
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - João Pedro Nunes
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Brad J Schoenfeld
- Exercise Science Department, CUNY Lehman College, Bronx, New York, NY
| | - Letícia T Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Crisieli M Tomeleri
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Matheus A Nascimento
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Melissa Antunes
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Rodrigo R Fernandes
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| | - Décio S Barbosa
- Clinical Analyses Laboratory, Londrina State University, Londrina, Brazil
| | - Danielle Venturini
- Clinical Analyses Laboratory, Londrina State University, Londrina, Brazil
| | - Roberto C Burini
- Department of Pathology, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil
- Exercise and Nutrition Metabolism Center from the Department of Public Health, Botucatu School of Medicine, São Paulo State University, Botucatu, Brazil; and
| | - Luís B Sardinha
- Exercise and Health Laboratory, Interdisciplinary Center for the Study of Human Performance, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
| | - Edilson S Cyrino
- Metabolism, Nutrition, and Exercise Laboratory, Londrina State University, Londrina, Brazil
| |
Collapse
|
109
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
110
|
Wachoski-Dark E, Zhao T, Khan A, Shutt TE, Greenway SC. Mitochondrial Protein Homeostasis and Cardiomyopathy. Int J Mol Sci 2022; 23:3353. [PMID: 35328774 PMCID: PMC8953902 DOI: 10.3390/ijms23063353] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/06/2022] Open
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Collapse
Affiliation(s)
- Emily Wachoski-Dark
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- M.A.G.I.C. Inc., Calgary, AB T2E 7Z4, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Steven C. Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
111
|
Suryanarayana K, Maddila S, Nagaraju K, Jonnalagadda SB. Design, synthesis, docking study and biological evaluation of novel thieno[2,3-d]-pyrimidine tethered 1,2,3-triazole scaffolds. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
112
|
Wu J, Boutagy NE, Cai Z, Lin SF, Zheng MQ, Feher A, Stendahl JC, Kapinos M, Gallezot JD, Liu H, Mulnix T, Zhang W, Lindemann M, Teng JK, Miller EJ, Huang Y, Carson RE, Sinusas AJ, Liu C. Feasibility study of PET dynamic imaging of [ 18F]DHMT for quantification of reactive oxygen species in the myocardium of large animals. J Nucl Cardiol 2022; 29:216-225. [PMID: 32415628 PMCID: PMC7666654 DOI: 10.1007/s12350-020-02184-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/27/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVES We aimed to develop a dynamic imaging technique for a novel PET superoxide tracer, [18F]DHMT, to allow for absolute quantification of myocardial reactive oxygen species (ROS) production in a large animal model. METHODS Six beagle dogs underwent a single baseline dynamic [18F]DHMT PET study, whereas one animal underwent three serial dynamic studies over the course of chronic doxorubicin administration (1 mg·kg-1·week-1 for 15 weeks). During the scans, sequential arterial blood samples were obtained for plasma metabolite correction. The optimal compartment model and graphical analysis method were identified for kinetic modeling. Values for the left ventricular (LV) net influx rate, Ki, were reported for all the studies and compared with the LV standard uptake values (SUVs) and the LV-to-blood pool SUV ratios from the 60 to 90 minute static images. Parametric images were also generated. RESULTS [18F]DHMT followed irreversible kinetics once oxidized within the myocardium in the presence of superoxide, as evidenced by the fitting generated by the irreversible two-tissue (2Ti) compartment model and the linearity of Patlak analysis. Myocardial Ki values showed a weak correlation with LV SUV (R2 = 0.27), but a strong correlation with LV-to-blood pool SUV ratio (R2 = 0.92). Generation of high-quality parametric images showed superior myocardial to blood contrast compared to static images. CONCLUSIONS A dynamic PET imaging technique for [18F]DHMT was developed with full and simplified kinetic modeling for absolute quantification of myocardial superoxide production in a large animal model.
Collapse
Affiliation(s)
- Jing Wu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Nabil E Boutagy
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Shu-Fei Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - John C Stendahl
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Michael Kapinos
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Hui Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Wenjie Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Marcel Lindemann
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Jo-Ku Teng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA
- Section of Cardiovascular Medicine, Department of Medicine, Yale Translational Research Imaging Center, Yale School of Medicine, New Haven, CT, USA
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, PO Box 208048, New Haven, CT, 06520-8048, USA.
| |
Collapse
|
113
|
Basak S, Khare HA, Kempen PJ, Kamaly N, Almdal K. Nanoconfined anti-oxidizing RAFT nitroxide radical polymer for reduction of low-density lipoprotein oxidation and foam cell formation. NANOSCALE ADVANCES 2022; 4:742-753. [PMID: 36131819 PMCID: PMC9418007 DOI: 10.1039/d1na00631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
Atherosclerosis is a leading cause of death worldwide. Antioxidant therapy has been considered a promising treatment modality for atherosclerosis, since reactive oxygen species (ROS) play a major role in the pathogenesis of atherosclerosis. We developed ROS-scavenging antioxidant nanoparticles (NPs) that can serve as an effective therapy for atherosclerosis. The newly developed novel antioxidant ROS-eliminating NPs were synthesized via reversible addition-fragmentation chain-transfer (RAFT) polymerization and act as a superoxide dismutase (SOD) mimetic agent. SOD is an anti-ROS enzyme which is difficult to use for passive delivery due to its low half-life and stability. Copolymers were synthesized using different feed ratios of 2,2,6,6-tetramethyl-4-piperidyl methacrylate (PMA) and glycidyl methacrylate (GMA) monomers and an anti-ROS nitroxyl radical polymer was prepared via oxidation. The copolymer was further conjugated with a 6-aminofluorescein via a oxirane ring opening reaction for intracellular delivery in RAW 264.7 cells. The synthesized copolymers were blended to create NPs (∼150 nm size) in aqueous medium and highly stable up to three weeks. The NPs were shown to be taken up by macrophages and to be cytocompatible even at high dose levels (500 μg mL-1). Finally, the nitroxide NPs has been shown to inhibit foam cell formation in macrophages by decreasing internalization of oxidized low-density lipoproteins.
Collapse
Affiliation(s)
- Suman Basak
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Harshvardhan Ajay Khare
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen Copenhagen 2200 Denmark
| | - Paul J Kempen
- Department of Health Technology, DTU Health Tech, Technical University of Denmark Kgs. Lyngby 2800 Denmark
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London W12 0BZ UK
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark Kgs. Lyngby 2800 Denmark
| |
Collapse
|
114
|
Liu K, Zhang J, Li X, Xie Y, Li Y, Wang X, Jiao X, Xie X, Tang B. Hypochlorous acid-activated two-photon fluorescent probe for evaluation of anticancer drug-induced cardiotoxicity and screening of antioxidant drugs. Org Chem Front 2022. [DOI: 10.1039/d2qo01408d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
THPIC was developed to detect HClO in lysosomes. The results showed that HClO could be used as a biomarker for evaluating drug-induced cardiotoxicity, and THPIC could be applied as a platform for screening drugs to prevent cardiotoxicitys.
