101
|
Ravikiran T, Anand S, Ansari MA, Alomary MN, AlYahya S, Ramachandregowda S, Alghamdi S, Sindhghatta Kariyappa A, Dundaiah B, Madhugiri Gopinath M, Sultana S, Punekar SM, Lakshmeesha TR. Fabrication and in vitro Evaluation of 4-HIA Encapsulated PLGA Nanoparticles on PC12 Cells. Int J Nanomedicine 2021; 16:5621-5632. [PMID: 34429603 PMCID: PMC8380134 DOI: 10.2147/ijn.s317986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose 4-Hydroxyisophthalic acid (4-HIA) is a bioactive compound present in the roots of Decalepis hamiltonii, which has attracted considerable attention in attenuating oxidative stress-related neurodegenerative diseases. However, its efficacy is limited because of its low solubility and bioavailability. Therefore, the present study aimed to encapsulate 4-HIA using biocompatible copolymer polylactide-co-glycolide (PLGA) and evaluate its antioxidant and neuroprotective potential. Methods The nanoparticles (NPs) were fabricated by solid/oil/water (s/o/w) emulsion technique and characterized using XRD, SEM, HR-TEM, and FTIR spectroscopy. Antioxidant assays such as 1,1 diphenyl-2-picrylhydrazyl (DPPH), superoxide, and hydroxyl radical scavenging ability were performed to assess the antioxidant potential of the fabricated NPs. Results The bioactive component, 4-HIA, was efficiently encapsulated by the PLGA polymer and was found to be spherical and smooth with a size <10nm. 4-HIA showed better scavenging capability in DPPH and superoxide assays as compared to 4-HIA encapsulated PLGA and butylated hydroxytoluene (BHT). In contrast, 4-HIA encapsulated PLGA NPs exhibited a significant hydroxyl radical scavenging activity than 4-HIA and BHT alone. Further, the encapsulated NPs efficiently curtailed hydrogen peroxide (H2O2)-induced cytotoxicity in PC12 cells. Conclusion Our findings indicate that 4-HIA encapsulated PLGA NPs might be a therapeutic intervention towards the effective management of oxidative stress as it has exhibited efficient neuroprotective potential against H2O2-induced oxidative stress in PC12 cells.
Collapse
Affiliation(s)
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammad N Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sami AlYahya
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | | | | | - Sumreen Sultana
- Department of Biotechnology, Bangalore University, Bangalore, India
| | | | | |
Collapse
|
102
|
PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int J Mol Sci 2021; 22:ijms22168884. [PMID: 34445587 PMCID: PMC8396256 DOI: 10.3390/ijms22168884] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.
Collapse
|
103
|
Gas generating microspheres for immediate release of Hsp90 inhibitor aiming at postembolization hypoxia in transarterial chemoembolization therapy of hepatocellular carcinoma. Int J Pharm 2021; 607:120988. [PMID: 34389420 DOI: 10.1016/j.ijpharm.2021.120988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
CO2 gas generating poly(lactic-co-glycolic acid) (PLGA) microsphere (MS) was designed for rapid release of tanespimycin (17-AAG) in transarterial chemoembolization (TACE) treatment of hepatocellular carcinoma (HCC). As poorly water-soluble drug is generally released from PLGA MS in a sustained manner, the drug release profile should be controlled according to its clinical indications. In current study, responding to immediate increase in hypoxia inducible factor-1α (HIF-1α) level under hypoxia state followed by embolization of tumor feeding arteries, sodium bicarbonate (NaHCO3) was added to PLGA/17-AAG MS for fast drug release by CO2 gas generation in slightly acidic tumor microenvironment. With the aid of NaHCO3, initial burst release of 17-AAG was available without losing the micron-size and spherical shape of designed MS for embolization of artery. Acid-responsive CO2 gas generation and subsequent immediate release of 17-AAG from MS were successfully verified. PLGA/17-AAG/NaHCO3 MS-treated group exhibited higher antiproliferation and apoptosis induction efficacies in McA-RH7777 and SNU-761 cells. McA-RH7777 tumor-implanted rats treated by TACE using PLGA/17-AAG/NaHCO3 MS presented a complete therapeutic response. All these findings suggest that developed tumor microenvironment-responsive gas-generating MS can be efficiently applied to TACE therapy of HCC.
Collapse
|
104
|
Ji Y, Hao D, Luebbert C, Sadowski G. Insights into influence mechanism of polymeric excipients on dissolution of drug formulations: A molecular interaction‐based theoretical model analysis and prediction. AIChE J 2021. [DOI: 10.1002/aic.17372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yuanhui Ji
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Dule Hao
- Jiangsu Province Hi‐Tech Key Laboratory for Bio‐medical Research, School of Chemistry and Chemical Engineering, Southeast University Nanjing China
| | - Christian Luebbert
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| | - Gabriele Sadowski
- TU Dortmund, Department of Biochemical and Chemical Engineering Laboratory of Thermodynamics Dortmund Germany
| |
Collapse
|
105
|
Wan B, Andhariya JV, Bao Q, Wang Y, Zou Y, Burgess DJ. Effect of polymer source on in vitro drug release from PLGA microspheres. Int J Pharm 2021; 607:120907. [PMID: 34332059 DOI: 10.1016/j.ijpharm.2021.120907] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Determination of the qualitative (Q1) sameness of poly (lactic-co-glycolic acid) (PLGA) polymers can be very challenging due to PLGA being a random copolymer with inherent heterogeneity. Performance variation of PLGA microsphere drug product as a result of altered PLGA characteristics has been recognized as a critical limiting factor in product development. It has been reported that PLGA characteristics and degradation profiles are sensitive to minor differences in the manufacturing and control processes. Accordingly, the objectives of the present research were: 1) to determine minor differences in the physicochemical properties (such as inherent viscosity/molecular weight (Mw), blockiness, and glass transition temperature (Tg)) and the hydrolytic degradation profiles of PLGA polymers from different sources; and 2) to investigate the impact of any differences determined in (1) on the physicochemical properties (Q3) and in vitro release of leuprolide acetate microspheres. PLGA polymers were purchased from three different sources with similar inherent viscosity/Mw, monomer (Lactide/Glycolide) ratio, and end group as per the manufacturers' certificate of analysis (COA). These PLGA polymers were evaluated using the same in-house methods and showed differences in their properties such as Mw and blockiness. Three compositionally equivalent leuprolide acetate microspheres were prepared via a solvent evaporation method using the three PLGA polymers from different sources. The prepared microspheres showed differences in their physicochemical properties (such as particle size, porosity and average pore diameter) as well as in their in vitro drug release characteristics (burst effect and release rate). These results indicate that polymer source related variations have the potential to significantly impact the Q3 sameness and therapeutic performance of long-acting PLGA microspheres. The fundamental understanding gained on polymer properties will make a critical contribution to the development of quality control strategies as well as to future regulatory guidance on the evaluation of such complex drug products.
Collapse
Affiliation(s)
- Bo Wan
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Janki V Andhariya
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Quanying Bao
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States
| | - Yan Wang
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring MD 20993, United States
| | - Yuan Zou
- FDA/CDER, Office of Generic Drugs, Office of Research and Standards, Silver Spring MD 20993, United States
| | - Diane J Burgess
- University of Connecticut, Department of Pharmaceutical Sciences, Storrs CT 06269, United States.
| |
Collapse
|
106
|
Ahmed AMQ, Chen LQ, Du HH, Sun W, Cao QR. Formulation optimization and in vitro characterization of granisetron-loaded polylactic-co-glycolic acid microspheres prepared by a dropping-in-liquid emulsification technique. Curr Drug Deliv 2021; 19:721-729. [PMID: 34325634 DOI: 10.2174/1567201818666210729111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE Traditional dosage forms of granisetron (GRN) decrease patient compliance associated with repeated drug administration because of the short half-life of the drug. METHODS In this study, novel GRN-loaded polylactic-co-glycolic acid (PLGA) sustained release microspheres were prepared for the first time via a dropping-in-liquid emulsification technique. The effect of various factors, such as pH of the outer phase, Tween80, polyvinyl alcohol (PVA) concentrations, and hardening process, on the encapsulation efficiency (EE), drug loading (DL), and particle size of microspheres were extensively studied. The physicochemical properties, including drug release, surface morphology, crystallinity, thermal changes, and molecular interactions, were also studied. RESULTS GRN has a pH-dependent solubility and showed a remarkably high solubility under an acidic condition. The EE of the alkaline medium (pH 8) was higher than that of the acidic medium (pH 4.0). EE and DL decreased in the presence of Tween80 in the outer phase, whereas EE significantly increased during hardening. The particle size of microspheres was not affected by PVA and Tween80 concentrations, but it was influenced by PVA volume and hardening. X-ray diffraction and differential scanning calorimetry results showed that the physical state of the drug changed from a crystalline form to an amorphous form, thereby confirming that the drug was encapsulated into the PLGA matrix. Fourier transform-infrared spectroscopy confirmed that some molecular interactions occurred between the drug and the polymer. GRN-loaded PLGA microspheres showed sustained release profiles of over 90% on week 3. CONCLUSION GRN-loaded PLGA microspheres with sustained release were successfully prepared, and they exhibited a relatively high EE without Tween 80 as an emulsifier and with hardening process.
