101
|
Salamito M, Gillet B, Syx D, Vaganay E, Malbouyres M, Cerutti C, Tissot N, Exbrayat-Héritier C, Perez P, Jones C, Hughes S, Malfait F, Haydont V, Jäger S, Ruggiero F. NRF2 Shortage in Human Skin Fibroblasts Dysregulates Matrisome Gene Expression and Affects Collagen Fibrillogenesis. J Invest Dermatol 2023; 143:386-397.e12. [PMID: 38487918 DOI: 10.1016/j.jid.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
NRF2 is a master regulator of the antioxidative response that was recently proposed as a potential regulator of extracellular matrix (ECM) gene expression. Fibroblasts are major ECM producers in all connective tissues, including the dermis. A better understanding of NRF2-mediated ECM regulation in skin fibroblasts is thus of great interest for skin homeostasis maintenance and aging protection. In this study, we investigate the impact of NRF2 downregulation on matrisome gene expression and ECM deposits in human primary dermal fibroblasts. RNA-sequencing‒based transcriptome analysis of NRF2 silenced dermal fibroblasts shows that ECM genes are the most regulated gene sets, highlighting the relevance of the NRF2-mediated matrisome program in these cells. Using complementary light and electron microscopy methods, we show that NRF2 deprivation in dermal fibroblasts results in reduced collagen I biosynthesis and impacts collagen fibril deposition. Moreover, we identify ZNF469, a putative transcriptional regulator of collagen biosynthesis, as a target of NRF2. Both ZNF469 silenced fibroblasts and fibroblasts derived from Brittle Corneal Syndrome patients carrying variants in ZNF469 gene show reduced collagen I gene expression. Our study shows that NRF2 orchestrates matrisome expression in human skin fibroblasts through direct or indirect transcriptional mechanisms that could be prioritized to target dermal ECM homeostasis in health and disease.
Collapse
Affiliation(s)
- Mélanie Salamito
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France; L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Benjamin Gillet
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Delfien Syx
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Elisabeth Vaganay
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Marilyne Malbouyres
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine Cerutti
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | | | - Chloé Exbrayat-Héritier
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Sandrine Hughes
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France
| | - Fransiska Malfait
- Center for Medical Genetics Ghent, Department of Biomolecular Medicine, Ghent University Hospital, Ghent University, Ghent, Belgium; Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Sibylle Jäger
- L'Oréal Research & Innovation, Aulnay-sous-Bois, France
| | - Florence Ruggiero
- Université de Lyon, École Normal Supérieure de Lyon (ENSL), Centre National de la Recherche Scientifique (CNRS), Institut de Génomique Fonctionnelle de Lyon (IGFL), Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
102
|
Kim H, Saikia J, Monte K, Ha E, Romaus-Sanjurjo D, Sanchez J, Moore A, Hernaiz-Llorens M, Chavez-Martinez C, Agba C, Li H, Lusk D, Cervantes K, Zheng B. Probing regenerative heterogeneity of corticospinal neurons with scRNA-Seq. RESEARCH SQUARE 2023:rs.3.rs-2588274. [PMID: 36865182 PMCID: PMC9980198 DOI: 10.21203/rs.3.rs-2588274/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The corticospinal tract (CST) is clinically important for the recovery of motor functions after spinal cord injury. Despite substantial progress in understanding the biology of axon regeneration in the central nervous system (CNS), our ability to promote CST regeneration remains limited. Even with molecular interventions, only a small proportion of CST axons regenerate1. Here we investigate this heterogeneity in the regenerative ability of corticospinal neurons following PTEN and SOCS3 deletion with patch-based single cell RNA sequencing (scRNA-Seq)2,3, which enables deep sequencing of rare regenerating neurons. Bioinformatic analyses highlighted the importance of antioxidant response and mitochondrial biogenesis along with protein translation. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Applying Garnett4, a supervised classification method, to our dataset gave rise to a Regenerating Classifier (RC), which, when applied to published scRNA-Seq data, generates cell type- and developmental stage-appropriate classifications. While embryonic brain, adult dorsal root ganglion and serotonergic neurons are classified as Regenerators, most neurons from adult brain and spinal cord are classified as Non-regenerators. Adult CNS neurons partially revert to a regenerative state soon after injury, which is accelerated by molecular interventions. Our data indicate the existence of universal transcriptomic signatures underlying the regenerative abilities of vastly different neuronal populations, and further illustrate that deep sequencing of only hundreds of phenotypically identified CST neurons has the power to reveal new insights into their regenerative biology.
Collapse
Affiliation(s)
- Hugo Kim
- University of California San Diego
| | | | | | - Eunmi Ha
- University of California San Diego
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Implications of Senescent Cell Burden and NRF2 Pathway in Uremic Calcification: A Translational Study. Cells 2023; 12:cells12040643. [PMID: 36831311 PMCID: PMC9954542 DOI: 10.3390/cells12040643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Increased senescent cell burden and dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) pathway have been associated with numerous age-related pathologies; however, their role in promoting vascular calcification (VC) in chronic kidney disease (CKD) has yet to be determined. We investigated whether senescence and NRF2 pathways may serve as drivers of uremia-induced VC using three complementary approaches: a novel model of induced VC in 5/6-nephrectomized rats supplemented with high phosphate and vitamin D; epigastric arteries from CKD patients with established medial calcification; and vascular smooth muscle cells (VSMCs) incubated with uremic serum. Expression of p16Ink4a and p21Cip1, as well as γ-H2A-positive cells, confirmed increased senescent cell burden at the site of calcium deposits in aortic sections in rats, and was similarly observed in calcified epigastric arteries from CKD patients through increased p16Ink4a expression. However, uremic serum-induced VSMC calcification was not accompanied by senescence. Expression of NRF2 and downstream genes, Nqo1 and Sod1, was associated with calcification in uremic rats, while no difference was observed between calcified and non-calcified EAs. Conversely, in vitro uremic serum-driven VC was associated with depleted NRF2 expression. Together, our data strengthen the importance of senescence and NRF2 pathways as potential therapeutic options to combat VC in CKD.
Collapse
|
104
|
Urbinati C, Lanzillotta C, Cosentino L, Valenti D, Quattrini MC, Di Crescenzo L, Prestia F, Pietraforte D, Perluigi M, Di Domenico F, Vacca RA, De Filippis B. Chronic treatment with the anti-diabetic drug metformin rescues impaired brain mitochondrial activity and selectively ameliorates defective cognitive flexibility in a female mouse model of Rett syndrome. Neuropharmacology 2023; 224:109350. [PMID: 36442649 DOI: 10.1016/j.neuropharm.2022.109350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Metformin is the most common anti-diabetic drug and a promising therapy for disorders beyond diabetes, including Rett syndrome (RTT), a rare neurologic disease characterized by severe intellectual disability. A 10-day-long treatment rescued aberrant mitochondrial activity and restrained oxidative stress in a female RTT mouse model. However, this treatment regimen did not improve the phenotype of RTT mice. In the present study, we demonstrate that a 4-month-long treatment with metformin (150 mg/Kg/day, delivered in drinking bottles) provides a selective normalization of cognitive flexibility defects in RTT female mice at an advanced stage of disease, but it does not affect their impaired general health status and abnormal motor skills. The 4-month-long treatment also rescues the reduced activity of mitochondrial respiratory chain complex activities, the defective brain ATP production and levels as well as the increased production of reactive oxidizing species in the whole blood of RTT mice. A significant boost of PGC-1α-dependent pathways related to mitochondrial biogenesis and antioxidant defense occurs in the brain of RTT mice that received the metformin treatment. Further studies will have to verify whether these effects may underlie its long-lasting beneficial effects on brain energy metabolism.
Collapse
Affiliation(s)
- Chiara Urbinati
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Livia Cosentino
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | | | - Livia Di Crescenzo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Francesca Prestia
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | | | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy.
| | - Bianca De Filippis
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
105
|
Gola F, Gaiaschi L, Roda E, De Luca F, Ferulli F, Vicini R, Rossi P, Bottone MG. Voghera Sweet Pepper: A Potential Ally against Oxidative Stress and Aging. Int J Mol Sci 2023; 24:ijms24043782. [PMID: 36835192 PMCID: PMC9959306 DOI: 10.3390/ijms24043782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In the present study, the potential functional properties of the extracts from the edible part of Capsicum annuum L. var. Peperone di Voghera (VP) were studied. The phytochemical analysis revealed a high amount of ascorbic acid, paralleled by a low carotenoid content. Normal human diploid fibroblasts (NHDF) were chosen as the in vitro model models to investigate the effects of the VP extract on oxidative stress and aging pathways. The extract of Carmagnola pepper (CP), another important Italian variety, was used as the reference vegetable. The cytotoxicity evaluation was performed firstly, using a 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the VP potential antioxidant and antiaging activity was investigated by immunofluorescence staining focusing on specifically selected proteins. The MTT data revealed the highest cell viability at a concentration of up to 1 mg/mL. The immunocytochemical analyses highlighted an increased expression of transcription factors and enzymes involved in redox homeostasis (Nrf2, SOD2, catalase), improved mitochondrial functionality, and the up-regulation of the longevity gene SIRT1. The present results supported the functional role of the VP pepper ecotype, suggesting a feasible use of its derived products as valuable food supplements.
