101
|
Le Normand M, Rietzler B, Vilaplana F, Ek M. Macromolecular Model of the Pectic Polysaccharides Isolated from the Bark of Norway Spruce ( Picea abies). Polymers (Basel) 2021; 13:polym13071106. [PMID: 33807128 PMCID: PMC8038116 DOI: 10.3390/polym13071106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The bark of Norway spruce (Picea abies) contains up to 13% pectins that can be extracted by pressurized hot water, which constitute a valuable renewable resource in second-generation lignocellulosic biorefineries. This article proposes, for the first time, structural molecular models for the pectins present in spruce bark. Pectin fractions of tailored molar masses were obtained by fractionation of the pressurized hot water extract of the inner bark using preparative size-exclusion chromatography. The monosaccharide composition, average molar mass distribution, and the glycosidic linkage patterns were analyzed for each fraction. The pectin fraction with high molecular weight (Mw of 59,000 Da) contained a highly branched RG-I domain, which accounted for 80% of the fraction and was mainly substituted with arabinan and arabinogalactan (type I and II) side chains. On the other hand, the fractions with lower molar masses (Mw = 15,000 and 9000 Da) were enriched with linear homogalacturonan domains, and also branched arabinan populations. The integration of the analytical information from the macromolecular size distributions, domain composition, and branch lengths of each pectin fraction, results in a comprehensive understanding of the macromolecular architecture of the pectins extracted from the bark of Norway spruce. This paves the way for the valorization of spruce bark pectic polymers in targeted applications based on their distinct polymeric structures and properties.
Collapse
Affiliation(s)
- Myriam Le Normand
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
| | - Barbara Rietzler
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| | - Francisco Vilaplana
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, SE-106 91 Stockholm, Sweden
- Correspondence:
| | - Monica Ek
- Division of Wood Chemistry and Pulp Technology, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden; (M.L.N.); (B.R.); (M.E.)
- Wallenberg Wood Science Centre (WWSC), KTH Royal Institute of Technology, Teknikringen 56, SE-100 44 Stockholm, Sweden
| |
Collapse
|
102
|
Chen L, Hao M, Yan J, Sun L, Tai G, Cheng H, Zhou Y. Citrus-derived DHCP inhibits mitochondrial complex II to enhance TRAIL sensitivity via ROS-induced DR5 upregulation. J Biol Chem 2021; 296:100515. [PMID: 33676890 PMCID: PMC8050394 DOI: 10.1016/j.jbc.2021.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Miao Hao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Jingmin Yan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Lin Sun
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Guihua Tai
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, China.
| |
Collapse
|
103
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
104
|
Cheng H, Zhang X, Cui Z, Mao S. Grafted polysaccharides as advanced pharmaceutical excipients. ADVANCES AND CHALLENGES IN PHARMACEUTICAL TECHNOLOGY 2021:75-129. [DOI: 10.1016/b978-0-12-820043-8.00010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
105
|
Kaur M, Wadhwa A, Kumar V. Pectin-Based Nanomaterials: Synthesis, Toxicity and Applications. ASIAN JOURNAL OF CHEMISTRY 2021; 33:2579-2588. [DOI: 10.14233/ajchem.2021.23382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Nanomaterials of biological origin are very useful for drug delivery applications. The stability,
biodegradability and biocompatibility of pectin nanomaterials in the human body make them an effective
drug carrier. This review focus on different aspect of synthesis, drug encapsulation, drug release and
safety of pectin-based nanomaterials. The nanomaterials can be used for the delivery of different
hydrophilic and hydrophobic drugs to various organs. The release kinetics of drug loaded pectin-based
nanoparticles can be studied in vitro as well as in vivo. The pectin-based nanomaterials have good
pharmaco-kinetics and can ensure controlled drug delivery. However, the toxicity of pectin-based
nanomaterials to human body needs to be evaluated carefully before industrial scale application.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Aditya Wadhwa
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144111, India
| |
Collapse
|
106
|
Catori DM, Fragal EH, Messias I, Garcia FP, Nakamura CV, Rubira AF. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. Int J Biol Macromol 2020; 167:726-735. [PMID: 33285200 DOI: 10.1016/j.ijbiomac.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 01/05/2023]
Abstract
Hydrogels based on pectin and cellulose nanocrystals (CNC) were used in our study to nucleation and growth of hydroxyapatite (HAp) by the biomimetic method. In this study, we evaluated the direct impact of the different percentages of CNC on pectin hydrogel and the influence of HAp obtained through two methods. CNC were obtained from HCl hydrolysis following chemical functionalization through vinyl groups. The percentage of CNC positively induces thermal stability, mechanical properties and HAp mineralization from biomimetic using simulated body fluid (1.5 SBF). Hydrogels with 5% of CNC showed a higher amount of HAp immersed for 14 days, about 28% of HAp. The obtained hydrogels were compared with hydrogels containing 20% of HAp nanoparticles obtained by chemical precipitation. Biocompatibility of the hydrogels was evaluated by cell viability using fibroblasts (L929). In general, the hydrogels obtained through the biomimetic method show slightly larger biocompatibility compared to the hybrid hydrogels obtained from chemical precipitation.