Collapse
Affiliation(s)
| | - Li-Qing Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huan-Huan Du
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Qing-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
107
|
Abuhamdan RM, Al-Anati BH, Al Thaher Y, Shraideh ZA, Alkawareek MY, Abulateefeh SR. Aqueous core microcapsules as potential long-acting release systems for hydrophilic drugs. Int J Pharm 2021; 606:120926. [PMID: 34303818 DOI: 10.1016/j.ijpharm.2021.120926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
We have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated. Finally, the effect of varying polymer properties such as end functionalities, molecular weights, and lactide to glycolide ratios, on the characteristics of the produced microcapsules was studied. This was done by utilizing seven different grades of the polyester polymers. It was demonstrated that, within certain limits, drug loading is nearly proportional to the initial amounts of drug and water. Furthermore, drug encapsulation studies demonstrated that ester termination and increases in polymeric molecular weight result in lower drug loading and encapsulation efficiency. Moreover, drug release studies demonstrated that ester termination, increases in molecular weight, and increases in the lactide to glycolide ratio all result in slower drug release; this grants the ability to tailor the drug release duration from a few days to several weeks. In conclusion, such minor variations in polymer characteristics and formulation composition can result in dramatic changes in the properties of the produced microcapsules. These changes can be fine-tuned to obtain desirable long-acting microcapsules capable of encapsulating a variety of hydrophilic drugs which can be used in a wide range of applications.
Collapse
Affiliation(s)
| | - Bayan H Al-Anati
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Yazan Al Thaher
- School of Pharmacy, Philadelphia University, Amman 19392, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | | | | |
Collapse
|
108
|
Spetz MR, Isely C, Gower RM. Effect of fabrication parameters on morphology and drug loading of polymer particles for rosiglitazone delivery. J Drug Deliv Sci Technol 2021; 65:S1773-2247(21)00352-X. [PMID: 35096148 PMCID: PMC8793769 DOI: 10.1016/j.jddst.2021.102672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For the past several decades, drug-encapsulated polymer particles have been investigated as locally-delivered, long-acting therapies. The most common method of producing such particles is the oil in water solvent extraction technique. Using this technique, we produced poly(lactide-co-glycolide) (PLG) microparticles encapsulating rosiglitazone, a small molecule anti-diabetic drug. We investigated the impact of modulating fabrication parameters, including choice of organic solvent, concentration of polymer, and speed of homogenization and centrifugation on particle morphology and drug loading. Additionally, we studied the ratio of air-water-interface area to the extraction bath volume, a previously unstudied fabrication parameter, and its impact on rosiglitazone loading when using dichloromethane as the organic solvent. Under the conditions tested, drug loading can be increased 5-fold by increasing this ratio, which may be achieved by simply selecting a larger extraction vessel. By changing the organic solvent from dichloromethane to ethyl acetate, we produced particles with 60% higher rosiglitazone loading. Interestingly, the particles made with ethyl acetate appeared phase dark under light microscopy suggesting the presence of internal pores. By increasing the proportion of organic phase in the emulsion we eliminated the aberrant morphology but did not alter drug loading. As a final step in the development of the particles, we established that rosiglitazone remained stable throughout the encapsulation process and its subsequent release from particles by demonstrating that rosiglitazone loaded particles enhanced adipocyte lipid storage and adiponectin secretion. Taken together, for this system, air-water-interface area to volume ratio of the extraction bath and organic solvent both arose as key parameters in maximizing rosiglitazone loading in PLG microparticles. This study of how fabrication parameters impact drug loading and particle morphology may be useful in other investigations to encapsulate small molecules in polymer particles for controlled release applications.
Collapse
Affiliation(s)
- Madeline R. Spetz
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | - Christopher Isely
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - R. Michael Gower
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Veterans Affairs Medical Center, Columbia SC, 29209, USA
| |
Collapse
|
109
|
Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. PLoS One 2021; 16:e0251821. [PMID: 34143792 PMCID: PMC8213178 DOI: 10.1371/journal.pone.0251821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 12/26/2022] Open
Abstract
Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
Collapse
Affiliation(s)
- Adrianna Glinkowska Mares
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Gaia Pacassoni
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Josep Samitier Marti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
110
|
Sun Y, Ran H, Liu F. Polymer-Based Materials and Their Applications in Image-Guided Cancer Therapy. Curr Med Chem 2021; 29:1352-1368. [PMID: 34137360 DOI: 10.2174/0929867328666210616160717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advances in nanotechnology have enabled the combination of disease diagnosis and therapy into a single nano package that has tremendous potential for the development of new theranostic strategies. The variety of polymer-based materials has grown exponentially over the past several decades. Such materials have great potential as carriers in disease detection imaging and image monitoring and in systems for the precise delivery of drugs to specific target sites. OBJECTIVE In the present article, we review recent key developments in the synthesis of polymer-based materials for various medical applications and their clinical trials. CONCLUSION There is a growing range of multi-faceted, polymer-based materials with various functions. These functions include carriers for image contrast agents, drug delivery systems, and real-time image-guided systems for noninvasive or minimally invasive therapeutic procedures for cancer therapy.
Collapse
Affiliation(s)
- Yang Sun
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| | - Fan Liu
- Department of Ultrasound, the Second Affiliated Hospital of Chongqing Medical University; Chongqing Key Laboratory of Ultrasound Molecular Imaging, 400010 Chongqing, China
| |
Collapse
|
111
|
Omidi M, Mansouri V, Mohammadi Amirabad L, Tayebi L. Impact of Lipid/Magnesium Hydroxide Hybrid Nanoparticles on the Stability of Vascular Endothelial Growth Factor-Loaded PLGA Microspheres. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24370-24384. [PMID: 34006111 PMCID: PMC9328745 DOI: 10.1021/acsami.0c22140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The purpose of the present study is to characterize poly(d,l-lactide-co-glycolide) (PLGA) composite microcarriers for vascular endothelial growth factor (VEGF) delivery. To reduce the initial burst release and protect the bioactivity, VEGF is encapsulated in soybean l-α-phosphatidylethanolamine (PE) and l-α-phosphatidylcholine (PC) anhydrous reverse micelle (VEGF-RM) nanoparticles. Also, mesoporous nano-hexagonal Mg(OH)2 nanostructure (MNS)-loaded PE/PC anhydrous reverse micelle (MNS-RM) nanoparticles are synthesized to suppress the induced inflammation of PLGA acidic byproducts and regulate the release profile. The flow-focusing microfluidic geometry platforms are used to fabricate different combinations of PLGA composite microspheres (PLGA-CMPs) with MNSs, MNS-RM, VEGF-RM, and native VEGF. The essential parameters of each formulation, such as release profiles, encapsulation efficacy, bioactivity, inflammatory response, and cytotoxicity, are investigated by in vitro and in vivo studies. The results indicate that generated acidic byproducts during the hydrolytic degradation process of PLGA can be buffered, and pH values inside and outside microspheres can remain steady during degradation by MNSs. Furthermore, the significant improvement in the stability of the encapsulated VEGF is confirmed by the bioactivity assay. In vitro release study shows that the VEGF initial burst release is well minimized in the present microcarriers. The present monodisperse PLGA-CMPs can be widely used in various tissue engineering and therapeutic applications.
