101
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
102
|
Hojyo S, Sarkander J, Männe C, Mursell M, Hanazawa A, Zimmel D, Zhu J, Paul WE, Fillatreau S, Löhning M, Radbruch A, Tokoyoda K. B Cells Negatively Regulate the Establishment of CD49b(+)T-bet(+) Resting Memory T Helper Cells in the Bone Marrow. Front Immunol 2016; 7:26. [PMID: 26870041 PMCID: PMC4735404 DOI: 10.3389/fimmu.2016.00026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/18/2016] [Indexed: 11/22/2022] Open
Abstract
During an immune reaction, some antigen-experienced CD4 T cells relocate from secondary lymphoid organs (SLOs) to the bone marrow (BM) in a CD49b-dependent manner and reside and rest there as professional memory CD4 T cells. However, it remains unclear how the precursors of BM memory CD4 T cells are generated in the SLOs. While several studies have so far shown that B cell depletion reduces the persistence of memory CD4 T cells in the spleen, we here show that B cell depletion enhances the establishment of memory CD4 T cells in the BM and that B cell transfer conversely suppresses it. Interestingly, the number of antigen-experienced CD4 T cells in the BM synchronizes the number of CD49b+T-bet+ antigen-experienced CD4 T cells in the spleen. CD49b+T-bet+ antigen-experienced CD4 T cells preferentially localize in the red pulp area of the spleen and the BM in a T-bet-independent manner. We suggest that B cells negatively control the generation of CD49b+T-bet+ precursors of resting memory CD4 T cells in the spleen and may play a role in bifurcation of activated effector and resting memory CD4 T cell lineages.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Jana Sarkander
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Christian Männe
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Mathias Mursell
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Asami Hanazawa
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - David Zimmel
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - William E Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; INSERM U1151-CNRS UMR 8253, Institut Necker-Enfants Malades, Paris, France; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute, Berlin, Germany; Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| | - Koji Tokoyoda
- Deutsches Rheuma-Forschungszentrum Berlin, Leibniz Institute , Berlin , Germany
| |
Collapse
|
103
|
Cauwelaert ND, Desbien AL, Hudson TE, Pine SO, Reed SG, Coler RN, Orr MT. The TLR4 Agonist Vaccine Adjuvant, GLA-SE, Requires Canonical and Atypical Mechanisms of Action for TH1 Induction. PLoS One 2016; 11:e0146372. [PMID: 26731269 PMCID: PMC4701231 DOI: 10.1371/journal.pone.0146372] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
The Toll-like receptor 4 agonist glucopyranosyl lipid adjuvant formulated in a stable emulsion (GLA-SE) promotes strong TH1 and balanced IgG1/IgG2 responses to protein vaccine antigens. This enhanced immunity is sufficient to provide protection against many diseases including tuberculosis and leishmaniasis. To better characterize the adjuvant action it is important to understand how the different cytokines and transcription factors contribute to the initiation of immunity. In the present study using T-bet-/- and IL-12-/- mice and a blocking anti-IFNαR1 monoclonal antibody, we define mechanisms of adjuvant activity of GLA-SE. In accordance with previous studies of TLR4 agonist based adjuvants, we found that TH1 induction via GLA-SE was completely dependent upon T-bet, a key transcription factor for IFNγ production and TH1 differentiation. Consistent with this, deficiency of IL-12, a cytokine canonical to TH1 induction, ablated TH1 induction via GLA-SE. Finally we demonstrate that the innate immune response to GLA-SE, including rapid IFNγ production by memory CD8+ T cells and NK cells, was contingent on type I interferon, a cytokine group whose association with TH1 induction is contextual, and that they contributed to the adjuvant activity of GLA-SE.
Collapse
Affiliation(s)
| | - Anthony L. Desbien
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Thomas E. Hudson
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Samuel O. Pine
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Rhea N. Coler
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Mark T. Orr
- Infectious Disease Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
104
|
Sun ZY, Chen PG, Liu YF, Zhang BD, Wu JJ, Chen YX, Zhao YF, Li YM. Multi-component self-assembled anti-tumor nano-vaccines based on MUC1 glycopeptides. Chem Commun (Camb) 2016; 52:7572-5. [DOI: 10.1039/c6cc02000c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel multi-component self-assembled nano-vaccines containing both Pam3CSK4 and CpG were developed based on the strategy of electrostatic interaction.
Collapse
Affiliation(s)
- Z. Y. Sun
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - P. G. Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Y. F. Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - B. D. Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - J. J. Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Y. X. Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Y. F. Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Y. M. Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| |
Collapse
|
105
|
Guo WJ, Qi H, Deng CY, Zhou HX, Deng SP, Li FR. The roles of IL-2 and IL-10 enhance anti-CD45RBmAb immune inhibition in allograft skin. Immunol Res 2015; 61:250-9. [PMID: 25550088 DOI: 10.1007/s12026-014-8618-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a new type of immune tolerance inducer, anti-CD45RB monoclonal antibodies (anti-CD45RBmAb) can prolong the graft survival time of animal organs or cell transplantation as well as induce stable immune tolerance. Both interleukin (IL)-2 and IL-10 have important roles in the induction and maintenance of immunological tolerance. However, whether these cytokines combined with anti-CD45RBmAb can promote immune tolerance is poorly understood. Therefore, we investigated the effect of IL-2 and IL-10 in vitro and in vivo on the tolerance induction by anti-CD45RBmAb. The changes of Treg and Th17 cells and Th1/Th2 cytokines in anti-CD45RBmAb induced prolongation of skin allograft survival in mice. The finding of a role for IL-2 is novel, of interest, IL-2 promoted anti-CD45RBmAb-induced CD4(+) T cell differentiation into Treg and Th2 cells and suppressed Th17 and Th1 cells. IL-2 enhanced the induction of immune tolerance by anti-CD45RBmAb and significantly prolonged skin graft survival time in vivo. In contrast, this effect should be demonstrated experimentally by neutralizing IL-2 and inhibition of the effect of anti-CD45RBmAb, and neutralizing IL-10 showed no effect for anti-CD45RBmAb-induced tolerance. These data reveal that IL-2 significantly enhances anti-CD45RBmAb-induced immune tolerance via up-regulated T regulatory (Treg) cells and the balance of Th1/Th2 shifts. Conversely, IL-10 showed no effect on anti-CD45RBmAb-induced tolerance.
Collapse
Affiliation(s)
- Wei-Jian Guo
- The Key Laboratory of Stem Cell and Cellular Therapy, the Second Clinical Medical College (Shenzhen People's Hospital), Ji'nan University, Nu.1017, North Road of Eastern Gate, Shenzhen, 518020, China
| | | | | | | | | | | |
Collapse
|
106
|
Abstract
T cell memory plays a critical role in our protection against pathogens and tumors. The antigen and its interaction with the T cell receptor (TCR) is one of the initiating elements that shape T cell memory together with inflammation and costimulation. Over the last decade, several transcription factors and signaling pathways that support memory programing have been identified. However, how TCR signals regulate them is still poorly understood. Recent studies have shown that the biochemical rules that govern T cell memory, strikingly, change depending on the TCR signal strength. Furthermore, TCR signal strength regulates the input of cytokine signaling, including pro-inflammatory cytokines. These highlight how tailoring antigenic signals can improve immune therapeutics. In this review, we focus on how TCR signaling regulates T cell memory and how the quantity and quality of TCR–peptide–MHC interactions impact the multiple fates a T cell can adopt in the memory pool.
Collapse
Affiliation(s)
- Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri , Columbia, MO , USA
| |
Collapse
|
107
|
Chauhan AK, Moore TL, Bi Y, Chen C. FcγRIIIa-Syk Co-signal Modulates CD4+ T-cell Response and Up-regulates Toll-like Receptor (TLR) Expression. J Biol Chem 2015; 291:1368-86. [PMID: 26582197 DOI: 10.1074/jbc.m115.684795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
CD4(+) T-cells in systemic lupus erythematosus (SLE) patients show altered T-cell receptor signaling, which utilizes Fc-receptor γ-chain FcRγ-Syk. A role for FcγRIIIa activation from immune complex (IC) ligation and sublytic terminal complement complex (C5b-9) in CD4(+) T-cell responses is not investigated. In this study, we show that the ICs present in SLE patients by ligating to FcγRIIIa on CD4(+) T-cells phosphorylate Syk and provide a co-stimulatory signal to CD4(+) T-cells in the absence of CD28 signal. This led to the development of pathogenic IL-17A(+) and IFN-γ(high) CD4(+) T-cells in vitro. Cytokines IL-1β, IL-6, TGF-β1, and IL-23 were the only requirement for the development of both populations. SLE patients CD4(+) T-cells that expressed CD25, CD69, and CD98 bound to ICs showed pSyk and produced IFN-γ and IL-17A. This FcγRIIIa-mediated co-signal differentially up-regulated the expression of IFN pathway genes compared with CD28 co-signal. FcγRIIIa-pSyk up-regulated several toll-like receptor genes as well as the HMGB1 and MyD88 gene transcripts. ICs co-localized with these toll-like receptor pathway proteins. These results suggest a role for the FcγRIIIa-pSyk signal in modulating adaptive immune responses.