Collapse
Affiliation(s)
- Federica Gola
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Ludovica Gaiaschi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre—National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS Pavia, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | | | - Riccardo Vicini
- Bio Basic Europe S.R.L., Via Taramelli 24, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- Correspondence: ; Tel.: +0039-0382986319
| |
Collapse
|
106
|
Salama AAA, Yassen NN, Mansour HM. Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: Implication of SIRT1 pathways. Life Sci 2023; 324:121471. [PMID: 36746356 DOI: 10.1016/j.lfs.2023.121471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
AIM Aging is the leading risk factor for diminishing lung function, as well as injury and lung disorder. The target of our research was to examine the potential protective effect of naringin and the possible role of SIRT1 in mice with D-galactose-induced lung aging, by evaluating its effects on antioxidant systems, mitochondrial biogenesis, autophagy, and apoptosis, by referring to the potential involvement of Nrf2/NQO1, LKB1/AMPK/PGC-1α, FOXO1, and P53/caspase-3 signaling. MATERIAL AND METHODS The mice were randomly sorted into 5 groups (10 each): 1st: normal group received subcutaneous normal saline and intragastric distilled water, 2nd: naringin 300 mg/kg orally, 3rd: D-galactose (200 mg/kg/day) was administered subcutaneously into mice for eight weeks, to accelerate aging, 4th & 5th: oral naringin (150, 300 mg/kg) was given daily concurrently with D-galactose injection for 8 weeks. KEY FINDING In silico investigation revealed that naringin substantially stimulates the SIRT1 and AMPK molecules. At the molecular level, our findings indicated that treatment with naringin stimulated the mitochondrial biogenesis pathway through regulation of the LKB1/AMPK/PGC-1α signals and upregulated FOXO1-mediated autophagy. Furthermore, naringin exhibited antioxidant properties by activating the Nrf2/NQO1 pathway and inhibiting MDA and AGEs levels. In addition, Naringin ameliorated alveolar spaces destruction and bronchial wall thickening, as well as alleviated P53/caspase-3 apoptosis signaling. SIGNIFICANCE Naringin exerts protective effects against D-galactose-induced lung aging and enhances longevity by activating SIRT1. SIRT1 regulates various aging-related molecular pathways via restoring pro-oxidant/antioxidant homeostasis, activation of mitochondrial biogenesis, modulating of autophagy and inhibition of apoptosis.
Collapse
Affiliation(s)
- Abeer A A Salama
- Pharmacology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Heba M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| |
Collapse
|
107
|
Yang G, Yang L, Liu Q, Zhu Z, Yang Q, Liu J, Beta T. Protective effects of cyanidin-3-O-glucoside on BPA-induced neurodevelopmental toxicity in zebrafish embryo model. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109525. [PMID: 36410639 DOI: 10.1016/j.cbpc.2022.109525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment and poses a threat to wildlife and human health. It has been reported that BPA may cause the neurotoxicity during gestational and neonatal periods. Cyanidin-3-O-glucoside (C3G) is one of the most abundant anthocyanins that has shown multiple bio-functions. In this study, the protective effects and possible mechanism of C3G against BPA-induced neurodevelopment toxicity in zebrafish embryos/larvae were studied. The results showed that co-exposure of C3G (25 μg/mL) significantly attenuated BPA-induced deficit in locomotor behavior and restored the BPA-induced aberrant changes in brain morphology of zebrafish larvae. Further studies showed that the defects of central nervous development and the downregulated neurogenesis relative genes induced by BPA were significantly counteracted by co-exposure with 5 μg/mL of C3G. In addition, C3G (25 μg/mL) mitigated the decline of glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT), attenuated oxidative stress and cell apoptosis induced by BPA in zebrafish. The enhancements of the expression of genes involved in the Nrf2-ARE pathway (Nrf2, HO-1, NQO1, GCLC, and GCLM) were also observed by co-exposure of C3G. The results indicate that C3G exerts protective effects on BPA-induced neurodevelopmental toxicity through improving transcription of neurogenesis related genes, enhancing antioxidative defense system and reducing cell apoptosis by regulation of apoptotic genes in zebrafish larvae. The results suggest that anthocyanins may play important role against the exogenous toxicity for vertebrates.
Collapse
Affiliation(s)
- Guangchao Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Lipin Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhenzhu Zhu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, China.
| | - Trust Beta
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
108
|
Xie T, Zahid H, Ali AR, Joyce R, Yang G, Winz C, Le Y, Zhou R, Furmanski P, Hu L, Suh N. Inhibitors of Keap1-Nrf2 protein-protein interaction reduce estrogen responsive gene expression and oxidative stress in estrogen receptor-positive breast cancer. Toxicol Appl Pharmacol 2023; 460:116375. [PMID: 36634873 PMCID: PMC9879264 DOI: 10.1016/j.taap.2023.116375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Estrogen contributes to the development of breast cancer through estrogen receptor (ER) signaling and by generating genotoxic metabolites that cause oxidative DNA damage. To protect against oxidative stress, cells activate nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream cytoprotective genes that initiate antioxidant responses and detoxify xenobiotics. Nrf2 activation occurs by inhibiting the protein-protein interaction (PPI) between Nrf2 and its inhibitor Keap1, which otherwise targets Nrf2 for ubiquitination and destruction. In this study, we examined a series of novel direct inhibitors of Keap1-Nrf2 PPI in their role in promoting the availability of Nrf2 for antioxidant activity and attenuating estrogen-mediated responses in breast cancer. ER-positive human breast cancer cells MCF-7 were treated with 17β-estradiol (E2) in the presence or absence of selected Keap1-Nrf2 PPI inhibitors. Keap1-Nrf2 PPI inhibitors suppressed the mRNA and protein levels of estrogen responsive genes induced by E2 exposure, such as PGR. Keap1-Nrf2 PPI inhibitors caused significant activation of Nrf2 target genes. E2 decreased the mRNA and protein level of the Nrf2 target gene NQO1, and the Keap1-Nrf2 PPI inhibitors reversed this effect. The reversal of E2 action by these compounds was not due to binding to ER as ER antagonists. Further, a selected compound attenuated oxidative stress induced by E2, determined by the level of a biomarker 8-oxo-deoxyguanosine. These findings suggest that the Keap1-Nrf2 PPI inhibitors have potent antioxidant activity by activating Nrf2 pathways and inhibit E2-induced gene and protein expression. These compounds may serve as potential chemopreventive agents in estrogen-stimulated breast cancer.
Collapse
Affiliation(s)
- Tingying Xie
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Husam Zahid
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ahmed R Ali
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ryan Joyce
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ge Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yicong Le
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
109
|
Gupta K, Mathew AB, Chakrapani H, Saini DK. H 2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119388. [PMID: 36372112 DOI: 10.1016/j.bbamcr.2022.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.
Collapse
Affiliation(s)
- Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abraham Binoy Mathew
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Center for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
110
|
Xiang X, Qing Y, Li S, Kwame AW, Wang M, Ren J. The study of single‐cell dynamics contributes to the evaluation of food‐derived antioxidant capacity. EFOOD 2023; 4. [DOI: 10.1002/efd2.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/21/2023] [Indexed: 02/15/2023] Open
Abstract
AbstractExploring potential food‐derived bioactive substances that relieve oxidative stress is considered an important goal for antioxidant research. We first used the long‐pair electron index and orbital fingerprint to predict the molecular interactions in a range of polyphenols and polypeptides. We found Rutin and peptide PW5 had the highest LPE index values. Subsequently, by D‐galactose (D‐gal)‐induced oxidative NIH3T3 cell model, we proved both Rutin and PW5 could effectively protect cells against D‐gal‐induced damage, through enhancement in cell proliferation and reduction in β‐galactosidase activity. Although Rutin displayed better performance than PW5 in the oxidative stress model, we confirmed Rutin stimulated obvious changes in the morphology and motility of normal NIH3T3 cells based on the real‐time dynamic images. Taken together, combined computational and typical model experiment methods, proved useful in efficiently screening food‐derived antioxidants. Moreover, the analytical results of cell morphology and movement may provide novel insights for the safety evaluation of antioxidants.
Collapse
Affiliation(s)
- Xiong Xiang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Yinglu Qing
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Shan Li
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Amakye W. Kwame
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Min Wang
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Research Institute for Food Nutrition and Human Health Guangzhou Guangdong China
| |
Collapse
|
111
|
Coleman-Belin J, Harris A, Chen B, Zhou J, Ciulla T, Verticchio A, Antman G, Chang M, Siesky B. Aging Effects on Optic Nerve Neurodegeneration. Int J Mol Sci 2023; 24:2573. [PMID: 36768896 PMCID: PMC9917079 DOI: 10.3390/ijms24032573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/03/2023] Open
Abstract
Common risk factors for many ocular pathologies involve non-pathologic, age-related damage to the optic nerve. Understanding the mechanisms of age-related changes can facilitate targeted treatments for ocular pathologies that arise at any point in life. In this review, we examine these age-related, neurodegenerative changes in the optic nerve, contextualize these changes from the anatomic to the molecular level, and appreciate their relationship with ocular pathophysiology. From simple structural and mechanical changes at the optic nerve head (ONH), to epigenetic and biochemical alterations of tissue and the environment, multiple age-dependent mechanisms drive extracellular matrix (ECM) remodeling, retinal ganglion cell (RGC) loss, and lowered regenerative ability of respective axons. In conjunction, aging decreases the ability of myelin to preserve maximal conductivity, even with "successfully" regenerated axons. Glial cells, however, regeneratively overcompensate and result in a microenvironment that promotes RGC axonal death. Better elucidating optic nerve neurodegeneration remains of interest, specifically investigating human ECM, RGCs, axons, oligodendrocytes, and astrocytes; clarifying the exact processes of aged ocular connective tissue alterations and their ultrastructural impacts; and developing novel technologies and pharmacotherapies that target known genetic, biochemical, matrisome, and neuroinflammatory markers. Management models should account for age-related changes when addressing glaucoma, diabetic retinopathy, and other blinding diseases.