Collapse
Affiliation(s)
- Meisam Omidi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
- Protein Research Center, Shahid Beheshti University G.C., Tehran 19839-69411, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical sciences, Tehran 19857-17443, Iran
- Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
112
|
Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res 2021; 12:1195-1208. [PMID: 34024015 DOI: 10.1007/s13346-021-01006-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biodegradable polymeric microneedle arrays (BPMNAs) could be explored as potential devices for transdermal drug delivery, which can provide a painless and safe drug delivery method. BPMNAs could also provide high drug-loading capacity and prolonged drug delivery once integrated with a drug reservoir. However, the fabrication of MNAs with a drug reservoir is expensive and requires complicated procedures. The present study was conducted to describe the preparation of a reservoir-based BPMNA containing estradiol valerate using polylactic acid (PLA) with the combination of FDM 3D printing and injection volume filling techniques. The tip size of the 3D printed needles decreased to 173 μm utilizing a chemical etching process. The content of estradiol valerate loaded in the 3D printed PLA MNAs was 29.79 ± 0.03 mg, and the release was in a prolonged manner for up to 7 days. The results of mechanical tests revealed that the force needed for the 3D printed PLA MNAs fracture (900 N) was significantly higher than that needed for their skin penetration (4 N). The successful penetration of 3D printed PLA MNAs through the stratum corneum was confirmed via penetration test, methylene blue staining, and histological examination. The results showed that 3D printed PLA MNAs can penetrate into the skin without reaching to the dermal nerves and puncture of blood vessels. In conclusion, in the current study, we explored the practicability of the preparation of drug loaded reservoir-based BPMNAs using the combination of FDM 3D printing and injection volume filling techniques for painless and prolonged transdermal drug delivery.
Collapse
|
113
|
Ferulic Acid-Loaded Polymeric Nanoparticles for Potential Ocular Delivery. Pharmaceutics 2021; 13:pharmaceutics13050687. [PMID: 34064572 PMCID: PMC8150711 DOI: 10.3390/pharmaceutics13050687] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Ferulic acid (FA) is an antioxidant compound that can prevent ROS-related diseases, but due to its poor solubility, therapeutic efficacy is limited. One strategy to improve the bioavailability is nanomedicine. In the following study, FA delivery through polymeric nanoparticles (NPs) consisting of polylactic acid (NPA) and poly(lactic-co-glycolic acid) (NPB) is proposed. To verify the absence of cytotoxicity of blank carriers, a preliminary in vitro assay was performed on retinal pericytes and endothelial cells. FA-loaded NPs were subjected to purification studies and the physico-hemical properties were analyzed by photon correlation spectroscopy. Encapsulation efficiency and in vitro release studies were assessed through high performance liquid chromatography. To maintain the integrity of the systems, nanoformulations were cryoprotected and freeze-dried. Morphology was evaluated by a scanning electron microscope. Physico-chemical stability of resuspended nanosystems was monitored during 28 days of storage at 5 °C. Thermal analysis and Fourier-transform infrared spectroscopy were performed to characterize drug state in the systems. Results showed homogeneous particle populations, a suitable mean size for ocular delivery, drug loading ranging from 64.86 to 75.16%, and a controlled release profile. The obtained systems could be promising carriers for ocular drug delivery, legitimating further studies on FA-loaded NPs to confirm efficacy and safety in vitro.
Collapse
|
114
|
Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, García ML, Camins A, Souto EB, Ruiz A, Marquié M, Boada M. Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. J Nanobiotechnology 2021; 19:122. [PMID: 33926475 PMCID: PMC8086346 DOI: 10.1186/s12951-021-00864-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing life expectancy has led to an aging population, which has consequently increased the prevalence of dementia. Alzheimer's disease (AD), the most common form of dementia worldwide, is estimated to make up 50-80% of all cases. AD cases are expected to reach 131 million by 2050, and this increasing prevalence will critically burden economies and health systems in the next decades. There is currently no treatment that can stop or reverse disease progression. In addition, the late diagnosis of AD constitutes a major obstacle to effective disease management. Therefore, improved diagnostic tools and new treatments for AD are urgently needed. In this review, we investigate and describe both well-established and recently discovered AD biomarkers that could potentially be used to detect AD at early stages and allow the monitoring of disease progression. Proteins such as NfL, MMPs, p-tau217, YKL-40, SNAP-25, VCAM-1, and Ng / BACE are some of the most promising biomarkers because of their successful use as diagnostic tools. In addition, we explore the most recent molecular strategies for an AD therapeutic approach and nanomedicine-based technologies, used to both target drugs to the brain and serve as devices for tracking disease progression diagnostic biomarkers. State-of-the-art nanoparticles, such as polymeric, lipid, and metal-based, are being widely investigated for their potential to improve the effectiveness of both conventional drugs and novel compounds for treating AD. The most recent studies on these nanodevices are deeply explained and discussed in this review.
Collapse
Affiliation(s)
- Amanda Cano
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Umberto Veronesi Foundation, 20121, Milano, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Sánchez-López
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE. Institut Català de Neurociències Aplicades, International University of Catalunya (UIC), C/Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
115
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
116
|
Catarata R, Azim N, Bhattacharya S, Zhai L. Controlled drug release from polyelectrolyte-drug conjugate nanoparticles. J Mater Chem B 2021; 8:2887-2894. [PMID: 32191246 DOI: 10.1039/d0tb00012d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Encapsulating drugs in functional nanoparticles provides controlled and targeted release of drugs. In this study, a general approach for encapsulating hydrophobic drugs in polyelectrolyte nanoparticles was developed for a controlled drug release. Gemcitabine (GEM), an anticancer drug for pancreatic ductal adenocarcinoma (PDAC), was used as a model drug to produce poly(acrylic acid) (PAA)-GEM conjugate nanoparticles to achieve a controlled release of GEM in cells. The PAA-GEM conjugate nanoparticles were fabricated by coupling GEM onto PAA through the formation of amide bonds. The hydrophobic interactions of GEM molecules induced the formation of the nanoparticles with the GEM core and PAA shell. Fabrication conditions such as the PAA/GEM ratio and pH were optimized to achieve high structure stability and drug loading efficiency. The size and surface charge of the nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurement. The optimized PAA-GEM nanoparticles had a size around 12 nm, 30 nm and 60 nm in dry state, water, and phosphate buffered saline (PBS), respectively. The encapsulation efficiency was 29.29 ± 1.7%, and the loading capacity was 9.44 ± 0.46%. Less than 7% GEM was released from the PAA-GEM nanoparticles after 96 hour incubation in phosphate buffered saline. The cytotoxic efficacy of the PAA-GEM nanoparticles in cancer cells was investigated through viability studies of PANC-1, a human pancreatic cancer cell line. It was found that the PAA-GEM nanoparticles had more than a 48 hour delay of releasing GEM and had the same cytotoxic efficacy in PANC-1 cells as free GEM. The uptake of the PAA-GEM nanoparticles by PANC-1 cells was investigated using PAA-GEM labeled by rhodamine G6. Fluorescence and bright field overlay images indicated that the PAA-GEM nanoparticles were taken up by PANC-1 cells within 2 hours. It is believed that the PAA-GEM nanoparticles were decomposed in PANC-1 cells and GEM was released from the nanoparticles.
