101
|
D'Acunzo P, Hargash T, Pawlik M, Goulbourne CN, Pérez-González R, Levy E. Enhanced generation of intraluminal vesicles in neuronal late endosomes in the brain of a Down syndrome mouse model with endosomal dysfunction. Dev Neurobiol 2019; 79:656-663. [PMID: 31278881 DOI: 10.1002/dneu.22708] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Down syndrome (DS) is a human genetic disease caused by trisomy of chromosome 21 and characterized by early developmental brain abnormalities. Dysfunctional endosomal pathway in neurons is an early event of DS and Alzheimer's disease. Recently, we have demonstrated that exosome secretion is upregulated in human DS postmortem brains, in the brain of the trisomic mouse model Ts[Rb(12.1716 )]2Cje (Ts2) and by DS fibroblasts as compared with disomic controls. High levels of the tetraspanin CD63, a regulator of exosome biogenesis, were observed in DS brains. Partially blocking exosome secretion by DS fibroblasts exacerbated a pre-existing early endosomal pathology. We thus hypothesized that enhanced CD63 expression induces generation of intraluminal vesicles (ILVs) in late endosomes/multivesicular bodies (MVBs), increasing exosome release as an endogenous mechanism to mitigate endosomal abnormalities in DS. Herein, we show a high-resolution electron microscopy analysis of MVBs in neurons of the frontal cortex of 12-month-old Ts2 mice and littermate diploid controls. Our quantitative analysis revealed that Ts2 MVBs are larger, more abundant, and contain a higher number of ILVs per neuron compared to controls. These findings were further corroborated biochemically by Western blot analysis of purified endosomal fractions showing higher levels of ILVs proteins in the same fractions containing endosomal markers in the brain of Ts2 mice compared to controls. These data suggest that upregulation of ILVs production may be a key homeostatic mechanism to alleviate endosomal dysregulation via the endosomal-exosomal pathway.
Collapse
Affiliation(s)
- Pasquale D'Acunzo
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York
| | - Tal Hargash
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Monika Pawlik
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York
| | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, New York.,Department of Psychiatry, New York University Langone Health, New York, New York.,Department of Biochemistry & Molecular Pharmacology, New York University Langone Health, New York, New York.,Neuroscience Institute, New York University Langone Health, New York, New York
| |
Collapse
|
102
|
Pérez-González R, Sahoo S, Gauthier SA, Kim Y, Li M, Kumar A, Pawlik M, Benussi L, Ghidoni R, Levy E. Neuroprotection mediated by cystatin C-loaded extracellular vesicles. Sci Rep 2019; 9:11104. [PMID: 31367000 PMCID: PMC6668451 DOI: 10.1038/s41598-019-47524-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Cystatin C (CysC) is implicated in neuroprotection and repair in the nervous system in response to diverse neurotoxic conditions. In addition to being secreted from cells in a soluble form, CysC is released by cells in association with extracellular vesicles (EVs), including exosomes. We demonstrate that EVs containing CysC protect cultured cells from starvation-induced death. Moreover, while EVs secreted by CysC-deficient cells were not protective, EVs secreted by CysC-deficient cells treated with exogenous human CysC significantly enhanced the survival of the cells. CysC also plays a role in modulating the secretion of EVs, enhancing secretion of EVs by primary cortical neurons and primary cortical smooth muscle cells. Confirming these in vitro findings, higher EV levels were observed in the brain extracellular space of transgenic mice expressing human CysC as compared to littermate controls. Regulation of cell-secreted EV levels and content in the brain is likely to be essential to maintaining normal brain function. We propose that enhanced EV release could rescue the deleterious effects of dysfunction of the endosomal-lysosomal system in neurodegenerative disorders. Moreover, a higher level of CysC-loaded EVs released from cells in the central nervous system has important protective functions, representing a potential therapeutic tool for disorders of the central nervous system.
Collapse
Affiliation(s)
- Rocío Pérez-González
- Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Susmita Sahoo
- Nathan S. Kline Institute, Orangeburg, NY, USA
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | | | - Yohan Kim
- Nathan S. Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Meihua Li
- Nathan S. Kline Institute, Orangeburg, NY, USA
| | - Asok Kumar
- Nathan S. Kline Institute, Orangeburg, NY, USA
| | | | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Efrat Levy
- Nathan S. Kline Institute, Orangeburg, NY, USA.
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, NY, USA.