Collapse
Affiliation(s)
- Anil K Chauhan
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Terry L Moore
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Ye Bi
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Chen Chen
- From the Division of Adult and Pediatric Rheumatology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
108
|
Intosalmi J, Ahlfors H, Rautio S, Mannerstöm H, Chen ZJ, Lahesmaa R, Stockinger B, Lähdesmäki H. Analyzing Th17 cell differentiation dynamics using a novel integrative modeling framework for time-course RNA sequencing data. BMC SYSTEMS BIOLOGY 2015; 9:81. [PMID: 26578352 PMCID: PMC4650136 DOI: 10.1186/s12918-015-0223-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023]
Abstract
Background The differentiation of naive CD 4+ helper T (Th) cells into effector Th17 cells is steered by extracellular cytokines that activate and control the lineage specific transcriptional program. While the inducing cytokine signals and core transcription factors driving the differentiation towards Th17 lineage are well known, detailed mechanistic interactions between the key components are poorly understood. Results We develop an integrative modeling framework which combines RNA sequencing data with mathematical modeling and enables us to construct a mechanistic model for the core Th17 regulatory network in a data-driven manner. Conclusions Our results show significant evidence, for instance, for inhibitory mechanisms between the transcription factors and reveal a previously unknown dependency between the dosage of the inducing cytokine TGF β and the expression of the master regulator of competing (induced) regulatory T cell lineage. Further, our experimental validation approves this dependency in Th17 polarizing conditions. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0223-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jukka Intosalmi
- Department of Computer Science, Aalto University, Aalto, FI-00076, Finland.
| | - Helena Ahlfors
- The Francis Crick Institute, Mill Hill Laboratory, Mill HillLondon, UK. .,Current affiliation: Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.
| | - Sini Rautio
- Department of Computer Science, Aalto University, Aalto, FI-00076, Finland.
| | - Henrik Mannerstöm
- Department of Computer Science, Aalto University, Aalto, FI-00076, Finland.
| | - Zhi Jane Chen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland.
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland.
| | | | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, Aalto, FI-00076, Finland. .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi, Turku, Finland.
| |
Collapse
|
109
|
IFN-γ Priming Effects on the Maintenance of Effector Memory CD4(+) T Cells and on Phagocyte Function: Evidences from Infectious Diseases. J Immunol Res 2015; 2015:202816. [PMID: 26509177 PMCID: PMC4609814 DOI: 10.1155/2015/202816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/03/2015] [Indexed: 12/19/2022] Open
Abstract
Although it has been established that effector memory CD4+ T cells play an important role in the protective immunity against chronic infections, little is known about the exact mechanisms responsible for their functioning and maintenance, as well as their effects on innate immune cells. Here we review recent data on the role of IFN-γ priming as a mechanism affecting both innate immune cells and effector memory CD4+ T cells. Suboptimal concentrations of IFN-γ are seemingly crucial for the optimization of innate immune cell functions (including phagocytosis and destruction of reminiscent pathogens), as well as for the survival and functioning of effector memory CD4+ T cells. Thus, IFN-γ priming can thus be considered an important bridge between innate and adaptive immunity.
Collapse
|
110
|
Nikołajuk A, Karczewska-Kupczewska M, Straczkowski M. Relationship Between Serum IL-12 and p40 Subunit Concentrations and Lipid Parameters in Overweight and Obese Women. Metab Syndr Relat Disord 2015; 13:336-42. [DOI: 10.1089/met.2014.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Agnieszka Nikołajuk
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Bialystok, Poland
| | - Monika Karczewska-Kupczewska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Bialystok, Poland
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok Poland
| | - Marek Straczkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Bialystok, Poland
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok Poland
| |
Collapse
|
111
|
Taghavie-Moghadam PL, Gjurich BN, Jabeen R, Krishnamurthy P, Kaplan MH, Dobrian AD, Nadler JL, Galkina EV. STAT4 deficiency reduces the development of atherosclerosis in mice. Atherosclerosis 2015; 243:169-78. [PMID: 26386214 DOI: 10.1016/j.atherosclerosis.2015.08.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 01/20/2023]
Abstract
Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses.
Collapse
Affiliation(s)
| | - Breanne N Gjurich
- Dept. of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Rukhsana Jabeen
- Dept. of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Dept. of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Kaplan
- Dept. of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anca D Dobrian
- Dept. of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jerry L Nadler
- Dept. of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Elena V Galkina
- Dept. of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
112
|
Liu YF, Sun ZY, Chen PG, Huang ZH, Gao Y, Shi L, Zhao YF, Chen YX, Li YM. Glycopeptide Nanoconjugates Based on Multilayer Self-Assembly as an Antitumor Vaccine. Bioconjug Chem 2015; 26:1439-42. [DOI: 10.1021/acs.bioconjchem.5b00150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yan-Fang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Zhan-Yi Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Pu-Guang Chen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Hua Huang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Yue Gao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Lei Shi
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Yu-Fen Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education),Tsinghua University, Beijing 100084, P. R. China
- National
Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
113
|
Miranda PJ, Delgobo M, Marino GF, Paludo KS, da Silva Baptista M, de Souza Pinto SE. The Oral Tolerance as a Complex Network Phenomenon. PLoS One 2015; 10:e0130762. [PMID: 26115356 PMCID: PMC4483238 DOI: 10.1371/journal.pone.0130762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/23/2015] [Indexed: 11/18/2022] Open
Abstract
The phenomenon of oral tolerance refers to a local and systemic state of tolerance induced in the gut after its exposure to innocuous antigens. Recent findings have shown the interrelationship between cellular and molecular components of oral tolerance, but its representation through a network of interactions has not been investigated. Our work aims at identifying the causal relationship of each element in an oral tolerance network, and also to propose a phenomenological model that's capable of predicting the stochastic behavior of this network when under manipulation. We compared the changes of a "healthy" network caused by "knock-outs" (KOs) in two approaches: an analytical approach by the Perron Frobenius theory; and a computational approach, which we describe within this work in order to find numerical results for the model. Both approaches have shown the most relevant immunological components for this phenomena, that happens to corroborate the empirical results from animal models. Besides explain in a intelligible fashion how the components interacts in a complex manner, we also managed to describe and quantify the importance of KOs that hasn't been empirically tested.
Collapse
Affiliation(s)
| | - Murilo Delgobo
- Department of Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Giovani Favero Marino
- Department of Biology, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Kátia Sabrina Paludo
- Department of Structural Biology, Molecular and Genetics, State University of Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Murilo da Silva Baptista
- Institute for Complex Systems and Mathematical Biology, SUPA, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
114
|
Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond) 2015; 39:1607-18. [PMID: 26041698 PMCID: PMC5007876 DOI: 10.1038/ijo.2015.104] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 05/06/2015] [Accepted: 05/17/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND/OBJECTIVES Limited numbers of studies demonstrated obesity-induced macrophage infiltration in skeletal muscle (SM), but dynamics of immune cell accumulation and contribution of T cells to SM insulin resistance are understudied. SUBJECTS/METHODS T cells and macrophage markers were examined in SM of obese humans by reverse transcription-PCR (RT-PCR). Mice were fed high-fat diet (HFD) for 2-24 weeks, and time course of macrophage and T-cell accumulation was assessed by flow cytometry and quantitative RT-PCR. Extramyocellular adipose tissue (EMAT) was quantified by high-resolution micro-computed tomography (CT), and correlation to T-cell number in SM was examined. CD11a-/- mice and C57BL/6 mice were treated with CD11a-neutralizing antibody to determine the role of CD11a in T-cell accumulation in SM. To investigate the involvement of Janus kinase/signal transducer and activator of transcription (JAK/STAT), the major pathway for T helper I (TH1) cytokine interferon-γ, in SM and adipose tissue inflammation and insulin resistance, mice were treated with a JAK1/JAK2 inhibitor, baricitinib. RESULTS Macrophage and T-cell markers were upregulated in SM of obese compared with lean humans. SM of obese mice had higher expression of inflammatory cytokines, with macrophages increasing by 2 weeks on HFD and T cells increasing by 8 weeks. The immune cells were localized in EMAT. Micro-CT revealed that EMAT expansion in obese mice correlated with T-cell infiltration and insulin resistance. Deficiency or neutralization of CD11a reduced T-cell accumulation in SM of obese mice. T cells polarized into a proinflammatory TH1 phenotype, with increased STAT1 phosphorylation in SM of obese mice. In vivo inhibition of JAK/STAT pathway with baricitinib reduced T-cell numbers and activation markers in SM and adipose tissue and improved insulin resistance in obese mice. CONCLUSIONS Obesity-induced expansion of EMAT in SM was associated with accumulation and proinflammatory polarization of T cells, which may regulate SM metabolic functions through paracrine mechanisms. Obesity-associated SM 'adiposopathy' may thus have an important role in the development of insulin resistance and inflammation.