Collapse
Affiliation(s)
- Ruginn Catarata
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA.
| | - Nilab Azim
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, USA.
| | - Lei Zhai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA. and Department of Chemistry, University of Central Florida, Orlando, Florida 32816, USA and Department of Material Science and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
117
|
Wang X, Ronsin O, Gravez B, Farman N, Baumberger T, Jaisser F, Coradin T, Hélary C. Nanostructured Dense Collagen-Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004213. [PMID: 33854901 PMCID: PMC8025010 DOI: 10.1002/advs.202004213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 05/15/2023]
Abstract
Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed. An original method of fabrication is disclosed based on in situ nanoprecipitation of polyesters impregnated in a pre-formed 3D dense collagen network. Composites made of poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) but not polycaprolactone (PCL) exhibit improved mechanical properties compared to those of pure collagen dense hydrogels while keeping a high degree of hydration. Release kinetics of spironolactone, a lipophilic steroid used as a drug model, can be tuned over one month. No cytotoxicity of the composites is observed on fibroblasts and keratinocytes. Unlike the incorporation of pre-formed particles, the new process allows for both improved physical properties of collagen hydrogels and controlled drug delivery. The ease of fabrication, wide range of accessible compositions, and positive preliminary safety evaluations of these collagen-polyesters will favor their translation into clinics in wide areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyTaipaMacao999078China
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Olivier Ronsin
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Basile Gravez
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Nicolette Farman
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tristan Baumberger
- Sorbonne UniversitéCNRSInstitut des NanoSciences de ParisINSPParisF‐75005France
- Université de ParisParisF‐75006France
| | - Frédéric Jaisser
- INSERMCentre de Recherche des CordeliersSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Thibaud Coradin
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| | - Christophe Hélary
- Sorbonne UniversitéCNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de ParisParisF‐75005France
| |
Collapse
|
118
|
Naziris N, Skandalis A, Mavromoustakos T, Pispas S, Demetzos C. Association of the Thermodynamics with the Functionality of Thermoresponsive Chimeric Nanosystems. Methods Mol Biol 2021; 2207:221-233. [PMID: 33113139 DOI: 10.1007/978-1-0716-0920-0_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Stimuli-responsive nanosystems are an emerging technology in the field of therapy and are very promising for various applications, including targeted drug delivery. In this chapter, our scope is to integrate two different methodologies, namely differential scanning calorimetry (DSC) and dynamic light scattering (DLS), in order to rationally approach the functional behavior of thermoresponsive chimeric/mixed liposomes and interpret their thermoresponsiveness on a thermodynamic basis. In particular, chimeric bilayers comprised of the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different-in-composition thermoresponsive amphiphilic block copolymers poly(N-isopropylacrylamide)-b-poly(lauryl acrylate) (PNIPAM-b-PLA) 1 or 2 were built by a conventional evaporation technique, followed by DSC, and chimeric liposomes of DPPC and PNIPAM-b-PLA 1 were developed and studied by DLS, after preparation and after a simple heating protocol. The results from both methodologies indicate the composition- and concentration-dependent lyotropic effect of the foreign copolymer molecule on the properties and functionality of the lipidic membrane.
Collapse
Affiliation(s)
- Nikolaos Naziris
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece.
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, Laboratory of Organic Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Greece.
| |
Collapse
|
119
|
Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles. Int J Mol Sci 2021; 22:ijms22063206. [PMID: 33809846 PMCID: PMC8004175 DOI: 10.3390/ijms22063206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphodiesterase 7 (PDE7) is an enzyme responsible for the degradation of cyclic adenosine monophosphate (cAMP), an important cellular messenger. PDE7’s role in neurotransmission, expression profile in the brain and the druggability of other phosphodiesterases have motivated the search for potent inhibitors to treat neurodegenerative and inflammatory diseases. Different heterocyclic compounds have been described over the years; among them, phenyl-2-thioxo-(1H)-quinazolin-4-one, called S14, has shown very promising results in different in vitro and in vivo studies. Recently, polymeric nanoparticles have been used as new formulations to target specific organs and produce controlled release of certain drugs. In this work, we describe poly(lactic-co-glycolic acid) (PLGA)-based polymeric nanoparticles loaded with S14. Their preparation, optimization, characterization and in vivo drug release profile are here presented as an effort to improve pharmacokinetic properties of this interesting PDE7 inhibitor.
Collapse
|
120
|
Upadhya R, Punia A, Kanagala MJ, Liu L, Lamm M, Rhodes TA, Gormley AJ. Automated PET-RAFT Polymerization Towards Pharmaceutical Amorphous Solid Dispersion Development. ACS APPLIED POLYMER MATERIALS 2021; 3:1525-1536. [PMID: 34368765 PMCID: PMC8336633 DOI: 10.1021/acsapm.0c01376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In pharmaceutical oral drug delivery development, about 90% of drugs in the pipeline have poor aqueous solubility leading to severe challenges with oral bioavailability and translation to effective and safe drug products. Amorphous solid dispersions (ASDs) have been utilized to enhance the oral bioavailability of poorly soluble active pharmaceutical ingredients (APIs). However, a limited selection of regulatory-approved polymer excipients exists for the development and further understanding of tailor-made ASDs. Thus, a significant need exists to better understand how polymers can be designed to interact with specific API moieties. Here, we demonstrate how an automated combinatorial library approach can be applied to the synthesis and screening of polymer excipients for the model drug probucol. We synthesized a library of 25 random heteropolymers containing one hydrophilic monomer (2-hydroxypropyl acrylate (HPA)) and four hydrophobic monomers at varied incorporation. The performance of ASDs made by a rapid film casting method was evaluated by dissolution using ultra-performance liquid chromatography (UPLC) sampling at various time points. This combinatorial library and rapid screening strategy enabled us to identify a relationship between polymer hydrophobicity, monomer hydrophobic side group geometry, and API dissolution performance. Remarkably, the most effective synthesized polymers displayed slower drug release kinetics compared to industry standard polymer excipients, showing the ability to modulate the drug release profile. Future coupling of high throughput polymer synthesis, high throughput screening (HTS), and quantitative modeling would enable specification of designer polymer excipients for specific API functionalities.
Collapse
Affiliation(s)
- Rahul Upadhya
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ashish Punia
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Mythili J. Kanagala
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Lina Liu
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Matthew Lamm
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Timothy A. Rhodes
- Preformulation Sciences, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Adam J. Gormley
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
121
|
Patient-centric design for peptide delivery: Trends in routes of administration and advancement in drug delivery technologies. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
122
|
Kilicarslan M, Buke AN. An Overview: The Evaluation of Formation Mechanisms, Preparation Techniques and Chemical and Analytical Characterization Methods of the In Situ Forming Implants. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200616125009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
One of the major developments of the last decade is the preparation of in situ implant formulations.
Injectable, biocompatible and/or biodegradable polymer-based in situ implants are classified
differently due to implant formation based on in vivo solid depot or formation mechanisms inducing
liquid form, gel or solid depot. In this review, published studies to date regarding in situ forming implant
systems were compiled and their formation mechanisms, materials and methods used, routes of
administration, chemical and analytical characterizations, quality-control tests and in vitro dissolution
tests were compared in Tables and were evaluated. There are several advantages and disadvantages of
these dosage forms due to the formation mechanism, polymer and solvent type and the ratio used in
formulations and all of these parameters have been discussed separately. In addition, new generation
systems developed to overcome the difficulties encountered in in situ implants have been evaluated.
There are some approved products of in situ implant preparations that can be used for different indications
available on the market and the clinical phase studies nowadays. In vitro and in vivo data obtained
by the analysis of the application of new technologies in many studies evaluated in this review showed
that the number of approved drugs to be used for various indications would increase in the future.