Collapse
Affiliation(s)
- Janet Coleman-Belin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Chen
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Zhou
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas Ciulla
- Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN 46290, USA
| | - Alice Verticchio
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gal Antman
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 4941492, Israel
| | - Michael Chang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brent Siesky
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
112
|
Li M, Cai Z, Li M, Chen L, Zeng W, Yuan H, Liu C. The dual detection of formaldehydes and sulfenic acids with a reactivity fluorescent probe in cells and in plants. Anal Chim Acta 2023; 1239:340734. [PMID: 36628774 DOI: 10.1016/j.aca.2022.340734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In order to reveal the inter-relationship between protein sulfenic acid (RSOH) and formaldehyde (FA) in different physiological processes, development of tools that are capable of respective and continuous detection for both species is highly valuable. Herein, we reported an "off-on" sensor NA-SF for dual detection of RSOH and FA in cells and plant tissues. Importantly, the highly desirable attribute of the probe NA-SF combined with TCEP, makes it possible to monitor endogenous both RSOH and FA in living cells and plants tissues. NA-SF has been applied successfully in detecting RSOH and FA at physiological concentrations in HeLa, HepG2, A549 cells. Furthermore, the application of NA-SF in evaluating the RSOH and FA level in Arabidopsis thaliana roots of different growth stages are performed. The results show that the level of RSOH and FA in Arabidopsis thaliana roots correlates well with their growth stages, which suggests that both RSOH and FA might play important roles in promoting plant growth and roots elongation. And it also implied a potential application for the biological and pathological research of RSOH and FA, especially in plant physiology. Therefore, we expect NA-SF could provide a convenient and robust tool for better understanding the physiological and pathological roles of RSOH and FA.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhiyi Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
113
|
Baraskar K, Thakur P, Shrivastava R, Shrivastava VK. Therapeutic Role of Phytophenol Gallic Acid for the Cure of COVID-19 Pathogenesis. Endocr Metab Immune Disord Drug Targets 2023; 23:464-469. [PMID: 36043737 DOI: 10.2174/1871530322666220829141401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
The SARS CoV-2 virus, the causative agent of COVID-19 uses the ACE-2 receptor of the host to penetrate and infect the cell, mainly in the pulmonary, renal, and cardiac tissues. The earlier reported Delta and the recent Omicron are the variants of concern. The mutations in the RBD region of spike protein are associated with increased RBD-ACE-2 receptor interaction. This binding affinity between spike protein and the receptor is greater in Omicron than in the Delta variant. Moreover, the Omicron variant has numerous hydrophobic amino acids in the RBD region of the spike protein, which maintain its structural integrity. Gallic acid is a phytophenol and shows high binding affinity toward the ACE-2 receptors, which may be helpful for better outcomes in the treatment of COVID-19 pathogenesis. In the present study, significant data were collected from different databases i.e., PubMed, Scopus, Science Direct, and Web of Science by using keywords like anti-oxidative, anti-inflammatory, and antimicrobial properties of gallic acid, in addition to receptor-based host cell interaction of SARS CoV-2 virus. The finding shows that gallic acid can reduce inflammation by attenuating NF-κB and MAPK signaling pathways to suppress the release of ICAM-1, a cell surface glycoprotein; various pro-inflammatory cytokines like TNF-α, IL 1-β, IL-6, IL-10, and chemokines like CCL-2,5, CXCL-8 along with tissue infiltration by immune cells. The purpose of this review is to highlight the therapeutic potential of gallic acid in COVID-19 pathogenesis based on its strong anti-oxidative, anti-inflammatory, and anti- microbial properties.
Collapse
Affiliation(s)
- Kirti Baraskar
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Pratibha Thakur
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Renu Shrivastava
- Department of Zoology, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Vinoy K Shrivastava
- Endocrinology Unit, Bioscience Department, Barkatullah University, Bhopal, Madhya Pradesh, India
| |
Collapse
|
114
|
Effects of Oleuropein and Hydroxytyrosol on Inflammatory Mediators: Consequences on Inflammaging. Int J Mol Sci 2022; 24:ijms24010380. [PMID: 36613822 PMCID: PMC9820525 DOI: 10.3390/ijms24010380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Aging is associated with a low-grade, systemic inflammatory state defined as "inflammaging", ruled by the loss of proper regulation of the immune system leading to the accumulation of pro-inflammatory mediators. Such a condition is closely connected to an increased risk of developing chronic diseases. A number of studies demonstrate that olive oil phenolic compound oleuropein and its derivative hydroxytyrosol contribute to modulating tissue inflammation and oxidative stress, thus becoming attractive potential candidates to be used in the context of nutraceutical interventions, in order to ameliorate systemic inflammation in aging subjects. In this review, we aim to summarize the available data about the anti-inflammatory properties of oleuropein and hydroxytyrosol, discussing them in the light of molecular pathways involved in the synthesis and release of inflammatory mediators in inflammaging.
Collapse
|
115
|
Barak T, Miller O, Melamed S, Tietel Z, Harari M, Belausov E, Elmann A. Neuroprotective Effects of Pulicaria incisa Infusion on Human Neuroblastoma Cells and Hippocampal Neurons. Antioxidants (Basel) 2022; 12:antiox12010032. [PMID: 36670894 PMCID: PMC9854488 DOI: 10.3390/antiox12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress increase susceptibility to neurodegeneration and other age-related pathologies. We have previously demonstrated that an infusion prepared from Pulicaria incisa (Pi) has protective, anti-inflammatory, and antioxidative effects in glial cells. However, the neuroprotective activities of Pi infusion in cultured neurons and aging mice have never been studied. In the following study, the effects of Pi infusion were explored in a hydrogen peroxide (H2O2)-induced oxidative stress model in SH-SY5Y human neuroblastoma cells. Profiling of the infusion by gas chromatography-mass spectrometry identified chlorogenic acid, quercetin, and aucubin as some of its main constituents. H2O2-induced ROS accumulation and caspase 3 activity decreased SH-SY5Y viability and were prevented upon the pretreatment of cells with Pi infusion. Additionally, the Pi infusion upregulated cellular levels and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as the phosphorylation of cyclic AMP response element-binding protein (CREB). Aging mice treated daily for 18 months with Pi infusion exhibited reduced neuronal cell death in the hippocampus as compared to age-matched controls. We, therefore, propose Pi infusion as a candidate regulator of oxidative stress in the brain.
Collapse
Affiliation(s)
- Talya Barak
- Department of Food Science, The Volcani Institute Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Oshrat Miller
- Department of Food Science, The Volcani Institute Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sarit Melamed
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Gilat 853110, Israel
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Gilat 853110, Israel
| | - Moti Harari
- The Southern Arava Research and Development, Hevel Eilot 88820, Israel
| | - Eduard Belausov
- The Institute of Plant Sciences, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| | - Anat Elmann
- Department of Food Science, The Volcani Institute Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
- Correspondence: ; Tel.: +972-3-968-3516
| |
Collapse
|
116
|
Selective disruption of NRF2-KEAP1 interaction leads to NASH resolution and reduction of liver fibrosis in mice. JHEP Rep 2022; 5:100651. [PMID: 36866391 PMCID: PMC9971056 DOI: 10.1016/j.jhepr.2022.100651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/25/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background & Aims Oxidative stress is recognized as a major driver of non-alcoholic steatohepatitis (NASH) progression. The transcription factor NRF2 and its negative regulator KEAP1 are master regulators of redox, metabolic and protein homeostasis, as well as detoxification, and thus appear to be attractive targets for the treatment of NASH. Methods Molecular modeling and X-ray crystallography were used to design S217879 - a small molecule that could disrupt the KEAP1-NRF2 interaction. S217879 was highly characterized using various molecular and cellular assays. It was then evaluated in two different NASH-relevant preclinical models, namely the methionine and choline-deficient diet (MCDD) and diet-induced obesity NASH (DIO NASH) models. Results Molecular and cell-based assays confirmed that S217879 is a highly potent and selective NRF2 activator with marked anti-inflammatory properties, as shown in primary human peripheral blood mononuclear cells. In MCDD mice, S217879 treatment for 2 weeks led to a dose-dependent reduction in NAFLD activity score while significantly increasing liver Nqo1 mRNA levels, a specific NRF2 target engagement biomarker. In DIO NASH mice, S217879 treatment resulted in a significant improvement of established liver injury, with a clear reduction in both NAS and liver fibrosis. αSMA and Col1A1 staining, as well as quantification of liver hydroxyproline levels, confirmed the reduction in liver fibrosis in response to S217879. RNA-sequencing analyses revealed major alterations in the liver transcriptome in response to S217879, with activation of NRF2-dependent gene transcription and marked inhibition of key signaling pathways that drive disease progression. Conclusions These results highlight the potential of selective disruption of the NRF2-KEAP1 interaction for the treatment of NASH and liver fibrosis. Impact and implications We report the discovery of S217879 - a potent and selective NRF2 activator with good pharmacokinetic properties. By disrupting the KEAP1-NRF2 interaction, S217879 triggers the upregulation of the antioxidant response and the coordinated regulation of a wide spectrum of genes involved in NASH disease progression, leading ultimately to the reduction of both NASH and liver fibrosis progression in mice.