Collapse
|
115
|
Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc Natl Acad Sci U S A 2015; 112:7061-6. [PMID: 26038559 DOI: 10.1073/pnas.1415675112] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Th17 cells reactive to the enteric microbiota are central to the pathogenesis of certain types of inflammatory bowel disease. However, Th17 cells display substantial developmental plasticity, such that some progeny of Th17 cell precursors retain a predominantly IL-17A(+) phenotype, whereas others extinguish IL-17 expression and acquire expression of IFN-γ, giving rise to "Th1-like" cells. It remains unclear what role these subsets play in inflammatory bowel disease. Using a Th17 transfer model of colitis, we found that IFN-γ-deficient Th17 cells retained an IL-17A(+) phenotype and were unable to induce colitis in recipients. Development of disease required the transition of a subset of Th17 precursors to Th1-like cells and was contingent on the expression of both Stat4 and T-bet, but not the IL-12 or IFN-γ receptors. Moreover, Th17 cells could provide "help" for the development of pathogenic Th1 cells from naïve precursors. These results indicate that Th17 cells are potent mediators of colitis pathogenesis by dual mechanisms: by directly transitioning to Th1-like cells and by supporting the development of classic Th1 cells.
Collapse
|
116
|
Brown CC, Noelle RJ. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur J Immunol 2015; 45:1287-95. [PMID: 25808452 PMCID: PMC4426035 DOI: 10.1002/eji.201344398] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/08/2014] [Accepted: 03/20/2015] [Indexed: 12/20/2022]
Abstract
The importance of vitamin A for host defense is undeniable and the study of its mechanisms is paramount. Of the estimated 250 million preschool children who are vitamin A-deficient (VAD), 10% will die from their increased susceptibility to infectious disease. Vitamin A supplementation was established in the 1980s as one of the most successful interventions in the developing world. Understanding how vitamin A controls immunity will help curb the mortality and morbidity associated with vitamin A deficiency and exploit the immune-enhancing capacity of vitamin A to heighten host resistance to infectious disease. The discoveries that retinoic acid (RA) imprints the homing of leukocytes to the gut and enhances the induction of regulatory T cells, highlighted a potential role for RA in mucosal tolerance. However, more recently emerging data tell of a more profound systemic impact of RA on leukocyte function and commitment. In animal models using genetic manipulation of RA signaling, we learned when and how RA controls T cell fate. Here, we review the role for RA as a critical checkpoint regulator in the differentiation of CD4(+) T cells within the immune system.
Collapse
Affiliation(s)
- Chrysothemis C Brown
- Division of Transplantation Immunology and Mucosal Biology, Kings College London, United Kingdom
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, NH, USA
| |
Collapse
|
117
|
Thurley K, Gerecht D, Friedmann E, Höfer T. Three-Dimensional Gradients of Cytokine Signaling between T Cells. PLoS Comput Biol 2015; 11:e1004206. [PMID: 25923703 PMCID: PMC4414419 DOI: 10.1371/journal.pcbi.1004206] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/17/2015] [Indexed: 11/20/2022] Open
Abstract
Immune responses are regulated by diffusible mediators, the cytokines, which act at sub-nanomolar concentrations. The spatial range of cytokine communication is a crucial, yet poorly understood, functional property. Both containment of cytokine action in narrow junctions between immune cells (immunological synapses) and global signaling throughout entire lymph nodes have been proposed, but the conditions under which they might occur are not clear. Here we analyze spatially three-dimensional reaction-diffusion models for the dynamics of cytokine signaling at two successive scales: in immunological synapses and in dense multicellular environments. For realistic parameter values, we observe local spatial gradients, with the cytokine concentration around secreting cells decaying sharply across only a few cell diameters. Focusing on the well-characterized T-cell cytokine interleukin-2, we show how cytokine secretion and competitive uptake determine this signaling range. Uptake is shaped locally by the geometry of the immunological synapse. However, even for narrow synapses, which favor intrasynaptic cytokine consumption, escape fluxes into the extrasynaptic space are expected to be substantial (≥20% of secretion). Hence paracrine signaling will generally extend beyond the synapse but can be limited to cellular microenvironments through uptake by target cells or strong competitors, such as regulatory T cells. By contrast, long-range cytokine signaling requires a high density of cytokine producers or weak consumption (e.g., by sparsely distributed target cells). Thus in a physiological setting, cytokine gradients between cells, and not bulk-phase concentrations, are crucial for cell-to-cell communication, emphasizing the need for spatially resolved data on cytokine signaling. The adaptive immune system fights pathogens through the activation of immune cell clones that specifically recognize a particular pathogen. Tight contacts, so-called immunological synapses, of immune cells with cells that present ‘digested’ pathogen molecules are pivotal for ensuring specificity. The discovery that immune responses are regulated by small diffusible proteins – the cytokines – has been surprising because cytokine diffusion to ‘bystander’ cells might compromise specificity. It has therefore been argued that cytokines are trapped in immunological synapses, whereas other authors have found that cytokines act on a larger scale through entire lymph nodes. Measurements of cytokine concentrations with fine spatial resolution have not been achieved. Here, we study the spatio-temporal dynamics of cytokines through mathematical analysis and three-dimensional numerical simulation and identify key parameters that control signaling range. We predict that even tight immunological synapses leak a substantial portion of the secreted cytokines. Nevertheless, rapid cellular uptake will render cytokine signals short-range and thus incidental activation of bystander cells can be limited. Long-range signals will only occur with multiple secreting cells or/and slow consumption by sparse target cells. Thus our study identifies key determinants of the spatial range of cytokine communication in realistic multicellular geometries.
Collapse
Affiliation(s)
- Kevin Thurley
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
- Institute for Theoretical Biology, Charité-Universitätsmedizin, Berlin, Germany
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (KT); (DG); (EF); (TH)
| | - Daniel Gerecht
- Institute for Applied Mathematics, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| | - Elfriede Friedmann
- Institute for Applied Mathematics, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
- Bioquant Center, University of Heidelberg, Heidelberg, Germany
- * E-mail: (KT); (DG); (EF); (TH)
| |
Collapse
|
118
|
PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity. Cell Host Microbe 2015; 17:628-41. [PMID: 25891357 DOI: 10.1016/j.chom.2015.03.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/15/2015] [Accepted: 03/05/2015] [Indexed: 01/04/2023]
Abstract
The differentiation and protective capacity of Plasmodium-specific T cells are regulated by both positive and negative signals during malaria, but the molecular and cellular details remain poorly defined. Here we show that malaria patients and Plasmodium-infected rodents exhibit atypical expression of the co-stimulatory receptor OX40 on CD4 T cells and that therapeutic enhancement of OX40 signaling enhances helper CD4 T cell activity, humoral immunity, and parasite clearance in rodents. However, these beneficial effects of OX40 signaling are abrogated following coordinate blockade of PD-1 co-inhibitory pathways, which are also upregulated during malaria and associated with elevated parasitemia. Co-administration of biologics blocking PD-1 and promoting OX40 signaling induces excessive interferon-gamma that directly limits helper T cell-mediated support of humoral immunity and decreases parasite control. Our results show that targeting OX40 can enhance Plasmodium control and that crosstalk between co-inhibitory and co-stimulatory pathways in pathogen-specific CD4 T cells can impact pathogen clearance.
Collapse
|
119
|
Collins LE, DeCourcey J, Soledad di Luca M, Rochfort KD, Loscher CE. An Emerging Role for SNARE Proteins in Dendritic Cell Function. Front Immunol 2015; 6:133. [PMID: 25873919 PMCID: PMC4379939 DOI: 10.3389/fimmu.2015.00133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/10/2015] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) provide an essential link between innate and adaptive immunity. At the site of infection, antigens recognized by DCs via pattern-recognition receptors, such as Toll-like receptors (TLRs), initiate a specific immune response. Depending on the nature of the antigen, DCs secrete distinct cytokines with which they orchestrate homeostasis and pathogen clearance. Dysregulation of this process can lead to unnecessary inflammation, which can result in a plethora of inflammatory diseases. Therefore, the secretion of cytokines from DCs is tightly regulated and this regulation is facilitated by highly conserved trafficking protein families. These proteins control the transport of vesicles from the Golgi complex to the cell surface and between organelles. In this review, we will discuss the role of soluble n-ethylmaleimide-sensitive factor attachment protein receptor proteins (SNAREs) in DCs, both as facilitators of secretion and as useful tools to determine the pathways of secretion through their definite locations within the cells and inherent specificity in opposing binding partners on vesicles and target membranes. The role of SNAREs in DC function may present an opportunity to explore these proteins as novel targets in inflammatory disease.
Collapse
Affiliation(s)
- Laura E. Collins
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Joseph DeCourcey
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Mariana Soledad di Luca
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Keith D. Rochfort
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Christine E. Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
120
|
Brown CC, Esterhazy D, Sarde A, London M, Pullabhatla V, Osma-Garcia I, Al-Bader R, Ortiz C, Elgueta R, Arno M, de Rinaldis E, Mucida D, Lord GM, Noelle RJ. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program. Immunity 2015; 42:499-511. [PMID: 25769610 PMCID: PMC4372260 DOI: 10.1016/j.immuni.2015.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/12/2023]
Abstract
CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells.