Collapse
Affiliation(s)
- Muge Kilicarslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| | - Ayse Nur Buke
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara,Turkey
| |
Collapse
|
123
|
Senarat S, Wai Lwin W, Mahadlek J, Phaechamud T. Doxycycline hyclate-loaded in situ forming gels composed from bleached shellac, Ethocel, and Eudragit RS for periodontal pocket delivery. Saudi Pharm J 2021; 29:252-263. [PMID: 33981174 PMCID: PMC8085599 DOI: 10.1016/j.jsps.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Polymeric material plays an important role as a matrix former in the modulation of drug release of antimicrobial-loaded in situ forming gel (ISG) for efficient periodontitis treatment. This study was conducted to compare three polymers, namely bleached shellac (BS), Ethocel (EC) and Eudragit RS (ERS), as matrix formers of doxycycline hyclate (DH)-loaded solvent exchange-induced ISG. All prepared ISGs, except 25% EC ISG, exhibited the Newtonian flow behaviour. Transformation from solution into matrix-like was achieved rapidly within 5 min. Increasing the amount of these polymers extended the release of DH. DH-loaded EC and ERS ISG systems exhibited high antimicrobial activity, and all ISGs were effective in inhibiting the growth of Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Porphyromonas gingivalis and Candida albicans. By comparison, the DH-loaded ERS ISG, through the solvent exchange mechanism, was found to be ease in injection with low viscosity and sustained the release with higher concentration, meanwhile, it also exhibited interesting in vitro degradability and antimicrobial activities. Therefore, the DH-loaded ERS ISG exhibited a potential use for localized periodontal drug delivery system for the treatment periodontitis.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programe of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Wai Wai Lwin
- Department of Pharmaceutics, University of Pharmacy, Mandalay, Myanmar
| | - Jongjan Mahadlek
- Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thawatchai Phaechamud
- Programe of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
124
|
de Carvalho Arjona J, das Graças Silva-Valenzuela M, Wang SH, Valenzuela-Diaz FR. Biodegradable Nanocomposite Microcapsules for Controlled Release of Urea. Polymers (Basel) 2021; 13:polym13050722. [PMID: 33653016 PMCID: PMC7956393 DOI: 10.3390/polym13050722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Urea is the most used fertilizer around the world as the main source of nitrogen to soil and plants. However, the administration of nitrogen dosage is critical, as its excess can be harmful to the environment. Therefore, the encapsulation of urea to achieve control on its release rates has been considered in several areas. In this work, encapsulation of urea by biodegradable polymer poly(3-hydroxybutyrate) (PHB) and its nanocomposites, namely PHB/MMT and PHB/OMMT, producing microcapsules by emulsion method is carried out. MMT and OMMT refer to Brazilian clays in a natural state and organophilized, respectively. In addition, the microcapsules are thus prepared to have their physicochemical characteristics investigated, then tested for biodegradation. Increment of microcapsules’ crystallinity due to the increased amount of poly(vinylacetate) (PVA), as emulsifier agent in the continuous phase, was confirmed by X-ray diffractometry (XRD) and atomic force microscopy (AFM). The presence of urea within microcapsules was verified by XRD, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The soil biodegradation assessments showed that PHB/OMMT microcapsules present higher degradation rates in sandy soils. The overall results suggest that the composites performed better than neat PHB and are very promising; moreover, PHB/OMMT microcapsules proved to be the best candidate for the controlled-release of urea in soils.
Collapse
|
125
|
Key Factor Study for Generic Long-Acting PLGA Microspheres Based on a Reverse Engineering of Vivitrol ®. Molecules 2021; 26:molecules26051247. [PMID: 33669152 PMCID: PMC7975983 DOI: 10.3390/molecules26051247] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
The FDA (U.S. Food and Drug Administration) has approved only a negligible number of poly(lactide-co-glycolide) (PLGA)-based microsphere formulations, indicating the difficulty in developing a PLGA microsphere. A thorough understanding of microsphere formulations is essential to meet the challenge of developing innovative or generic microspheres. In this study, the key factors, especially the key process factors of the marketed PLGA microspheres, were revealed for the first time via a reverse engineering study on Vivitrol® and verified by the development of a generic naltrexone-loaded microsphere (GNM). Qualitative and quantitative similarity with Vivitrol®, in terms of inactive ingredients, was accomplished by the determination of PLGA. Physicochemical characterization of Vivitrol® helped to identify the critical process parameters in each manufacturing step. After being prepared according to the process parameters revealed by reverse engineering, the GNM demonstrated similarity to Vivitrol® in terms of quality attributes and in vitro release (f2 = 65.3). The research on the development of bioequivalent microspheres based on the similar technology of Vivitrol® will benefit the development of other generic or innovative microspheres.
Collapse
|
126
|
Fatty acid-modified poly(glycerol adipate) microparticles for controlled drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
127
|
Elena de Souza L, Eckenstaler R, Syrowatka F, Beck-Broichsitter M, Benndorf RA, Mäder K. Has PEG-PLGA advantages for the delivery of hydrophobic drugs? Risperidone as an example. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
128
|
Paulino da Silva Filho O, Ali M, Nabbefeld R, Primavessy D, Bovee-Geurts PH, Grimm S, Kirchner A, Wiesmüller KH, Schneider M, Walboomers XF, Brock R. A comparison of acyl-moieties for noncovalent functionalization of PLGA and PEG-PLGA nanoparticles with a cell-penetrating peptide. RSC Adv 2021; 11:36116-36124. [PMID: 35492790 PMCID: PMC9043423 DOI: 10.1039/d1ra05871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.
Collapse
Affiliation(s)
- Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, DF, Brasília, 70.040-03, Brazil
| | - Muhanad Ali
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rike Nabbefeld
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Daniel Primavessy
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmaceutics and Biopharmacy, Philipps-University Marburg, 35032 Marburg, Germany
| | - Petra H. Bovee-Geurts
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Silko Grimm
- Evonik Industries, Health Care, Formulation and Polymers, Kirschenallee, 64293 Darmstadt, Germany
| | - Andreas Kirchner
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | | | - Marc Schneider
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | - X. Frank Walboomers
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| |
Collapse
|
129
|
Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Crit Rev Food Sci Nutr 2020; 62:3208-3231. [PMID: 33356489 DOI: 10.1080/10408398.2020.1863907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioactive compounds may lose their antioxidant activity (e.g., phenolic compounds) at elevated temperatures, enhanced oxidative conditions and severe light exposures so they should be protected by various strategies such as nano/microencapsulation methods. Encapsulation technology has been employed as a proper method for using antioxidant ingredients and to provide easy dispersibility of antioxidants in all matrices including food and pharmaceutical products. It can improve the food fortification processes, release of antioxidant ingredients, and extending the shelf-life and bioavailability of them when ingested in the intestine. In this study, our main goal is to have an overview of the influence of nanoencapsulation on the bioactivity and bioavailability, and cellular activities of antioxidant ingredients in different delivery systems. Also, the effect of encapsulation process conditions, storage conditions, carrier wall materials, and release profile on the antioxidant activity of different natural bioactives are explained. Finally, analytical techniques for measuring antioxidant activity of nanoencapsulated ingredients will be covered.
Collapse
Affiliation(s)
- Atefe Maqsoudlou
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hossein Mohebodini
- Department of Animal Science and Food Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
130
|
Xiao P, Qi P, Chen J, Song Z, Wang Y, He H, Tang X, Wang P. The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres. Int J Pharm 2020; 591:119964. [PMID: 33137449 DOI: 10.1016/j.ijpharm.2020.119964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
The aim of this study was to resolve the lag time problem for peptides loaded PLGA-Hydrogel Microspheres (PLGA-gel-Ms) by blending low molecular PLGA (Mw. 1 kDa) into PLGA (Mw. 10 kDa) as an intrinsic porogen, and then assess the in vitro-in vivo relationship (IVIVR). Here, Goserelin acetate (GOS) was chosen as the model peptides. When compared to additional types of porogen, the intrinsic porogen avoided impurities remaining and protected the bioactivities of the peptides. By adding 10% PLGA (Mw. 1 kDa), the lag time was eliminated both in vitro and in vivo with a desirable EE (97.04% ± 0.51%). The release mechanisms were found to be: a) initial GOS release mainly controlled by pores diffusion and b) autocatalysis of PLGA (Mw. 1 kDa) which increased the quantity of aqueous pores, as revealed by SEM images. To solve the challenges caused by multiphasic release profiles, for the first time the Segmented phases IVIVR were proposed and developed, and showed improved linear fitting effects and supported the proposed release mechanisms. The application of PLGA blends could provide a new insight into PLGA microsphere initial release rate regulation.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China; Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Pan Qi
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Jin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Zilin Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Yidan Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, Liaoning, People's Republic of China
| | - Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.
| |
Collapse
|
131
|
Apolinário AC, Hauschke L, Nunes JR, Lopes LB. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter? J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
132
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
133
|
Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
134
|
Barcia E, Sandoval V, Fernandez-Carballido A, Negro S. Flunarizine-loaded microparticles for the prophylaxis of migraine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
135
|
Nkanga CI, Fisch A, Rad-Malekshahi M, Romic MD, Kittel B, Ullrich T, Wang J, Krause RWM, Adler S, Lammers T, Hennink WE, Ramazani F. Clinically established biodegradable long acting injectables: An industry perspective. Adv Drug Deliv Rev 2020; 167:19-46. [PMID: 33202261 DOI: 10.1016/j.addr.2020.11.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Long acting injectable formulations have been developed to sustain the action of drugs in the body over desired periods of time. These delivery platforms have been utilized for both systemic and local drug delivery applications. This review gives an overview of long acting injectable systems that are currently in clinical use. These products are categorized in three different groups: biodegradable polymeric systems, including microparticles and implants; micro and nanocrystal suspensions and oil-based formulations. Furthermore, the applications of these drug delivery platforms for the management of various chronic diseases are summarized. Finally, this review addresses industrial challenges regarding the development of long acting injectable formulations.