- The Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
103
|
Heckmann BL, Teubner BJW, Tummers B, Boada-Romero E, Harris L, Yang M, Guy CS, Zakharenko SS, Green DR. LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer's Disease. Cell 2019; 178:536-551.e14. [PMID: 31257024 PMCID: PMC6689199 DOI: 10.1016/j.cell.2019.05.056] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 05/30/2019] [Indexed: 12/24/2022]
Abstract
The expression of some proteins in the autophagy pathway declines with age, which may impact neurodegeneration in diseases, including Alzheimer's Disease. We have identified a novel non-canonical function of several autophagy proteins in the conjugation of LC3 to Rab5+, clathrin+ endosomes containing β-amyloid in a process of LC3-associated endocytosis (LANDO). We found that LANDO in microglia is a critical regulator of immune-mediated aggregate removal and microglial activation in a murine model of AD. Mice lacking LANDO but not canonical autophagy in the myeloid compartment or specifically in microglia have a robust increase in pro-inflammatory cytokine production in the hippocampus and increased levels of neurotoxic β-amyloid. This inflammation and β-amyloid deposition were associated with reactive microgliosis and tau hyperphosphorylation. LANDO-deficient AD mice displayed accelerated neurodegeneration, impaired neuronal signaling, and memory deficits. Our data support a protective role for LANDO in microglia in neurodegenerative pathologies resulting from β-amyloid deposition.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lacie Harris
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
104
|
Jacomin AC, Geraki K, Brooks J, Tjendana-Tjhin V, Collingwood JF, Nezis IP. Impact of Autophagy and Aging on Iron Load and Ferritin in Drosophila Brain. Front Cell Dev Biol 2019; 7:142. [PMID: 31404236 PMCID: PMC6669360 DOI: 10.3389/fcell.2019.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/10/2019] [Indexed: 01/22/2023] Open
Abstract
Biometals such as iron, copper, potassium, and zinc are essential regulatory elements of several biological processes. The homeostasis of biometals is often affected in age-related pathologies. Notably, impaired iron metabolism has been linked to several neurodegenerative disorders. Autophagy, an intracellular degradative process dependent on the lysosomes, is involved in the regulation of ferritin and iron levels. Impaired autophagy has been associated with normal pathological aging, and neurodegeneration. Non-mammalian model organisms such as Drosophila have proven to be appropriate for the investigation of age-related pathologies. Here, we show that ferritin is expressed in adult Drosophila brain and that iron and holoferritin accumulate with aging. At whole-brain level we found no direct relationship between the accumulation of holoferritin and a deficit in autophagy in aged Drosophila brain. However, synchrotron X-ray spectromicroscopy revealed an additional spectral feature in the iron-richest region of autophagy-deficient fly brains, consistent with iron-sulfur. This potentially arises from iron-sulfur clusters associated with altered mitochondrial iron homeostasis.
Collapse
Affiliation(s)
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Jake Brooks
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
105
|
Tancini B, Buratta S, Sagini K, Costanzi E, Delo F, Urbanelli L, Emiliani C. Insight into the Role of Extracellular Vesicles in Lysosomal Storage Disorders. Genes (Basel) 2019; 10:genes10070510. [PMID: 31284546 PMCID: PMC6679199 DOI: 10.3390/genes10070510] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) have received increasing attention over the last two decades. Initially, they were considered as just a garbage disposal tool; however, it has progressively become clear that their protein, nucleic acid (namely miRNA and mRNA), and lipid contents have signaling functions. Besides, it has been established that cells release different types of vesicular structures for which characterization is still in its infancy. Many stress conditions, such as hypoxia, senescence, and oncogene activation have been associated with the release of higher levels of EVs. Further, evidence has shown that autophagic–lysosomal pathway abnormalities also affect EV release. In fact, in neurodegenerative diseases characterized by the accumulation of toxic proteins, although it has not become clear to what extent the intracellular storage of undigested materials itself has beneficial/adverse effects, these proteins have also been shown to be released extracellularly via EVs. Lysosomal storage disorders (LSDs) are characterized by accumulation of undigested substrates within the endosomal–lysosomal system, due either to genetic mutations in lysosomal proteins or to treatment with pharmacological agents. Here, we review studies investigating the role of lysosomal and autophagic dysfunction on the release of EVs, with a focus on studies exploring the release of EVs in LSD models of both genetic and pharmacological origin. A better knowledge of EV-releasing pathways activated in lysosomal stress conditions will provide information on the role of EVs in both alleviating intracellular storage of undigested materials and spreading the pathology to the neighboring tissue.
Collapse
Affiliation(s)
- Brunella Tancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Eva Costanzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Federica Delo
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Via del Giochetto, 06123 Perugia, Italy.