Collapse
Affiliation(s)
- Kaiqiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xinxin Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yingying Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
115
|
Deschaine B, Verma S, Rayatzadeh H. Clinical Evidence and Proposed Mechanisms of Sodium-Glucose Cotransporter 2 Inhibitors in Heart Failure with Preserved Ejection Fraction: A Class Effect? Card Fail Rev 2022; 8:e23. [PMID: 35846984 PMCID: PMC9272408 DOI: 10.15420/cfr.2022.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 11/04/2022] Open
Abstract
Effective treatment for heart failure with preserved ejection fraction (HFpEF) is an unmet need in cardiovascular medicine. The pathophysiological drivers of HFpEF are complex, differing depending on phenotype, making a one-size-fits-all treatment approach unlikely. Remarkably, sodium-glucose cotransporter 2 inhibitors (SGLT2is) may be the first drug class to improve cardiovascular outcomes in HFpEF. Randomised controlled trials suggest a benefit in mortality, and demonstrate decreased hospitalisations and improvement in functional status. Limitations in trials exist, either due to small sample sizes, differing results between trials or decreased efficacy at higher ejection fractions. SGLT2is may provide a class effect by targeting various pathophysiological HFpEF mechanisms. Inhibition of SGLT2 and Na+/H+ exchanger 3 in the kidney promotes glycosuria, osmotic diuresis and natriuresis. The glucose deprivation activates sirtuins - protecting against oxidation and beneficially regulating metabolism. SGLT2is reduce excess epicardial adipose tissue and its deleterious adipokines. Na+/H+ exchanger 1 inhibition in the heart and lungs reduces sodium-induced calcium overload and pulmonary hypertension, respectively.
Collapse
Affiliation(s)
- Brent Deschaine
- University of Florida College of Medicine Gainesville, FL, US
| | - Sahil Verma
- Florida State University College of Medicine Tallahassee, FL, US
| | - Hussein Rayatzadeh
- Florida State University College of Medicine Tallahassee, FL, US.,Tallahassee Research Institute Tallahassee, FL, US.,Southern Medical Group Tallahassee, FL, US
| |
Collapse
|
116
|
Ma Y, Zheng L, Wang Y, Gao Y, Xu Y. Arachidonic Acid in Follicular Fluid of PCOS Induces Oxidative Stress in a Human Ovarian Granulosa Tumor Cell Line (KGN) and Upregulates GDF15 Expression as a Response. Front Endocrinol (Lausanne) 2022; 13:865748. [PMID: 35634503 PMCID: PMC9132262 DOI: 10.3389/fendo.2022.865748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovarian ovary syndrome (PCOS) is the main cause of ovulatory infertility and a common reproductive endocrine disease of women in reproductive age. In addition, nearly half of PCOS patients are associated with obesity, and their total free fatty acids tend to increase. Arachidonic acid (AA) is a polyunsaturated fatty acid. Oxidation products of AA reacting with various enzymes[cyclooxygenases (COX), lipoxygenases (LOX), cytochrome P450s (CYP)] can change cellular mitochondrial distribution and calcium ion concentration, and increase reactive oxygen species (ROS) production. In this study, we analyzed the follicular fluid fatty acids and found higher levels of C20:4n6 (AA) in PCOS patients than in normal control subjects. Also, to determine whether AA induces oxidative stress (OS) in the human ovarian granulosa tumor cell line (KGN) and affects its function, we treated KGN cells with or without reduced glutathione (GSH) and then stimulated them with AA. The results showed that AA significantly reduced the total antioxidant capacity (TAC) and activity of antioxidant enzymes and increased the malondialdehyde (MDA), ROS and superoxide anion(O2-)levels in KGN cells. In addition, AA was also found to impair the secretory and mitochondrial functions of KGN cells and induce their apoptosis. We further investigated the downstream genes affected by AA in KGN cells and its mechanism of action. We found that AA upregulated the expression of growth differentiation factor 15 (GDF15), which had a protective effect on inflammation and tissue damage. Therefore, we investigated whether AA-induced OS in KGN cells upregulates GDF15 expression as an OS response.Through silencing of GDF15 and supplementation with recombinant GDF15 (rGDF15), we found that GDF15, expressed as an OS response, protected KGN cells against AA-induced OS effects, such as impairment of secretory and mitochondrial functions and apoptosis. Therefore, this study suggested that AA might induce OS in KGN cells and upregulate the expression of GDF15 as a response to OS.
Collapse
Affiliation(s)
- Yalan Ma
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Yeling Wang
- Cardiovascular Medicine Department, The First Hospital of Jilin University, Changchun, China
| | - Yiyin Gao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Ying Xu,
| |
Collapse
|
117
|
Deng X, Wu Y, Xu H, Yan J, Liu H, Zhang B. Recent research progress in galactose-based fluorescent probes for detection of biomarkers of liver diseases. Chem Commun (Camb) 2022; 58:12518-12527. [DOI: 10.1039/d2cc04180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the challenges and latest progress in galactose-based fluorescent probes for early diagnosis of liver diseases.
Collapse
Affiliation(s)
- Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 16044, China
| | - Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
118
|
Tajabadi M, Goran Orimi H, Ramzgouyan MR, Nemati A, Deravi N, Beheshtizadeh N, Azami M. Regenerative strategies for the consequences of myocardial infarction: Chronological indication and upcoming visions. Biomed Pharmacother 2021; 146:112584. [PMID: 34968921 DOI: 10.1016/j.biopha.2021.112584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Heart muscle injury and an elevated troponin level signify myocardial infarction (MI), which may result in defective and uncoordinated segments, reduced cardiac output, and ultimately, death. Physicians apply thrombolytic therapy, coronary artery bypass graft (CABG) surgery, or percutaneous coronary intervention (PCI) to recanalize and restore blood flow to the coronary arteries, albeit they were not convincingly able to solve the heart problems. Thus, researchers aim to introduce novel substitutional therapies for regenerating and functionalizing damaged cardiac tissue based on engineering concepts. Cell-based engineering approaches, utilizing biomaterials, gene, drug, growth factor delivery systems, and tissue engineering are the most leading studies in the field of heart regeneration. Also, understanding the primary cause of MI and thus selecting the most efficient treatment method can be enhanced by preparing microdevices so-called heart-on-a-chip. In this regard, microfluidic approaches can be used as diagnostic platforms or drug screening in cardiac disease treatment. Additionally, bioprinting technique with whole organ 3D printing of human heart with major vessels, cardiomyocytes and endothelial cells can be an ideal goal for cardiac tissue engineering and remarkable achievement in near future. Consequently, this review discusses the different aspects, advancements, and challenges of the mentioned methods with presenting the advantages and disadvantages, chronological indications, and application prospects of various novel therapeutic approaches.