Collapse
Affiliation(s)
- Christian Isalomboto Nkanga
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa; Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa, XI, Democratic Republic of the Congo; Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Andreas Fisch
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Birgit Kittel
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Jing Wang
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Rui Werner Maçedo Krause
- Center for Chemico- and Bio-Medicinal Research (CCBR), Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Sabine Adler
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Twan Lammers
- Department of Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland.
| |
Collapse
|
136
|
Otte A, Sharifi F, Park K. Interfacial tension effects on the properties of PLGA microparticles. Colloids Surf B Biointerfaces 2020; 196:111300. [PMID: 32919245 PMCID: PMC7708423 DOI: 10.1016/j.colsurfb.2020.111300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/15/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023]
Abstract
Many types of long-acting injectables, including in situ forming implants, preformed implants, and polymeric microparticles, have been developed and ultimately benefited numerous patients. The advantages of using long-acting injectables include greater patient compliance and more steady state drug plasma levels for weeks and months. However, the development of long-acting polymeric microparticles has been hampered by the lack of understanding of the microparticle formation process, and thus, control of the process. Of the many parameters critical to the reproducible preparation of microparticles, the interfacial tension (IFT) effect is an important factor throughout the process. It may influence the droplet formation, solvent extraction, and drug distribution in the polymer matrix, and ultimately drug release kinetics from the microparticles. This mini-review is focused on the IFT effects on drug-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles.
Collapse
Affiliation(s)
- Andrew Otte
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA.
| | - Farrokh Sharifi
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| | - Kinam Park
- Purdue University, Department of Pharmaceutics, West Lafayette, IN 47907, USA
| |
Collapse
|
137
|
Moncho-Jordá A, Jódar-Reyes AB, Kanduč M, Germán-Bellod A, López-Romero JM, Contreras-Cáceres R, Sarabia F, García-Castro M, Pérez-Ramírez HA, Odriozola G. Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS NANO 2020; 14:15227-15240. [PMID: 33174725 DOI: 10.1021/acsnano.0c05480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the nonequilibrium diffusive release of electroneutral molecular cargo encapsulated inside hollow hydrogel nanoparticles. We propose a theoretical model that includes osmotic, steric, and short-range polymer-cargo attractions to determine the effective cargo-hydrogel interaction, ueff*, and the effective diffusion coefficient of the cargo inside the polymer network, Deff*. Using dynamical density functional theory (DDFT), we investigate the scaling of the characteristic release time, τ1/2, with the key parameters involved in the process, namely, ueff*, Deff*, and the swelling ratio. This effort represents a full study of the problem, covering a broad range of cargo sizes and providing predictions for repulsive and attractive polymer shells. Our calculations show that the release time through repulsive polymer networks scales with q2eβueff*/Deff* for βueff* ≫ 1. In this case, the cargo molecules are excluded from the shell of the hydrogel. For attractive shells, the polymer retains the cargo molecules on its internal surface and its interior, and the release time grows exponentially with the attraction strength. The DDFT calculations are compared to an analytical model for the mean first passage time, which provides an excellent quantitative description of the kinetics for both repulsive and attractive shells without fitting parameters. Finally, we apply the method to reproduce experimental results on the release of paclitaxel from hollow poly(4-vinylpyridine) nanoparticles and find that the slow release of the drug can be explained in terms of the strong binding attraction between the drug and the polymer.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Ana B Jódar-Reyes
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Matej Kanduč
- Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Alicia Germán-Bellod
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Juan M López-Romero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Rafael Contreras-Cáceres
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040 Madrid, Spain
| | - Francisco Sarabia
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Miguel García-Castro
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Héctor A Pérez-Ramírez
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| | - Gerardo Odriozola
- Física de Procesos Irreversibles, Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Azcapotzalco, Avenida San Pablo 180, 02200 Ciudad de México, Mexico
| |
Collapse
|
138
|
Cano A, Espina M, García ML. Recent Advances on Antitumor Agents-loaded Polymeric and Lipid-based Nanocarriers for the Treatment of Brain Cancer. Curr Pharm Des 2020; 26:1316-1330. [PMID: 31951159 DOI: 10.2174/1381612826666200116142922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/11/2019] [Indexed: 12/14/2022]
Abstract
In 2016, there were 17.2 million cancer cases, which caused 8.9 million deaths worldwide. Of all cancers, ranked by absolute years of life lost, brain and central nervous system cancers were classified in the nine positions between 2006 and 2016. Glioblastoma is the most common malignant primary brain tumor and comprises 80% of malignant tumours. The therapeutic approach usually involves the combination of surgery and radiotherapy, which present a high risk for the patient and are not always effective in the most aggressive cases. Chemotherapy commonly includes a specific number of cycles given over a set period of time, in which patients receive one drug or a combination of different compounds. The difficulty of access for the neurosurgeon to remove the tumor, the limitation of the penetration of the antitumor agents caused by the blood-brain barrier and the serious adverse effects of these drugs significantly compromise the therapeutic success in these patients. To solve these problems and improve the effectiveness of existing treatments, as well as new molecules, the use of nanotechnology is arousing much interest in the last decades in this field. The use of polymeric and lipid-based nanosystems is one of the best alternatives for the central delivery of drugs due to their versatility, easy manufacturing, biocompatibility, biodegradability and drug targeting, among other virtues. Thus, in this review, we will explore the recent advances in the latest anticancer agent's development associated with polymeric and lipid-based nanocarriers as a novel tools for the management of brain tumors.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Maria L García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
139
|
Beig A, Feng L, Walker J, Ackermann R, Hong JKY, Li T, Wang Y, Qin B, Schwendeman SP. Physical-Chemical Characterization of Octreotide Encapsulated in Commercial Glucose-Star PLGA Microspheres. Mol Pharm 2020; 17:4141-4151. [PMID: 32876463 DOI: 10.1021/acs.molpharmaceut.0c00619] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Sandostatin LAR (SLAR) is an injectable long-acting release (LAR) microsphere formulation for octreotide based on a biodegradeable glucose star copolymer of d,l-lactic and glycolic acids (PLGA-glu), which is primarily used for the treatment of patients with acromegaly. There currently is no generic SLAR approved in the United States despite expiration of patent coverage. To understand better this important formulation, SLAR was assessed for its composition and physical-chemical properties. Octreotide release kinetics was monitored under physiological conditions over 56 days together with several bioerosion parameters [mass loss, water uptake, pH of release media, polymer molecular weight (Mw), and confocal microscopy after BODIPY uptake]. A significant increase in the amount of released peptide occurred after day 14. After 1 day of incubation in PBST, octreotide was not extractable completely from SLAR during 2 h of the extraction process, but complete extraction was accomplished after 24 h, which suggested that strong and noncovalent PLGA-octreotide interactions occurred beginning in the initial release phase. Leuprolide is considered as a cationic peptide competitor for octreotide-PLGA interactions and its presence in the release medium resulted in more continuous octreotide release from SLAR, which was linearly correlated with the mass loss from the polymer (i.e., an indication of erosion-controlled release). These data strongly suggest that octreotide forms a salt with acid end groups of linear PLGA chains that are either present as impurities in, and/or produced by the degradation of, the PLGA-Glu. This salt is expected to catalyze octreotide acylation and extend peptide release beyond that driven by erosion control. The characterization studies of physicochemical properties of SLAR described here could be useful for the development and regulatory evaluation of generic octreotide microspheres as well as new polymer formulations, in which the polymer strongly interacts with encapsulated peptides.