Collapse
Affiliation(s)
- Daniele M Catori
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Elizângela H Fragal
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| | - Igor Messias
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Francielle P Garcia
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Celso V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil
| | - Adley F Rubira
- Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, CEP 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
107
|
Development of Arabinoxylan-Reinforced Apple Pectin/Graphene Oxide/Nano-Hydroxyapatite Based Nanocomposite Scaffolds with Controlled Release of Drug for Bone Tissue Engineering: In-Vitro Evaluation of Biocompatibility and Cytotoxicity against MC3T3-E1. COATINGS 2020. [DOI: 10.3390/coatings10111120] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fabrication of reinforced scaffolds to repair and regenerate defected bone is still a major challenge. Bone tissue engineering is an advanced medical strategy to restore or regenerate damaged bone. The excellent biocompatibility and osteogenesis behavior of porous scaffolds play a critical role in bone regeneration. In current studies, we synthesized polymeric nanocomposite material through free-radical polymerization to fabricate porous nanocomposite scaffolds by freeze drying. Functional group, surface morphology, porosity, pore size, and mechanical strength were examined through Fourier Transform Infrared Spectroscopy (FTIR), Single-Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), and Universal Testing Machine (UTM), respectively. These nanocomposites exhibit enhanced compressive strength (from 4.1 to 16.90 MPa), Young’s modulus (from 13.27 to 29.65 MPa) with well appropriate porosity and pore size (from 63.72 ± 1.9 to 45.75 ± 6.7 µm), and a foam-like morphology. The increasing amount of graphene oxide (GO) regulates the porosity and mechanical behavior of the nanocomposite scaffolds. The loading and sustained release of silver-sulfadiazine was observed to be 90.6% after 260 min. The in-vitro analysis was performed using mouse pre-osteoblast (MC3T3-E1) cell lines. The developed nanocomposite scaffolds exhibited excellent biocompatibility. Based on the results, we propose these novel nanocomposites can serve as potential future biomaterials to repair defected bone with the load-bearing application, and in bone tissue engineering.
Collapse
|
108
|
Martinelli A, Giannini L, Branduardi P. Enzymatic Modification of Cellulose To Unlock Its Exploitation in Advanced Materials. Chembiochem 2020; 22:974-981. [PMID: 33063936 DOI: 10.1002/cbic.202000643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Indexed: 01/16/2023]
Abstract
Nowadays natural biopolymers have a wide variety of uses in various industrial applications, such as food, adhesives and composite materials. Among them, cellulose has attracted the interest of researchers due to its properties: high strength and flexibility, biocompatibility and nontoxicity. Despite that, in many cases its practical use is limited because of poor solubility and/or an unsuitable hydrophilic/hydrophobic balance. In this context, enzymatic modification appears as a powerful strategy to overcome these problems through selective, green and environmentally friendly processes. This minireview discusses the different methods developed for the enzymatic modification of cellulose, emphasizing the type of reaction, the enzymes used (laccases, esterases, lipases, hexokinases, etc.), and the properties and applications of the cellulose derivatives obtained. Considering that cellulose is the most abundant natural polymer on Earth and can be derived from residual lignocellulosic biomass, the impact of its use in bio-based process following the logic of the circular economy is relevant.
Collapse
Affiliation(s)
- Andrea Martinelli
- DepartmentMaterials Science, University of Milano Bicocca, Via Cozzi 55, 20125, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | | | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| |
Collapse
|
109
|
Natural Film Based on Pectin and Allantoin for Wound Healing: Obtaining, Characterization, and Rat Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6897497. [PMID: 33123582 PMCID: PMC7586176 DOI: 10.1155/2020/6897497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/25/2020] [Accepted: 08/21/2020] [Indexed: 11/20/2022]
Abstract
Introduction In our days, several approaches reported the use of natural compounds in medical applications. Among them, pectin and allantoin are nontoxic, biocompatible, and biodegradable; however, its use for possible wound healing therapeutics is still limited. Pectin and allantoin have been applied in pharmaceutical industry and beauty cosmetic and could be also applied as scaffolds for tissue regeneration, wound healing, and so on. The aim of this study was to combine by the first time two natural ingredients to develop a new biomaterial to treat skin injuries in a rat model. Methods For the hydrogel development, new synthesis parameters were established for the obtaining of the film such as temperature, mixing velocity and time, and drying temperatures as well. To enrich the film, the allantoin concentrations were set at 90 wt% and 100 wt% of pectin used. By in vivo assay, films were tested in wound healing in female Wistar rats, 190 ± 10 g in weight and 2 months aged. Results The obtained films comprise 2 well-differentiated layers, one layer rich in allantoin, which will be the regenerative layer, and one rich in pectin, which will work as an antimicrobial and protective layer to the wound. These were characterized by swelling kinetics, Fourier transform of the infrared spectrum of absorption (FTIR) spectroscopy, and contact angle. The morphology and topography were determined by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). In vivo assay showed remarkable reduce in a time period in a wound healing process when the film was used. The results show that the use of PA (Pectin-Allantoin) hydrogel reduces the total healing time by 25% approximately. Conclusions Pectin-Allantoin (PA) film has potential use in medical applications as wound healing material promoting healthy tissue renewal.
Collapse
|
110
|
Mellinas AC, Jiménez A, Garrigós MC. Pectin-Based Films with Cocoa Bean Shell Waste Extract and ZnO/Zn-NPs with Enhanced Oxygen Barrier, Ultraviolet Screen and Photocatalytic Properties. Foods 2020; 9:E1572. [PMID: 33138245 PMCID: PMC7692356 DOI: 10.3390/foods9111572] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
In this work, pectin-based active films with a cocoa bean shell extract, obtained after waste valorisation of residues coming from the chocolate production process, and zinc oxide/zinc nanoparticles (ZnO/Zn-NPs) at different concentrations, were obtained by casting. The effect of the active additive incorporation on the thermal, barrier, structural, morphological and optical properties was investigated. Moreover, the photocatalytic properties of the obtained films based on the decomposition of methylene blue (MB) in aqueous solution at room temperature were also studied. A significant increase in thermal and oxidative stability was obtained with the incorporation of 3 wt% of ZnO/Zn-NPs compared to the control film. The addition of 5 wt% cocoa bean shell extract to pectin significantly affected the oxygen barrier properties due to a plasticizing effect. In contrast, the addition of ZnO/Zn-NPs at 1 wt% to pectin caused a decrease in oxygen transmission rate per film thickness (OTR.e) values of approximately 50% compared to the control film, resulting in an enhanced protection against oxidation for food preservation. The optical properties were highly influenced by the incorporation of the natural extract but this effect was mitigated when nanoparticles were also incorporated into pectin-based films. The addition of the extract and nanoparticles resulted in a clear improvement (by 98%) in UV barrier properties, which could be important for packaged food sensitive to UV radiation. Finally, the photocatalytic activity of the developed films containing nanoparticles was demonstrated, showing photodegradation efficiency values of nearly 90% after 60 min at 3 wt% of ZnO/Zn-NPs loading. In conclusion, the obtained pectin-based bionanocomposites with cocoa bean shell waste extract and zinc oxide/zinc nanoparticles showed great potential to be used as active packaging for food preservation.