Collapse
Affiliation(s)
- Maryam Tajabadi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran
| | - Hanif Goran Orimi
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Roya Ramzgouyan
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alireza Nemati
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
119
|
Zhou FM, Huang JJ, Hu XJ, Wang J, Zhu BQ, Ding ZS, Huang S, Fang JJ. Protective effects of flavonoids from the leaves of Carya cathayensis Sarg. against H 2O 2-induced oxidative damage and apoptosis in vitro. Exp Ther Med 2021; 22:1443. [PMID: 34721685 PMCID: PMC8549100 DOI: 10.3892/etm.2021.10878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Hydrogen peroxide (H2O2) can induce apoptosis by releasing reactive oxygen species (ROS) and reactive nitrogen species, which cause mitochondrial damage. The present study aimed to investigate the protective effects of flavonoids from the leaves of Carya cathayensis Sarg. against H2O2-induced oxidative damage and apoptosis in vitro. The bioactivity of total flavonoids (TFs) and five monomeric flavonoids [cardamonin (Car), pinostrobin chalcone, wogonin, chrysin and pinocembrin] from the leaves of Carya cathayensis Sarg. (LCCS) were tested to prevent oxidative damage to rat aortic endothelial cells (RAECs) induced by H2O2. Oxidated superoxide dismutase, glutathione peroxidase, malondialdehyde, lactate dehydrogenase and ROS were analyzed to evaluate the antioxidant activity. Gene and protein expression patterns were assessed using reverse transcription-quantitative PCR and western blotting, respectively. The results indicated that TFs and Car inhibited H2O2-induced cytotoxicity and apoptosis of RAECs. Additionally, they regulated the level of oxidase and inhibited the production of ROS. Overall, the TFs extracted from LCCS could potentially be developed as effective candidate drugs to prevent oxidative stress in the future; moreover, they could also provide a direction in investigations for preventing antioxidant activity through the ROS pathway.
Collapse
Affiliation(s)
- Fang-Mei Zhou
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jing-Jing Huang
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xu-Jiao Hu
- Inspection Department, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Jingwei Wang
- Department of Pathology, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Bing-Qi Zhu
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhi-Shan Ding
- Technology Teaching Center of Medical Laboratory and Quarantine, School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Shigao Huang
- Faculty of Health Sciences, University of Macau, Taipa 999078, Macau SAR, P.R. China
| | - Jing-Jing Fang
- Inspection Department, Yinzhou People's Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
120
|
Reactive Oxygen Species as the Brainbox in Malaria Treatment. Antioxidants (Basel) 2021; 10:antiox10121872. [PMID: 34942976 PMCID: PMC8698694 DOI: 10.3390/antiox10121872] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Several measures are in place to combat the worldwide spread of malaria, especially in regions of high endemicity. In part, most common antimalarials, such as quinolines and artemisinin and its derivatives, deploy an ROS-mediated approach to kill malaria parasites. Although some antimalarials may share similar targets and mechanisms of action, varying levels of reactive oxygen species (ROS) generation may account for their varying pharmacological activities. Regardless of the numerous approaches employed currently and in development to treat malaria, concerningly, there has been increasing development of resistance by Plasmodium falciparum, which can be connected to the ability of the parasites to manage the oxidative stress from ROS produced under steady or treatment states. ROS generation has remained the mainstay in enforcing the antiparasitic activity of most conventional antimalarials. However, a combination of conventional drugs with ROS-generating ability and newer drugs that exploit vital metabolic pathways, such antioxidant machinery, could be the way forward in effective malaria control.
Collapse
|
121
|
Song S, Liu X, Zhao B, Abubaker MA, Huang Y, Zhang J. Effects of Lactobacillus plantarum Fermentation on the Chemical Structure and Antioxidant Activity of Polysaccharides from Bulbs of Lanzhou Lily. ACS OMEGA 2021; 6:29839-29851. [PMID: 34778657 PMCID: PMC8582043 DOI: 10.1021/acsomega.1c04339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 05/14/2023]
Abstract
Recently, Lanzhou lily has attracted more attention because of its bioactive components specifically polysaccharides. We studied in vitro the effects of Lactobacillus plantarum fermentation on the physicochemical properties, chemical structure, and antioxidant activity of the Lanzhou lily polysaccharide. The results showed that compared with the unfermented Lanzhou lily polysaccharide (LP-W), the molecular weight (M w) of the fermented Lanzhou lily polysaccharide (LPF-W) decreased from 4334 to 1684 kDa, the particle size decreased from 300.8 ± 6.38 to 141.9 ± 4.96 nm, and the solubility increased from 72.33 ± 3.58 to 104.27 ± 2.91 mg/mL. In addition, after fermentation, the monosaccharide composition of LPF-W changed, and the alternation of mannose residues and glucose residues disappeared. The results of the analysis of the antioxidant activity in vitro showed that compared with LP-W, the fermented LPF-W had higher DPPH radical ability, superoxide anion radical scavenging ability, and reducing efficiency, but the hydroxyl radical scavenging ability decreased. These findings provide a reference for the potential application of the lily polysaccharide as a plant-derived antioxidant in functional foods.
Collapse
Affiliation(s)
- Shen Song
- Gansu
Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Institute,
Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Xiaoyuan Liu
- Gansu
Provincial Maternity and Child-care Hospital, Lanzhou 730050, China
| | - Baotang Zhao
- College
of Food and Science and Engineering, Gansu
Agricultural University, Lanzhou 730070, China
| | - Mohamed Aamer Abubaker
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
- Department
of Biology, Faculty of Education, University
of Khartoum, Khartoum 11111, Sudan
| | - Yulong Huang
- Gansu
Innovation Center of Fruit and Vegetable Storage and Processing, Agricultural Product Storage and Processing Institute,
Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| | - Ji Zhang
- New
Rural Development Research Institute of Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
122
|
戢 力, 邓 艳, 李 涛. [Effect of Ketone Body β-Hydroxybutyrate to Attenuate Inflammation-Induced Mitochondrial Oxidative Stress in Vascular Endothelial Cells]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:954-959. [PMID: 34841761 PMCID: PMC10408818 DOI: 10.12182/20211160202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the regulatory function and mechanism of β-hydroxybutyrate (β-OHB), a ketone body, on the mitochondrial oxidative stress of inflammatory human umbilical vein endothelial cells (HUVECs). METHODS Lipopolysaccharide (LPS) and adenosine triphosphate (ATP) were used to induce macrophages to release proinflammatory factors, and the culture supernatant was collected as a macrophage-conditioned medium (MCM) to culture HUVECs. A total of 7 groups of cells were used in the study: ①control group, or normal cultured HUVECs; ②MCM group, or the MCM-cultured HUVECs; groups ③ to ⑦ were all HUVECs co-cultured with different reagents, including ③MCM+β-OHB group, ④MCM+N-acetylcysteine (NAC) group, ⑤MCM+β-OHB+NAC group, ⑥MCM+β-OHB+histone deacetylase agonist ITSA1 group, and ⑦MCM+β-OHB+histone deacetylase inhibitor Entinostat group. MitoSOX immunofluorescence staining was conducted to analyzes the mitochondrial superoxide levels, real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to examine the mRNA expression of antioxidant genes, and Seahorse mitochondrial energy analyzer was used to measure mitochondrial aerobic respiration capacity. RESULTS Compared with the control group, mitochondrial superoxide production was significantly increased in the MCM cultured HUVECs cells, while β-OHB treatment significantly inhibited mitochondrial superoxide production, which was accompanied by an increase in the mRNA expression of antioxidant genes, and significant increase in the basal mitochondrial oxygen consumption rate and respiratory reserve capacity. NAC treatment did not further enhance the protective effect of β-OHB on mitochondrial functions. In addition, ITSA1 treatment could completely offset the antioxidant and mitochondrial protective effects of β-OHB, and these stated effects were still maintained after Entinostat treatment. CONCLUSION The ketone body β-OHB attenuates the mitochondrial oxidative stress of vascular endothelial cells through activating the antioxidant pathway and inhibiting histone deacetylase activity.