Collapse
Affiliation(s)
- Chrysothemis C Brown
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK.
| | - Daria Esterhazy
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Aurelien Sarde
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Mariya London
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Venu Pullabhatla
- National Institute for Health Research Biomedical Research Centre at Guy's & St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, UK
| | - Ines Osma-Garcia
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Raya Al-Bader
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Carla Ortiz
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Raul Elgueta
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK
| | - Matthew Arno
- Genomics Centre, King's College London, London SE1 9NH, UK
| | - Emanuele de Rinaldis
- National Institute for Health Research Biomedical Research Centre at Guy's & St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, UK; Division of Cancer Studies, School of Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Graham M Lord
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK; National Institute for Health Research Biomedical Research Centre at Guy's & St Thomas' National Health Service Foundation Trust and King's College London, London SE1 9RT, UK
| | - Randolph J Noelle
- Division of Transplantation Immunology and Mucosal Biology, King's College London, London SE1 9RT, UK; Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| |
Collapse
|
121
|
Börnsen L, Romme Christensen J, Ratzer R, Hedegaard C, Søndergaard HB, Krakauer M, Hesse D, Nielsen CH, Sorensen PS, Sellebjerg F. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis. PLoS One 2015; 10:e0118830. [PMID: 25738751 PMCID: PMC4349448 DOI: 10.1371/journal.pone.0118830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/08/2015] [Indexed: 11/18/2022] Open
Abstract
Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels of interferon-β-inducible genes with an increased expression of interleukin-10 and a milder disease course in untreated multiple sclerosis patients, whereas other studies reported an association with a poor response to treatment with interferon-β. In the present study, we found that untreated multiple sclerosis patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.
Collapse
Affiliation(s)
- Lars Börnsen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Ratzer
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Chris Hedegaard
- Institute for Inflammation Research, Department of Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Helle B. Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin Krakauer
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Dan Hesse
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claus H. Nielsen
- Institute for Inflammation Research, Department of Rheumatology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Per S. Sorensen
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
122
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
123
|
Wang H, Yang YG. The complex and central role of interferon-γ in graft-versus-host disease and graft-versus-tumor activity. Immunol Rev 2015; 258:30-44. [PMID: 24517424 DOI: 10.1111/imr.12151] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is increasingly being performed to treat patients with hematologic malignancies. However, separating the beneficial graft-versus-tumor (GVT) or graft-versus-leukemia effects from graft-versus-host disease (GVHD) has been difficult and remains a significant challenge toward improving therapeutic efficacy and reducing toxicity of allo-HCT. GVHD is induced by donor T cells that also mediate potent anti-tumor responses. However, despite the largely shared effector mechanisms, extensive animal studies have demonstrated the potential of dissociating the GVT effect from GVHD. Also in many clinical cases, long-term remission was achieved following allo-HCT, without significant GVHD. A better mechanistic understanding of the immunopathophysiology of GVHD and GVT effects may potentially help to improve allo-HCT as well as maximize the benefit of GVT effects while minimizing GVHD. In this article, we review the role of IFN-γ in regulation of alloresponses following allo-HCT, with a focus on the mechanisms of how this cytokine may separate GVHD from GVT effects.
Collapse
Affiliation(s)
- Hui Wang
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | |
Collapse
|
124
|
Haftmann C, Stittrich AB, Zimmermann J, Fang Z, Hradilkova K, Bardua M, Westendorf K, Heinz GA, Riedel R, Siede J, Lehmann K, Weinberger EE, Zimmel D, Lauer U, Häupl T, Sieper J, Backhaus M, Neumann C, Hoffmann U, Porstner M, Chen W, Grün JR, Baumgrass R, Matz M, Löhning M, Scheffold A, Wittmann J, Chang HD, Rajewsky N, Jäck HM, Radbruch A, Mashreghi MF. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. Eur J Immunol 2015; 45:1192-205. [PMID: 25486906 PMCID: PMC4406154 DOI: 10.1002/eji.201444633] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 11/03/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022]
Abstract
Repeatedly activated T helper 1 (Th1) cells present during chronic inflammation can efficiently adapt to the inflammatory milieu, for example, by expressing the transcription factor Twist1, which limits the immunopathology caused by Th1 cells. Here, we show that in repeatedly activated murine Th1 cells, Twist1 and T-bet induce expression of microRNA-148a (miR-148a). miR-148a regulates expression of the proapoptotic gene Bim, resulting in a decreased Bim/Bcl2 ratio. Inhibition of miR-148a by antagomirs in repeatedly activated Th1 cells increases the expression of Bim, leading to enhanced apoptosis. Knockdown of Bim expression by siRNA in miR-148a antagomir-treated cells restores viability of the Th1 cells, demonstrating that miR-148a controls survival by regulating Bim expression. Thus, Twist1 and T-bet not only control the differentiation and function of Th1 cells, but also their persistence in chronic inflammation.
Collapse
Affiliation(s)
- Claudia Haftmann
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), an institute of the Leibniz AssociationBerlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Chauhan AK, Chen C, Moore TL, DiPaolo RJ. Induced expression of FcγRIIIa (CD16a) on CD4+ T cells triggers generation of IFN-γhigh subset. J Biol Chem 2015; 290:5127-5140. [PMID: 25556651 DOI: 10.1074/jbc.m114.599266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Whether or not CD4(+) T-cells express low affinity receptor FcγRIIIa (CD16a) in disease pathology has not been examined in great detail. In this study, we show that a subset of activated CD4(+) T-cells in humans express FcγRIIIa. The ligation of FcγRIIIa by immune complexes (ICs) in human CD4(+) T-cells produced co-stimulatory signal like CD28 that triggered IFN-γ production. The induced expression of FcγRIIIa on CD4(+) helper T-cells is an important finding since these receptors via ITAM contribute to intracellular signaling. The induced expression of FcγRIIIa on CD4(+) T helper cells and their ability to co-stimulate T-cell activation are important and novel findings that may reveal new pathways to regulate adaptive immune responses during inflammation and in autoimmunity.
Collapse
Affiliation(s)
- Anil K Chauhan
- From the Division of Adult and Pediatric Rheumatology and; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104.
| | - Chen Chen
- From the Division of Adult and Pediatric Rheumatology and
| | - Terry L Moore
- From the Division of Adult and Pediatric Rheumatology and
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
126
|
Yu SF, Zhang YN, Yang BY, Wu CY. Human memory, but not naive, CD4+ T cells expressing transcription factor T-bet might drive rapid cytokine production. J Biol Chem 2014; 289:35561-9. [PMID: 25378399 DOI: 10.1074/jbc.m114.608745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We found that after stimulation for a few hours, memory but not naive CD4(+) T cells produced a large amount of IFN-γ; however, the mechanism of rapid response of memory CD4(+) T cells remains undefined. We compared the expression of transcription factors in resting or activated naive and memory CD4(+) T cells and found that T-bet, but not pSTAT-1 or pSTAT-4, was highly expressed in resting memory CD4(+) T cells and that phenotypic characteristics of T-bet(+)CD4(+) T cells were CD45RA(low)CD62L(low) CCR7(low). After short-term stimulation, purified memory CD4(+) T cells rapidly produced effector cytokines that were closely associated with the pre-existence of T-bet. By contrast, resting naive CD4(+) T cells did not express T-bet, and they produced cytokines only after sustained stimulation. Our further studies indicated that T-bet was expressed in the nuclei of resting memory CD4(+) T cells, which might have important implications for rapid IFN-γ production. Our results indicate that the pre-existence and nuclear mobilization of T-bet in resting memory CD4(+) T cells might be a possible transcriptional mechanism for rapid production of cytokines by human memory CD4(+) T cells.
Collapse
Affiliation(s)
- Si-fei Yu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yan-nan Zhang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Bin-yan Yang
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chang-you Wu
- From the Institute of Immunology, Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control Research of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
127
|
Tubo NJ, Jenkins MK. TCR signal quantity and quality in CD4 + T cell differentiation. Trends Immunol 2014; 35:591-596. [PMID: 25457838 DOI: 10.1016/j.it.2014.09.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
Abstract
The adaptive immune system protects its host from a myriad of pathogens. This ability stems from a vast set of lymphocytes, each with a different antigen receptor, a small number of which will bind to antigens derived from a given pathogen. Although the cells within any antigen-specific population appear to be relatively homogenous before antigenic encounter, recent work on T cells indicates that individual cells within the population differentiate in very different ways after exposure to the antigen. We focus here on studies of CD4+ T cells and review evidence indicating that variable differentiation of effector cells from single naïve cells is caused by both cell-extrinsic stochastic factors and cell-intrinsic factors related to T cell antigen receptor (TCR) signal quantity and quality.