Collapse
Affiliation(s)
| | | | - María Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (A.C.M.); (A.J.)
| |
Collapse
|
111
|
The Influence of Extrusion Processing on the Gelation Properties of Apple Pomace Dispersions: Involved Cell Wall Components and Their Gelation Kinetics. Foods 2020; 9:foods9111536. [PMID: 33113839 PMCID: PMC7692084 DOI: 10.3390/foods9111536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
By-products of fruits and vegetables like apple pomace can serve as techno-functional ingredients in foods. Due to their physicochemical properties, e.g., viscosity, water absorption, or oil-binding, food by-products can modify the texture and sensory perception of products like yogurts and baked goods. It is known that, by extrusion processing, the properties of by-products can be altered. For example, by thermo-mechanical treatment, the capacity of food by-products to increase viscosity is improved. However, the mechanism and involved components leading to the viscosity increase are unknown. Therefore, the complex viscosity of apple pomace dispersions and the involved fractions as pectin (a major part of the water-soluble fraction), water-soluble and water-insoluble fraction, were measured. In the investigated range, an increase in the pectin yield and water solubility was observed with increasing thermo-mechanical treatment by extrusion processing. However, pectin and water-soluble cell wall components had only a limited effect on the complex viscosity of apple pomace dispersions. The insoluble fraction (particles) were investigated regarding their swelling behavior and influence on the complex viscosity. An intensification of thermo-mechanical treatment resulted in increasing swelling behavior.
Collapse
|
112
|
Khademian E, Salehi E, Sanaeepur H, Galiano F, Figoli A. A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139829. [PMID: 32526420 DOI: 10.1016/j.scitotenv.2020.139829] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Copper is one of the most toxic heavy metals which must be eliminated from aqueous environments, according to the environmental standards. Carbohydrate biopolymers are promising candidates for synthesizing copper-adsorbent composites. It is due to unique properties such as having potential adsorptive functional sites, availability, biocompatibility and biodegradability, formability, blending capacity, and reusability. Different types of copper-adsorbent carbohydrate biopolymers like chitosan and cellulose with particular focus on the synthesizing and modification approaches have been tackled in this review. Composites, functionality and morphological aspects of the biopolymer adsorbents have also been surveyed. Further progress in the fabrication and application of biopolymer adsorbents would be achievable with special attention to some critical challenges such as the process economy, copolymer and/or (nano) additive selection, and the physicochemical stability of the biopolymer composites in aqueous media.
Collapse
Affiliation(s)
- Einallah Khademian
- Faculty of Petrochemical Engineering, Amirkabir University of Technology, Mahshahr 6351-7-13178, Iran
| | - Ehsan Salehi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran.
| | - Hamidreza Sanaeepur
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy
| |
Collapse
|
113
|
Lee NA, Weber RE, Kennedy JH, Van Zak JJ, Smith M, Duro-Royo J, Oxman N. Sequential Multimaterial Additive Manufacturing of Functionally Graded Biopolymer Composites. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:205-215. [PMID: 36654920 PMCID: PMC9586237 DOI: 10.1089/3dp.2020.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cellulose, chitin, and pectin are three of the most abundant natural materials on Earth. Despite this, large-scale additive manufacturing with these biopolymers is used only in limited applications and frequently relies on extensive refinement processes or plastic additives. We present novel developments in a digital fabrication and design approach for multimaterial three-dimensional printing of biopolymers. Specifically, our computational and digital fabrication workflow-sequential multimaterial additive manufacturing-enables the construction of biopolymer composites with continuously graded transitional zones using only a single extruder. We apply this method to fabricate structures on length scales ranging from millimeters to meters. Transitional regions between materials created using these methods demonstrated comparable mechanical properties with homogenous mixtures of the same composition. We present a computational workflow and physical system support a novel and flexible form of multimaterial additive manufacturing with a diverse array of potential applications.
Collapse
Affiliation(s)
- Nic A. Lee
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ramon E. Weber
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph H. Kennedy
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Josh J. Van Zak
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Miana Smith
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jorge Duro-Royo
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Neri Oxman
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Address correspondence to: Neri Oxman, Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
114
|
Cui Y, Wu Q, He J, Li M, Zhang Z, Qiu Y. Porous nano-minerals substituted apatite/chitin/pectin nanocomposites scaffolds for bone tissue engineering. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
115
|
Peng F, Zhang W, Qiu F. Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery. Curr Med Chem 2020; 27:4855-4881. [PMID: 31309877 DOI: 10.2174/0929867326666190712154021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/27/2019] [Accepted: 06/11/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. METHOD We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. RESULTS Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. CONCLUSION Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wensheng Zhang
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
116
|
Presentato A, Piacenza E, Scurria A, Albanese L, Zabini F, Meneguzzo F, Nuzzo D, Pagliaro M, Martino DC, Alduina R, Ciriminna R. A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains. Antibiotics (Basel) 2020; 9:antibiotics9090586. [PMID: 32911640 PMCID: PMC7558503 DOI: 10.3390/antibiotics9090586] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/31/2023] Open
Abstract
Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL−1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL−1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
| | - Elena Piacenza
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Antonino Scurria
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| | - Lorenzo Albanese
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Federica Zabini
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Francesco Meneguzzo
- Istituto per la Bioeconomia, CNR, via Madonna del Piano 10, 50019 Sesto Fiorentino, FI, Italy; (L.A.); (F.Z.); (F.M.)
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, CNR, via U. La Malfa 153, 90146 Palermo, Italy;
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
- Correspondence: (M.P.); (R.A.)
| | - Delia Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Firenze, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (A.P.); (E.P.); (D.C.M.)