Collapse
Affiliation(s)
- Avital Beig
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Linglin Feng
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Jennifer Walker
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Rose Ackermann
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Justin K Y Hong
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Tinghui Li
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Massachusetts 20993, United States
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Massachusetts 20993, United States
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
140
|
Yoo J, Won YY. Phenomenology of the Initial Burst Release of Drugs from PLGA Microparticles. ACS Biomater Sci Eng 2020; 6:6053-6062. [PMID: 33449671 DOI: 10.1021/acsbiomaterials.0c01228] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most prevalent polymer drug delivery vehicle in use today. There are about 20 commercialized drug products in which PLGA is used as an excipient. In more than half of these formulations, PLGA is used in the form of microparticles (with sizes in the range between 60 nm and 100 μm). The primary role of PLGA is to control the kinetics of drug release toward achieving sustained release of the drug. Unfortunately, most drug-loaded PLGA microparticles exhibit a common drawback: an initial uncontrolled burst of the drug. After 30 years of utilization of PLGA in controlled drug delivery systems, this initial burst drug release still remains an unresolved challenge. In this Review, we present a summary of the proposed mechanisms responsible for this phenomenon and the known factors affecting the burst release process. Also, we discuss examples of recent efforts made to reduce the initial burst release of the drug from PLGA particles.
Collapse
Affiliation(s)
- Jin Yoo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States of America.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47906, United States of America
| |
Collapse
|
141
|
Fabrication of biodegradable particles with tunable morphologies by the addition of resveratrol to oil in water emulsions. Int J Pharm 2020; 590:119917. [PMID: 33022356 DOI: 10.1016/j.ijpharm.2020.119917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Particles for biomedical applications can be produced by emulsifying biocompatible polymers dissolved in an organic solvent in water. The emulsion is then transferred to an extraction bath that removes the solvent from the dispersed droplets, which leads to polymer precipitation and particle formation. Typically, the particles are smooth and spherical, likely because the droplets remain fluid throughout the solvent extraction process allowing minimization of surface area as the volume decreases. Few modifications to this technique exist that alter the spherical geometry, even though particle performance, from drug delivery to engaging cells of the body, can be tuned with morphology. Here we demonstrate that incorporation of resveratrol, with the aid of ethanol, into the oil phase of an emulsion of poly(lactide-co-glycolide) and dichloromethane in aqueous poly(vinyl alcohol) leads to a crumpled particle morphology. Video microscopy of particle formation revealed that during solvent extraction the droplet crumples in on itself, which does not occur when only ethanol is added to the emulsion. It is unclear why this occurs with resveratrol, but its hydroxyl groups appear to be optimally positioned because removal of the 4' hydroxyl or addition of a 3' hydroxyl resulted in a loss of crumpled particle morphology. We demonstrate that particle morphology can be tuned from that of a crumpled sheet of paper to a deflated sphere by switching out ethanol for a different cosolvent. We quantify the degree of particle deformation with surface area calculated from krypton adsorption isotherms and BET theory and find surface area correlates with resveratrol loading in the particle. Furthermore, spherical particles are achieved when ethyl acetate is used in lieu of dichloromethane and a cosolvent. We propose that during solvent extraction, resveratrol accumulates at the droplet surface where it inhibits polymer chain motion necessary to maintain a spherical geometry and the role of cosolvent is to redistribute resveratrol from the droplet bulk to its surface. This method of producing nonspherical particles extends to polycaprolactone and poly(L-lactic acid) and is compatible with the encapsulation of a hydrophobic fluorescent dye, suggesting hydrophobic bioactive agents could be encapsulated. Taken together, we demonstrate an ability to control morphology of biocompatible polymer particles produced by the widely practiced oil-in-water/solvent extraction protocol via the addition of resveratrol and a cosolvent to the oil phase. The methodology reported is straight forward, and scalable, and expected to be of utility in applications in which a deviation from the default smooth, spherical morphology is desired.
Collapse
|
142
|
Mehta A, Scammon B, Shrake K, Bredikhin M, Gil D, Shekunova T, Baranchikov A, Ivanov V, Reukov V. Nanoceria: Metabolic interactions and delivery through PLGA-encapsulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111003. [PMID: 32993995 DOI: 10.1016/j.msec.2020.111003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022]
Abstract
Cerium oxide nanoparticles (nanoceria) have recyclable antioxidative activity. It has numerous potential applications in biomedical engineering, such as mitigating damage from burns, radiation, and bacterial infection. This mitigating activity is analogous to that property of metabolic enzymes such as superoxide dismutase (SOD) and catalase - scavengers of reactive oxygen species (ROS). Therefore, nanoceria can protect cells from environmental oxidative stress. This therapeutic effect prompted studies of nanoceria and metabolic enzymes as a combination therapy. The activity and structure of SOD, catalase, and lysozyme were examined in the presence of nanoceria. A complementary relationship between SOD and nanoceria motivated the present work, in which we explored a method for simultaneous delivery of SOD and nanoceria. The biocompatibility and tunable degradation of poly(lactic-co-glycolic acid) (PLGA) made it a candidate material for encapsulating both nanoceria and SOD. Cellular uptake studies were conducted along with a cytotoxicity assay. The antioxidative properties of PLGA-nanoceria-SOD particles were verified by adding H2O2 to cell culture and imaging with fluorescent markers of oxidative stress. Our results suggest that PLGA is a suitable encapsulating carrier for simultaneous delivering nanoceria and SOD together, and that this combination effectively reduces oxidative stress in vitro.
Collapse
Affiliation(s)
- Apoorva Mehta
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Bradley Scammon
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Kevin Shrake
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Mikhail Bredikhin
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA.
| | - Dmitry Gil
- Department of Orthopaedics, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114, USA; Department of Orthopaedic Surgery, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Taisiya Shekunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Alexander Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia
| | - Vladimir Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Vladimir Reukov
- Department of Bioengineering, Clemson University, 301 Rhodes Hall, Clemson, SC 29634, USA; University of Georgia, 315 Dawson Hall, Athens, GA, USA.
| |
Collapse
|
143
|
Abu Hajleh MN, Al-Samydai A, Al-Dujaili EAS. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosmet Dermatol 2020; 19:2805-2811. [PMID: 32954588 DOI: 10.1111/jocd.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Poly lactic acid and its copolymers are considered to be the preferred substrates for drug delivery devices. Poly lactic acid is a biocompatible, biodegradable and nontoxic polymer. It was approved by Food and Drug Administration and thought to be among the most attractive polymeric candidates intended for controlling drug delivery. It was utilized for the development of devices for the delivery of small molecules, proteins, genes, vaccines, anticancer drugs, and macromolecules. OBJECTIVES AND METHODS This manuscript lists the different techniques for synthesizing poly lactic acid-based nano and microparticles such as emulsion-based methods, precipitation-based methods, direct compositing methods, in situ forming micro-particles, and microfluidic technique. CONCLUSIONS In addition, it describes the application and use of poly lactic acid in biomedical and cosmetic delivery systems.
Collapse
Affiliation(s)
- Maha N Abu Hajleh
- Department of Cosmetic Science, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Emad A S Al-Dujaili
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
144
|
Role of hydrolytic degradation of polylactide drug carriers in developing micro- and nanoscale polylactide-based drug dosage forms. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2918-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
145
|
Sharifi F, Otte A, Yoon G, Park K. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles. J Control Release 2020; 325:347-358. [PMID: 32645336 PMCID: PMC7434690 DOI: 10.1016/j.jconrel.2020.06.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/13/2020] [Accepted: 06/22/2020] [Indexed: 12/18/2022]
Abstract
Injectable, long-acting drug delivery systems provide effective drug concentrations in the blood for up to 6 months. Naltrexone-loaded poly(lactide-co-glycolide) (PLGA) microparticles were prepared using an in-line homogenization method. It allows the transition from a laboratory scale to scale-up production. This research was designed to understand how the processing parameters affect the properties of the microparticles, such as microparticle size distributions, surface and internal morphologies, drug loadings, and drug release kinetics, and thus, to control them. The in-line homogenization system was used at high flow rates for the oil- and water-phases, e.g., 100 mL/min and 400 mL/min, respectively, to continuously generate microparticles. A high molecular weight (148 kDa) PLGA at various concentrations was used to generate oil-phases with a range of viscosities and also to compare with a 64 and 79 kDa at a single, high concentration. The uniformity of the microparticles was found to be related to the viscosity of the oil-phase. As the viscosity of the oil-phase increased from 52.6 mPa∙s to 4046 mPa∙s, the span value (a measure of uniformity) increased from 1.24 to 3.1 for the microparticles generated at the homogenization speed of 2000 RPM. Increasing the PLGA concentration from 5.58% to 16.85% showed a corresponding rise in the encapsulation efficiency from 74.0% to 85.8% and drug loading (DL) from 27.4% to 31.7% for the microparticles made with the homogenization speed of 2000 RPM. These increases may be due to a faster shell formulation, enabling PLGA microparticles to entrap more naltrexone into the structure. A higher DL, however, shortened the drug release duration from 56 to 42 days. The changes in morphology of the microparticles during different phases of the in vitro release study were also studied for three types of microparticles made with different PLGA concentrations and molecular weights. As PLGA microparticles went through structural changes, the surface showed raisin-like wrinkled morphologies within the first 10 days. Then, the microparticles swelled to form smooth surfaces. The in-line approach produced PLGA microparticles with a highly reproducible size distribution, DL, and naltrexone release rate.