Collapse
Key Words
- 4-HNE, 4-hydroxynonenal
- ARE, antioxidant response element
- DIO, diet-induced obesity
- GSEA, Gene Set Enrichment Analysis
- HEC, hydroxyethyl cellulose
- HSCs, Hepatic Stellate Cells
- KEAP1, Kelch-like ECH associated protein 1
- LPS, lipopolysaccharide
- MCDD, methionine- and choline-deficient diet
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, non-alcoholic steatohepatitis
- NRF2
- NRF2, nuclear factor erythroid 2–related factor 2
- PPI, Protein-protein interaction
- PSR, Picrosirius red
- ROS, reactive oxygen species
- fibrosis
- hPBMCs, human peripheral blood mononuclear cells
- oxidative stress
Collapse
|
117
|
Gureev AP, Khorolskaya VG, Sadovnikova IS, Shaforostova EA, Cherednichenko VR, Burakova IY, Plotnikov EY, Popov VN. Age-Related Decline in Nrf2/ARE Signaling Is Associated with the Mitochondrial DNA Damage and Cognitive Impairments. Int J Mol Sci 2022; 23:ijms232315197. [PMID: 36499517 PMCID: PMC9739464 DOI: 10.3390/ijms232315197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/08/2022] Open
Abstract
In this research, we compared the cognitive parameters of 2-, 7-, and 15-month-old mice, changes in mitochondrial DNA (mtDNA) integrity and expression of genes involved in the nuclear erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. We showed an age-related decrease in the Nfe2l2 expression in the cerebral cortex, not in the hippocampus. At the same time, we find an increase in the mtDNA copy number in the cerebral cortex, despite the lack of an increase in gene expression, which is involved in the mitochondrial biogenesis regulation. We suppose that increase in mtDNA content is associated with mitophagy downregulation. We supposed that mitophagy downregulation may be associated with an age-related increase in the mtDNA damage. In the hippocampus, we found a decrease in the Bdnf expression, which is involved in the pathways, which play an essential role in regulating long-term memory formation. We showed a deficit of working and reference memory in 15-month-old-mice in the water Morris maze, and a decrease in the exploratory behavior in the open field test. Cognitive impairments in 15-month-old mice correlated with a decrease in Bdnf expression in the hippocampus, Nfe2l2 expression, and an increase in the number of mtDNA damage in the cerebral cortex. Thus, these signaling pathways may be perspective targets for pharmacological intervention to maintain mitochondrial quality control, neuronal plasticity, and prevent the development of age-related cognitive impairment.
Collapse
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Victoria G. Khorolskaya
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina A. Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vadim R. Cherednichenko
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Y. Burakova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| |
Collapse
|
118
|
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y, Miao J, Zhu L, Chen J, Jiang Y, Wang F. Nrf2: An all-rounder in depression. Redox Biol 2022; 58:102522. [PMID: 36335763 PMCID: PMC9641011 DOI: 10.1016/j.redox.2022.102522] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
The balance between oxidation and antioxidant is crucial for maintaining homeostasis. Once disrupted, it can lead to various pathological outcomes and diseases, such as depression. Oxidative stress can result in or aggravate a battery of pathological processes including mitochondrial dysfunction, neuroinflammation, autophagical disorder and ferroptosis, which have been found to be involved in the development of depression. Inhibition of oxidative stress and related pathological processes can help improve depression. In this regard, the nuclear factor erythroid 2-related factor 2 (Nrf2) in the antioxidant defense system may play a pivotal role. Nrf2 activation can not only regulate the expression of a series of antioxidant genes that reduce oxidative stress and its damages, but also directly regulate the genes related to the above pathological processes to combat the corresponding alterations. Therefore, targeting Nrf2 has great potential for the treatment of depression. Activation of Nrf2 has antidepressant effect, but the specific mechanism remains to be elucidated. This article reviews the key role of Nrf2 in depression, focusing on the possible mechanisms of Nrf2 regulating oxidative stress and related pathological processes in depression treatment. Meanwhile, we summarize some natural and synthetic compounds targeting Nrf2 in depression therapy. All the above may provide new insights into targeting Nrf2 for the treatment of depression and provide a broad basis for clinical transformation.
Collapse
|
119
|
Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants (Basel) 2022; 11:antiox11122345. [PMID: 36552553 PMCID: PMC9774434 DOI: 10.3390/antiox11122345] [Citation(s) in RCA: 285] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Organisms are continually exposed to exogenous and endogenous sources of reactive oxygen species (ROS) and other oxidants that have both beneficial and deleterious effects on the cell. ROS have important roles in a wide range of physiological processes; however, high ROS levels are associated with oxidative stress and disease progression. Oxidative stress has been implicated in nearly all major human diseases, from neurogenerative diseases and neuropsychiatric disorders to cardiovascular disease, diabetes, and cancer. Antioxidant defence systems have evolved as a means of protection against oxidative stress, with the transcription factor Nrf2 as the key regulator. Nrf2 is responsible for regulating an extensive panel of antioxidant enzymes involved in the detoxification and elimination of oxidative stress and has been extensively studied in the disease contexts. This review aims to provide the reader with a general overview of oxidative stress and Nrf2, including basic mechanisms of Nrf2 activation and regulation, and implications in various major human diseases.
Collapse
|
120
|
Davinelli S, Medoro A, Intrieri M, Saso L, Scapagnini G, Kang JX. Targeting NRF2-KEAP1 axis by Omega-3 fatty acids and their derivatives: Emerging opportunities against aging and diseases. Free Radic Biol Med 2022; 193:736-750. [PMID: 36402440 DOI: 10.1016/j.freeradbiomed.2022.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The transcription factor NRF2 and its endogenous inhibitor KEAP1 play a crucial role in the maintenance of cellular redox homeostasis by regulating the gene expression of diverse networks of antioxidant, anti-inflammatory, and detoxification enzymes. Therefore, activation of NRF2 provides cytoprotection against numerous pathologies, including age-related diseases. An age-associated loss of NRF2 function may be a key driving force behind the aging phenotype. Recently, numerous NRF2 inducers have been identified and some of them are promising candidates to restore NRF2 transcriptional activity during aging. Emerging evidence indicates that omega-3 (n-3) polyunsaturated fatty acids (PUFAs) and their electrophilic derivatives may trigger a protective response via NRF2 activation, rescuing or maintaining cellular redox homeostasis. In this review, we provide an overview of the NRF2-KEAP1 system and its dysregulation in aging cells. We also summarize current studies on the modulatory role of n-3 PUFAs as potential agents to prevent multiple chronic diseases and restore the age-related impairment of NRF2 function.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy.
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
121
|
Niu LG, Sun N, Liu KL, Su Q, Qi J, Fu LY, Xin GR, Kang YM. Genistein Alleviates Oxidative Stress and Inflammation in the Hypothalamic Paraventricular Nucleus by Activating the Sirt1/Nrf2 Pathway in High Salt-Induced Hypertension. Cardiovasc Toxicol 2022; 22:898-909. [PMID: 35986807 DOI: 10.1007/s12012-022-09765-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
Hypertension caused by a high-salt (HS) diet is one of the major causes of cardiovascular diseases. Underlining pathology includes oxidative stress and inflammation in the hypothalamic paraventricular nucleus (PVN). This study investigates genistein's (Gen) role in HS-induced hypertension and the underlying molecular mechanism. We placed male Wistar rats on HS (8% NaCl) or normal salt diet (0.3% NaCl). Then, we injected bilateral PVN in rats with Gen, vehicle, or nicotinamide (NAM) for 4 weeks. Tail cuff was used weekly to assess the systolic pressure, diastolic pressure, and mean arterial pressure (MAP). Cardiac hypertrophy was analyzed by heart weight/body weight ratio and wheat germ agglutinin staining. ELISA kits, Western blot, or dihydroethidium staining determined the levels of inflammatory cytokines and oxidative stress markers. Western blot measured protein levels of Sirt1, Ac-FOXO1, Nrf2, NQO-1, HO-1, and gp91phox. Our result showed that PVN infusion of Gen significantly reduced the increase of systolic pressure, diastolic pressure, and MAP induced by an HS diet. Additionally, there was a decrease in cardiac hypertrophy and the levels of inflammatory cytokines in PVN and plasma. Meanwhile, PVN infusion of Gen notably inhibited the levels of oxidized glutathione and superoxide dismutase and improved the glutathione level and total antioxidant capacities and superoxide dismutase activities. It also decreased the level of reactive oxygen species and gp91phox expression in PVN. Furthermore, Gen infusion markedly increases the Sirt1, Nrf2, HO-1, and NQO-1 levels and decreases the Ac-FOXO1 level. However, PVN infusion of NAM could significantly block these changes induced by Gen in HS diet rats. Our results demonstrated that PVN infusion of Gen could inhibit the progression of hypertension induced by an HS diet by activating the Sirt1/Nrf2 pathway.
Collapse
Affiliation(s)
- Li-Gang Niu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Na Sun
- Department of Physiology, Xi'an Medical University, Xi'an, 710021, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Guo-Rui Xin
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, China.
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
122
|
Hiebert P, Martyts A, Schwestermann J, Janke K, Hafner J, Boukamp P, Mazza E, Werner S. Activation of Nrf2 in fibroblasts promotes a skin aging phenotype via an Nrf2-miRNA-collagen axis. Matrix Biol 2022; 113:39-60. [PMID: 36367485 DOI: 10.1016/j.matbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/30/2022]
Abstract
Aging is associated with progressive skin fragility and a tendency to tear, which can lead to severe clinical complications. The transcription factor NRF2 is a key regulator of the cellular antioxidant response, and pharmacological NRF2 activation is a promising strategy for the prevention of age-related diseases. Using a combination of molecular and cellular biology, histology, imaging and biomechanical studies we show, however, that constitutive genetic activation of Nrf2 in fibroblasts of mice suppresses collagen and elastin expression, resulting in reduced skin strength as seen in aged mice. Mechanistically, the "aging matrisome" results in part from direct Nrf2-mediated overexpression of a network of microRNAs that target mRNAs of major skin collagens and other matrix components. Bioinformatics and functional studies revealed high NRF2 activity in aged human fibroblasts in 3D skin equivalents and human skin biopsies, highlighting the translational relevance of the functional mouse data. Together, these results identify activated NRF2 as a promoter of age-related molecular and biomechanical skin features.