- Correspondence: (M.P.); (R.A.)
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146 Palermo, Italy; (A.S.); (R.C.)
| |
Collapse
|
117
|
Morais ES, Lopes AMDC, Freire MG, Freire CSR, Coutinho JAP, Silvestre AJD. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020; 25:E3652. [PMID: 32796649 PMCID: PMC7465760 DOI: 10.3390/molecules25163652] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
A shift to a bioeconomy development model has been evolving, conducting the scientific community to investigate new ways of producing chemicals, materials and fuels from renewable resources, i.e., biomass. Specifically, technologies that provide high performance and maximal use of biomass feedstocks into commodities with reduced environmental impact have been highly pursued. A key example comprises the extraction and/or dissolution of polysaccharides, one of the most abundant fractions of biomass, which still need to be improved regarding these processes' efficiency and selectivity parameters. In this context, the use of alternative solvents and the application of less energy-intensive processes in the extraction of polysaccharides might play an important role to reach higher efficiency and sustainability in biomass valorization. This review debates the latest achievements in sustainable processes for the extraction of polysaccharides from a myriad of biomass resources, including lignocellulosic materials and food residues. Particularly, the ability of ionic liquids (ILs) and deep eutectic solvents (DESs) to dissolve and extract the most abundant polysaccharides from natural sources, namely cellulose, chitin, starch, hemicelluloses and pectins, is scrutinized and the efficiencies between solvents are compared. The interaction mechanisms between solvent and polysaccharide are described, paving the way for the design of selective extraction processes. A detailed discussion of the work developed for each polysaccharide as well as the innovation degree and the development stage of dissolution and extraction technologies is presented. Their advantages and disadvantages are also identified, and possible synergies by integrating microwave- and ultrasound-assisted extraction (MAE and UAE) or a combination of both (UMAE) are briefly described. Overall, this review provides key information towards the design of more efficient, selective and sustainable extraction and dissolution processes of polysaccharides from biomass.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando J. D. Silvestre
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (E.S.M.); (A.M.d.C.L.); (M.G.F.); (C.S.R.F.); (J.A.P.C.)
| |
Collapse
|
118
|
Oh GW, Nam SY, Heo SJ, Kang DH, Jung WK. Characterization of ionic cross-linked composite foams with different blend ratios of alginate/pectin on the synergistic effects for wound dressing application. Int J Biol Macromol 2020; 156:1565-1573. [DOI: 10.1016/j.ijbiomac.2019.11.206] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
|
119
|
Kumar AM, Adesina AY, Hussein M, Umoren SA, Ramakrishna S, Saravanan S. Preparation and characterization of Pectin/Polypyrrole based multifunctional coatings on TiNbZr alloy for orthopaedic applications. Carbohydr Polym 2020; 242:116285. [DOI: 10.1016/j.carbpol.2020.116285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022]
|
120
|
Tocmo R, Pena‐Fronteras J, Calumba KF, Mendoza M, Johnson JJ. Valorization of pomelo (
Citrus grandis
Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Compr Rev Food Sci Food Saf 2020; 19:1969-2012. [DOI: 10.1111/1541-4337.12561] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Restituto Tocmo
- Deparment of Pharmacy PracticeUniversity of Illinois‐Chicago Chicago Illinois
| | - Jennifer Pena‐Fronteras
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Kriza Faye Calumba
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | - Melanie Mendoza
- Deparment of Food Science and ChemistryUniversity of the Philippines‐Mindanao Tugbok District Davao City Philippines
| | | |
Collapse
|
121
|
Khotimchenko M. Pectin polymers for colon-targeted antitumor drug delivery. Int J Biol Macromol 2020; 158:S0141-8130(20)33147-0. [PMID: 32387365 DOI: 10.1016/j.ijbiomac.2020.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
The use of chemotherapeutic drugs in the treatment of malignant tumors is always associated with the severe side effects negatively affecting all organs and systems in human body. One of the approaches for reduction of the toxic influence and enhancement of the antitumor drug administration efficiency is supposed to be the use of the biopolymer delivery systems. Pectins are considered the most promising components for colon targeted drug dosage forms as they are stable in the changing gastrointestinal media and easily degraded by pectinases produced by colonic microflora. A various range of the pectin-containing delivery systems were developed contributing higher concentration of the active drug molecules in particular site inside intestine and their lower blood level resulting in lowered risk of the severe side effects. This review discusses the various forms of the pectin-based materials such as hydrogels, tablets and pellets, films, microspheres, microsponges, nanoparticles, etc. as drug delivery device and attempted to report the vast literature available on pectin biopolymers in drug delivery applications.
Collapse
Affiliation(s)
- M Khotimchenko
- Department of Pharmacology and Pharmacy, School of Biomedicine, Far Eastern Federal University, Ayax-10, Russki island, Vladivostok 690920, Russia.
| |
Collapse
|
122
|
Qadir F, Ejaz U, Sohail M. Co-culturing corncob-immobilized yeasts on orange peels for the production of pectinase. Biotechnol Lett 2020; 42:1743-1753. [PMID: 32342436 DOI: 10.1007/s10529-020-02897-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Pectinase is an industrially important enzyme which is employed in an array of commercial processes; cost of production, however, impedes its application. The main objective of this study was to design a two-layered strategy for the reduction of production cost, firstly by using a yeast co-culture in an immobilized form on an agricultural waste matrix, corncob (CB), secondly by utilizing orange peels (OP) as substrate. RESULTS Two yeast strains, Saccaromyces cerevisiae MK-157 and Geotrichum candidum AA15 were cultivated as mono-, as well as, co-culture after immobilization on CB and pectinase production was monitored. Initial experiments revealed that co-culture is beneficial to get sustainable product in subsequent 2nd and 3rd production cycles. The factors affecting pectinase production in consecutive three production cycles were studied by employing Plackett-Burman design and the significant factors were optimized through Box-Behnken design. Under optimized conditions, 17.89 IU mL-1 of pectinase was obtained. Scanning electron micrographs presented damaged immobilized yeast cells on CB after the 3rd production cycle. CONCLUSION The pectinase production was improved substantially by using immobilized co-culture and hence the strategy was found effective at lab scale. Since, pectinase is applied in orange juice clarification, therefore, the study can be extended to move forward towards circular economy.
