101
|
Rabinovich OF, Babichenko II, Abramova ES. [Immunomorphology of bullous lesions of the oral mucosa]. STOMATOLOGII︠A︡ 2020; 99:18-21. [PMID: 32608943 DOI: 10.17116/stomat20209903118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article is devoted to the study of immunohistochemical parameters in patients with bullous lesions of the oral mucosa. The biopsy samples of the oral mucosa were studied in 57 patients, including patients with pemphigoid bullosa (38 people) and pemphigus vulgaris (19 people). The results of immunohistochemical studies indicate the cellular mechanisms of damage to the epithelium, in which IL-1, IL-6 and HPV16 are involved.
Collapse
Affiliation(s)
- O F Rabinovich
- National Medical Research Center of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - I I Babichenko
- National Medical Research Center of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - E S Abramova
- National Medical Research Center of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
102
|
Konieczny P, Naik S. Warp Speed Ahead! Technology-Driven Breakthroughs in Skin Immunity and Inflammatory Disease. J Invest Dermatol 2020; 141:15-18. [PMID: 32533963 DOI: 10.1016/j.jid.2020.05.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022]
Abstract
The skin's physical barrier is reinforced by an arsenal of immune cells that actively patrol the tissue and respond swiftly to penetrating microbes, noxious agents, and injurious stimuli. When unchecked, these same immune cells drive diseases such as psoriasis, atopic dermatitis, and alopecia. Rapidly advancing microscopy, animal modeling, and genomic and computational technologies have illuminated the complexity of the cutaneous immune cells and their functions in maintaining skin health and driving diseases. Here, we discuss the recent technology-driven breakthroughs that have transformed our understanding of skin immunity and highlight burgeoning areas that hold great promise for future discoveries.
Collapse
Affiliation(s)
- Piotr Konieczny
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Shruti Naik
- Department of Pathology, Department of Medicine, and Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
103
|
Joshi N, Pohlmeier L, Ben-Yehuda Greenwald M, Haertel E, Hiebert P, Kopf M, Werner S. Comprehensive characterization of myeloid cells during wound healing in healthy and healing-impaired diabetic mice. Eur J Immunol 2020; 50:1335-1349. [PMID: 32306381 PMCID: PMC7496577 DOI: 10.1002/eji.201948438] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 01/13/2023]
Abstract
Wound healing involves the concerted action of various lymphoid and in particular myeloid cell populations. To characterize and quantitate different types of myeloid cells and to obtain information on their kinetics during wound healing, we performed multiparametric flow cytometry analysis. In healthy mice, neutrophil numbers increased early after injury and returned to near basal levels after completion of healing. Macrophages, monocyte‐derived dendritic cells (DCs), and eosinophils were abundant throughout the healing phase, in particular in early wounds, and Langerhans cells increased after wounding and remained elevated after epithelial closure. Major differences in healing‐impaired diabetic mice were a much higher percentage of immune cells in late wounds, mainly as a result of neutrophil, macrophage, and monocyte persistence; reduced numbers and percentages of macrophages and monocyte‐derived DCs in early wounds; and of Langerhans cells, conventional DCs, and eosinophils throughout the healing process. Finally, unbiased cluster analysis (PhenoGraph) identified a large number of different clusters of myeloid cells in skin wounds. These results provide insight into myeloid cell diversity and dynamics during wound repair and highlight the abnormal inflammatory response associated with impaired healing.