Collapse
Affiliation(s)
- Paul Hiebert
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Anastasiya Martyts
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Jonas Schwestermann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| | - Katharina Janke
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Jürg Hafner
- Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Petra Boukamp
- Department of Environmentally-Induced Skin and Lung Aging, IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Edoardo Mazza
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zurich, Zurich 8092, Switzerland
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
123
|
Festa J, Singh H, Hussain A, Da Boit M. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. J Food Biochem 2022; 46:e14091. [PMID: 35118699 DOI: 10.1111/jfbc.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has been triggered by the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Although recent studies demonstrate that SARS-CoV-2 possibly does not directly infect endothelial cells (EC), the endothelium may be affected as a secondary response due to the damage of neighboring cells, circulating pro-inflammatory cytokines, and/or other mechanisms. Long-term COVID-19 symptoms specifically nonrespiratory symptoms are due to the persistence of endothelial dysfunction (ED). Based on the literature, anthocyanins a major subgroup of flavonoid polyphenols found in berries, have been well researched for their vascular protective properties as well as the prevention of cardiovascular disease (CVD)-related deaths. Elderberries have been previously used as a natural remedy for treating influenza, cold, and consequently cardiovascular health due to a high content of cyanidin-3-glucoside (C3G) a major anthocyanin found in the human diet. The literature reported many studies demonstrating that EE has both antiviral and vascular protective properties that should be further investigated as a nutritional component used against the (in)direct effect of SARS-CoV-2 in vascular function. PRACTICAL APPLICATIONS: While previous work among the literature looks promising and builds a suggestion for investigating elderberry extract (EE) against COVID-19, further in vitro and in vivo research is required to fully evaluate EE mechanisms of action and its use as a supplement to aid current therapies.
Collapse
Affiliation(s)
- Joseph Festa
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Harprit Singh
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| | - Aamir Hussain
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK.,Department of Respiratory Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Mariasole Da Boit
- Leicester School of Allied Health Sciences, De Montfort University, Leicester, UK
| |
Collapse
|
124
|
ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1225578. [PMID: 36312897 PMCID: PMC9605829 DOI: 10.1155/2022/1225578] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are bioproducts of cellular metabolism. There is a range of molecules with oxidizing properties known as ROS. Despite those molecules being implied negatively in aging and numerous diseases, their key role in cellular signaling is evident. ROS control several biological processes such as inflammation, proliferation, and cell death. The redox signaling underlying these cellular events is one characteristic of the new generation of scientists aimed at defining the role of ROS in the cellular environment. The control of redox potential, which includes the balance of the sources of ROS and the antioxidant system, implies an important target for understanding the cells' fate derived from redox signaling. In this review, we summarized the chemical, the redox balance, the signaling, and the implications of ROS in biological aging.
Collapse
|
125
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
126
|
Green-Fulgham SM, Harland ME, Ball JB, Li J, Lacagnina MJ, D’Angelo H, Dreher RA, Willcox KF, Lorca SA, Kwilasz AJ, Maier SF, Watkins LR, Grace PM. Preconditioning by voluntary wheel running attenuates later neuropathic pain via nuclear factor E2-related factor 2 antioxidant signaling in rats. Pain 2022; 163:1939-1951. [PMID: 35486864 PMCID: PMC9308835 DOI: 10.1097/j.pain.0000000000002589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Animal and human studies have shown that exercise prior to nerve injury prevents later chronic pain, but the mechanisms of such preconditioning remain elusive. Given that exercise acutely increases the formation of free radicals, triggering antioxidant compensation, we hypothesized that voluntary running preconditioning would attenuate neuropathic pain by supporting redox homeostasis after sciatic nerve injury in male and female rats. We show that 6 weeks of voluntary wheel running suppresses neuropathic pain development induced by chronic constriction injury across both sexes. This attenuation was associated with reduced nitrotyrosine immunoreactivity-a marker for peroxynitrite-at the sciatic nerve injury site. Our data suggest that prior voluntary wheel running does not reduce the production of peroxynitrite precursors, as expression levels of inducible nitric oxide synthase and NADPH oxidase 2 were unchanged. Instead, voluntary wheel running increased superoxide scavenging by elevating expression of superoxide dismutases 1 and 2. Prevention of neuropathic pain was further associated with the activation of the master transcriptional regulator of the antioxidant response, nuclear factor E2-related factor 2 (Nrf2). Six weeks of prior voluntary wheel running increased Nrf2 nuclear translocation at the sciatic nerve injury site; in contrast, 3 weeks of prior wheel running, which failed to prevent neuropathic pain, had no effect on Nrf2 nuclear translocation. The protective effects of prior voluntary wheel running were mediated by Nrf2, as suppression was abolished across both sexes when Nrf2 activation was blocked during the 6-week running phase. This study provides insight into the mechanisms by which physical activity may prevent neuropathic pain. Preconditioning by voluntary wheel running, terminated prior to nerve injury, suppresses later neuropathic pain in both sexes, and it is modulated through the activation of Nrf2-antioxidant signaling.
Collapse
Affiliation(s)
- Suzanne M. Green-Fulgham
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Michael E. Harland
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Jayson B. Ball
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Jiahe Li
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Michael J. Lacagnina
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Heather D’Angelo
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Renee A. Dreher
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Kendal F. Willcox
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| | - Sabina A. Lorca
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Steven F. Maier
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - Peter M. Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- MD Anderson Pain Research Consortium, Houston, TX 77030, USA
| |
Collapse
|
127
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
128
|
Chen Y, Wang B, Lai WF, Chen Y, Pan R, Tang Z, Liu D. Chinese herbal formula (GCNY)-medicated serum alleviates peroxidation induced by H2O2 in human microglial cells. Front Neurosci 2022; 16:990040. [PMID: 36188472 PMCID: PMC9515651 DOI: 10.3389/fnins.2022.990040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Traditional Chinese herbal medicine aiming at nourishing yin formed a distinctive school of thought in history to achieve anti-aging and longevity. In the formula Gancao nourishing yin (GCNY) decoction, all of the ingredients show antioxidant properties. However, in real clinical practice, extractions of herbs are rarely applied alone but are prescribed as the integrated formula. To investigate whether GCNY possesses anti-oxidation potential, we applied GCNY to treat rats to acquire medicated serum, which was then added on H2O2 (200 μM)-modeled human microglial cell line HMC-3 in comparison with its control serum. The results revealed that GCNY-medicated serum decreased reactive oxygen species (ROS) levels. Inflammatory cytokines such as pNF-κB p65 (ser536) and IL-6 were also decreased. Nrf2 and its pathway-related molecules, such as HO1, ABCC2, GLCM, ME1, NQO1, and TKT, were activated by H2O2 modeling while declined by treating with GCNY-medicated serum, which indicated attenuated oxidative stress of GCNY. Furthermore, mRNA-seq analysis showed 58 differential expressed genes (DEGs), which were enriched in pathways including antigen processing and presentation, longevity regulation, oxidative phosphorylation, and Parkinson’s disease progression. DEGs that were downregulated by H2O2 modeling but upregulated by GCNY treatment include CENPF, MKI67, PRR11, and TOP2A. Those targets were reported to be associated with the cell cycle and cell proliferation and belong to the category of growth factor genes. In conclusion, this study verified anti-oxidation effects of GCNY and indicated its promising application for cognitive degeneration and aging-related disorders.
Collapse
Affiliation(s)
- Yong Chen
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Baojiang Wang
- Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Zhejiang, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yanjuan Chen
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| | - Rongbin Pan
- Cancer Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongsheng Tang
- Department of Anatomy, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongzhou Liu
- Division of Rheumatology and Research, Department of Geriatrics, The Second Clinical Medical College, Jinan University, Shenzhen People’s Hospital, Shenzhen, China
- *Correspondence: Dongzhou Liu,
| |
Collapse
|
129
|
Chen F, Xiao M, Feng J, Wufur R, Liu K, Hu S, Zhang Y. Different Inhibition of Nrf2 by Two Keap1 Isoforms α and β to Shape Malignant Behaviour of Human Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231810342. [PMID: 36142252 PMCID: PMC9499251 DOI: 10.3390/ijms231810342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/14/2022] Open
Abstract
Nrf2 (nuclear factor E2-related factor 2, encoded by Nfe2l2) acts as a master transcriptional regulator in mediating antioxidant, detoxification, and cytoprotective responses against oxidative, electrophilic, and metabolic stress, but also plays a crucial role in cancer metabolism and multiple oncogenic pathways, whereas the redox sensor Keap1 functions as a predominant inhibitor of Nrf2 and, hence, changes in its expression abundance directly affect the Nrf2 stability and transcriptional activity. However, nuanced functional isoforms of Keap1 α and β have rarely been identified to date. Herein, we have established four distinct cell models stably expressing Keap1-/-, Keap1β(Keap1Δ1-31), Keap1-Restored, and Keap1α-Restored aiming to gain a better understanding of similarities and differences of two Keap1 isoforms between their distinct regulatory profiles. Our experimental evidence revealed that although Keap1 and its isoforms are still localized in the cytoplasmic compartments, they elicited differential inhibitory effects on Nrf2 and its target HO-1. Furthermore, transcriptome sequencing unraveled that they possess similar but different functions. Such functions were further determined by multiple experiments in vivo (i.e., subcutaneous tumour formation in nude mice) and in vitro (e.g., cell cloning, infection, migration, wound healing, cell cycle, apoptosis, CAT enzymatic activity, and intracellular GSH levels). Of note, the results obtained from tumourigenesis experiments in xenograft model mice were verified based on the prominent changes in the PTEN signaling to the PI3K-AKT-mTOR pathways, in addition to substantially aberrant expression patterns of those typical genes involved in the EMT (epithelial-mesenchymal transition), cell cycle, and apoptosis.