| |
Collapse
|
106
|
Lysosome motility and distribution: Relevance in health and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1076-1087. [DOI: 10.1016/j.bbadis.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
107
|
Furusawa K, Takasugi T, Chiu YW, Hori Y, Tomita T, Fukuda M, Hisanaga SI. CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. J Biol Chem 2019; 294:10886-10899. [PMID: 31138646 DOI: 10.1074/jbc.ra118.005385] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
A hallmark of Alzheimer's disease (AD) pathology is the appearance of senile plaques, which are composed of β-amyloid (Aβ) peptides. Aβ is produced by sequential cleavages of amyloid precursor protein (APP) by β- and γ-secretases. These cleavages take place in endosomes during intracellular trafficking of APP through the endocytic and recycling pathways. Genome-wide association studies have identified several risk factors for late-onset AD, one of which is CD2-associated protein (CD2AP), an adaptor molecule that regulates membrane trafficking. Although CD2AP's involvement in APP trafficking has recently been reported, how APP trafficking is regulated remains unclear. We sought to address this question by investigating the effect of CD2AP overexpression or knockdown on the intracellular APP distribution and degradation of APP in cultured COS-7 and HEK293 cells. We found that overexpression of CD2AP increases the localization of APP to Rab7-positive late endosomes, and decreases its localization to Rab5-positive early endosomes. CD2AP overexpression accelerated the onset of APP degradation without affecting its degradation rate. Furthermore, nutrient starvation increased the localization of APP to Rab7-positive late endosomes, and CD2AP overexpression stimulated starvation-induced lysosomal APP degradation. Moreover, the effect of CD2AP on the degradation of APP was confirmed by CD2AP overexpression and knockdown in primary cortical neurons from mice. We conclude that CD2AP accelerates the transfer of APP from early to late endosomes. This transfer in localization stimulates APP degradation by reducing the amount of time before degradation initiation. Taken together, these results may explain why impaired CD2AP function is a risk factor for AD.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397
| | - Toshiyuki Takasugi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397
| | - Yung-Wen Chiu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Yukiko Hori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 and
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397,.
| |
Collapse
|
108
|
Lysosomal Dysfunction in Down Syndrome Is APP-Dependent and Mediated by APP-βCTF (C99). J Neurosci 2019; 39:5255-5268. [PMID: 31043483 DOI: 10.1523/jneurosci.0578-19.2019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Lysosomal failure underlies pathogenesis of numerous congenital neurodegenerative disorders and is an early and progressive feature of Alzheimer's disease (AD) pathogenesis. Here, we report that lysosomal dysfunction in Down ayndrome (trisomy 21), a neurodevelopmental disorder and form of early onset AD, requires the extra gene copy of amyloid precursor protein (APP) and is specifically mediated by the β cleaved carboxy terminal fragment of APP (APP-βCTF, C99). In primary fibroblasts from individuals with DS, lysosomal degradation of autophagic and endocytic substrates is selectively impaired, causing them to accumulate in enlarged autolysosomes/lysosomes. Direct measurements of lysosomal pH uncovered a significant elevation (0.6 units) as a basis for slowed LC3 turnover and the inactivation of cathepsin D and other lysosomal hydrolases known to be unstable or less active when lysosomal pH is persistently elevated. Normalizing lysosome pH by delivering acidic nanoparticles to lysosomes ameliorated lysosomal deficits, whereas RNA sequencing analysis excluded a transcriptional contribution to hydrolase declines. Cortical neurons cultured from the Ts2 mouse model of DS exhibited lysosomal deficits similar to those in DS cells. Lowering APP expression with siRNA or BACE1 inhibition reversed cathepsin deficits in both fibroblasts and neurons. Deleting one Bace1 allele from adult Ts2 mice had similar rescue effects in vivo The modest elevation of endogenous APP-βCTF needed to disrupt lysosomal function in DS is relevant to sporadic AD where APP-βCTF, but not APP, is also elevated. Our results extend evidence that impaired lysosomal acidification drives progressive lysosomal failure in multiple forms of AD.SIGNIFICANCE STATEMENT Down syndrome (trisomy 21) (DS) is a neurodevelopmental disorder invariably leading to early-onset Alzheimer's disease (AD). We showed in cells from DS individuals and neurons of DS models that one extra copy of a normal amyloid precursor protein (APP) gene impairs lysosomal acidification, thereby depressing lysosomal hydrolytic activities and turnover of autophagic and endocytic substrates, processes vital to neuronal survival. These deficits, which were reversible by correcting lysosomal pH, are mediated by elevated levels of endogenous β-cleaved carboxy-terminal fragment of APP (APP-βCTF). Notably, similar endosomal-lysosomal pathobiology emerges early in sporadic AD, where neuronal APP-βCTF is also elevated, underscoring its importance as a therapeutic target and underscoring the functional and pathogenic interrelationships between the endosomal-lysosomal pathway and genes causing AD.