Collapse
Affiliation(s)
- Noah J Tubo
- Center for Immunology, Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marc K Jenkins
- Center for Immunology, Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
128
|
Stritesky GL, Kaplan MH. Changing the STATus quo in T helper cells. Transcription 2014; 2:179-182. [PMID: 21922060 DOI: 10.4161/trns.2.4.16614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/23/2011] [Accepted: 05/25/2011] [Indexed: 11/19/2022] Open
Abstract
STAT proteins are obligate promoters of T helper cell differentiation and initial studies suggested that activation of a single STAT protein resulted in a particular phenotype. More recent work has supported a more complex paradigm wherein the activation of several STAT proteins is required for differentiation to a single effector lineage.
Collapse
Affiliation(s)
- Gretta L Stritesky
- Department of Lab Medicine and Pathology; Center for Immunology; University of Minnesota; Minneapolis, MN USA
| | | |
Collapse
|
129
|
OCH ameliorates bone marrow failure in mice via downregulation of T-bet expression. J Immunol Res 2014; 2014:928743. [PMID: 25254224 PMCID: PMC4164259 DOI: 10.1155/2014/928743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
The aim of this study is to evaluate the immune mechanism of OCH in the treatment of AA (also named bone marrow failure, BMF) induced in mice. OCH at a dose of 400 μg/kg was injected intraperitoneally (I.P.) prior to the induction of BMF. Our study showed that the incidence of BMF was 100% in BMF group and 13% in OCH treatment group. Significant higher level of IL-4 and lower level of IFN-γ were observed in OCH group than that in BMF group (P < 0.05) as well as untreated group over BMF (P < 0.05). However, there was no significant difference between OCH and untreated group. Compared with untreated, the expression level of T-bet in OCH and BMF was all significantly higher. However, T-bet expression level was lower in OCH than in BMF. In addition, OCH treatment increased NKT cell fractions of bone marrow and the colonies of CFU-GM. In conclusion, treatment of OCH prior to the induction of BMF could prevent the incidence of BMF possibly through downregulating T-bet expression leading to the transition of immune response from Th1 to Th2, suggesting OCH might be a new therapeutic approach in the treatment of BMF or AA.
Collapse
|
130
|
Carbo A, Hontecillas R, Andrew T, Eden K, Mei Y, Hoops S, Bassaganya-Riera J. Computational modeling of heterogeneity and function of CD4+ T cells. Front Cell Dev Biol 2014; 2:31. [PMID: 25364738 PMCID: PMC4207042 DOI: 10.3389/fcell.2014.00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022] Open
Abstract
The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation.
Collapse
Affiliation(s)
- Adria Carbo
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Tricity Andrew
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Kristin Eden
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Yongguo Mei
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Stefan Hoops
- Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA, USA ; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| |
Collapse
|
131
|
Neumann C, Heinrich F, Neumann K, Junghans V, Mashreghi MF, Ahlers J, Janke M, Rudolph C, Mockel-Tenbrinck N, Kühl AA, Heimesaat MM, Esser C, Im SH, Radbruch A, Rutz S, Scheffold A. Role of Blimp-1 in programing Th effector cells into IL-10 producers. ACTA ACUST UNITED AC 2014; 211:1807-19. [PMID: 25073792 PMCID: PMC4144744 DOI: 10.1084/jem.20131548] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The transcriptional regulator Blimp-1 is absolutely required for IL-10 production in Th1 cells and limits inflammatory effector T cell responses downstream of IL-12 and IL-27. Secretion of the immunosuppressive cytokine interleukin (IL) 10 by effector T cells is an essential mechanism of self-limitation during infection. However, the transcriptional regulation of IL-10 expression in proinflammatory T helper (Th) 1 cells is insufficiently understood. We report a crucial role for the transcriptional regulator Blimp-1, induced by IL-12 in a STAT4-dependent manner, in controlling IL-10 expression in Th1 cells. Blimp-1 deficiency led to excessive inflammation during Toxoplasma gondii infection with increased mortality. IL-10 production from Th1 cells was strictly dependent on Blimp-1 but was further enhanced by the synergistic function of c-Maf, a transcriptional regulator of IL-10 induced by multiple factors, such as the Notch pathway. We found Blimp-1 expression, which was also broadly induced by IL-27 in effector T cells, to be antagonized by transforming growth factor (TGF) β. While effectively blocking IL-10 production from Th1 cells, TGF-β shifted IL-10 regulation from a Blimp-1–dependent to a Blimp-1–independent pathway in IL-27–induced Tr1 (T regulatory 1) cells. Our findings further illustrate how IL-10 regulation in Th cells relies on several transcriptional programs that integrate various signals from the environment to fine-tune expression of this critical immunosuppressive cytokine.
Collapse
Affiliation(s)
- Christian Neumann
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Frederik Heinrich
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany
| | - Katrin Neumann
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Victoria Junghans
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Mir-Farzin Mashreghi
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany
| | - Jonas Ahlers
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Marko Janke
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany
| | - Christine Rudolph
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | | | - Anja A Kühl
- Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Markus M Heimesaat
- Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Sin-Hyeog Im
- Academy of Immunology and Microbiology (AIM), Institute for Basic Science (IBS) Pohang, Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Andreas Radbruch
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany
| | - Sascha Rutz
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany
| | - Alexander Scheffold
- German Rheumatism Research Centre Berlin, an Institute of the Leibniz-Association, 10117 Berlin, Germany Department of Rheumatology and Clinical Immunology, Medical Clinic I, Gastroenterology, and Department of Microbiology and Hygiene, Charité University Hospital, 10117 Berlin, Germany
| |
Collapse
|
132
|
Hosking MP, Flynn CT, Whitton JL. Antigen-specific naive CD8+ T cells produce a single pulse of IFN-γ in vivo within hours of infection, but without antiviral effect. THE JOURNAL OF IMMUNOLOGY 2014; 193:1873-85. [PMID: 25015828 DOI: 10.4049/jimmunol.1400348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.
Collapse
Affiliation(s)
- Martin P Hosking
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Claudia T Flynn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - J Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
133
|
Stelekati E, Shin H, Doering TA, Dolfi DV, Ziegler CG, Beiting DP, Dawson L, Liboon J, Wolski D, Ali MAA, Katsikis PD, Shen H, Roos DS, Haining WN, Lauer GM, Wherry EJ. Bystander chronic infection negatively impacts development of CD8(+) T cell memory. Immunity 2014; 40:801-13. [PMID: 24837104 DOI: 10.1016/j.immuni.2014.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Epidemiological evidence suggests that chronic infections impair immune responses to unrelated pathogens and vaccines. The underlying mechanisms, however, are unclear and distinguishing effects on priming versus development of immunological memory has been challenging. We investigated whether bystander chronic infections impact differentiation of memory CD8(+) T cells, the hallmark of protective immunity against intracellular pathogens. Chronic bystander infections impaired development of memory CD8(+) T cells in several mouse models and humans. These effects were independent of initial priming and were associated with chronic inflammatory signatures. Chronic inflammation negatively impacted the number of bystander CD8(+) T cells and their memory development. Distinct underlying mechanisms of altered survival and differentiation were revealed with the latter regulated by the transcription factors T-bet and Blimp-1. Thus, exposure to prolonged bystander inflammation impairs the effector to memory transition. These data have relevance for immunity and vaccination during persisting infections and chronic inflammation.
Collapse
Affiliation(s)
- Erietta Stelekati
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Haina Shin
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Travis A Doering
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Douglas V Dolfi
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Carly G Ziegler
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Daniel P Beiting
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lucas Dawson
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Jennifer Liboon
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - David Wolski
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mohammed-Alkhatim A Ali
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - Peter D Katsikis
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA; Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
134
|
Kidzeru EB, Hesseling AC, Passmore JAS, Myer L, Gamieldien H, Tchakoute CT, Gray CM, Sodora DL, Jaspan HB. In-utero exposure to maternal HIV infection alters T-cell immune responses to vaccination in HIV-uninfected infants. AIDS 2014; 28:1421-30. [PMID: 24785950 PMCID: PMC4333196 DOI: 10.1097/qad.0000000000000292] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In sub-Saharan Africa, HIV-exposed uninfected (HEU) infants have higher morbidity and mortality than HIV-unexposed infants. To evaluate whether immune dysfunction contributes to this vulnerability of HEU infants, we conducted a longitudinal, observational cohort study to assess T-cell immune responses to infant vaccines (Mycobacterium bovis BCG and acellular pertussis) and staphylococcal enterotoxin B (SEB). In total, 46 HEU and 46 HIV-unexposed infants were recruited from Khayelitsha, Cape Town. METHODS Vaccine-specific T-cell proliferation (Ki67 expression) and intracellular expression of four cytokines [interferon-γ, interleukin (IL)-2, IL-13 and IL-17] were measured after whole blood stimulation with antigens at 6 and 14 weeks of age. RESULTS HEU infants demonstrated elevated BCG-specific CD4 and CD8 T-cell proliferative responses at 14 weeks (P = 0.041 and 0.002, respectively). These responses were significantly increased even after adjusting for birth weight, feeding mode and gestational age. Similar to BCG, increased CD4 and CD8 T-cell proliferation was evident in response to SEB stimulation (P = 0.004 and 0.002, respectively), although pertussis-specific T cells proliferated comparably between the two groups. Within HEU infants, maternal CD4 cell count and length of antenatal antiretroviral exposure had no effect on T-cell proliferation to BCG or SEB. HIV exposure significantly diminished measurable cytokine polyfunctionality in response to BCG, Bordetella pertussis and SEB stimulation. CONCLUSION These data show for the first time, when adjusting for confounders, that exposure to HIV in utero is associated with significant alterations to CD4 and CD8T-cell immune responses in infants to vaccines and nonspecific antigens.