Collapse
Affiliation(s)
- Faizan Qadir
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
123
|
Gupta N, Goel H, Santhiya D, Srivastava CM, Mishra S, Rai P. Aqueous‐Phased Electrospun Bioactive Glass Mineralized Gelatin‐Pectin Hybrid Composite Fiber Matrix For 7‐Dehydrocholesterol Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nidhi Gupta
- Department of Applied Chemistry and Polymer TechnologyDelhi Technological University Bawana Road Delhi 110 042 India
| | - Himansh Goel
- Department of Applied Chemistry and Polymer TechnologyDelhi Technological University Bawana Road Delhi 110 042 India
| | - Deenan Santhiya
- Department of Applied Chemistry and Polymer TechnologyDelhi Technological University Bawana Road Delhi 110 042 India
| | - Chandra Mohan Srivastava
- Centre for Polymer TechnologyAmity School of Applied SciencesAmity University Haryana Gurgaon-122 413 India
| | - Sarita Mishra
- CSIR - Institute of Genomics and Integrative Biology Mathura Road New Delhi India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan 2 Rafi Marg New Delhi 110001 India
| | - Pragya Rai
- Department of Applied Chemistry and Polymer TechnologyDelhi Technological University Bawana Road Delhi 110 042 India
| |
Collapse
|
124
|
Mao G, Li S, Orfila C, Shen X, Zhou S, Linhardt RJ, Ye X, Chen S. Depolymerized RG-I-enriched pectin from citrus segment membranes modulates gut microbiota, increases SCFA production, and promotes the growth of Bifidobacterium spp., Lactobacillus spp. and Faecalibaculum spp. Food Funct 2020; 10:7828-7843. [PMID: 31778135 DOI: 10.1039/c9fo01534e] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rhamnogalacturonan-I (RG-I)-enriched pectin (WRP) was recovered from citrus processing water by sequential acid and alkaline treatments in a previous study. RG-I-enriched pectin was proposed as a potential supplement for functional food and pharmaceutical development. However, previous studies illustrated that favorable modulations of gut microbiota by RG-I-enriched pectin were based on in vitro changes in the overall microbial structure and the question of whether there is a structure-dependent modulation of gut microbiota remains largely enigmatic. In the present study, modulations of gut microbiota by commercial pectin (CP), WRP and its depolymerized fraction (DWRP) with different RG-I contents and Mw were compared in vivo. It was revealed by 16s rRNA high-throughput sequencing that WRP and DWRP mainly composed of RG-I modulated the gut microbiota in a positive way. DWRP significantly increased the abundance of prebiotic such as Bifidobacterium spp., Lactobacillus spp., while WRP increased SCFAs producers including species in Ruminococcaceae family. By maintaining a more balanced gut microbiota composition and enriching some SCFA producers, dietary WRP and DWRP also elevated the SCFA content in the colon. Collectively, our findings offer new insights into the structure-activity correlation of citrus pectin and provide impetus towards the development of RG-I-enriched pectin with small molecular weight for specific use in health-promoting prebiotic ingredients and therapeutic products.
Collapse
Affiliation(s)
- Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Cargnin MA, de Souza AG, de Lima GF, Gasparin BC, Rosa DDS, Paulino AT. Pinus residue/pectin-based composite hydrogels for the immobilization of β-D-galactosidase. Int J Biol Macromol 2020; 149:773-782. [DOI: 10.1016/j.ijbiomac.2020.01.280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022]
|
126
|
Chauhan SS, Shetty AB, Hatami E, Chowdhury P, Yallapu MM. Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics 2020; 12:E285. [PMID: 32235765 PMCID: PMC7151099 DOI: 10.3390/pharmaceutics12030285] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PanCa) is a lethal disease. Conventional chemotherapies for PanCa offer severe systemic toxicities. Thus, the development of a successful nanomedicine-based therapeutic regimen with augmented therapeutic efficacy is highly sought. Naturally occurring pectin and modified pectin-based drug delivery systems exhibit remarkable self-targeting ability via galactose residues to various cancer cells. Herein, we developed and used an innovative approach of highly stable nanocomplexes based on modified pectin and tannic acid (MPT-NCs). The nanocomplex formation was enabled by strong intermolecular interactions between pectin and tannic acid under very mild conditions. These nanocomplexes were characterized by particle size and morphology (DLS, TEM, and SEM), FT-IR spectroscopy, and zeta potential measurements. Additionally, MPT-NCs were capable of encapsulating anticancer drugs (5-fluorouracil, gemcitabine, and irinotecan) through tannic acid binding. The in vitro bioactivity of these drug MPT-NCs were evaluated in pancreatic cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1). A dose-dependent internalization of nanocomplexes was evident from microscopy and flow cytometry analysis. Both proliferation and colony formation assays indicated the anticancer potential of pectin drug nanocomplexes against PDAC cells compared to that of free drug treatments. Together, the pectin-based nanocomplexes could be a reliable and efficient drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Sumeet S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Advait B Shetty
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
127
|
Chandrarathna H, Liyanage T, Edirisinghe S, Dananjaya S, Thulshan E, Nikapitiya C, Oh C, Kang DH, De Zoysa M. Marine Microalgae, Spirulina maxima-Derived Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice. Mar Drugs 2020; 18:E175. [PMID: 32245246 PMCID: PMC7143556 DOI: 10.3390/md18030175] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the modulation of gut microbiota, immune responses, and gut morphometry in C57BL/6 mice, upon oral administration of S. maxima-derived modified pectin (SmP, 7.5 mg/mL) and pectin nanoparticles (SmPNPs; 7.5 mg/mL). Metagenomics analysis was conducted using fecal samples, and mice duodenum and jejunum were used for analyzing the immune response and gut morphometry, respectively. The results of metagenomics analysis revealed that the abundance of Bacteroidetes in the gut increased in response to both modified SmP and SmPNPs (75%) as compared with that in the control group (66%), while that of Firmicutes decreased in (20%) as compared with that in the control group (30%). The mRNA levels of mucin, antimicrobial peptide, and antiviral and gut permeability-related genes in the duodenum were significantly (p < 0.05) upregulated (> 2-fold) upon modified SmP and SmPNPs feeding. Protein level of intestinal alkaline phosphatase was increased (1.9-fold) in the duodenum of modified SmPNPs feeding, evidenced by significantly increased goblet cell density (0.5 ± 0.03 cells/1000 µm2) and villi height (352 ± 10 µm). Our results suggest that both modified SmP and SmPNPs have the potential to modulate gut microbial community, enhance the expression of immune related genes, and improve gut morphology.