Collapse
Affiliation(s)
- 力维 戢
- 西南医科大学附属医院 麻醉科 (泸州 646000)Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Anesthesia and Operation Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 艳 邓
- 西南医科大学附属医院 麻醉科 (泸州 646000)Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - 涛 李
- 西南医科大学附属医院 麻醉科 (泸州 646000)Department of Anesthesiology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- 四川大学华西医院 线粒体与代谢医学研究室 麻醉手术中心 (成都 610041)Laboratory of Mitochondria and Metabolism, Anesthesia and Operation Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
123
|
Liu Y, Cao X, Ge J. Antioxidative Composites Based on Multienzyme Systems Encapsulated in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46431-46439. [PMID: 34551515 DOI: 10.1021/acsami.1c15506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Skin is exposed to ultraviolet radiation from the sun constantly, which may induce overproduction of reactive oxygen species (ROS) causing oxidative stress to cells and tissues. Enzymes and small molecules work together to maintain the redox homeostasis, among which superoxide dismutase (SOD) and catalase (CAT) are two kinds of most important antioxidants that suffer from the fragile nature of proteins. Moreover, the proportion of two enzymes used in products must be precisely controlled to reduce the damage caused by the toxic intermediate H2O2. Metal-organic frameworks (MOFs) are emerging as promising candidates for multiple enzyme encapsulation due to their high porosity, easy synthesis, and good biocompatibility. Herein, we developed enzyme-MOF composites, SC@ZIF-8, which exhibited an excellent antioxidative activity in vitro. Chemically protective cages formed by MOFs endow the encapsulated enzymes the long-term stability under unnatural conditions in cosmetic and biomedical materials. The pH-dependent protein release profile of SC@ZIF-8 facilitated the successful delivery of enzymes into the cytoplasm to scavenge toxic ROS. The nanocomposites protected human cells from paraquat-induced oxidative stress, paving a new path for the stable and efficient application of antioxidative enzymes in cosmetic and dermatological fields.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xun Cao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Ge
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
124
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
125
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
126
|
Kalinowska M, Gołębiewska E, Świderski G, Męczyńska-Wielgosz S, Lewandowska H, Pietryczuk A, Cudowski A, Astel A, Świsłocka R, Samsonowicz M, Złowodzka AB, Priebe W, Lewandowski W. Plant-Derived and Dietary Hydroxybenzoic Acids-A Comprehensive Study of Structural, Anti-/Pro-Oxidant, Lipophilic, Antimicrobial, and Cytotoxic Activity in MDA-MB-231 and MCF-7 Cell Lines. Nutrients 2021; 13:nu13093107. [PMID: 34578985 PMCID: PMC8466373 DOI: 10.3390/nu13093107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Seven derivatives of plant-derived hydroxybenzoic acid (HBA)—including 2,3-dihydroxybenzoic (2,3-DHB, pyrocatechuic), 2,4-dihydroxybenzoic (2,4-DHB, β-resorcylic), 2,5-dihydroxybenzoic (2,5-DHB, gentisic), 2,6-dihydroxybenzoic (2,6-DHB, γ-resorcylic acid), 3,4-dihydroxybenzoic (3,4-DHB, protocatechuic), 3,5-dihydroxybenzoic (3,5-DHB, α-resorcylic), and 3,4,5-trihydroxybenzoic (3,4,5-THB, gallic) acids—were studied for their structural and biological properties. Anti-/pro-oxidant properties were evaluated by using DPPH• (2,2-diphenyl-1-picrylhydrazyl), ABTS•+ (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (ferric-reducing antioxidant power), CUPRAC (cupric-reducing antioxidant power), and Trolox oxidation assays. Lipophilicity was estimated by means of experimental (HPLC) and theoretical methods. The antimicrobial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Salmonella enteritidis (S. enteritidis), and Candida albicans (C. albicans) was studied. The cytotoxicity of HBAs in MCF-7 and MDA-MB-231 cell lines was estimated. Moreover, the structure of HBAs was studied by means of experimental (FTIR, 1H, and 13C NMR) and quantum chemical DFT methods (the NBO and CHelpG charges, electrostatic potential maps, and electronic parameters based on the energy of HOMO and LUMO orbitals). The aromaticity of HBA was studied based on the calculated geometric and magnetic aromaticity indices (HOMA, Aj, BAC, I6, NICS). The biological activity of hydroxybenzoic acids was discussed in relation to their geometry, the electronic charge distribution in their molecules, their lipophilicity, and their acidity. Principal component analysis (PCA) was used in the statistical analysis of the obtained data and the discussion of the dependency between the structure and activity (SAR: structure–activity relationship) of HBAs. This work provides valuable information on the potential application of hydroxybenzoic acids as bioactive components in dietary supplements, functional foods, or even drugs.
Collapse
Affiliation(s)
- Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
- Correspondence:
| | - Ewelina Gołębiewska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Grzegorz Świderski
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Hanna Lewandowska
- Institute of Nuclear Chemistry and Technology, 16 Dorodna Street, 03-195 Warsaw, Poland; (S.M.-W.); (H.L.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland; (A.P.); (A.C.)
| | - Aleksander Astel
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22a Street, 76-200 Słupsk, Poland;
| | - Renata Świsłocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Mariola Samsonowicz
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland; (E.G.); (G.Ś.); (R.Ś.); (M.S.)
| | - Anna Barbara Złowodzka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warszawa, Poland;
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1901 East Rd., Houston, TX 77054, USA;
| | - Włodzimierz Lewandowski
- Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland;
| |
Collapse
|
127
|
Khan S, Chavez J, Zhu X, Chiu NHL, Zhang W, Yin Z, Han J, Yang J, Sigler R, Tian S, Zhu H, Li Y, Wei J, Yi X, Jia Z. Carbon Nanodots Inhibit Oxidized Low Density Lipoprotein-Induced Injury and Monocyte Adhesion to Endothelial Cells Through Scavenging Reactive Oxygen Species. J Biomed Nanotechnol 2021; 17:1654-1667. [PMID: 34544542 PMCID: PMC9436393 DOI: 10.1166/jbn.2021.3125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidized low density lipoprotein (Ox-LDL) is a known biomarker of inflammation and atherosclerosis, a leading cause of death worldwide. As a new class of nanomaterials, carbon nanodots (CNDs) are widely used in bioimaging, diagnostics, and drug delivery. However, there is no current report on how these CNDs affect the cardiovascular system, particularly their potential in mediating endothelial inflammatory dysfunction. This study examined effects of CNDs on Ox-LDL-mediated endothelial dysfunction. CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to human microvascular endothelial cells (HMEC-1), in human microvascular endothelial cells (HMEC-1). CNDs significantly inhibited Ox-LDL-mediated adhesion of monocytes to endothelial cells, which is an essential step in the development of atherosclerosis. Further, CNDs significantly inhibited OxLDL-induced expression of interleukin-8 (IL-8), a vital cytokine on monocyte adhesion to the endothelial cells. These results demonstrate CNDs possess anti-inflammatory properties. CNDs also protect cells against Ox-LDL-induced cytotoxicity. Electron paramagnetic resonance (EPR) spectroscopy studies demonstrated direct reactive oxygen species-scavenging by CNDs. This result indicates that the anti-inflammatory properties of CNDs are most likely due to their direct scavenging of reactive oxygen species. Animal studies involving mice did not show any morphological or physical changes between the CNDs and control groups. Our study provides evidence of potential of CNDs in reducing Ox-LDL-mediated inflammation and cytotoxicity in HMEC-1.