Collapse
Affiliation(s)
- Elvis B. Kidzeru
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
| | - Anneke C. Hesseling
- Desmond Tutu TB Centre, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow
| | - Jo-Ann S. Passmore
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
- National Health Laboratory Services, South Africa
| | - Landon Myer
- Division of Epidemiology & Biostatistics, School of Public Health & Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Hoyam Gamieldien
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- Division of Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| | | | - Clive M. Gray
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- National Health Laboratory Services, South Africa
| | | | - Heather B. Jaspan
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town
- Seattle Biomedical Research Institute, Seattle, Washington, USA
| |
Collapse
|
135
|
Khaiboullina SF, Martynova EV, Khamidullina ZL, Lapteva EV, Nikolaeva IV, Anokhin VV, Lombardi VC, Rizvanov AA. Upregulation of IFN-γ and IL-12 is associated with a milder form of hantavirus hemorrhagic fever with renal syndrome. Eur J Clin Microbiol Infect Dis 2014; 33:2149-56. [PMID: 24942310 DOI: 10.1007/s10096-014-2176-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/29/2014] [Indexed: 01/19/2023]
Abstract
Hantavirus hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease characterized by acute onset, fever, malaise, and back pain. As the disease progresses, hemorrhagic disturbances and kidney dysfunctions predominate. The examination of tissue collected postmortem supports the premise that virus replication is not responsible for this pathology; therefore, it is widely believed that virus-induced immune responses lead to the clinical manifestations associated with HFRS. The overproduction of inflammatory cytokines is commonly reported in subjects with HFRS and has given rise to the hypothesis that a so-called "cytokine storm" may play a pivotal role in the pathogenesis of this disease. Currently, supportive care remains the only effective treatment for HFRS. Our data show that serum levels of interferon (IFN)-γ, interleukin (IL)-10, CCL2, and IL-12 are upregulated in HFRS cases when compared to healthy controls and the level of upregulation is dependent on the phase and severity of the disease. Furthermore, we observed an association between the mild form of the disease and elevated serum levels of IFN-γ and IL-12. Collectively, these observations suggest that the administration of exogenous IFN-γ and IL-12 may provide antiviral benefits for the treatment of HFRS and, thus, warrants further investigations.
Collapse
Affiliation(s)
- S F Khaiboullina
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, WPI, 1664 N. Virginia St., MS 0552, Reno, NV, 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|
136
|
STAT4 deficiency fails to induce lung Th2 or Th17 immunity following primary or secondary respiratory syncytial virus (RSV) challenge but enhances the lung RSV-specific CD8+ T cell immune response to secondary challenge. J Virol 2014; 88:9655-72. [PMID: 24920804 DOI: 10.1128/jvi.03299-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Immune-mediated lung injury is a hallmark of lower respiratory tract illness caused by respiratory syncytial virus (RSV). STAT4 plays a critical role in CD4+ Th1 lineage differentiation and gamma interferon (IFN-γ) protein expression by CD4+ T cells. As CD4+ Th1 differentiation is associated with negative regulation of CD4+ Th2 and Th17 differentiation, we hypothesized that RSV infection of STAT4-/- mice would result in enhanced lung Th2 and Th17 inflammation and impaired lung Th1 inflammation compared to wild-type (WT) mice. We performed primary and secondary RSV challenges in WT and STAT4-/- mice and used STAT1-/- mice as a positive control for the development of RSV-specific lung Th2 and Th17 inflammation during primary challenge. Primary RSV challenge of STAT4-/- mice resulted in decreased T-bet and IFN-γ expression levels in CD4+ T cells compared to those of WT mice. Lung Th2 and Th17 inflammation did not develop in primary RSV-challenged STAT4-/- mice. Decreased IFN-γ expression by NK cells, CD4+ T cells, and CD8+ T cells was associated with attenuated weight loss and enhanced viral clearance with primary challenge in STAT4-/- mice compared to WT mice. Following secondary challenge, WT and STAT4-/- mice also did not develop lung Th2 or Th17 inflammation. In contrast to primary challenge, secondary RSV challenge of STAT4-/- mice resulted in enhanced weight loss, an increased lung IFN-γ expression level, and an increased lung RSV-specific CD8+ T cell response compared to those of WT mice. These data demonstrate that STAT4 regulates the RSV-specific CD8+ T cell response to secondary infection but does not independently regulate lung Th2 or Th17 immune responses to RSV challenge. IMPORTANCE STAT4 is a protein critical for both innate and adaptive immune responses to viral infection. Our results show that STAT4 regulates the immune response to primary and secondary challenge with RSV but does not restrain RSV-induced lung Th2 or Th17 immune responses. These findings suggest that STAT4 expression may influence lung immunity and severity of illness following primary and secondary RSV infections.
Collapse
|
137
|
Luetke-Eversloh M, Cicek BB, Siracusa F, Thom JT, Hamann A, Frischbutter S, Baumgrass R, Chang HD, Thiel A, Dong J, Romagnani C. NK cells gain higher IFN-γ competence during terminal differentiation. Eur J Immunol 2014; 44:2074-84. [DOI: 10.1002/eji.201344072] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 02/18/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Merlin Luetke-Eversloh
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Basak B. Cicek
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Francesco Siracusa
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Jenny T. Thom
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Alf Hamann
- Experimental Rheumatology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Stefan Frischbutter
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Ria Baumgrass
- Signal Transduction; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Hyun-Dong Chang
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging; Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine; Berlin Germany
| | - Jun Dong
- Cell Biology; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| | - Chiara Romagnani
- Innate Immunity; Deutsches Rheuma-Forschungszentrum, A Leibniz Institute; Berlin Germany
| |
Collapse
|
138
|
Wachowicz K, Hermann-Kleiter N, Meisel M, Siegmund K, Thuille N, Baier G. Protein kinase C θ regulates the phenotype of murine CD4+ Th17 cells. PLoS One 2014; 9:e96401. [PMID: 24788550 PMCID: PMC4008503 DOI: 10.1371/journal.pone.0096401] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/06/2014] [Indexed: 02/07/2023] Open
Abstract
Protein kinase C θ (PKCθ) is involved in signaling downstream of the T cell antigen receptor (TCR) and is important for shaping effector T cell functions and inflammatory disease development. Acquisition of Th1-like effector features by Th17 cells has been linked to increased pathogenic potential. However, the molecular mechanisms underlying Th17/Th1 phenotypic instability remain largely unknown. In the current study, we address the role of PKCθ in differentiation and function of Th17 cells by using genetic knock-out mice. Implementing in vitro (polarizing T cell cultures) and in vivo (experimental autoimmune encephalomyelitis model, EAE) techniques, we demonstrated that PKCθ-deficient CD4+ T cells show normal Th17 marker gene expression (interleukin 17A/F, RORγt), accompanied by enhanced production of the Th1-typical markers such as interferon gamma (IFN-γ) and transcription factor T-bet. Mechanistically, this phenotype was linked to aberrantly elevated Stat4 mRNA levels in PKCθ−/− CD4+ T cells during the priming phase of Th17 differentiation. In contrast, transcription of the Stat4 gene was suppressed in Th17-primed wild-type cells. This change in cellular effector phenotype was reflected in vivo by prolonged neurological impairment of PKCθ-deficient mice during the course of EAE. Taken together, our data provide genetic evidence that PKCθ is critical for stabilizing Th17 cell phenotype by selective suppression of the STAT4/IFN-γ/T-bet axis at the onset of differentiation.