Collapse
Affiliation(s)
- Feilong Chen
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Mei Xiao
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Jing Feng
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Reziyamu Wufur
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Keli Liu
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Shaofan Hu
- College of Bioengineering, Graduate School, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
| | - Yiguo Zhang
- Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, No. 725 Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing 402260, China
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering, Faculty of Medical Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China
- Correspondence:
| |
Collapse
|
130
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
131
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
132
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
133
|
Vo TTT, Huynh TD, Wang CS, Lai KH, Lin ZC, Lin WN, Chen YL, Peng TY, Wu HC, Lee IT. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants (Basel) 2022; 11:1619. [PMID: 36009338 PMCID: PMC9404924 DOI: 10.3390/antiox11081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The growing increases in the global life expectancy and the incidence of chronic diseases as a direct consequence have highlighted a demand to develop effective strategies for promoting the health of the aging population. Understanding conserved mechanisms of aging across species is believed helpful for the development of approaches to delay the progression of aging and the onset of age-related diseases. Mitochondrial hormesis (or mitohormesis), which can be defined as an evolutionary-based adaptive response to low-level stress, is emerging as a promising paradigm in the field of anti-aging. Depending on the severity of the perceived stress, there are varying levels of hormetic response existing in the mitochondria called mitochondrial stress response. Hydrogen sulfide (H2S) is a volatile, flammable, and toxic gas, with a characteristic odor of rotten eggs. However, H2S is now recognized an important gaseous signaling molecule to both physiology and pathophysiology in biological systems. Recent studies that elucidate the importance of H2S as a therapeutic molecule has suggested its protective effects beyond the traditional understanding of its antioxidant properties. H2S can also be crucial for the activation of mitochondrial stress response, postulating a potential mechanism for combating aging and age-related diseases. Therefore, this review focuses on highlighting the involvement of H2S and its sulfur-containing derivatives in the induction of mitochondrial stress response, suggesting a novel possibility of mitohormesis through which this gaseous signaling molecule may promote the healthspan and lifespan of an organism.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Thao Duy Huynh
- Lab of Biomaterial, Department of Histology, Embryology, and Genetics, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 72500, Vietnam
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuei-Hung Lai
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ho-Cheng Wu
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
134
|
Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol 2022; 35:1690-1700. [PMID: 35948068 PMCID: PMC9580020 DOI: 10.1021/acs.chemrestox.2c00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cellular homeostasis is continuously challenged by damage
from
reactive oxygen species (ROS) and numerous reactive electrophiles.
Human cells contain various protective systems that are upregulated
in response to protein damage by electrophilic or oxidative stress.
In addition to the NRF2-mediated antioxidant response, ROS and reactive
electrophiles also activate HSF1 and HIF1 that control heat shock
response and hypoxia response, respectively. Here, we review chemical
and biological mechanisms of activation of these three transcription
factors by ROS/reactive toxicants and the roles of their gene expression
programs in antioxidant protection. We also discuss how NRF2, HSF1,
and HIF1 responses establish multilayered cellular defenses consisting
of largely nonoverlapping programs, which mitigates limitations of
each response. Some innate immunity links in these stress responses
help eliminate damaged cells, whereas others suppress deleterious
inflammation in normal tissues but inhibit immunosurveillance of cancer
cells in tumors.
Collapse
Affiliation(s)
- Anna M Cyran
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
135
|
Chen J, Chen Y, Zheng Y, Zhao J, Yu H, Zhu J. The Relationship between Procyanidin Structure and Their Protective Effect in a Parkinson's Disease Model. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155007. [PMID: 35956957 PMCID: PMC9370466 DOI: 10.3390/molecules27155007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022]
Abstract
This study evaluated the effect of grape seed-derived monomer, dimeric, and trimeric procyanidins on rat pheochromocytoma cell line (PC12) cells and in a zebrafish Parkinson’s disease (PD) model. PC12 cells were cultured with grape seed-derived procyanidins or deprenyl for 24 h and then exposed to 1.5 mm 1-methyl-4-phenylpyridinium (MPP+) for 24 h. Zebrafish larvae (AB strain) 3 days post-fertilization were incubated with deprenyl or grape seed-derived procyanidins in 400 µM 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) for 4 days. The results showed that the procyanidin dimers procyanidin B1 (B1), procyanidin B2 (B2), procyanidin B3 (B3), procyanidin B4 (B4), procyanidin B1-3-O-gallate (B1-G), procyanidin B2-3-O-gallate (B2-G), and the procyanidin trimer procyanidin C1 (C1) had a protective effect on PC12 cells, decreasing the damaged dopaminergic neurons and motor impairment in zebrafish. In PC12 cells and the zebrafish PD model, procyanidin (B1, B2, B3, B4, B1-G, B2-G, C1) treatment decreased the content of reactive oxygen species (ROS) and malondialdehyde (MDA), increased the activity of antioxidant enzymes glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and upregulated the expression of nuclear factor-erythroid 2-related factor (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1). These results suggest that in PC12 cells and the zebrafish PD model, the neuroprotective effects of the procyanidins were positively correlated with their degree of polymerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiajin Zhu
- Correspondence: ; Tel./Fax: +86-571-8898-2191
| |
Collapse
|
136
|
Li D, Zhao H, Xu P, Lin Q, Zhao T, Li C, Cui ZK, Tian G. Polydatin activates the Nrf2/HO-1 signaling pathway to protect cisplatin-induced hearing loss in guinea pigs. Front Pharmacol 2022; 13:887833. [PMID: 35991886 PMCID: PMC9386133 DOI: 10.3389/fphar.2022.887833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Irreversible sensorineural hearing loss is one of the most common side effects after cisplatin treatment. Prevention and reversal of hearing loss caused by cisplatin are of great importance for cancer patients, especially children. Oxidative stress is an important cause of hearing loss resulted from cisplatin, unfortunately, there is no drug yet available that can completely prevent and reverse the ototoxicity from cisplatin. Polydatin (PD) possesses excellent antioxidant and anti-inflammatory effects, however, its role in the cisplatin-induced hearing loss has not been investigated. Herein, we have explored the preventive and therapeutic effects of PD on cisplatin-induced hearing loss and the possible underlying mechanisms. In the in vivo setting with guinea pigs, we have demonstrated that PD can reduce the threshold shift of auditory brainstem response (ABR) caused by cisplatin, promote the nuclear translocation of Nuclear factor erythroid-2 related factor 2 (Nrf2), increase the expression of Nrf2 and heme oxygenase-1 (HO-1), and thus reduce the loss of outer hair cells (OHCs). PD can ameliorate cisplatin-induced hearing loss through activating the Nrf2/HO-1 signaling pathway. This study provides a potential strategy for preventing and improving hearing loss resulted from cisplatin treatment in clinics.
Collapse
Affiliation(s)
- Dafei Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Haiyan Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Piao Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Qiongping Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Chubing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Zhong-Kai Cui
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Guangyong Tian, ; Zhong-Kai Cui,
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
- *Correspondence: Guangyong Tian, ; Zhong-Kai Cui,
| |
Collapse
|
137
|
Yilmaz S, Bedir E, Ballar Kirmizibayrak P. The role of cycloastragenol at the intersection of NRF2/ARE, telomerase, and proteasome activity. Free Radic Biol Med 2022; 188:105-116. [PMID: 35718303 DOI: 10.1016/j.freeradbiomed.2022.06.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Aging is well-characterized by the gradual decline of cellular functionality. As redox balance, proteostasis, and telomerase systems have been found to be associated with aging and age-related diseases, targeting these systems with small compounds has been considered a promising therapeutic approach. Cycloastragenol (CA), a small molecule telomerase activator obtained from Astragalus species, has been reported to positively affect several age-related pathophysiologies, but the mechanisms underlying CA activity have yet to be reported. Here, we presented that CA increased NRF2 nuclear localization and activity leading to upregulation of cytoprotective enzymes and attenuation of oxidative stress-induced ROS levels. Furthermore, CA-mediated induction of telomerase activity was found to be regulated by NRF2. CA not only increased the expression of hTERT but also its nuclear localization via upregulating the Hsp90-chaperon complex. In addition to modulating nuclear hTERT levels at unstressed conditions, CA alleviated oxidative stress-induced mitochondrial hTERT levels while increasing nuclear hTERT levels. Concomitantly, H2O2-induced mitochondrial ROS level was found to be significantly decreased by CA administration. Our data also revealed that CA strongly enhanced proteasome activity and assembly. More importantly, the proteasome activator effect of CA is dependent on the induction of telomerase activity, which is mediated by NRF2 system. In conclusion, our results not only revealed the cross-talk among NRF2, telomerase, and proteasome systems but also that CA functions at the intersection of these three major aging-related cellular pathways.