Collapse
Affiliation(s)
- Safeera Khan
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Xuewei Zhu
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Norman H. L. Chiu
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, NC 27412, USA
| | - Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Jian Han
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, 27411, USA
| | - Jibin Yang
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, 48105 Michigan, USA
| | - Robert Sigler
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, 48105 Michigan, USA
| | - Shaomin Tian
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Hong Zhu
- Department of Pharmacology, Campbell University, School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Yunbo Li
- Department of Pharmacology, Campbell University, School of Osteopathic Medicine, Buies Creek, NC 27506, USA
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| | - Xianwen Yi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, 27599, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
128
|
ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
129
|
Xu X, Jiang T, Li Y, Kong L. Endostatin attenuates heart failure via inhibiting reactive oxygen species in myocardial infarction rats. Biosci Rep 2021; 41:BSR20200787. [PMID: 32686821 PMCID: PMC8243342 DOI: 10.1042/bsr20200787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/21/2023] Open
Abstract
The purpose of the present study was to evaluate whether endostatin overexpression could improve cardiac function, hemodynamics, and fibrosis in heart failure (HF) via inhibiting reactive oxygen species (ROS). The HF models were established by inducing ischemia myocardial infarction (MI) through ligation of the left anterior descending (LAD) artery in Sprague-Dawley (SD) rats. Endostatin level in serum was increased in MI rats. The decrease in cardiac function and hemodynamics in MI rats were enhanced by endostatin overexpression. Endostatin overexpression inhibited the increase in collagen I, collagen III, α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), matrix metalloproteinase (MMP)-2 and MMP9 in the hearts of MI rats. MI-induced cardiac hypertrophy was reduced by endostatin overexpression. The increased levels of malondialdehyde (MDA), superoxide anions, the promoted NAD(P)H oxidase (Nox) activity, and the reduced superoxide dismutase (SOD) activity in MI rats were reversed by endostatin overexpression. Nox4 overexpression inhibited the cardiac protective effects of endostatin. These results demonstrated that endostatin improved cardiac dysfunction and hemodynamics, and attenuated cardiac fibrosis and hypertrophy via inhibiting oxidative stress in MI-induced HF rats.
Collapse
Affiliation(s)
- Xuguang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liusha Kong
- Department of Nephrology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
130
|
Rajendra MA, Naseem M, Joy MN, Sunil K, Sajith AM, Howari F, Nazzal Y, Xavier C, Alshammari MB, Haridas KR. Application of NMI-TfCl-mediated amide bond formation in the synthesis of biologically relevant oxadiazole derivatives employing less basic (hetero)aryl amines. Mol Divers 2021; 26:1761-1767. [PMID: 34296385 DOI: 10.1007/s11030-021-10275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
We herein report a modified methodology for the synthesis of some oxadiazoles linked to amides under mild conditions. The developed protocol using NMI-TfCl has been found to be effective and tolerant for the amide bond formation reaction of a series of electronically deactivating and sterically challenging amines. The antioxidant potential of the newly synthesized compounds has been evaluated at the later stage.
Collapse
Affiliation(s)
- Merla Arjuna Rajendra
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| | - Muhammad Naseem
- College of Natural and Health Sciences, Zayed University, PO Box 144534, Khalifa City, Abu Dhabi, UAE
| | - Muthipeedika Nibin Joy
- Innovation Center for Chemical and Pharmaceutical Technologies, Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India.
| | | | - Fares Howari
- College of Natural and Health Sciences, Zayed University, PO Box 144534, Khalifa City, Abu Dhabi, UAE
| | - Yousef Nazzal
- College of Natural and Health Sciences, Zayed University, PO Box 144534, Khalifa City, Abu Dhabi, UAE
| | - Cijo Xavier
- College of Natural and Health Sciences, Zayed University, PO Box 144534, Khalifa City, Abu Dhabi, UAE
| | - Mohammed B Alshammari
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, 11942, P.O. Box 83, Al-Kharij, Saudi Arabia
| | - Karickal Raman Haridas
- School of Chemical Sciences, Kannur University, Payyanur Campus, Edat, P.O. 670327, Kannur, Kerala, India
| |
Collapse
|
131
|
Xie X, Zhang Y, Wang Z, Wang S, Jiang X, Cui H, Zhou T, He Z, Feng H, Guo Q, Song X, Cao L. ATM at the crossroads of reactive oxygen species and autophagy. Int J Biol Sci 2021; 17:3080-3090. [PMID: 34421351 PMCID: PMC8375236 DOI: 10.7150/ijbs.63963] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) are generally small, short-lived and highly reactive molecules, initially thought to be a pathological role in the cell. A growing amount of evidence in recent years argues for ROS functioning as a signaling intermediate to facilitate cellular adaptation in response to pathophysiological stress through the regulation of autophagy. Autophagy is an essential cellular process that plays a crucial role in recycling cellular components and damaged organelles to eliminate sources of ROS in response to various stress conditions. A large number of studies have shown that DNA damage response (DDR) transducer ataxia-telangiectasia mutated (ATM) protein can also be activated by ROS, and its downstream signaling pathway is involved in autophagy regulation. This review aims at providing novel insight into the regulatory mechanism of ATM activated by ROS and its molecular basis for inducing autophagy, and revealing a new function that ATM can not only maintain genome homeostasis in the nucleus, but also as a ROS sensor trigger autophagy to maintain cellular homeostasis in the cytoplasm.
Collapse
Affiliation(s)
- Xiaochen Xie
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Ye Zhang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Zhuo Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Shanshan Wang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyou Jiang
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Hongyan Cui
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Tingting Zhou
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Zheng He
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Qiqiang Guo
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| |
Collapse
|
132
|
Mechanisms of Ataxia Telangiectasia Mutated (ATM) Control in the DNA Damage Response to Oxidative Stress, Epigenetic Regulation, and Persistent Innate Immune Suppression Following Sepsis. Antioxidants (Basel) 2021; 10:antiox10071146. [PMID: 34356379 PMCID: PMC8301080 DOI: 10.3390/antiox10071146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cells have evolved extensive signaling mechanisms to maintain redox homeostasis. While basal levels of oxidants are critical for normal signaling, a tipping point is reached when the level of oxidant species exceed cellular antioxidant capabilities. Myriad pathological conditions are characterized by elevated oxidative stress, which can cause alterations in cellular operations and damage to cellular components including nucleic acids. Maintenance of nuclear chromatin are critically important for host survival and eukaryotic organisms possess an elaborately orchestrated response to initiate repair of such DNA damage. Recent evidence indicates links between the cellular antioxidant response, the DNA damage response (DDR), and the epigenetic status of the cell under conditions of elevated oxidative stress. In this emerging model, the cellular response to excessive oxidants may include redox sensors that regulate both the DDR and an orchestrated change to the epigenome in a tightly controlled program that both protects and regulates the nuclear genome. Herein we use sepsis as a model of an inflammatory pathophysiological condition that results in elevated oxidative stress, upregulation of the DDR, and epigenetic reprogramming of hematopoietic stem cells (HSCs) to discuss new evidence for interplay between the antioxidant response, the DNA damage response, and epigenetic status.