Collapse
Affiliation(s)
- H.P.S.U. Chandrarathna
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - T.D. Liyanage
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - S.L. Edirisinghe
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - S.H.S. Dananjaya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - E.H.T. Thulshan
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| | - Chulhong Oh
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Korea;
- Department of Ocean Science, University of Science and Technology (UST), Jeju 63349, Korea
| | - Do-Hyung Kang
- Jeju Marine Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Korea;
- Department of Ocean Science, University of Science and Technology (UST), Jeju 63349, Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon, 34134, Korea; (H.P.S.U.C.); (T.D.L.); (S.L.E.); (S.H.S.D.); (E.H.T.T.); (C.N.)
| |
Collapse
|
128
|
Picot-Allain MCN, Ramasawmy B, Emmambux MN. Extraction, Characterisation, and Application of Pectin from Tropical and Sub-Tropical Fruits: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Marie Carene Nancy Picot-Allain
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | - Brinda Ramasawmy
- Department of Agricultural Production and Systems, Faculty of Agriculture, University of Mauritius, Reduit, Mauritius
| | | |
Collapse
|
129
|
Dias IP, Barbieri SF, Fetzer DEL, Corazza ML, Silveira JLM. Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 2020; 146:431-443. [DOI: 10.1016/j.ijbiomac.2019.12.261] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023]
|
130
|
Chen J, Niu X, Dai T, Hua H, Feng S, Liu C, McClements DJ, Liang R. Amino acid-amidated pectin: Preparation and characterization. Food Chem 2020; 309:125768. [DOI: 10.1016/j.foodchem.2019.125768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/19/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023]
|
131
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
132
|
Bealer EJ, Onissema-Karimu S, Rivera-Galletti A, Francis M, Wilkowski J, Salas-de la Cruz D, Hu X. Protein-Polysaccharide Composite Materials: Fabrication and Applications. Polymers (Basel) 2020; 12:E464. [PMID: 32079322 PMCID: PMC7077675 DOI: 10.3390/polym12020464] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023] Open
Abstract
Protein-polysaccharide composites have been known to show a wide range of applications in biomedical and green chemical fields. These composites have been fabricated into a variety of forms, such as films, fibers, particles, and gels, dependent upon their specific applications. Post treatments of these composites, such as enhancing chemical and physical changes, have been shown to favorably alter their structure and properties, allowing for specificity of medical treatments. Protein-polysaccharide composite materials introduce many opportunities to improve biological functions and contemporary technological functions. Current applications involving the replication of artificial tissues in tissue regeneration, wound therapy, effective drug delivery systems, and food colloids have benefited from protein-polysaccharide composite materials. Although there is limited research on the development of protein-polysaccharide composites, studies have proven their effectiveness and advantages amongst multiple fields. This review aims to provide insight on the elements of protein-polysaccharide complexes, how they are formed, and how they can be applied in modern material science and engineering.
Collapse
Affiliation(s)
- Elizabeth J. Bealer
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Shola Onissema-Karimu
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Ashley Rivera-Galletti
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Maura Francis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - Jason Wilkowski
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
| | - David Salas-de la Cruz
- Department of Chemistry, Rutgers University, Camden, NJ 08102, USA;
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (E.J.B.); (A.R.-G.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; (S.O.-K.); (M.F.); (J.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
133
|
Hu W, Ye X, Chantapakul T, Chen S, Zheng J. Manosonication extraction of RG-I pectic polysaccharides from citrus waste: Optimization and kinetics analysis. Carbohydr Polym 2020; 235:115982. [PMID: 32122512 DOI: 10.1016/j.carbpol.2020.115982] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
Abstract
To better understanding the potential of manosonication to accelerate the extraction of RG-I pectic polysaccharides from citrus wastes, alkaline-mediated manosonication extraction (MSE) was optimized using a Box-Behnken design, and the extraction kinetics model was analyzed. The single-factor method revealed that NaOH significantly impacted on the yield and RG-I characterizations (Rha mol% and (Gal+Ara)/Rha ratio), whereas other factors were focused on influences of yields. In the developed quadratic polynomial model, the maximum extraction yield of 25.51 ± 0.81 % was obtained with sonication at 42 ℃, 40 % amplitude, and 250 kPa for 20 min. The kinetics study demonstrated that MSE facilitated the extractability, dissolution and degradation of pectin, resulting in the highest extractability of 27.83 % compared with ultrasonic extraction (22.86 %) and alkaline extraction at high (24.71 %) and low temperature (20.21 %). Rheology and thermal analyses verified the change in polymerization by MSE and the potential functional applications of the RG-I pectic polysaccharides.
Collapse
Affiliation(s)
- Weiwei Hu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China.
| | - Thunthacha Chantapakul
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
134
|
Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications. MATERIALS 2020; 13:ma13030673. [PMID: 32028627 PMCID: PMC7042806 DOI: 10.3390/ma13030673] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022]
Abstract
Regardless of the considerable progress in properties and versatility of synthetic polymers, their low biodegradability and lack of environmentally-friendly character remains a critical issue. Pectin is a natural-based polysaccharide contained in the cell walls of many plants allowing their growth and cell extension. This biopolymer can be extracted from plants and isolated as a bioplastic material with different applications, including food packaging. This review aims to present the latest research results regarding pectin, including the structure, different types, natural sources and potential use in several sectors, particularly in food packaging materials. Many researchers are currently working on a multitude of food and beverage industry applications related to pectin as well as combinations with other biopolymers to improve some key properties, such as antioxidant/antimicrobial performance and flexibility to obtain films. All these advances are covered in this review.