Collapse
Affiliation(s)
- Katarzyna Wachowicz
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Marlies Meisel
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Kerstin Siegmund
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Nikolaus Thuille
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
139
|
Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y, Zang G. Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. J Transl Med 2014; 94:478-90. [PMID: 24614195 DOI: 10.1038/labinvest.2014.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/23/2013] [Accepted: 12/23/2013] [Indexed: 01/16/2023] Open
Abstract
HBV-specific cytotoxic T-lymphocyte (CTL) activity has a very important role in hepatitis B virus clearance. Present studies suggest that Tapasin, a endoplasmic reticulum (ER) chaperone, stabilizes the peptide-receptive MHC I conformation, allowing peptide exchange and increasing more peptides to be translocated into the ER. We have previously testified that cytoplasmic transduction peptide (CTP)-HBcAg(18-27)-Tapasin fusion protein could enter cytoplasm of dendritic cells, and enhance T cells' response to generate specific CTLs efficiently in vitro. In the present study, we evaluated specific immune responses of CTP-HBcAg(18-27)-Tapasin fusion protein in HLA-A2 transgenic mice (H-2K(b)) and anti-viral ability in HBV transgenic mice, and explored the mechanisms probably involved in. The studies showed that CTP-HBcAg(18-27)-Tapasin not only increased production of cytokine IFN-γ and interleukin-2 (IL-2), compared with CTP-HBcAg(18-27), HBcAg(18-27)-Tapasin, and PBS, but also significantly induced the higher percentages of IFN-γ+CD8(+) T cells and specific CTL responses in HLA-A2 transgenic mice. Moreover, enhancement of specific CTL activity induced by the fusion protein reduced HBV DNA and hepatitis B surface antigen (HBsAg) levels and decreased the expression of HBsAg and hepatitis B core antigen (HBcAg) in liver tissue of HBV transgenic mice. In addition, CTP-HBcAg(18-27)-Tapasin could upregulate the expression of JAK2, Tyk2, STAT1, and STAT4 in T lymphocytes in HLA-A2 transgenic mice splenocytes. However, there was no significant difference on the expressions of JAK1, JAK3, and STAT6 between each group. In conclusion, CTP-HBcAg(18-27)-Tapasin fusion protein could enhance not only the percentages of CTLs but also induce robust specific CTL activity and inhibits hepatitis B virus replication in vivo, which was associated with activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
140
|
Tkach KE, Barik D, Voisinne G, Malandro N, Hathorn MM, Cotari JW, Vogel R, Merghoub T, Wolchok J, Krichevsky O, Altan-Bonnet G. T cells translate individual, quantal activation into collective, analog cytokine responses via time-integrated feedbacks. eLife 2014; 3:e01944. [PMID: 24719192 PMCID: PMC3980879 DOI: 10.7554/elife.01944] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Variability within isogenic T cell populations yields heterogeneous ‘local’ signaling responses to shared antigenic stimuli, but responding clones may communicate ‘global’ antigen load through paracrine messengers, such as cytokines. Such coordination of individual cell responses within multicellular populations is critical for accurate collective reactions to shared environmental cues. However, cytokine production may saturate as a function of antigen input, or be dominated by the precursor frequency of antigen-specific T cells. Surprisingly, we found that T cells scale their collective output of IL-2 to total antigen input over a large dynamic range, independently of population size. Through experimental quantitation and computational modeling, we demonstrate that this scaling is enforced by an inhibitory cross-talk between antigen and IL-2 signaling, and a nonlinear acceleration of IL-2 secretion per cell. Our study reveals how time-integration of these regulatory loops within individual cell signaling generates scaled collective responses and can be leveraged for immune monitoring. DOI:http://dx.doi.org/10.7554/eLife.01944.001 The cells of the immune system face the challenge of removing viruses and other pathogens without endangering healthy tissues. Cells called T cells plays a variety of roles in the immune response: some T cells directly destroy infected cells, some recruit other cells called phagocytes to the site of infection, and some release small proteins called cytokines. These cytokines help cells to communicate with other cells and, therefore, to tailor the overall immune responses to deal with a particular pathogen. It is known that mammals are capable of adjusting the T cell response to match the overall severity of an infection. However, it is not clear how individual T cells coordinate their seemingly binary response—they are either activated when they recognize a pathogen, or they are not activated—into a response at the collective cell level that can be varied continuously over a wide range of values. Here, Tkach et al. show that T cell populations match their production of the cytokine interleukin 2 (IL-2) to the abundance of antigens—molecules released by the pathogen—over an unexpectedly large range of concentrations. Through a combination of experimental and computational analyses, Tkach et al. identified two novel IL-2 feedback loops that help to generate the correct quantity of cytokine, irrespective of the total number of T cells. Furthermore, this model can be used to estimate antigen quantities within diseased tissues. The work of Tkach et al. illustrates the potential of feedback integration in cell signalling and gene regulation as a mechanism to allow cellular populations to respond to environmental stimuli in a graded, collective fashion. DOI:http://dx.doi.org/10.7554/eLife.01944.002
Collapse
Affiliation(s)
- Karen E Tkach
- Program in Computational Biology and Immunology, Memorial Sloan Kettering Cancer Center, New York, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Strutt TM, McKinstry KK, Marshall NB, Vong AM, Dutton RW, Swain SL. Multipronged CD4(+) T-cell effector and memory responses cooperate to provide potent immunity against respiratory virus. Immunol Rev 2014; 255:149-64. [PMID: 23947353 DOI: 10.1111/imr.12088] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decade, the known spectrum of CD4(+) T-cell effector subsets has become much broader, and it has become clear that there are multiple dimensions by which subsets with a particular cytokine commitment can be further defined, including their stage of differentiation, their location, and, most importantly, their ability to carry out discrete functions. Here, we focus on our studies that highlight the synergy among discrete subsets, especially those defined by helper and cytotoxic function, in mediating viral protection, and on distinctions between CD4(+) T-cell effectors located in spleen, draining lymph node, and in tissue sites of infection. What emerges is a surprising multiplicity of CD4(+) T-cell functions that indicate a large arsenal of mechanisms by which CD4(+) T cells act to combat viruses.
Collapse
Affiliation(s)
- Tara M Strutt
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
CD4(+) T cells are key cells of the adaptive immune system that use T cell antigen receptors to recognize peptides that are generated in endosomes or phagosomes and displayed on the host cell surface bound to major histocompatibility complex molecules. These T cells participate in immune responses that protect hosts from microbes such as Mycobacterium tuberculosis, Cryptococcus neoformans, Leishmania major, and Salmonella enterica, which have evolved to live in the phagosomes of macrophages and dendritic cells. Here, we review studies indicating that CD4(+) T cells control phagosomal infections asymptomatically in most individuals by secreting cytokines that activate the microbicidal activities of infected phagocytes but in a way that inhibits the pathogen but does not eliminate it. Indeed, we make the case that localized, controlled, persistent infection is necessary to maintain large numbers of CD4(+) effector T cells in a state of activation needed to eradicate systemic and more pathogenic forms of the infection. Finally, we posit that current vaccines for phagosomal infections fail because they do not produce this "periodic reminder" form of CD4(+) T cell-mediated immune control.
Collapse
|
143
|
Tang Y, Chen X, Zhang Y, Tang Z, Zhuo M, Li D, Wang P, Zang G, Yu Y. Fusion protein of tapasin and hepatitis B core antigen 18‑27 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice. Mol Med Rep 2014; 9:1171-8. [PMID: 24535102 DOI: 10.3892/mmr.2014.1947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 01/31/2014] [Indexed: 11/06/2022] Open
Abstract
Persistent hepatitis B virus (HBV) infection is characterized by a weak adaptive immune response, which is considered to be due to an imbalance of T helper cell types 1 and 2 (Th1/Th2). Suppressors of cytokine signaling (SOCS) family members, particularly SOCS1 and SOCS3, have been demonstrated to be important in the regulation of T cell differentiation. Previous studies by our group showed that the expressed and purified fusion protein of cytoplasmic transduction peptide (CTP) and HBV core antigen 18‑27 (HBcAg18‑27)‑tapasin was able to enter the cytoplasm of bone marrow‑derived dendritic cells (BMDCs), promoting the maturation of BMDCs and efficiently enhancing T cell immune responses in vitro. In the present study, HBcAg‑specific immune responses induced by CTP‑HBcAg18‑27‑tapasin in HBV were assessed in transgenic mice, and SOCS1 and SOCS3 were identified as negative regulators of this response. The Th1/Th2 cytokine ratio was analyzed by ELISA. The expression of T cell‑specific T‑box transcription factor (T‑bet) and GATA‑binding protein 3 (GATA‑3), SOCS1 and SOCS3 were detected by real‑time quantitative polymerase chain reaction and western blot analysis. The results demonstrated that CTP‑HBcAg18‑27‑tapasin significantly increased the Th1/Th2 cytokine ratio in HBV transgenic mice. CTP‑HBcAg18‑27‑tapasin immunization more efficiently suppressed the expression of serum hepatitis B surface antigen (HBsAg), HBV DNA as well as liver HBsAg and HBcAg in HBV transgenic mice. Furthermore, CTP‑HBcAg18‑27‑tapasin promotes T‑bet but reduces GATA‑3 expression. In addition, the expression of SOCS1 and SOCS3 was significantly downregulated in the CTP‑HBcAg18‑27‑tapasin group compared with the control groups. In conclusion, the present study demonstrated that CTP‑HBcAg18‑27‑tapasin enhanced the Th1/Th2 cytokine ratio and antiviral immunity by suppressing SOCS1/3 in HBV transgenic mice.