Collapse
|
109
|
Shin JH, Park SJ, Jo DS, Park NY, Kim JB, Bae JE, Jo YK, Hwang JJ, Lee JA, Jo DG, Kim JC, Jung YK, Koh JY, Cho DH. Down-regulated TMED10 in Alzheimer disease induces autophagy via ATG4B activation. Autophagy 2019; 15:1495-1505. [PMID: 30821607 DOI: 10.1080/15548627.2019.1586249] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several studies have shown that dysfunction of macroautophagy/autophagy is associated with many human diseases, including neurodegenerative disease and cancer. To explore the molecular mechanisms of autophagy, we performed a cell-based functional screening with SH-SY5Y cells stably expressing GFP-LC3, using an siRNA library and identified TMED10 (transmembrane p24 trafficking protein 10), previously known as the γ-secretase-modulating protein, as a novel regulator of autophagy. Further investigations revealed that depletion of TMED10 induced the activation of autophagy. Interestingly, protein-protein interaction assays showed that TMED10 directly binds to ATG4B (autophagy related gene 4B cysteine peptidase), and the interaction is diminished under autophagy activation conditions such as rapamycin treatment and serum deprivation. In addition, inhibition of TMED10 significantly enhanced the proteolytic activity of ATG4B for LC3 cleavage. Importantly, the expression of TMED10 in AD (Alzheimer disease) patients was considerably decreased, and downregulation of TMED10 increased amyloid-β (Aβ) production. Treatment with Aβ increased ATG4B proteolytic activity as well as dissociation of TMED10 and ATG4B. Taken together, our results suggest that the AD-associated protein TMED10 negatively regulates autophagy by inhibiting ATG4B activity.Abbreviations: Aβ: amyloid-β; AD: Alzheimer disease; ATG: autophagy related; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CD: cytosolic domain; GFP: green fluorescent protein; GLUC: Gaussia luciferase; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LD: luminal domain; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SNP: single-nucleotide polymorphisms; TD: transmembrane domain; TMED10: transmembrane p24 trafficking protein 10; VC: C terminus of Venus fluorescent protein; VN: N terminus of Venus fluorescent protein.
Collapse
Affiliation(s)
- Ji Hyun Shin
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - So Jung Park
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Doo Sin Jo
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Na Yeon Park
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Joon Bum Kim
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji-Eun Bae
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea.,b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Yoon Kyung Jo
- b Department of Gerontology, Graduate School of E-W Medical Science, Kyung Hee University , Yongin , South Korea
| | - Jung Jin Hwang
- c Asan Institute for Life Sciences, Asan Medical Center , Seoul , South Korea
| | - Jin-A Lee
- d College of Life Sciences and Nanotechnology, Hannam University , Daejeon , South Korea
| | - Dong-Gyu Jo
- e School of Pharmacy, Sungkyunkwan University , Suwon , South Korea
| | - Jin Cheon Kim
- f Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Yong Keun Jung
- g School of Biological Sciences, Seoul National University , Seoul , South Korea
| | - Jae-Young Koh
- h Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center , Seoul , South Korea
| | - Dong-Hyung Cho
- a School of Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
110
|
Christ MG, Huesmann H, Nagel H, Kern A, Behl C. Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo. Cells 2019; 8:E211. [PMID: 30832324 PMCID: PMC6468724 DOI: 10.3390/cells8030211] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Dysfunction of autophagy and disturbed protein homeostasis are linked to the pathogenesis of human neurodegenerative diseases and the modulation of autophagy as the protein clearance process has become one key pharmacological target. Due to the role of sigma-1 receptors (Sig-1R) in learning and memory, and the described pleiotropic neuroprotective effects in various experimental paradigms, Sig-1R activation is recognized as one potential approach for prevention and therapy of neurodegeneration and, interestingly, in amyotrophic lateral sclerosis associated with mutated Sig-1R, autophagy is disturbed. Here we analyzed the effects of tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73), a muscarinic receptor ligand and Sig-1R agonist, on autophagy and proteostasis. We describe, at the molecular level, for the first time, that pharmacological Sig-1R activation a) enhances the autophagic flux in human cells and in Caenorhabditis elegans and b) increases proteostasis capacity, ultimately ameliorating paralysis caused by protein aggregation in C. elegans. ANAVEX2-73 is already in clinical investigation for the treatment of Alzheimer's disease, and the novel activities of this compound on autophagy and proteostasis described here may have consequences for the use and further development of the Sig-1R as a drug target in the future. Moreover, our study defines the Sig-1R as an upstream modulator of canonical autophagy, which may have further implications for various conditions with dysfunctional autophagy, besides neurodegeneration.
Collapse
Affiliation(s)
- Maximilian G Christ
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heike Huesmann
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Heike Nagel
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Andreas Kern
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
111
|
Pacheco-Quinto J, Clausen D, Pérez-González R, Peng H, Meszaros A, Eckman CB, Levy E, Eckman EA. Intracellular metalloprotease activity controls intraneuronal Aβ aggregation and limits secretion of Aβ via exosomes. FASEB J 2019; 33:3758-3771. [PMID: 30481490 PMCID: PMC6404562 DOI: 10.1096/fj.201801319r] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/29/2018] [Indexed: 01/09/2023]
Abstract
Accumulating evidence suggests that the abnormal aggregation of amyloid-β (Αβ) peptide in Alzheimer's disease (AD) begins intraneuronally, within vesicles of the endosomal-lysosomal pathway where Aβ is both generated and degraded. Metalloproteases, including endothelin-converting enzyme (ECE)-1 and -2, reside within these vesicles and normally limit the accumulation of intraneuronally produced Aβ. In this study, we determined whether disruption of Aβ catabolism could trigger Aβ aggregation within neurons and increase the amount of Aβ associated with exosomes, small extracellular vesicles derived from endosomal multivesicular bodies. Using cultured cell lines, primary neurons, and organotypic brain slices from an AD mouse model, we found that pharmacological inhibition of the ECE family of metalloproteases increased intracellular and extracellular Aβ levels and promoted the intracellular formation of Aβ oligomers, a process that did not require internalization of secreted Aβ. In vivo, the accumulation of intraneuronal Aβ aggregates was accompanied by increased levels of both extracellular and exosome-associated Aβ, including oligomeric species. Neuronal exosomes were found to contain both ECE-1 and -2 activities, suggesting that multivesicular bodies are intracellular sites of Aβ degradation by these enzymes. ECE dysfunction could lead to the accumulation of intraneuronal Aβ aggregates and their subsequent release into the extracellular space via exosomes.-Pacheco-Quinto, J., Clausen, D., Pérez-González, R., Peng, H., Meszaros, A., Eckman, C. B., Levy, E., Eckman, E. A. Intracellular metalloprotease activity controls intraneuronal Aβ aggregation and limits secretion of Aβ via exosomes.