Collapse
|
135
|
A Novel Pectic Polysaccharide of Jujube Pomace: Structural Analysis and Intracellular Antioxidant Activities. Antioxidants (Basel) 2020; 9:antiox9020127. [PMID: 32024245 PMCID: PMC7070808 DOI: 10.3390/antiox9020127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/09/2023] Open
Abstract
After extraction from jujube pomace and purification by two columns (DEAE-Sepharose Fast Flow and Sepharcyl S-300), the structure of SAZMP4 was investigated by HPGPC, GC, FI-IR, GC-MS, NMR, SEM, and AFM. Analysis determined that SAZMP4 (Mw = 28.94 kDa) was a pectic polysaccharide mainly containing 1,4-linked GalA (93.48%) with side chains of 1,2,4-linked Rha and 1,3,5-linked Ara and terminals of 1-linked Rha and 1-linked Ara, which might be the homogalacturonan (HG) type with side chains of the RG-I type, corresponding to the results of NMR. In AFM and SEM images, self-assembly and aggregation of SAZMP4 were respectively observed indicating its structural features. The antioxidant activity of SAZMP4 against H2O2-induced oxidative stress in Caco-2 cells was determined by activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as malondialdehyde (MDA) and reactive oxygen species (ROS) levels, indicating SAZMP4 can be a natural antioxidant. Also, a better water retention capacity and thermal stability of SAZMP4 was observed based on DSC analysis, which could be applied in food industry as an additive.
Collapse
|
136
|
Xiong K, Zhou L, Wang J, Ma A, Fang D, Xiong L, Sun Q. Construction of food-grade pH-sensitive nanoparticles for delivering functional food ingredients. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
137
|
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019; 12:E22. [PMID: 31878298 PMCID: PMC7023054 DOI: 10.3390/pharmaceutics12010022] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides, such as cellulose, hyaluronic acid, alginic acid, and chitosan, as well as polysaccharide derivatives, have been successfully used to augment drug delivery in the treatment of ocular pathologies. The properties of polysaccharides can be extensively modified to optimize ocular drug formulations and to obtain biocompatible and biodegradable drugs with improved bioavailability and tailored pharmacological effects. This review discusses the available polysaccharide choices for overcoming the difficulties associated with ocular drug delivery, and it explores the reasons for the dependence between the physicochemical properties of polysaccharide-based drug carriers and their efficiency in different formulations and applications. Polysaccharides will continue to be of great interest to researchers endeavoring to develop ophthalmic drugs with improved effectiveness and safety.
Collapse
Affiliation(s)
- Natallia Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Daria Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Sergei Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Arto Urtti
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| |
Collapse
|
138
|
Lapomarda A, De Acutis A, Chiesa I, Fortunato GM, Montemurro F, De Maria C, Mattioli Belmonte M, Gottardi R, Vozzi G. Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application. Biomacromolecules 2019; 21:319-327. [DOI: 10.1021/acs.biomac.9b01332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anna Lapomarda
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Aurora De Acutis
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Irene Chiesa
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
- Department of Pediatrics, Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Gabriele M. Fortunato
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | | | - Carmelo De Maria
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | | | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Fondazione Ri.MED, Palermo, Italy
| | - Giovanni Vozzi
- Research Center ‘E. Piaggio’, University of Pisa, Pisa, Italy
- Department of Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| |
Collapse
|
139
|
Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
140
|
Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in Sustainable Aroma Barrier Multilayer Packaging. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9235136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pectin was first dissolved in distilled water and blended with low contents of polyethylene oxide 2000 (PEO2000) as the carrier polymer to produce electrospun fibers. The electrospinning of the water solution of pectin at 9.5 wt% containing 0.5 wt% PEO2000 was selected as it successfully resulted in continuous and non-defected ultrathin fibers with the highest pectin content. However, annealing of the resultant pectin-based fibers, tested at different conditions, developed films with low mechanical integrity, high porosity, and also dark color due to their poor thermal stability. Then, to improve the film-forming process of the electrospun mats, two plasticizers, namely glycerol and polyethylene glycol 900 (PEG900), were added to the selected pectin solution in the 2–3 wt% range. The optimal annealing conditions were found at 150 °C with a pressure of 12 kN load for 1 min when applied to the electrospun pectin mats containing 5 wt% PEO2000 and 30 wt% glycerol and washed previously with dichloromethane. This process led to completely homogenous films with low porosity and high transparency due to a phenomenon of fibers coalescence. Finally, the selected electrospun pectin-based film was applied as an interlayer between two external layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by the electrospinning coating technology and the whole structure was annealed to produce a fully bio-based and biodegradable multilayer film with enhanced barrier performance to water vapor and limonene.