Collapse
Affiliation(s)
- Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yi Zhang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Dan Li
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Peng Wang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
144
|
Edwards ESJ, Smith C, Khanna R. Phenotypic and transcriptional profile correlates with functional plasticity of antigen-specific CD4+ T cells. Immunol Cell Biol 2013; 92:181-90. [PMID: 24296812 DOI: 10.1038/icb.2013.88] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/11/2022]
Abstract
The role of CD4(+) T cells in the control of infectious pathogens is highly complex with a myriad of functions but how these T cells acquire differential functional potentiality remains poorly defined. Here we show that human cytomegalovirus (CMV)-specific CD4(+) T cells directed towards different viral antigens expressed predominantly TNF-α alone or TNF-α and IFN-γ. TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of T-box transcription factors T-bet with graded loss of Eomesodermin (Eomes) expression (T-bet(Hi)Eomes(Hi/Lo)) when compared with TNF-α(+) CD4(+) T cells expressing lower levels of both T-bet and Eomes (T-bet(-)Eomes(-)). Furthermore, TNF-α(+) and IFN-γ(+) CD4(+) T cells expressed significantly higher levels of perforin and interleukin (IL)-2 and displayed a terminally differentiated phenotype (CCR7(-)CD27(-)CD45RA(-)CD57(+)CD62L(-)). In contrast, TNF-α(+) alone CMV-specific CD4(+) T cells were predominantly early-memory phenotype with a proportion of these cells displaying T memory stem-cell phenotype (CD95(+)CD45RA(+)CCR7(+)CD27(+)). In vitro stimulation of CMV-specific CD4(+) T cells with viral antigen in the presence of IL-12 was sufficient to dramatically change the transcriptional and functional profile of TNF-α(+) CD4(+) T cells, whereas TNF-α(+) and IFN-γ(+) CD4(+) T cells remained unaltered. These findings illustrate an intrinsic link between cytokine expression, transcriptional regulation and cellular differentiation, and their impact on functional plasticity of virus-specific CD4(+) T cells.
Collapse
Affiliation(s)
- Emily S J Edwards
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Corey Smith
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| |
Collapse
|
145
|
Mollo SB, Ingram JT, Kress RL, Zajac AJ, Harrington LE. Virus-specific CD4 and CD8 T cell responses in the absence of Th1-associated transcription factors. J Leukoc Biol 2013; 95:705-713. [PMID: 24231259 DOI: 10.1189/jlb.0813429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/25/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Effector and memory CD4 and CD8 T cell responses are critical for the control of many intracellular pathogens. The development of these populations is governed by transcription factors that molecularly control their differentiation, function, and maintenance. Two transcription factors known to be involved in these processes are Tbet and STAT4. Although Tbet has been shown to regulate CD8 T cell fate decisions and effector CD4 T cell choices, the contribution of STAT4 is less well understood. To address this, we examined the impact of STAT4 on T cell responses in the presence or absence of Tbet, following LCMV infection by using mice lacking Tbet, STAT4, or both transcription factors. STAT4 was not required for Tbet or Eomes expression; however, virus-specific effector CD8 T cells are skewed toward a memory-precursor phenotype in the absence of STAT4. This altered proportion of memory precursors did not result in an increase in memory CD8 T cells after the resolution of the infection. We also demonstrate that virus-specific effector and memory CD4 T cells formed independently of Tbet and STAT4, although a slight reduction in the number of antigen-specific CD4 T cells was apparent in mice lacking both transcription factors. Collectively, we have discovered distinct roles for Tbet and STAT4 in shaping the phenotype and function of virus-specific T cell responses.
Collapse
Affiliation(s)
- Sarah B Mollo
- Departments of Cell, Developmental, and Integrative Biology
| | - Jennifer T Ingram
- Biology, and.,Microbiology, University of Alabama at Birmingham, Alabama, USA
| | - Robert L Kress
- Departments of Cell, Developmental, and Integrative Biology
| | - Allan J Zajac
- Microbiology, University of Alabama at Birmingham, Alabama, USA
| | | |
Collapse
|
146
|
Bailis W, Yashiro-Ohtani Y, Fang TC, Hatton RD, Weaver CT, Artis D, Pear WS. Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 2013; 39:148-59. [PMID: 23890069 DOI: 10.1016/j.immuni.2013.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
Two models are proposed to explain Notch function during helper T (Th) cell differentiation. One argues that Notch instructs one Th cell fate over the other, whereas the other posits that Notch function is dictated by cytokines. Here we provide a detailed mechanistic study investigating the role of Notch in orchestrating Th cell differentiation. Notch neither instructed Th cell differentiation nor did cytokines direct Notch activity, but instead, Notch simultaneously regulated the Th1, Th2, and Th17 cell genetic programs independently of cytokine signals. In addition to regulating these programs in both polarized and nonpolarized Th cells, we identified Ifng as a direct Notch target. Notch bound the Ifng CNS-22 enhancer, where it synergized with Tbet at the promoter. Thus, Notch acts as an unbiased amplifier of Th cell differentiation. Our data provide a paradigm for Notch in hematopoiesis, with Notch simultaneously orchestrating multiple lineage programs, rather than restricting alternate outcomes.
Collapse
Affiliation(s)
- Will Bailis
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Prostaglandin E₂ promotes Th1 differentiation via synergistic amplification of IL-12 signalling by cAMP and PI3-kinase. Nat Commun 2013; 4:1685. [PMID: 23575689 PMCID: PMC3644078 DOI: 10.1038/ncomms2684] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 02/28/2013] [Indexed: 01/08/2023] Open
Abstract
T helper 1 (Th1) cells have critical roles in various autoimmune and proinflammatory diseases. cAMP has long been believed to act as a suppressor of IFN-γ production and Th1 cell-mediated immune inflammation. Here we show that cAMP actively promotes Th1 differentiation by inducing gene expression of cytokine receptors involved in this process. PGE2 signalling through EP2/EP4 receptors mobilizes the cAMP-PKA pathway, which induces CREB- and its co-activator CRTC2-mediated transcription of IL-12Rβ2 and IFN-γR1. Meanwhile, cAMP-mediated suppression of T-cell receptor signalling is overcome by simultaneous activation of PI3-kinase through EP2/EP4 and/or CD28. Loss of EP4 in T cells restricts expression of IL-12Rβ2 and IFN-γR1, and attenuates Th1 cell-mediated inflammation in vivo. These findings clarify the molecular mechanisms and pathological contexts of cAMP-mediated Th1 differentiation and have clinical and therapeutic implications for deployment of cAMP modulators as immunoregulatory drugs.
Collapse
|
148
|
Priming of T follicular helper cells by dendritic cells. Immunol Cell Biol 2013; 92:22-7. [PMID: 24145854 DOI: 10.1038/icb.2013.62] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/14/2013] [Accepted: 09/15/2013] [Indexed: 02/06/2023]
Abstract
T follicular helper cells (Tfh) are required to generate long-lived antibody responses, which confer long-term protection to pathogens following vaccination or infection. Despite significant advances in the field, however, little is known about the early steps that drive Tfh cell differentiation. In this review, we will discuss the mechanisms by which dendritic cells promote the initial commitment of activated CD4(+) T cells to the Tfh cell differentiation pathway.
Collapse
|
149
|
Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 2013; 13:777-89. [PMID: 24113868 DOI: 10.1038/nri3536] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Originally described over a decade ago as a T cell transcription factor regulating T helper 1 cell lineage commitment, T-bet is now recognized as having an important role in many cells of the adaptive and innate immune system. T-bet has a fundamental role in coordinating type 1 immune responses by controlling a network of genetic programmes that regulate the development of certain immune cells and the effector functions of others. Many of these transcriptional networks are conserved across innate and adaptive immune cells and these shared mechanisms highlight the biological functions that are regulated by T-bet.
Collapse
Affiliation(s)
- Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
150
|
Kugler DG, Mittelstadt PR, Ashwell JD, Sher A, Jankovic D. CD4+ T cells are trigger and target of the glucocorticoid response that prevents lethal immunopathology in toxoplasma infection. ACTA ACUST UNITED AC 2013; 210:1919-27. [PMID: 23980098 PMCID: PMC3782051 DOI: 10.1084/jem.20122300] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD4+ T cells regulate their own activity during toxoplasma infection by driving a glucocorticoid response, which results in feedback inhibition of Th1 cytokine production. Synthetic glucocorticoids (GCs) are commonly used in the treatment of inflammatory diseases, but the role of endogenous GCs in the regulation of host-protective immune responses is poorly understood. Here we show that GCs are induced during acute Toxoplasma gondii infection and directly control the T cell response to the parasite. When infected with toxoplasma, mice that selectively lack GC receptor (GR) expression in T cells (GRlck-Cre) rapidly succumb to infection despite displaying parasite burdens indistinguishable from control animals and unaltered levels of the innate cytokines IL-12 and IL-27. Mortality in the GRlck-Cre mice was associated with immunopathology and hyperactive Th1 cell function as revealed by enhanced IFN-γ and TNF production in vivo. Unexpectedly, these CD4+ T lymphocytes also overexpressed IL-10. Importantly, CD4+ T cell depletion in wild-type or GRlck-Cre mice led to ablation of the GC response to infection. Moreover, in toxoplasma-infected RAG−/− animals, adoptive transfer of CD4+ T lymphocytes was required for GC induction. These findings establish a novel IL-10–independent immunomodulatory circuit in which CD4+ T cells trigger a GC response that in turn dampens their own effector function. In the case of T. gondii infection, this self-regulatory pathway is critical for preventing collateral tissue damage and promoting host survival.
Collapse
Affiliation(s)
- David G Kugler
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases; 2 Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute; and 3 The Johns Hopkins University/National Institutes of Health Graduate Partnership Program; National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|