Collapse
Affiliation(s)
- Sinem Yilmaz
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Bornova, Izmir, Turkey; Department of Bioengineering, Faculty of Engineering, University of Alanya Aladdin Keykubat, Antalya, Turkey
| | - Erdal Bedir
- Department of Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| | | |
Collapse
|
138
|
Zhang YY, Hu ZL, Qi YH, Li HY, Chang X, Gao XX, Liu CH, Li YY, Lou JH, Zhai Y, Li CQ. Pretreatment of nucleus pulposus mesenchymal stem cells with appropriate concentration of H 2O 2 enhances their ability to treat intervertebral disc degeneration. Stem Cell Res Ther 2022; 13:340. [PMID: 35883157 PMCID: PMC9327256 DOI: 10.1186/s13287-022-03031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Nucleus pulposus mesenchymal stem cells (NPMSCs) transplantation is a promising treatment for intervertebral disc degeneration (IVDD). However, the transplanted NPMSCs exhibited weak cell proliferation, high cell apoptosis, and a low ability to resist the harsh microenvironment of the degenerated intervertebral disc. There is an urgent need to explore feasible methods to enhance the therapeutic efficacy of NPMSCs transplantation. Objective To identify the optimal concentration for NPMSCs pretreatment with hydrogen peroxide (H2O2) and explore the therapeutic efficacy of NPMSCs transplantation using H2O2 pretreatment in IVDD. Methods Rat NPMSCs were pretreated with different concentrations (range from 25 to 300 μM) of H2O2. The proliferation, reactive oxygen species (ROS) level, and apoptosis of NPMSCs were detected by cell counting kit-8 (CCK-8) assay, 5-ethynyl-2′-deoxyuridine (EdU) staining, and flow cytometry in vitro. The underlying signalling pathways were explored utilizing Western blotting. A rat needle puncture-stimulated IVDD model was established. X-ray, histological staining, and a multimode small animal live imaging system were used to evaluate the therapeutic effect of H2O2-pretreated NPMSCs in vivo. Results NPMSCs pretreated with 75 μM H2O2 demonstrated the strongest elevated cell proliferation by inhibiting the Hippo pathway (P < 0.01). Meanwhile, 75 μM H2O2-pretreated NPMSCs exhibited significantly enhanced antioxidative stress ability (P < 0.01), which is related to downregulated Brd4 and Keap1 and upregulated Nrf2. NPMSCs pretreated with 75 μM H2O2 also exhibited distinctly decreased apoptosis (P < 0.01). In vivo experiments verified that 75 μM H2O2-pretreated NPMSCs-transplanted rats exhibited an enhanced disc height index (DHI% = 90.00 ± 4.55, P < 0.01) and better histological morphology (histological score = 13.5 ± 0.5, P < 0.01), which means 75 μM H2O2-pretreated NPMSCs can better adapt to the environment of degenerative intervertebral discs and promote the repair of IVDD. Conclusions Pretreatment with 75 μM H2O2 was the optimal concentration to improve the proliferation, antioxidative stress, and antiapoptotic ability of transplanted NPMSCs, which is expected to provide a new feasible method to improve the stem cell therapy efficacy of IVDD. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03031-7.
Collapse
Affiliation(s)
- Yu-Yao Zhang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Zhi-Lei Hu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu-Han Qi
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Science, Beijing, 100000, China
| | - Hai-Yin Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Xiao-Xin Gao
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Chen-Hao Liu
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yue-Yang Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Jin-Hui Lou
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| | - Chang-Qing Li
- Department of Orthopedics, Xinqiao Hospital, Army Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
139
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
140
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
141
|
Liu D, Peng R, Chen Z, Yu H, Wang S, Dong S, Li W, Shao W, Dai J, Li F, Jiang Q, Sun W. The Protective Effects of Apigenin Against Radiation-Induced Intestinal Injury. Dose Response 2022; 20:15593258221113791. [PMID: 35859853 PMCID: PMC9289922 DOI: 10.1177/15593258221113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced intestinal injury (RIII) restricts the therapeutic efficacy of
radiotherapy in abdominal or pelvic malignancies. Also, intestinal injury is a major cause
of death following exposure to high doses of radiation in nuclear accidents. No safe and
effective prophylactics or therapeutics for RIII are currently available. Here, we
reported that the apigenin, a natural dietary flavone, prolonged the survival in c57 mice
after lethal irradiation. Apigenin pretreatment brought about accelerated restoration of
crypt-villus structure, including enhanced regenerated crypts, more differentiated
epithelium cells, and increased villus length. In addition, intestinal crypt cells in the
apigenin-treated group exhibited more proliferation and less apoptosis. Furthermore,
apigenin increased the expression of Nrf2 and its downstream target gene HO-1, and
decreased oxidative stress after irradiation. In conclusion, our findings demonstrate the
radioprotective efficacy of apigenin. Apigenin has the potential to be used as a
radioprotectant in cancer therapy and nuclear accidents.
Collapse
Affiliation(s)
- Danjie Liu
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China
| | - Renjun Peng
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhongmin Chen
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Huijie Yu
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Sinian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Suhe Dong
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wei Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wen Shao
- Department of Blood Transfusion, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jing Dai
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Qisheng Jiang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wanjun Sun
- Department of Hematology, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
142
|
Chiang MC, Nicol CJB. GSH-AuNP anti-oxidative stress, ER stress and mitochondrial dysfunction in amyloid-beta peptide-treated human neural stem cells. Free Radic Biol Med 2022; 187:185-201. [PMID: 35660451 DOI: 10.1016/j.freeradbiomed.2022.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Amyloid-beta (Aβ) peptides have a role in the pathogenesis of Alzheimer's disease (AD) and are thought to promote oxidative stress, endoplasmic reticulum (ER) stress and mitochondrial deficiency, causing neuronal loss in the AD brain. The potential applications of glutathione conjugated gold nanoparticles (GSH-AuNPs) suggest they might have therapeutic value. Several studies have demonstrated that the effects of nanoparticles could provide protective roles in AD. Here, we showed that GSH-AuNPs mediate the viability of human neural stem cells (hNSCs) with Aβ, which was correlated with decreased caspase 3 and caspase 9. Importantly, hNSCs co-treated with GSH-AuNPs were significantly protected from Aβ-induced oxidative stress, as detected using the DCFH-DA, DHE, and MitoSOX staining assays. Furthermore, hNSCs co-treated with GSH-AuNPs were significantly protected from the Aβ-induced reduction in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2 downstream antioxidant target genes (SOD-1, SOD-2, Gpx, Catalase, and HO-1). In addition, GSH-AuNPs rescued the expression levels of ER stress-associated genes (Bip, CHOP, and ASK1) in Aβ-treated hNSCs. GSH-AuNPs normalized ER calcium and mitochondrial cytochrome c homeostasis in Aβ-treated hNSCs. Furthermore, treatment with GSH-AuNPs restored the levels of ATP, D-loop, mitochondrial mass, basal respiration, ATP-linked reparation, maximal respiration capacity, COX activity, mitochondrial membrane potential, and mitochondrial genes (PGC1α, NRF-1 and Tfam) in Aβ-treated hNSCs. Taken together, these findings extend our understanding of the protective effects of GSH-AuNPs against oxidative stress, ER stress and mitochondrial dysfunction in hNSCs with Aβ.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| | - Christopher J B Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Cancer Biology and Genetics Division, Cancer Research Institute, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
143
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
144
|
Luo C, Ding W, Yang C, Zhang W, Liu X, Deng H. Nicotinamide Mononucleotide Administration Restores Redox Homeostasis via the Sirt3-Nrf2 Axis and Protects Aged Mice from Oxidative Stress-Induced Liver Injury. J Proteome Res 2022; 21:1759-1770. [PMID: 35699728 DOI: 10.1021/acs.jproteome.2c00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Altered adaptive homeostasis contributes to aging and lifespan regulation. In the present study, to characterize the mechanism of aging in mouse liver, we performed quantitative proteomics and found that the most upregulated proteins were related to the oxidation-reduction process. Further analysis revealed that malondialdehyde (MDA) and protein carbonyl (PCO) levels were increased, while nuclear Nrf2 and downstream genes were significantly increased, indicating that oxidative stress induced Nrf2 activation in aged mouse liver. Importantly, nicotinamide mononucleotide (NMN) administration decreased the oxidative stress and the nuclear Nrf2 and Nrf2 downstream gene levels. Indeed, aged mice treated with NMN improved stress resistance against acetaminophen (APAP)-induced liver injury, indicating that NMN restored Nrf2-mediated adaptive homeostasis. Further studies found that NMN increased Sirt3 activities to deacetylate age-associated acetylation at K68 and K122 in Sod2, while its effects on nuclear Nrf2 levels were diminished in Sirt3-deficient mice, suggesting that NMN-enhanced adaptive homeostasis was Sirt3-dependent. Taken together, we demonstrated that Nrf2-regulated adaptive homeostasis was decreased in aged mouse liver and NMN supplementation restored liver redox homeostasis via the Sirt3-Nrf2 axis and protected aged liver from oxidative stress-induced injury.