Collapse
Affiliation(s)
- Farrokh Sharifi
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| | - Andrew Otte
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA
| | - Gwangheum Yoon
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA; Chong Kun Dang Research (CKD) Institute, Gyeonggi-do 16995, South Korea
| | - Kinam Park
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN 47907, USA; Purdue University, Department of Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|
146
|
Encapsulation of octenidine hydrochloride into bioresorbable polyesters for extended antimicrobial activity. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
147
|
Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules 2020; 10:biom10071038. [PMID: 32664598 PMCID: PMC7407105 DOI: 10.3390/biom10071038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
To improve sustainability of polymers and to reduce carbon footprint, polymers from renewable resources are given significant attention due to the developing concern over environmental protection. The renewable materials are progressively used in many technical applications instead of short-term-use products. However, among other applications, the flame retardancy of such polymers needs to be improved for technical applications due to potential fire risk and their involvement in our daily life. To overcome this potential risk, various flame retardants (FRs) compounds based on conventional and non-conventional approaches such as inorganic FRs, nitrogen-based FRs, halogenated FRs and nanofillers were synthesized. However, most of the conventional FRs are non-biodegradable and if disposed in the landfill, microorganisms in the soil or water cannot degrade them. Hence, they remain in the environment for long time and may find their way not only in the food chain but can also easily attach to any airborne particle and can travel distances and may end up in freshwater, food products, ecosystems, or even can be inhaled if they are present in the air. Furthermore, it is not a good choice to use non-biodegradable FRs in biodegradable polymers such as polylactic acid (PLA). Therefore, the goal of this review paper is to promote the use of biodegradable and bio-based compounds for flame retardants used in polymeric materials.
Collapse
|
148
|
Malhotra N, Lee JS, Liman RAD, Ruallo JMS, Villaflores OB, Ger TR, Hsiao CD. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review. Molecules 2020; 25:E3159. [PMID: 32664325 PMCID: PMC7397295 DOI: 10.3390/molecules25143159] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
The noteworthy intensification in the development of nanotechnology has led to the development of various types of nanoparticles. The diverse applications of these nanoparticles make them desirable candidate for areas such as drug delivery, coasmetics, medicine, electronics, and contrast agents for magnetic resonance imaging (MRI) and so on. Iron oxide magnetic nanoparticles are a branch of nanoparticles which is specifically being considered as a contrast agent for MRI as well as targeted drug delivery vehicles, angiogenic therapy and chemotherapy as small size gives them advantage to travel intravascular or intracavity actively for drug delivery. Besides the mentioned advantages, the toxicity of the iron oxide magnetic nanoparticles is still less explored. For in vivo applications magnetic nanoparticles should be nontoxic and compatible with the body fluids. These particles tend to degrade in the body hence there is a need to understand the toxicity of the particles as whole and degraded products interacting within the body. Some nanoparticles have demonstrated toxic effects such inflammation, ulceration, and decreases in growth rate, decline in viability and triggering of neurobehavioral alterations in plants and cell lines as well as in animal models. The cause of nanoparticles' toxicity is attributed to their specific characteristics of great surface to volume ratio, chemical composition, size, and dosage, retention in body, immunogenicity, organ specific toxicity, breakdown and elimination from the body. In the current review paper, we aim to sum up the current knowledge on the toxic effects of different magnetic nanoparticles on cell lines, marine organisms and rodents. We believe that the comprehensive data can provide significant study parameters and recent developments in the field. Thereafter, collecting profound knowledge on the background of the subject matter, will contribute to drive research in this field in a new sustainable direction.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 90007, Taiwan
| | | | | | - Oliver B Villaflores
- Department of Biochemistry, Faculty of Pharmacy and Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
149
|
Rein SMT, Lwin WW, Tuntarawongsa S, Phaechamud T. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111275. [PMID: 32919639 DOI: 10.1016/j.msec.2020.111275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/09/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022]
Abstract
The in situ forming system has attracted attention for periodontitis treatment owing to its sustainable drug release localisation at a periodontal pocket. Given its low aqueous solubility, beta-cyclodextrin (β-CD) may serve as a matrix former of solvent exchange-induced in situ forming gel (ISG) and microparticle (ISM). Meloxicam (Mex)-loaded-β-CD ISG and ISM were prepared using β-CD in dimethyl sulphoxide (ISG) as the internal phase and camellia oil comprising 5% glyceryl monostearate as the external phase (ISM). Mex-loaded β-CD systems comprising 40% β-CD were easily injected via a 24-gauge needle. During solvent exchange with phosphate buffer saline (pH 6.8), the highly concentrated β-CD ISG promoted the phase inversion of β-CD aggregates into matrix-like. Upon exposure to aqueous phase, the ISM system comprising 40% β-CD transformed into microparticles and extended the drug release to 7 days with minimised initial burst release following Fickian diffusion. Moreover, the potential degradability was evident from the high weight loss. High maximum deformation force with high viscous character initiated the slow diffusion rate of the solvent from the ISM system. Therefore, 40% β-CD ISM is a potential local Mex-controlled release system of anti-inflammatory drug for periodontitis treatment.
Collapse
Affiliation(s)
- Sai Myo Thu Rein
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Department of Pharmacognosy, University of Pharmacy, Mandalay, Myanmar
| | - Wai Wai Lwin
- Department of Pharmaceutics, University of Pharmacy, Mandalay, Myanmar
| | - Sarun Tuntarawongsa
- Pharmaceutical Intelligence Unit Prachote Plengwittaya, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| | - Thawatchai Phaechamud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand; Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
150
|
Dhanabalan KM, Gupta VK, Agarwal R. Rapamycin-PLGA microparticles prevent senescence, sustain cartilage matrix production under stress and exhibit prolonged retention in mouse joints. Biomater Sci 2020; 8:4308-4321. [PMID: 32597443 DOI: 10.1039/d0bm00596g] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Osteoarthritis (OA) is a joint disease characterized by progressive damage of articular cartilage and the adjoining subchondral bone. Chondrocytes, the primary cells of the cartilage, have limited regenerative capacity and when they undergo stress due to trauma or with aging, they senesce or become apoptotic. Rapamycin, a potent immunomodulator, has shown promise in OA treatment. It activates autophagy and is known to prevent senescence. However, its clinical translation for OA is hampered due to systemic toxicity as high and frequent doses are required. Here, we have fabricated rapamycin encapsulated poly(lactic-co-glycolic acid) (PLGA) based carriers that induced autophagy and prevented cellular senescence in human chondrocytes. The microparticle (MP) delivery system showed sustained release of the drug for several weeks. Rapamycin microparticles protected in vitro cartilage mimics (micromass cultures) from degradation, allowing sustained production of sGAG, and demonstrated a prolonged senescence preventive effect under oxidative and genomic stress conditions. These microparticles also exhibited a residence time of ∼30 days after intra-articular injections in murine knee joints. Such particulate systems are promising candidates for intra-articular delivery of rapamycin for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Kaamini M Dhanabalan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, 560012 India.
| | | | | |
Collapse
|