Collapse
|
133
|
Mayyas FA, Aljohmani AI, Alzoubi KH. The Impact of Spironolactone on Markers of Myocardial Oxidative Status, Inflammation and Remodeling in Hyperthyroid Rats. Curr Mol Pharmacol 2021; 13:206-215. [PMID: 31729306 DOI: 10.2174/1874467212666191113150553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Hyperthyroidism promotes the development and progression of cardiovascular diseases (CVD). Aldosterone, a key mediator of myocardial inflammation, oxidative stress and fibrosis, may be activated in hyperthyroidism. OBJECTIVE To assess the impact of hyperthyroidism on aldosterone levels and myocardial oxidative status, inflammatory and fibrotic markers in hyperthyroid rats, and to test if the use of spironolactone (an aldosterone antagonist) attenuates these changes. METHODS Adult Wistar rats were randomly distributed into 4 groups; controls, spironolactone treated rats (Spir, 50mg/kg/day), hyperthyroid rats (Hyper, daily intraperitoneal levothyroxine 0.3mg/kg/day), and spironolactone treated hyperthyroid rats (Hyper+Spir) for 4 weeks. Blood pressure (Bp), and levels of serum and myocardial aldosterone, oxidants/antioxidants, inflammatory and fibrotic markers were measured. RESULTS Levothyroxine increased serum thyroid hormones and increased Bp, heart rate and heart to bodyweight ratio. Relative to control, serum aldosterone levels were increased in Hyper and Hyper+ Spir groups. In parallel, cardiac lipid peroxides and serum endothelin-1 were increased whereas cardiac superoxide dismutase, catalase, glutathione, and matrix metalloproteinase -2 were reduced in the Hyper group. Spironolactone decreased serum thyroid hormones and improved cardiac lipid peroxides and metalloproteinase -2 levels. The use of spironolactone decreased serum nitrite levels and increased cardiac SOD and glutathione. Cardiac levels of aldosterone, endothelin-1, transforming growth factor-beta and nitrite were similar among all groups. CONCLUSION Hyperthyroid status was associated with an increase in aldosterone and oxidant/ inflammatory biomarkers. The use of spironolactone enhanced antioxidant defenses. Aldosterone antagonists may serve as potential drugs to attenuate the development of cardiac disease in hyperthyroidism.
Collapse
Affiliation(s)
- Fadia A Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad I Aljohmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
134
|
Eftekhari A, Fortenberry CF, Williams BJ, Walker MJ, Dang A, Pfaff A, Ercal N, Morrison GC. Continuous measurement of reactive oxygen species inside and outside of a residential house during summer. INDOOR AIR 2021; 31:1199-1216. [PMID: 33484190 PMCID: PMC8396106 DOI: 10.1111/ina.12789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 05/02/2023]
Abstract
Reactive oxygen species (ROS) are an important contributor to adverse health effects associated with ambient air pollution. Despite infiltration of ROS from outdoors, and possible indoor sources (eg, combustion), there are limited data available on indoor ROS. In this study, part of the second phase of Air Composition and Reactivity from Outdoor aNd Indoor Mixing campaign (ACRONIM-2), we constructed and deployed an online, continuous, system to measure extracellular gas- and particle-phase ROS during summer in an unoccupied residence in St. Louis, MO, USA. Over a period of one week, we observed that the non-denuded outdoor ROS (representing particle-phase ROS and some gas-phase ROS) concentration ranged from 1 to 4 nmol/m3 (as H2 O2 ). Outdoor concentrations were highest in the afternoon, coincident with peak photochemistry periods. The indoor concentrations of particle-phase ROS were nearly equal to outdoor concentrations, regardless of window-opening status or air exchange rates. The indoor/outdoor ratio of non-denuded ROS (I/OROS ) was significantly less than 1 with windows open and even lower with windows closed. Combined, these observations suggest that gas-phase ROS are efficiently removed by interior building surfaces and that there may be an indoor source of particle-phase ROS.
Collapse
Affiliation(s)
- Azin Eftekhari
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
| | - Claire F. Fortenberry
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Brent J. Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael J. Walker
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Audrey Dang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Center for Aerosol Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Annalise Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Glenn C. Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
135
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
136
|
Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021; 26:4021. [PMID: 34209338 PMCID: PMC8272101 DOI: 10.3390/molecules26134021] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.
Collapse
Affiliation(s)
- Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Prashanta Kumar Deb
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Somi Priya
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India;
| | - Karla Damián Medina
- Food Technology Unit, Centre for Research and Assistance in Technology and Design of Jalisco State A.C., Camino Arenero 1227, El Bajío del Arenal, Zapopan 45019, Jalisco, Mexico;
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati 781035, Assam, India; (P.K.D.); (R.D.)
| | - Sanjay G. Walode
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| | - Mithun Rudrapal
- Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Chinchwad, Pune 411019, Maharashtra, India;
| |
Collapse
|
137
|
Habib HM, Kheadr E, Ibrahim WH. Inhibitory effects of honey from arid land on some enzymes and protein damage. Food Chem 2021; 364:130415. [PMID: 34174645 DOI: 10.1016/j.foodchem.2021.130415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
Although arid land honey is outstanding for its conventional uses in food and medicine, there is an absence of data regarding its health benefits from the perspective of enzyme inhibitory effects that are affirmed by the current study. For the first time, this investigation demonstrates that different types of honey exert inhibitory effects on the activities of angiotensin, tyrosinase, xanthine oxidase, -α -amylase, acetylcholinesterase, and lipase, in addition to the inhibition of bovine serum albumin damage. The present study also provides a comparison with perceived healthy honey from non-arid areas. The results indicated huge contrasts among honey samples through all assessed parameters. Results also demonstrated that at least one type of honey from arid land contained a higher inhibition effect when compared with honey from other regions. Therefore, a possible application of arid land honey and its active compounds can be the utilization as a therapeutic agent against several diseases.
Collapse
Affiliation(s)
- Hosam M Habib
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Ehab Kheadr
- Functional Foods and Nutraceuticals Laboratory (FFNL), Dairy Science and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Wissam H Ibrahim
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain PO Box 15551, United Arab Emirates.