Collapse
Affiliation(s)
- Chengting Luo
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenxi Ding
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Changmei Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohui Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
145
|
Khoshandam A, Razavi BM, Hosseinzadeh H. Interaction of saffron and its constituents with Nrf2 signaling pathway: A review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:789-798. [PMID: 36033950 PMCID: PMC9392575 DOI: 10.22038/ijbms.2022.61986.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/26/2022] [Indexed: 11/09/2022]
Abstract
Saffron (Crocus sativus) is a natural compound and its constituents such as crocin, crocetin, and safranal have many pharmacological properties such as anti-oxidant, anti-inflammatory, antitumor, antigenotoxic, anti-depressant, hepatoprotective, cardioprotective, and neuroprotective. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway plays an important role against inflammation, oxidative stress, and carcinogenesis. In the regulation of the Nrf2 signaling pathway, kelch-like ECH-associated protein 1 (keap1) is the most studied pathway. In this review, we gathered various studies and describe the pharmacological effects of saffron and its constituents with their related mechanisms of action, particularly the Nrf2 signaling pathway. In this review, we used search engines or electronic databases including Scopus, Web of Science, and Pubmed, without time limitation. The search keywords contained saffron, "Crocus sativus", crocetin, crocin, safranal, picrocrocin, "nuclear factor erythroid 2-related factor 2", and Nrf2. Saffron and its constituents could have protective properties through various mechanisms particularly the Nrf2/HO-1/Keap1 signaling pathway in different tissues such as the liver, heart, brain, pancreas, lung, joints, colon, etc. The vast majority of studies discussed in this review indicate that saffron and its constituents could induce the Nrf2 signaling pathway leading to its anti-oxidant and therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran , Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran , Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
146
|
Keren A, Bertolini M, Keren Y, Ullmann Y, Paus R, Gilhar A. Human organ rejuvenation by VEGF-A: Lessons from the skin. SCIENCE ADVANCES 2022; 8:eabm6756. [PMID: 35749494 PMCID: PMC9232104 DOI: 10.1126/sciadv.abm6756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transplanting aged human skin onto young SCID/beige mice morphologically rejuvenates the xenotransplants. This is accompanied by angiogenesis, epidermal repigmentation, and substantial improvements in key aging-associated biomarkers, including ß-galactosidase, p16ink4a, SIRT1, PGC1α, collagen 17A, and MMP1. Angiogenesis- and hypoxia-related pathways, namely, vascular endothelial growth factor A (VEGF-A) and HIF1A, are most up-regulated in rejuvenated human skin. This rejuvenation cascade, which can be prevented by VEGF-A-neutralizing antibodies, appears to be initiated by murine VEGF-A, which then up-regulates VEGF-A expression/secretion within aged human skin. While intradermally injected VEGF-loaded nanoparticles suffice to induce a molecular rejuvenation signature in aged human skin on old mice, VEGF-A treatment improves key aging parameters also in isolated, organ-cultured aged human skin, i.e., in the absence of functional skin vasculature, neural, or murine host inputs. This identifies VEGF-A as the first pharmacologically pliable master pathway for human organ rejuvenation in vivo and demonstrates the potential of our humanized mouse model for clinically relevant aging research.
Collapse
Affiliation(s)
- Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Yaniv Keren
- Division of Orthopedic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda Ullmann
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- CUTANEON–Skin & Hair Innovations, Hamburg, Germany
- Corresponding author. (A.G.); (R.P.)
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- Corresponding author. (A.G.); (R.P.)
| |
Collapse
|
147
|
Gao J, Li Y, Guan Y, Wei X, Chen S, Li X, Li Y, Huang Z, Liu S, Li G, Xu P, Zhang Y, Zhao Y. The accelerated aging skin in rhino-like SHJH hr mice. Exp Dermatol 2022; 31:1597-1606. [PMID: 35737869 DOI: 10.1111/exd.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
SHJHhr mice line is rhino-like mice with a nonsense Hairless (Hr) mutant, which shows the characteristic of shedding hair and wrinkled skin with increasing age. Though histological analysis and aging indexes detection, SHJHhr mice show an increased thickness skin with degraded hair follicle and dermal cysts, and disorganized collagen fibers as well as decreased level of Hyp. Meanwhile, the aging markers p16 and p21 are significantly higher in SHJHhr mouse skin than ICR mouse skin at same age. Moreover, the data of MDA and SOD show a higher oxidative stress in SHJHhr mouse skin, and the levels of Nrf2 and its targets are significantly down-regulated, which suggests SHJHhr mice have a faster aging skin and its reason maybe poor antioxidative protection. Overall, this study shows SHJHhr mice with an accelerated aging skin, which suggests the role of Hr gene in skin aging.
Collapse
Affiliation(s)
- Jinfeng Gao
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongchao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.,The Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yalun Guan
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaoyue Wei
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijian Chen
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yunfeng Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zhongqiang Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Shuhua Liu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ping Xu
- Shanghai Jihui Laboratory Animal Care Co., Ltd., Shanghai, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuhong Zhao
- Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
148
|
Zhang W, Xiong Y, Tao R, Panayi AC, Mi B, Liu G. Emerging Insight Into the Role of Circadian Clock Gene BMAL1 in Cellular Senescence. Front Endocrinol (Lausanne) 2022; 13:915139. [PMID: 35733785 PMCID: PMC9207346 DOI: 10.3389/fendo.2022.915139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Cell senescence is a crucial process in cell fate determination and is involved in an extensive array of aging-associated diseases. General perceptions and experimental evidence point out that the decline of physical function as well as aging-associated diseases are often initiated by cell senescence and organ ageing. Therefore, regulation of cell senescence process can be a promising way to handle aging-associated diseases such as osteoporosis. The circadian clock regulates a wide range of cellular and physiological activities, and many age-linked degenerative disorders are associated with the dysregulation of clock genes. BMAL1 is a core circadian transcription factor and governs downstream genes by binding to the E-box elements in their promoters. Compelling evidence has proposed the role of BMAL1 in cellular senescence and aging-associated diseases. In this review, we summarize the linkage between BMAL1 and factors of cell senescence including oxidative stress, metabolism, and the genotoxic stress response. Dysregulated and dampened BMAL1 may serve as a potential therapeutic target against aging- associated diseases.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
149
|
Ginkgolide C Alleviates Acute Lung Injury Caused by Paraquat Poisoning via Regulating the Nrf2 and NF- κB Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7832983. [PMID: 35707280 PMCID: PMC9192221 DOI: 10.1155/2022/7832983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/02/2022] [Indexed: 12/15/2022]
Abstract
Paraquat (PQ), a highly toxic herbicide and primary attack for lung, results in severe acute lung injury (ALI) appeared as evident oxidative stress, inflammation, and apoptosis. Increasing evidence elucidates that nuclear factor erythroid-2-related factor 2 (Nrf2) and its associated nuclear factor-κB (NF-κB) exhibit many merits for protection of ALI by coordinating a fine-turned response to oxidative stress, inflammation, and apoptosis. Ginkgolide C (GC) has been reported to be a safe and potent therapeutic agent against ALI. However, whether GC could protect ALI induced by PQ poisoning and the possible underlining mechanisms have remained not to be fully elucidated. A rat model of ALI and a model of acute type II alveolar epithelial cell (RLE-6TN) injury constructed by exposure to PQ were applied to discuss the protective effect of GC. Furthermore, Nrf2 gene silencing RLE-6TN cells were used to discuss the exact mechanism. We confirmed that GC significantly ameliorated the histopathological damages, ultrastructural changes, lung injury score, W/D ratio, and Hyp activity of lung tissue and inhibited polymorphonuclear neutrophil (PMN) infiltration after PQ poisoning. Further results revealed that GC remarkably activated Nrf2-based cytoprotective system and inhibited NF-κB-induced inflammatory injury as well as apoptosis. Taken together, we concluded that GC preserved protection of PQ-induced ALI via the Nrf2-NF-κB dependent signal pathway, which may provide us novel insights into the treatment strategies for PQ poisoning.
Collapse
|
150
|
Liao B, Tian X. CTRP12 alleviates cardiomyocyte ischemia‑reperfusion injury via regulation of KLF15. Mol Med Rep 2022; 26:247. [PMID: 35656890 PMCID: PMC9185681 DOI: 10.3892/mmr.2022.12763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Myocardial ischemia-reperfusion (I/R) serves a crucial role in myocardial infarction. C1q/TNF-related protein 12 (CTRP12) is a secretory protein involved in metabolism. It has been reported that CTRP12 participates in the regulation of numerous cardiovascular diseases. However, its role in myocardial I/R injury remains unclear. In the present study, the left anterior descending coronary artery in mice was ligated to establish a mouse I/R model. A myocardial hypoxia-reoxygenation (H/R) cell model was also established. Cardiomyocyte injury was evaluated using hematoxylin and eosin staining, Cell Counting Kit-8 and a lactate dehydrogenase (LDH) kit. The expression levels of CTRP12 and Krueppel-like factor 15 (KLF15) in murine myocardial tissues and H9c2 cells were determined using reverse transcription-quantitative PCR and western blotting, as KLF15 was previously reported to protect against I/R-induced cardiomyocyte damage. Furthermore, inflammatory factors TNF-α, IL-1β and IL-6 were analyzed using ELISA while apoptosis was assessed using TUNEL assays and western blotting. Moreover, the activity of the CTRP12 promoter was determined using a dual-luciferase reporter assay. The results demonstrated that I/R surgery markedly exacerbated myocardial tissue damage, whereas H/R treatment significantly reduced cell viability and significantly increased LDH activity as well as the release of inflammatory factors and apoptosis. I/R and H/R induction significantly reduced the expression levels of CTRP12 and KLF15. CTRP12 overexpression significantly alleviated H/R-induced cell injury and significantly inhibited inflammation and apoptosis. Further analysis demonstrated that KLF15 could significantly promote the activity of the CTRP12 promoter. However, following CTRP12 knockdown, KLF15 overexpression exacerbated cell injury, inflammation and apoptosis. In conclusion, the present study demonstrated that CTRP12 may mitigate inflammation and apoptosis in H/R-induced cardiomyocytes, possibly via the regulation of KLF15, which provided a theoretical basis for the potential treatment of I/R-induced myocardial infarction.
Collapse
Affiliation(s)
- Bo Liao
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoyuan Tian
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|