101
|
Diaphragm abnormalities in heart failure and aging: mechanisms and integration of cardiovascular and respiratory pathophysiology. Heart Fail Rev 2018; 22:191-207. [PMID: 27000754 DOI: 10.1007/s10741-016-9549-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspiratory function is essential for alveolar ventilation and expulsive behaviors that promote airway clearance (e.g., coughing and sneezing). Current evidence demonstrates that inspiratory dysfunction occurs during healthy aging and is accentuated by chronic heart failure (CHF). This inspiratory dysfunction contributes to key aspects of CHF and aging cardiovascular and pulmonary pathophysiology including: (1) impaired airway clearance and predisposition to pneumonia; (2) inability to sustain ventilation during physical activity; (3) shallow breathing pattern that limits alveolar ventilation and gas exchange; and (4) sympathetic activation that causes cardiac arrhythmias and tissue vasoconstriction. The diaphragm is the primary inspiratory muscle; hence, its neuromuscular integrity is a main determinant of the adequacy of inspiratory function. Mechanistic work within animal and cellular models has revealed specific factors that may be responsible for diaphragm neuromuscular abnormalities in CHF and aging. These include phrenic nerve and neuromuscular junction alterations as well as intrinsic myocyte abnormalities, such as changes in the quantity and quality of contractile proteins, accelerated fiber atrophy, and shifts in fiber type distribution. CHF, aging, or CHF in the presence of aging disturbs the dynamics of circulating factors (e.g., cytokines and angiotensin II) and cell signaling involving sphingolipids, reactive oxygen species, and proteolytic pathways, thus leading to the previously listed abnormalities. Exercise-based rehabilitation combined with pharmacological therapies targeting the pathways reviewed herein hold promise to treat diaphragm abnormalities and inspiratory muscle dysfunction in CHF and aging.
Collapse
|
102
|
Steinhorn B, Sartoretto JL, Sorrentino A, Romero N, Kalwa H, Abel ED, Michel T. Insulin-dependent metabolic and inotropic responses in the heart are modulated by hydrogen peroxide from NADPH-oxidase isoforms NOX2 and NOX4. Free Radic Biol Med 2017; 113:16-25. [PMID: 28917508 PMCID: PMC5699944 DOI: 10.1016/j.freeradbiomed.2017.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/22/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
RATIONALE Hydrogen peroxide (H2O2) is a stable reactive oxygen species (ROS) that has long been implicated in insulin signal transduction in adipocytes. However, H2O2's role in mediating insulin's effects on the heart are unknown. OBJECTIVE We investigated the role of H2O2 in activating insulin-dependent changes in cardiac myocyte metabolic and inotropic pathways. The sources of insulin-dependent H2O2 generation were also studied. METHODS AND RESULTS In addition to the canonical role of insulin in modulating cardiac metabolic pathways, we found that insulin also inhibited beta adrenergic-induced increases in cardiac contractility. Catalase and NADPH oxidase (NOX) inhibitors blunted activation of insulin-responsive kinases Akt and mTOR and attenuated beta adrenergic receptor-mediated responses. These insulin responses were lost in a mouse model of type 2 diabetes, suggesting a role for these H2O2-dependent pathways in the diabetic heart. The H2O2-sensitive fluorescent biosensor HyPer revealed rapid increases in cytosolic and caveolar H2O2 concentrations in response to insulin treatment, which were blocked by NOX inhibitors and attenuated in NOX2 KO and NOX4 KO mice. In NOX2 KO cardiac myocytes, insulin-mediated phosphorylation of Akt and mTOR was blocked, while these responses were unaffected in cardiac myocytes from NOX4 KO mice. In contrast, insulin's effects on contractility were lost in cardiac myocytes from NOX4 KO animals but were retained in NOX2 KO mice. CONCLUSIONS These studies identify a proximal point of bifurcation in cardiac insulin signaling through the simultaneous activation of both NOX2 and NOX4. Each NOX isoform generates H2O2 in cardiac myocytes with distinct time courses, with H2O2 derived from NOX2 augmenting Akt-dependent metabolic effects of insulin, while H2O2 from NOX4 blocks beta adrenergic increases in inotropy. These findings suggest that insulin resistance in the diabetic heart may lead to potentially deleterious potentiation of beta adrenergic responses.
Collapse
Affiliation(s)
- Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - Juliano L Sartoretto
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - Andrea Sorrentino
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - Natalia Romero
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - Hermann Kalwa
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States
| | - E Dale Abel
- University of Iowa School of Medicine, United States
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, United States.