| |
Collapse
|
138
|
Luo J, le Cessie S, van Heemst D, Noordam R. Diet-Derived Circulating Antioxidants and Risk of Coronary Heart Disease: A Mendelian Randomization Study. J Am Coll Cardiol 2021; 77:45-54. [PMID: 33413940 DOI: 10.1016/j.jacc.2020.10.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Previously, observational studies have identified associations between higher levels of dietary-derived antioxidants and lower risk of coronary heart disease (CHD), whereas randomized clinical trials showed no reduction in CHD risk following antioxidant supplementation. OBJECTIVES The purpose of this study was to investigate possible causal associations between dietary-derived circulating antioxidants and primary CHD risk using 2-sample Mendelian randomization (MR). METHODS Single-nucleotide polymorphisms for circulating antioxidants (vitamins E and C, retinol, β-carotene, and lycopene), assessed as absolute levels and metabolites, were retrieved from the published data and were used as genetic instrumental variables. Summary statistics for gene-CHD associations were obtained from 3 databases: the CARDIoGRAMplusC4D consortium (60,801 cases; 123,504 control subjects), UK Biobank (25,306 cases; 462,011 control subjects), and FinnGen study (7,123 cases; 89,376 control subjects). For each exposure, MR analyses were performed per outcome database and were subsequently meta-analyzed. RESULTS Among an analytic sample of 768,121 individuals (93,230 cases), genetically predicted circulating antioxidants were not causally associated with CHD risk. For absolute antioxidants, the odds ratio for CHD ranged between 0.94 (95% confidence interval [CI]: 0.63 to 1.41) for retinol and 1.03 (95% CI: 0.97 to 1.10) for β-carotene per unit increase in ln-transformed antioxidant values. For metabolites, the odds ratio ranged between 0.93 (95% CI: 0.82 to 1.06) for γ-tocopherol and 1.01 (95% CI: 0.95 to 1.08) for ascorbate per 10-fold increase in metabolite levels. CONCLUSIONS Evidence from our study did not support a protective effect of genetic predisposition to high dietary-derived antioxidant levels on CHD risk. Therefore, it is unlikely that taking antioxidants to increase blood antioxidants levels will have a clinical benefit for the prevention of primary CHD.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
139
|
Nguyen A, Böttger R, Li SD. Recent trends in bioresponsive linker technologies of Prodrug-Based Self-Assembling nanomaterials. Biomaterials 2021; 275:120955. [PMID: 34130143 DOI: 10.1016/j.biomaterials.2021.120955] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/15/2022]
Abstract
Prodrugs are designed to improve pharmaceutical properties of potent compounds and represent a central approach in drug development. The success of the prodrug strategy relies on incorporation of a reversible linkage facilitating controlled release of the parent drug. While prodrug approaches enhance pharmacokinetic properties over their parent drug, they still face challenges in absorption, distribution, metabolism, elimination, and toxicity (ADMET). Conjugating a drug to a carrier molecule such as a polymer can create an amphiphile that self-assembles into nanoparticles. These nanoparticles display prolonged blood circulation and passive targeting ability. Furthermore, the drug release can be tailored using a variety of linkers between the parent drug and the carrier molecule. In this review, we introduce the concept of self-assembling prodrugs and summarize different approaches for controlling the drug release with a focus on the linker technology. We also summarize recent clinical trials, discuss the emerging challenges, and provide our perspective on the utility and future potential of this technology.
Collapse
Affiliation(s)
- Anne Nguyen
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Roland Böttger
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
140
|
Nakayama A, Nakamura T, Ara T, Fukuta T, Karanjit S, Harada T, Oda A, Sato H, Abe M, Kogure K, Namba K. Development of a novel antioxidant based on a dimeric dihydroisocoumarin derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
141
|
The Mystery of Diabetic Cardiomyopathy: From Early Concepts and Underlying Mechanisms to Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22115973. [PMID: 34205870 PMCID: PMC8198766 DOI: 10.3390/ijms22115973] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic patients are predisposed to diabetic cardiomyopathy, a specific form of cardiomyopathy which is characterized by the development of myocardial fibrosis, cardiomyocyte hypertrophy, and apoptosis that develops independently of concomitant macrovascular and microvascular diabetic complications. Its pathophysiology is multifactorial and poorly understood and no specific therapeutic guideline has yet been established. Diabetic cardiomyopathy is a challenging diagnosis, made after excluding other potential entities, treated with different pharmacotherapeutic agents targeting various pathophysiological pathways that need yet to be unraveled. It has great clinical importance as diabetes is a disease with pandemic proportions. This review focuses on the potential mechanisms contributing to this entity, diagnostic options, as well as on potential therapeutic interventions taking in consideration their clinical feasibility and limitations in everyday practice. Besides conventional therapies, we discuss novel therapeutic possibilities that have not yet been translated into clinical practice.
Collapse
|
142
|
Cao W, Zhang C, Wang H, Wu Q, Yuan Y, Chen J, Geng S, Zhang X. Ischemic Stroke: An Underestimated Complication of COVID-19. Aging Dis 2021; 12:691-704. [PMID: 34094634 PMCID: PMC8139195 DOI: 10.14336/ad.2021.0209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread rapidly as a pandemic around the world. In addition to severe acute respiratory syndrome, more and more studies have focused on the complication of COVID-19, especially ischemic stroke. Here, we propose several pathophysiological processes and possible mechanisms underlying ischemic stroke after COVID-19 for early prevention and better treatment of COVID-19-related stroke.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Junmin Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
143
|
|
144
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
145
|
Hong MY, Kern M, Nakamichi-Lee M, Abbaspour N, Ahouraei Far A, Hooshmand S. Dried Plum Consumption Improves Total Cholesterol and Antioxidant Capacity and Reduces Inflammation in Healthy Postmenopausal Women. J Med Food 2021; 24:1161-1168. [PMID: 33978491 DOI: 10.1089/jmf.2020.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dried plums contain bioactive components that have demonstrated antioxidant and anti-inflammatory effects. The objective of this study was to determine if dried plum consumption reduces the risk factors for cardiovascular disease (CVD) in postmenopausal women, specifically examining lipid profiles, oxidative stress, antioxidant capacity, and inflammation in a dose-dependent manner. We conducted a 6-month, parallel-design controlled clinical trial, where 48 postmenopausal women were randomly assigned to consume 0, 50, or 100 g of dried plum each day. After 6 months of intervention, total cholesterol (TC) in the 100 g/day treatment group (P = .002) and high-density lipoprotein cholesterol in the 50 g/day treatment group (P = .005) improved significantly compared to baseline. Inflammatory biomarkers interleukin-6 (P = .044) and tumor necrosis factor-α (P = .040) were significantly lower after 6 months within the 50 g/day dried plum group compared to baseline. Moreover, total antioxidant capacity increased significantly within the 50 g/day group (P = .046), and superoxide dismutase activity increased significantly within both 50 and 100 g/day groups (P = .044 and P = .027, respectively) after 6 months compared to baseline. In addition, plasma activities of alanine transaminase (P = .046), lactate dehydrogenase (P = .039), and creatine kinase (P = .030) were significantly lower after 6 months in the 50 g/day dried plum group. These findings suggest that daily consumption of 50-100 g dried plum improves CVD risk factors in postmenopausal women as exhibited by lower TC, oxidative stress, and inflammatory markers with no clear dose dependence.
Collapse
Affiliation(s)
- Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Michelle Nakamichi-Lee
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Nazanin Abbaspour
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Arshya Ahouraei Far
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| |
Collapse
|
146
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
147
|
Irshad N, Khan AU, Alamgeer, Khan SUD, Iqbal MS. Antihypertensive potential of selected pyrimidine derivatives: Explanation of underlying mechanistic pathways. Biomed Pharmacother 2021; 139:111567. [PMID: 33848773 DOI: 10.1016/j.biopha.2021.111567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022] Open
Abstract
This study was designed to determine the effectiveness of 5-(3-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-5), 5-(4-Hydroxybenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-8), 5-(3-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-9) and 5-(4-Chlorobenzylidene)-2, 4, 6(1H, 3H, 5H)-pyrimidinetrione (SR-10) against hypertension. In deoxycorticosterone acetate-salt rats, SR-5, SR-8, SR-9, and SR-10 reduced blood pressure and normalized renal functions. In isolated rat aortic rings, SR-5, SR-8, SR-9, and SR-10 relaxed phenylephrine (PE) and K+-induced contractions. The vasodilator effect was endothelium-independent. Test compounds caused a rightward shift of Ca++ and PE concentration-response curves with a reduction of maximum response. SR-5, SR-8, SR-9, and SR-10 inhibited PE peak contractions in a Ca++ free medium. In guinea-pig atria, SR5, SR-8, SR-9, and SR-10 caused a mild-to-moderate inhibition of force and rate of contractions. In the aorta and heart tissues, the test compounds enhanced glutathione-s-transferase, reduced glutathione and catalase levels, improved cellular architecture, and decreased lipid peroxidation and expression of inflammatory markers: cyclooxygenase 2, tumor necrosis factor alpha, phosphorylated c-Jun N-terminal kinase, and phosphorylated-nuclear factor kappa B, evidenced in the immunohistochemistry, enzyme-linked immunosorbent assay, western blot molecular investigations and a decreased mRNA expression of calcium channel in RT-PCR analysis. SR-5, SR-8, SR-9, and SR-10 increased the urinary output in rats and inhibited the human platelet aggregation. This study revealed that SR-5, SR-8, SR-9, and SR-10 possess BP lowering, reno-protective, vasodilatory (mediated via Ca++ antagonist, antioxidant and anti-inflammatory pathways), partial cardio-suppressant, diuretic, and antiplatelet effects, demonstrating their therapeutic potential in hypertension management.