Collapse
Affiliation(s)
- Javier Pacheco-Quinto
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
- Atlantic Health System, Morristown, New Jersey, USA
| | - Dana Clausen
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | - Rocío Pérez-González
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, NYU Langone Medical Center, New York, New York, USA
| | - Hui Peng
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | - Austin Meszaros
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
| | | | - Efrat Levy
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York, USA
- Department of Psychiatry, NYU Langone Medical Center, New York, New York, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York, New York, USA; and
- Neuroscience Institute, NYU Langone Medical Center, New York, New York, USA
| | - Elizabeth A. Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, New Jersey, USA
- Atlantic Health System, Morristown, New Jersey, USA
| |
Collapse
|
112
|
Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA.
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
113
|
Tang M, Harrison J, Deaton CA, Johnson GVW. Tau Clearance Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:57-68. [PMID: 32096028 DOI: 10.1007/978-981-32-9358-8_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Efficient quality control mechanisms are essential for a healthy, functional neuron. Recognition and degradation of misfolded, damaged, or potentially toxic proteins, is a crucial aspect of protein quality control. Tau is a protein that is highly expressed in neurons, and plays an important role in modulating a number of physiological processes. Maintaining appropriate levels of tau is key for neuronal health; hence perturbations in tau clearance mechanisms are likely significant contributors to neurodegenerative diseases such as Alzheimer's disease and frontotemporal lobar degeneration. In this chapter we will first briefly review the two primary degradative mechanisms that mediate tau clearance: the proteasome system and the autophagy-lysosome pathway. This will be followed by a discussion about what is known about the contribution of each of these pathways to tau clearance. We will also present recent findings on tau degradation through the endolysosomal system. Further, how deficits in these degradative systems may contribute to the accumulation of dysfunctional or toxic forms of tau in neurodegenerative conditions is considered.
Collapse
|
114
|
Mann DMA, Davidson YS, Robinson AC, Allen N, Hashimoto T, Richardson A, Jones M, Snowden JS, Pendleton N, Potier MC, Laquerrière A, Prasher V, Iwatsubo T, Strydom A. Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease. Acta Neuropathol 2018; 136:569-587. [PMID: 29770843 PMCID: PMC6132946 DOI: 10.1007/s00401-018-1866-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023]
Abstract
In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aβ, with higher levels of Aβ40 promoting a more 'aggressive' form of CAA, and higher levels of Aβ42(3) favouring a greater plaque burden. Possession of APOE ε4 allele, especially ε4 homozygosity, favours development of CAA generally, and as type 3 particularly, in sEOAD and sLOAD.
Collapse
Affiliation(s)
- David M A Mann
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK.
| | - Yvonne S Davidson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Nancy Allen
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Anna Richardson
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Matthew Jones
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Julie S Snowden
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
- Cerebral Function Unit, Greater Manchester Neurosciences Centre, Salford Royal Hospital, Stott Lane, Salford, UK
| | - Neil Pendleton
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, School of Biological Sciences, Salford Royal Hospital, University of Manchester, Salford, UK
| | - Marie-Claude Potier
- ICM Institut du Cerveau et de la Moelle épinière, CNRS UMR7225, INSERM U1127, UPMC, Hôpital de la Pitié-Salpêtrière, 47 Bd de l'Hôpital, Paris, France
| | - Annie Laquerrière
- Department of Pathology, Rouen University Hospital, Rouen, France
- Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Team 4, Neovasc, 76000, Rouen, France
| | - Vee Prasher
- Birmingham Community NHS Trust, The Greenfields, 30 Brookfield Road, Birmingham, B30 3QY, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andre Strydom
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, UK
- Division of Psychiatry, University College London, 147 Tottenham Court Road, London, UK
| |
Collapse
|
115
|
Hopp SC, Bihlmeyer NA, Corradi JP, Vanderburg C, Cacace AM, Das S, Clark TW, Betensky RA, Hyman BT, Hudry E. Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain. J Neurochem 2018; 147:24-39. [PMID: 29806693 DOI: 10.1111/jnc.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023]
Abstract
Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.