| |
Collapse
|
103
|
Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: a review. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0402-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
104
|
Gomes MJ, Martinez PF, Pagan LU, Damatto RL, Cezar MDM, Lima ARR, Okoshi K, Okoshi MP. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget 2017; 8:20428-20440. [PMID: 28099900 PMCID: PMC5386774 DOI: 10.18632/oncotarget.14670] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/09/2017] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle abnormalities are responsible for significant disability in the elderly. Sarcopenia is the main alteration occurring during senescence and a key public health issue as it predicts frailty, poor quality of life, and mortality. Several factors such as reduced physical activity, hormonal changes, insulin resistance, genetic susceptibility, appetite loss, and nutritional deficiencies are involved in the physiopathology of muscle changes. Sarcopenia is characterized by structural, biochemical, molecular and functional muscle changes. An imbalance between anabolic and catabolic intracellular signaling pathways and an increase in oxidative stress both play important roles in muscle abnormalities. Currently, despite the discovery of new targets and development of new drugs, nonpharmacological therapies such as physical exercise and nutritional support are considered the basis for prevention and treatment of age-associated muscle abnormalities. There has been an increase in information on signaling pathways beneficially modulated by exercise; nonetheless, studies are needed to establish the best type, intensity, and frequency of exercise to prevent or treat age-induced skeletal muscle alterations.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Paula Felippe Martinez
- School of Physical Therapy, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Luana Urbano Pagan
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Ricardo Luiz Damatto
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | | | - Aline Regina Ruiz Lima
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Katashi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Botucatu Medical School, Internal Medicine Departament, Sao Paulo State University, UNESP, Botucatu, SP, Brazil
| |
Collapse
|
105
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
106
|
Ahn B, Coblentz PD, Beharry AW, Patel N, Judge AR, Moylan JS, Hoopes CW, Bonnell MR, Ferreira LF. Diaphragm Abnormalities in Patients with End-Stage Heart Failure: NADPH Oxidase Upregulation and Protein Oxidation. Front Physiol 2017; 7:686. [PMID: 28119629 PMCID: PMC5220111 DOI: 10.3389/fphys.2016.00686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/23/2016] [Indexed: 01/10/2023] Open
Abstract
Patients with heart failure (HF) have diaphragm abnormalities that contribute to disease morbidity and mortality. Studies in animals suggest that reactive oxygen species (ROS) cause diaphragm abnormalities in HF. However, the effects of HF on ROS sources, antioxidant enzymes, and protein oxidation in the diaphragm of humans is unknown. NAD(P)H oxidase, especially the Nox2 isoform, is an important source of ROS in the diaphragm. Our main hypothesis was that diaphragm from patients with HF have heightened Nox2 expression and p47phox phosphorylation (marker of enzyme activation) that is associated with elevated protein oxidation. We collected diaphragm biopsies from patients with HF and brain-dead organ donors (controls). Diaphragm mRNA levels of Nox2 subunits were increased 2.5–4.6-fold over controls (p < 0.05). Patients also had increased protein levels of Nox2 subunits (p47phox, p22phox, and p67phox) and total p47phox phosphorylation, while phospho-to-total p47phox levels were unchanged. The antioxidant enzyme catalase was increased in patients, whereas glutathione peroxidase and superoxide dismutases were unchanged. Among markers of protein oxidation, carbonyls were increased by ~40% (p < 0.05) and 4-hydroxynonenal and 3-nitrotyrosines were unchanged in patients with HF. Overall, our findings suggest that Nox2 is an important source of ROS in the diaphragm of patients with HF and increases in levels of antioxidant enzymes are not sufficient to maintain normal redox homeostasis. The net outcome is elevated diaphragm protein oxidation that has been shown to cause weakness in animals.
Collapse
Affiliation(s)
- Bumsoo Ahn
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Philip D Coblentz
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Adam W Beharry
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | - Nikhil Patel
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida Gainesville, FL, USA
| | | | - Charles W Hoopes
- Division of Cardiothoracic Surgery, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark R Bonnell
- Division of Cardiothoracic Surgery, University of Toledo Medical Center Toledo, OH, USA
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida Gainesville, FL, USA
| |
Collapse
|
107
|
Wiecek M, Maciejczyk M, Szymura J, Kantorowicz M, Szygula Z. Impact of single anaerobic exercise on delayed activation of endothelial xanthine oxidase in men and women. Redox Rep 2016; 22:367-376. [PMID: 27715604 DOI: 10.1080/13510002.2016.1238991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of the study was to evaluate the activity of xanthine oxidase (XO) in the blood of men and women during the first hour following a single anaerobic exercise (AN-EX), and after 24 hours of recovery, and to determine whether the changes in XO activity in the blood after AN-EX are dependent on anaerobic performance. METHODS Ten men and ten women performed a single AN-EX. Blood was collected before and five times after completion of the AN-EX. The activity of XO was determined. RESULTS In both groups, a significant (P < 0.05) increase in blood XO activity was found only 24 hours after the AN-EX. The increased activity of XO in men was significantly lower than in women (P < 0.05). Negative correlations were found between the increase in XO activity in the blood plasma 24 hours after the AN-EX and anaerobic power, the total work performed during the AN-EX and the power decrease. DISCUSSION In the first hour after the single AN-EX, XO activity in the blood of women and men did not change, but after 24 hours of recovery, it was significantly higher compared to baseline levels in both sexes. Single AN-EX causes a smaller increase in XO activity in people with higher anaerobic performance.
Collapse
Affiliation(s)
- Magdalena Wiecek
- a Department of Physiology and Biochemistry , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| | - Marcin Maciejczyk
- a Department of Physiology and Biochemistry , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| | - Jadwiga Szymura
- b Department of Clinical Rehabilitation , Faculty of Motor Rehabilitation, University of Physical Education in Krakow , Krakow , Poland
| | - Malgorzata Kantorowicz
- c Faculty of Physical Education and Sport , University of Physical Education in Krakow , Krakow , Poland
| | - Zbigniew Szygula
- d Department of Sports Medicine and Human Nutrition , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| |
Collapse
|