Collapse
Affiliation(s)
- Nadeem Irshad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Univeristy, Riyadh, Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
148
|
Substance P Antagonism Prevents Chemotherapy-Induced Cardiotoxicity. Cancers (Basel) 2021; 13:cancers13071732. [PMID: 33917491 PMCID: PMC8038801 DOI: 10.3390/cancers13071732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Anthracyclines are a class of chemotherapeutics that are an essential component of many treatment regimens for solid and blood tumors. Doxorubicin (DOX), an anthracycline is broadly considered the most active single agent available for many cancers. However, effective use of anthracyclines is limited due to the possibility of cardiotoxicity, thus causing restrictions on treatment options for treatable cancers. Our studies indicate the SP/NK1R system as a promising novel target and use of NK1R antagonists as a translational tool for prevention of chemotherapy-associated cardiotoxicity in cancer. Abstract Background: Doxorubicin (DOX), used in chemotherapeutic regimens in many cancers, has been known to induce, cardiotoxicity and life-threatening heart failure or acute coronary syndromes in some patients. We determined the role of Substance P (SP), a neuropeptide and its high affinity receptor, NK-1R in chemotherapy associated cardiotoxicity in mice. We determined if NK-1R antagonism will prevent DOX-induced cardiotoxicity in vivo. Methods: C57BL/6 mice (6- week old male) were injected intraperitoneally with DOX (5 mg per kilogram of body weight once a week for 5 weeks) with or without treatment with aprepitant (a NK-1R antagonist, Emend, Merck & Co., Kenilworth, NJ, USA). Five different dosages of aprepitant were administered in the drinking water five days before the first injection of DOX and then continued until the end of the experiment. Each of these 5 doses are as follows; Dose 1 = 0.9 µg/mL, Dose 2 = 1.8 µg/mL, Dose 3 = 3.6 µg/mL, Dose 4 = 7.2 µg/mL, Dose 5 = 14.4 µg/mL. Controls consisted of mice injected with PBS (instead of DOX) with or without aprepitant treatment. The experiment was terminated 5 weeks post-DOX administration and various cardiac functional parameters were determined. Following euthanization, we measured heart weight to body weight ratios and the following in the hearts, of mice treated with and without DOX and aprepitant; (a) levels of SP and NK1R, (b) cardiomyocyte diameter (to determine evidence of cardiomyocyte hypertrophy), (c) Annexin V levels (to determine evidence of cardiac apoptosis), and (d) ratios of reduced glutathione (GSH) to oxidized glutathione (GSSG) (to determine evidence of oxidative stress). Results: We demonstrated that the levels of SP and NK1R were significantly increased respectively by 2.07 fold and 1.86 fold in the hearts of mice treated with versus without DOX. We determined that DOX-induced cardiac dysfunction was significantly attenuated by treatment with aprepitant. Cardiac functional parameters such as fractional shortening (FS), ejection fraction (EF) and stroke volume (SV) were respectively decreased by 27.6%, 21.02% and 21.20% compared to the vehicle treated group (All, p < 0.05, ANOVA). Importantly, compared to treatment with DOX alone, treatment with lower doses of aprepitant in DOX treated mice significantly reduced the effects of DOX on FS, EF and SV to values not significantly different from sham (vehicle treated) mice (All, p < 0.05, ANOVA). The levels of, apoptosis marker (Annexin V), oxidative stress (ratio of GSH with GSSG) and cardiomyocyte hypertrophy were respectively increased by 47.61%, 91.43% and 47.54% in the hearts of mice treated with versus without DOX. Compared to the DOX alone group, treatment with DOX and Dose 1, 2 and 3 of aprepitant significantly decreased the levels of each of these parameters (All p < 0.05, ANOVA). Conclusions: Our studies indicate that the SP/NK1-R system is a key mediator that induces, DOX-induced, cardiac dysfunction, cardiac apoptosis, cardiac oxidative stress and cardiomyocyte hypertrophy. These studies implicate that NK-1R antagonists may serve as a novel therapeutic tool for prevention of chemotherapy induced cardiotoxicity in cancer.
Collapse
|
149
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scarcella A, Nucera S, Scicchitano M, Ruga S, Bosco F, Maiuolo J, Macrì R, Zito MC, Oppedisano F, Guarnieri L, Mollace R, Palma E, Muscoli C, Mollace V. Paradoxical effect of fat diet in matrix metalloproteinases induced mitochondrial dysfunction in diabetic cardiomyopathy. J Cardiovasc Med (Hagerstown) 2021; 22:268-278. [PMID: 33633042 DOI: 10.2459/jcm.0000000000001046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Diabetic cardiomyopathy represents the main cause of death among diabetic people. Despite this evidence, the molecular mechanisms triggered by impaired glucose and lipid metabolism inducing heart damage remain unclear. The aim of our study was to investigate the effect of altered metabolism on the early stages of cardiac injury in experimental diabetes. METHODS For this purpose, rats were fed a normocaloric diet (NPD) or a high fat diet (HFD) for up to 12 weeks. After the fourth week, streptozocin (35 mg/kg) was administered in a subgroup of both NPD and HFD rats to induce diabetes. Cardiac function was analysed by echocardiography. Matrix metalloproteinases (MMPs) activity and intracellular localization were assessed through zymography and immunofluorescence, whereas apoptotic and oxidative markers by immunohistochemistry and western blot. RESULTS Hyperglycaemia or hyperlipidaemia reduced ejection fraction and fractional shortening as compared with control. Unexpectedly, cardiac dysfunction was less marked in diabetic rats fed a hyperlipidaemic diet, suggesting an adaptive response of the myocardium to hyperglycaemia-induced injury. This response was characterized by the inhibition of N-terminal truncated-MMP-2 translocation from endoplasmic reticulum into mitochondria and by superoxide anion overproduction observed in cardiomyocytes under hyperglycaemia. CONCLUSION Overall, these findings suggest novel therapeutic targets aimed to counteract mitochondrial dysfunction in the onset of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Antonino Scarcella
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Francesca Oppedisano
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH), University 'Magna Graecia' of Catanzaro
- Nutramed Scarl, Roccelletta di Borgia, Borgia, Catanzaro, Italy
| |
Collapse
|
150
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|