Collapse
Affiliation(s)
- Sarah C Hopp
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathan A Bihlmeyer
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - John P Corradi
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Charles Vanderburg
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Angela M Cacace
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Sudeshna Das
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Timothy W Clark
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eloise Hudry
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
116
|
Tramutola A, Sharma N, Barone E, Lanzillotta C, Castellani A, Iavarone F, Vincenzoni F, Castagnola M, Butterfield DA, Gaetani S, Cassano T, Perluigi M, Di Domenico F. Proteomic identification of altered protein O-GlcNAcylation in a triple transgenic mouse model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3309-3321. [PMID: 30031227 DOI: 10.1016/j.bbadis.2018.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
PET scan analysis demonstrated the early reduction of cerebral glucose metabolism in Alzheimer disease (AD) patients that can make neurons vulnerable to damage via the alteration of the hexosamine biosynthetic pathway (HBP). Defective HBP leads to flawed protein O-GlcNAcylation coupled, by a mutual inverse relationship, with increased protein phosphorylation on Ser/Thr residues. Altered O-GlcNAcylation of Tau and APP have been reported in AD and is closely related with pathology onset and progression. In addition, type 2 diabetes patients show an altered O-GlcNAcylation/phosphorylation that might represent a link between metabolic defects and AD progression. Our study aimed to decipher the specific protein targets of altered O-GlcNAcylation in brain of 12-month-old 3×Tg-AD mice compared with age-matched non-Tg mice. Hence, we analysed the global O-GlcNAc levels, the levels and activity of OGT and OGA, the enzymes controlling its cycling and protein specific O-GlcNAc levels using a bi-dimensional electrophoresis (2DE) approach. Our data demonstrate the alteration of OGT and OGA activation coupled with the decrease of total O-GlcNAcylation levels. Data from proteomics analysis led to the identification of several proteins with reduced O-GlcNAcylation levels, which belong to key pathways involved in the progression of AD such as neuronal structure, protein degradation and glucose metabolism. In parallel, we analysed the O-GlcNAcylation/phosphorylation ratio of IRS1 and AKT, whose alterations may contribute to insulin resistance and reduced glucose uptake. Our findings may contribute to better understand the role of altered protein O-GlcNAcylation profile in AD, by possibly identifying novel mechanisms of disease progression related to glucose hypometabolism.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Nidhi Sharma
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy; Universidad Autònoma de Chile, Instituto de Ciencias Biomédicas, Facultad de alud, Providencia, Santiago, Chile
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Castellani
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - Massimo Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Silvana Gaetani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
117
|
Huang J, Chen S, Hu L, Niu H, Sun Q, Li W, Tan G, Li J, Jin L, Lyu J, Zhou H. Mitoferrin-1 is Involved in the Progression of Alzheimer's Disease Through Targeting Mitochondrial Iron Metabolism in a Caenorhabditis elegans Model of Alzheimer's Disease. Neuroscience 2018; 385:90-101. [PMID: 29908215 DOI: 10.1016/j.neuroscience.2018.06.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
In mammals, mitoferrin-1 and mitoferrin-2, two homologous proteins of the mitochondrial solute carrier family are required for iron delivery into mitochondria. However, there is only one kind, called W02B12 (mitoferrin-1 or mfn-1), in Caenorhabditis elegans and its regulatory mechanism is unknown. In this study, we used C. elegans strains CL2006 and GMC101 as models to investigate what role mitoferrin-1 played in Alzheimer's disease (AD). We found that knockdown of mitoferrin-1 by feeding-RNAi treatment extended lifespans of both strains of C. elegans. In addition, it reduced the paralysis rate in the GMC101 strain. These results suggest that mitoferrin-1 may be involved in the progression of Alzheimer's disease. Knockdown of mitoferrin-1 was seen to disturb mitochondrial morphology in the CB5600 strain. We tested whether knockdown of mitoferrin-1 could influence mitochondrial metabolism. Analysis of mitochondrial iron metabolism and mitochondrial ROS showed that knockdown of mitoferrin-1 could reduce mitochondrial iron content and reduce the level of mitochondrial ROS in the CL2006 and GMC101 strains. These results confirm that knockdown of mitoferrin-1 can slow the progress of disease in Alzheimer model of C. elegans and suggest that mitoferrin-1 plays a major role in mediating mitochondrial iron metabolism in this process.