Collapse
|
141
|
In-situ mineralization of calcium carbonate in pectin based edible hydrogel for the delivery of protein at colon. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
142
|
Pectin/PEG food grade hydrogel blend for the targeted oral co-delivery of nutrients. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
143
|
A review on latest innovations in natural gums based hydrogels: Preparations & applications. Int J Biol Macromol 2019; 136:870-890. [DOI: 10.1016/j.ijbiomac.2019.06.113] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 02/03/2023]
|
144
|
Electron beam irradiation synthesis of porous and non-porous pectin based hydrogels for a tetracycline drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:391-404. [DOI: 10.1016/j.msec.2019.04.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/20/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
|
145
|
Amaral SDC, Barbieri SF, Ruthes AC, Bark JM, Brochado Winnischofer SM, Silveira JLM. Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydr Polym 2019; 224:115140. [PMID: 31472853 DOI: 10.1016/j.carbpol.2019.115140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/08/2023]
Abstract
A new source of pectin with a cytotoxic effect on glioblastoma cells is presented. A homogeneous GWP-FP-S fraction (Mw of 29,170 g mol-1) was obtained by fractionating the crude pectin extract (GW) from Campomanesia xanthocarpa pulp. According to the monosaccharide composition, the GWP-FP-S was composed of galacturonic acid (58.8%), arabinose (28.5%), galactose (11.3%) and rhamnose (1.1%), comprising 57.7% of homogalacturonans (HG) and 42.0% of type I rhamnogalacturonans (RG-I). These structures were characterized by chromatographic and spectroscopic methods; GW and GWP-FP-S fractions were evaluated by MTT and crystal violet assays for their cytotoxic effects. Both fractions induced cytotoxicity (15.55-37.65%) with concomitant increase in the cellular ROS levels in human glioblastoma cells at 25-400 μg mL-1, after 48 h of treatment, whereas no cytotoxicity was observed for normal NIH 3T3 cells. This is the first report of in vitro bioactivity and the first investigation of the antitumor potential of gabiroba pectins.
Collapse
Affiliation(s)
- Sarah da Costa Amaral
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Shayla Fernanda Barbieri
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Andrea Caroline Ruthes
- Division of Glycoscience, Royal Institute of Technology - KTH, Sweden; Department of Entomology and Nematology, University of Florida, Gulf Coast Research and Education Center (GCREC-UF), Wimauma, USA
| | - Juliana Müller Bark
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Sheila Maria Brochado Winnischofer
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil; Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil
| | - Joana Léa Meira Silveira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil.
| |
Collapse
|
146
|
Marenda FRB, Colodel C, Canteri MHG, de Olivera Müller CM, Amante ER, de Oliveira Petkowicz CL, de Mello Castanho Amboni RD. Investigation of cell wall polysaccharides from flour made with waste peel from unripe banana (Musa sapientum) biomass. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4363-4372. [PMID: 30843211 DOI: 10.1002/jsfa.9670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The peel from unripe banana biomass is an agroindustrial waste. The present study aimed: (i) to extract pectin from enzymatically-treated waste peel from unripe banana biomass (WPUBB) using a Box-Behnken design to optimize the extraction conditions (temperature, pH and extraction time) and obtain a maximum yield and (ii) to fractionate the polysaccharides from WPUBB employing sequential extractions using different solvents. RESULTS The optimized product was obtained at 86 °C, pH 2.00, for 6 h and it presented a yield of 11.63%. The optimized product had low galacturonic acid content and a high amount of glucose (82.3%), suggesting the presence of starch (as confirmed by the bi-dimensional heteronuclear single quantum coherence NMR spectrum). All of the fractionated polysaccharides had a high glucose content. Low amounts of pectin were found in the water, chelating and diluted alkali-soluble fractions. The fractions extracted using NaOH indicated the presence of glucuronoarabinoxylans. CONCLUSION Glucose was the main monosaccharide found in all the fractions extracted from the WPUBB. Although the present study suggests that WPUBB is still not suitable for pectin extraction using current technologies, other compounds, such as resistant starch and glucuronoarabinoxylans, were found, suggesting that WPUBB could be used in the development of food formulations. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávia Roberta B Marenda
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Cristiane Colodel
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
| | - Maria Helene G Canteri
- Department of Chemistry and Biology, Federal University of Technology-Parana, Francisco Beltrão, Brazil
| | | | - Edna R Amante
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | | |
Collapse
|
147
|
Kalathaki I, Alba K, Muhamedsalih H, Kontogiorgos V. Fabrication and characterisation of metal-doped pectin films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
148
|
Sarioglu E, Arabacioglu Kocaaga B, Turan D, Batirel S, Guner FS. Theophylline‐loaded pectin‐based hydrogels. II. Effect of concentration of initial pectin solution, crosslinker type and cation concentration of external solution on drug release profile. J Appl Polym Sci 2019. [DOI: 10.1002/app.48155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Ebru Sarioglu
- Department of Chemical EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| | | | - Deniz Turan
- Department of Food EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| | - Saime Batirel
- Department of Medical Biochemistry, School of MedicineMarmara University Maltepe, 34854 Istanbul Turkey
| | - F. Seniha Guner
- Department of Chemical EngineeringIstanbul Technical University Maslak, 34469 Istanbul Turkey
| |
Collapse
|
149
|
Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM. Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydr Polym 2019; 214:250-258. [DOI: 10.1016/j.carbpol.2019.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
|
150
|
Kato N, Nagayoshi K, Takayama Y, Nasuno E. Structuring of multiple parallel pectin gel filaments by applied shear. Int J Biol Macromol 2019; 128:304-313. [PMID: 30684582 DOI: 10.1016/j.ijbiomac.2019.01.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/06/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
The bundled structure of micron-sized pectin gel filaments was formed by quick shear-induced gelation of the filamentous domains of pectin-polyethylene glycol (PEG) assemblies. Highly concentrated pectin with PEG in a separated pectin-rich phase under aqueous two-phase separation in the pectin/PEG/NaCl system enabled the formation of the pectin-PEG assembly, which was elongated in the flow direction, resulting in the generation of filamentous domains using a microfluidic device. The pectin gel filaments were formed by crosslinking with Ca2+ in the presence of shear-responsive PEG assemblies formed in the PEG-rich phase, because the filamentous PEG assemblies prevented fusion of the pectin filaments to form the seamless cylindrical gel. The shear-dependent elongation applied to the pectin-PEG assembly under the aqueous two-phase separation condition enabled the formation of the biomimetic bundled filamentous structure using bio-safe PEG as a sacrificial polymer, without the requirement of a multi-hole nozzle. Potential applications for gel filaments possessing a bundled structure are matrices in the biomedical field, such as a biodegradable scaffold for cell engineering.
Collapse
Affiliation(s)
- Norihiro Kato
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan.
| | - Keisyu Nagayoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Yuriko Takayama
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| | - Eri Nasuno
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585, Japan
| |
Collapse
|