Collapse
Affiliation(s)
- Jiatao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Sixi Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Li Hu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huan Niu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qianqian Sun
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenna Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guoqian Tan
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghui Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - LongJin Jin
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
118
|
Umbilical Cord Mesenchymal Stem Cells Conditioned Medium Promotes Aβ25-35 phagocytosis by Modulating Autophagy and Aβ-Degrading Enzymes in BV2 Cells. J Mol Neurosci 2018; 65:222-233. [PMID: 29845511 DOI: 10.1007/s12031-018-1075-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
Collapse
|
119
|
Xu W, Shi Q, Qian X, Zhou B, Xu J, Zhu L, Feng L, Jin H, Wang X. Rab5a suppresses autophagy to promote drug resistance in cancer cells. Am J Transl Res 2018; 10:1229-1236. [PMID: 29736216 PMCID: PMC5934582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
Cancers are huge problems that need to be investigated thoroughly. Rab5a plays an important part in the regulation of intracellular membrane trafficking. However, its role in cancer and autophagy has not been fully determined. In this study, we analyzed the correlation between Rab5a expression and patients' prognosis and then explored the effect of Rab5a knockdown on different cell lines using western blotting and fluorescence. Our results showed that up-regulated Rab5a positively correlated with the prognosis of gastric cancer patients. After knocking down Rab5a, mTOR activity was inhibited and autophagy flux increased. We also found that in our cisplatin-resistant cells, knockdown of Rab5a activated autophagy via mTOR pathway and could reverse drug resistance while overexpression of Rab5a in drug sensitive cells increased drug tolerance. In conclusion, our study demonstrates that Rab5a can suppress autophagy through mTOR and promote drug resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Wenxia Xu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Qiqi Shi
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xiaoling Qian
- Department of Chinese Medicine, Zhejiang HospitalZhejiang, China
| | - Bingluo Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Jinye Xu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Laboratory of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang UniversityZhejiang, China
| |
Collapse
|
120
|
Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne) 2018; 5:61. [PMID: 29662881 PMCID: PMC5890129 DOI: 10.3389/fmed.2018.00061] [Citation(s) in RCA: 548] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Geroscience, the new interdisciplinary field that aims to understand the relationship between aging and chronic age-related diseases (ARDs) and geriatric syndromes (GSs), is based on epidemiological evidence and experimental data that aging is the major risk factor for such pathologies and assumes that aging and ARDs/GSs share a common set of basic biological mechanisms. A consequence is that the primary target of medicine is to combat aging instead of any single ARD/GSs one by one, as favored by the fragmentation into hundreds of specialties and sub-specialties. If the same molecular and cellular mechanisms underpin both aging and ARDs/GSs, a major question emerges: which is the difference, if any, between aging and ARDs/GSs? The hypothesis that ARDs and GSs such as frailty can be conceptualized as accelerated aging will be discussed by analyzing in particular frailty, sarcopenia, chronic obstructive pulmonary disease, cancer, neurodegenerative diseases such as Alzheimer and Parkinson as well as Down syndrome as an example of progeroid syndrome. According to this integrated view, aging and ARDs/GSs become part of a continuum where precise boundaries do not exist and the two extremes are represented by centenarians, who largely avoided or postponed most ARDs/GSs and are characterized by decelerated aging, and patients who suffered one or more severe ARDs in their 60s, 70s, and 80s and show signs of accelerated aging, respectively. In between these two extremes, there is a continuum of intermediate trajectories representing a sort of gray area. Thus, clinically different, classical ARDs/GSs are, indeed, the result of peculiar combinations of alterations regarding the same, limited set of basic mechanisms shared with the aging process. Whether an individual will follow a trajectory of accelerated or decelerated aging will depend on his/her genetic background interacting lifelong with environmental and lifestyle factors. If ARDs and GSs are manifestations of accelerated aging, it is urgent to identify markers capable of distinguishing between biological and chronological age to identify subjects at higher risk of developing ARDs and GSs. To this aim, we propose the use of DNA methylation, N-glycans profiling, and gut microbiota composition to complement the available disease-specific markers.
Collapse
Affiliation(s)
- Claudio Franceschi
- Institute of Neurological Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Andrea Grignolio
- Unit and Museum of History of Medicine, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
121
|
Manai F, Azzalin A, Gabriele F, Martinelli C, Morandi M, Biggiogera M, Bozzola M, Comincini S. The In Vitro Effects of Enzymatic Digested Gliadin on the Functionality of the Autophagy Process. Int J Mol Sci 2018; 19:ijms19020635. [PMID: 29473905 PMCID: PMC5855857 DOI: 10.3390/ijms19020635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Gliadin, the alcohol-soluble protein fraction of wheat, contains the factor toxic for celiac disease (CD), and its toxicity is not reduced by digestion with gastro-pancreatic enzymes. Importantly, it is proved that an innate immunity to gliadin plays a key role in the development of CD. The immune response induces epithelial stress and reprograms intraepithelial lymphocytes into natural killer (NK)-like cells, leading to enterocyte apoptosis and an increase in epithelium permeability. In this contribution, we have reported that in Caco-2 cells the administration of enzymatically digested gliadin (PT-gliadin) reduced significantly the expression of the autophagy-related marker LC3-II. Furthermore, electron and fluorescent microscope analysis suggested a compromised functionality of the autophagosome apparatus. The rescue of the dysregulated autophagy process, along with a reduction of PT-gliadin toxicity, was obtained with a starvation induction protocol and by 3-methyladenine administration, while rapamycin, a well-known autophagy inducer, did not produce a significant improvement in the clearance of extra- and intra-cellular fluorescent PT-gliadin amount. Altogether, our results highlighted the possible contribution of the autophagy process in the degradation and in the reduction of extra-cellular release of gliadin peptides and suggest novel molecular targets to counteract gliadin-induced toxicity in CD.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Alberto Azzalin
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Fabio Gabriele
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Carolina Martinelli
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Martina Morandi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| | - Mauro Bozzola
- Pediatrics and Adolescentology Unit, Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS San Matteo, 27100 Pavia, Italy.
| | - Sergio Comincini
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
122
|
Keeling E, Lotery AJ, Tumbarello DA, Ratnayaka JA. Impaired Cargo Clearance in the Retinal Pigment Epithelium (RPE) Underlies Irreversible Blinding Diseases. Cells 2018; 7:E16. [PMID: 29473871 PMCID: PMC5850104 DOI: 10.3390/cells7020016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 01/09/2023] Open
Abstract
Chronic degeneration of the Retinal Pigment Epithelium (RPE) is a precursor to pathological changes in the outer retina. The RPE monolayer, which lies beneath the neuroretina, daily internalises and digests large volumes of spent photoreceptor outer segments. Impaired cargo handling and processing in the endocytic/phagosome and autophagy pathways lead to the accumulation of lipofuscin and pyridinium bis-retinoid A2E aggregates and chemically modified compounds such as malondialdehyde and 4-hydroxynonenal within RPE. These contribute to increased proteolytic and oxidative stress, resulting in irreversible damage to post-mitotic RPE cells and development of blinding conditions such as age-related macular degeneration, Stargardt disease and choroideremia. Here, we review how impaired cargo handling in the RPE results in their dysfunction, discuss new findings from our laboratory and consider how newly discovered roles for lysosomes and the autophagy pathway could provide insights into retinopathies. Studies of these dynamic, molecular events have also been spurred on by recent advances in optics and imaging technology. Mechanisms underpinning lysosomal impairment in other degenerative conditions including storage disorders, α-synuclein pathologies and Alzheimer's disease are also discussed. Collectively, these findings help transcend conventional understanding of these intracellular compartments as simple waste disposal bags to bring about a paradigm shift in the way lysosomes are perceived.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Natural & Environmental Sciences, Life Science Building 85, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK.
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
123
|
Zabel M, Nackenoff A, Kirsch WM, Harrison FE, Perry G, Schrag M. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens. Free Radic Biol Med 2018; 115:351-360. [PMID: 29253591 PMCID: PMC6435270 DOI: 10.1016/j.freeradbiomed.2017.12.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
Oxidative stress and decreased cellular responsiveness to oxidative stress are thought to influence brain aging and Alzheimer's disease, but the specific patterns of oxidative damage and the underlying mechanism leading to this damage are not definitively known. The objective of this study was to define the pattern of changes in oxidative-stress related markers by brain region in human Alzheimer's disease and mild cognitive impairment brain tissue. Observational case-control studies were identified from systematic queries of PubMed, ISI Web of Science and Scopus databases and studies were evaluated with appropriate quality measures. The data was used to construct a region-by-region meta-analysis of malondialdehyde, 4-hydroxynonenal, protein carbonylation, 8-hydroxyguanine levels and superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase activities. We also evaluated ascorbic acid, tocopherol, uric acid and glutathione levels. The analysis was complicated in several cases by publication bias and/or outlier data. We found that malondialdehyde levels were slightly increased in the temporal and occipital lobes and hippocampus, but this analysis was significantly impacted by publication bias. 4-hydroxynonenal levels were unchanged in every brain region. There was no change in 8-hydroxyguanine level in any brain region and protein carbonylation levels were unchanged except for a slight increase in the occipital lobe. Superoxide dismutase, glutathione peroxidase and reductase and catalase activities were not decreased in any brain region. There was limited data reporting non-enzymatic antioxidant levels in Alzheimer's disease brain, although glutathione and tocopherol levels appear to be unchanged. Minimal quantitative data is available from brain tissue from patients with mild cognitive impairment. While there is modest evidence supporting minor regional changes in markers of oxidative damage, this analysis fails to identify a consistent pattern of pro-oxidative changes and accumulation of oxidative damage in bulk tissue analysis in the setting of Alzheimer's disease, as has been widely reported.
Collapse
Affiliation(s)
- Matthew Zabel
- College of Medicine, California Northstate University, Elk Grove, CA, USA
| | - Alex Nackenoff
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Wolff M Kirsch
- Neurosurgery Center for Research, Training and Education, Loma Linda University, Loma Linda, CA, USA.
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Matthew Schrag
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
124
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
125
|
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown, Center on Aging, University of Kentucky, Lexington, KY 40506 USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|