Collapse
Affiliation(s)
- Natasha Joshi
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Eric Haertel
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Paul Hiebert
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
104
|
Adam L, Tchitchek N, Todorova B, Rosenbaum P, Joly C, Poux C, Chapon C, Spetz AL, Ustav M, Le Grand R, Martinon F. Innate Molecular and Cellular Signature in the Skin Preceding Long-Lasting T Cell Responses after Electroporated DNA Vaccination. THE JOURNAL OF IMMUNOLOGY 2020; 204:3375-3388. [PMID: 32385135 DOI: 10.4049/jimmunol.1900517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
Abstract
DNA vaccines delivered with electroporation (EP) have shown promising results in preclinical models and are evaluated in clinical trials. In this study, we aim to characterize early mechanisms occurring in the skin after intradermal injection and EP of the auxoGTUmultiSIV DNA vaccine in nonhuman primates. First, we show that EP acts as an adjuvant by enhancing local inflammation, notably via granulocytes, monocytes/macrophages, and CD1aint-expressing cell recruitment. EP also induced Langerhans cell maturation, illustrated by CD86, CD83, and HLA-DR upregulation and their migration out of the epidermis. Second, we demonstrate the crucial role of the DNA vaccine in soluble factors release, such as MCP-1 or IL-15. Transcriptomic analysis showed that EP played a major role in gene expression changes postvaccination. However, the DNA vaccine is required to strongly upregulate several genes involved in inflammatory responses (e.g., Saa4), cell migration (e.g., Ccl3, Ccl5, or Cxcl10), APC activation (e.g., Cd86), and IFN-inducible genes (e.g., Ifit3, Ifit5, Irf7, Isg15, orMx1), illustrating an antiviral response signature. Also, AIM-2, a cytosolic DNA sensor, appeared to be strongly upregulated only in the presence of the DNA vaccine and trends to positively correlate with several IFN-inducible genes, suggesting the potential role of AIM-2 in vaccine sensing and the subsequent innate response activation leading to strong adaptive T cell responses. Overall, these results demonstrate that a combined stimulation of the immune response, in which EP and the auxoGTUmultiSIV vaccine triggered different components of the innate immunity, led to strong and persistent cellular recall responses.
Collapse
Affiliation(s)
- Lucille Adam
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Biliana Todorova
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Pierre Rosenbaum
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candie Joly
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Candice Poux
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Catherine Chapon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Anna-Lena Spetz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden; and
| | - Mart Ustav
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Roger Le Grand
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France
| | - Frédéric Martinon
- Immunology of Viral Infections and Autoimmune Diseases, Infectious Disease Models and Innovative Therapies Department, Commissariat à l'Energie Atomique et aux Energies Alternatives, Université Paris-Sud 11, INSERM U1184, 92265 Fontenay-aux-Roses, France;
| |
Collapse
|
105
|
Bukhari S, Mertz AF, Naik S. Eavesdropping on the conversation between immune cells and the skin epithelium. Int Immunol 2020; 31:415-422. [PMID: 30721971 DOI: 10.1093/intimm/dxy088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 11/12/2022] Open
Abstract
The skin epithelium covers our body and serves as a vital interface with the external environment. Here, we review the context-specific interactions between immune cells and the epithelium that underlie barrier fitness and function. We highlight the mechanisms by which these two systems engage each other and how immune-epithelial interactions are tuned by microbial and inflammatory stimuli. Epithelial homeostasis relies on a delicate balance of immune surveillance and tolerance, breakdown of which results in disease. In addition to their canonical immune functions, resident and recruited immune cells also supply the epithelium with instructive signals to promote repair. Decoding the dialogue between immunity and the epithelium therefore has great potential for boosting barrier function or mitigating inflammatory epithelial diseases.
Collapse
Affiliation(s)
- Shoiab Bukhari
- Department of Pathology, Department of Medicine and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| | - Aaron F Mertz
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Shruti Naik
- Department of Pathology, Department of Medicine and Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
106
|
Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered Monocyte and Langerhans Cell Innate Immunity in Patients With Recurrent Respiratory Papillomatosis (RRP). Front Immunol 2020; 11:336. [PMID: 32210959 PMCID: PMC7076114 DOI: 10.3389/fimmu.2020.00336] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.
Collapse
Affiliation(s)
- Mohd Israr
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - James A DeVoti
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fung Lam
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Allan L Abramson
- Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Bettie M Steinberg
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Vincent R Bonagura
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
107
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
108
|
Sirvent S, Vallejo AF, Davies J, Clayton K, Wu Z, Woo J, Riddell J, Chaudhri VK, Stumpf P, Nazlamova LA, Wheway G, Rose-Zerilli M, West J, Pujato M, Chen X, Woelk CH, MacArthur B, Ardern-Jones M, Friedmann PS, Weirauch MT, Singh H, Polak ME. Genomic programming of IRF4-expressing human Langerhans cells. Nat Commun 2020; 11:313. [PMID: 31949143 PMCID: PMC6965086 DOI: 10.1038/s41467-019-14125-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in skin, but the genomic states and transcription factors (TF) regulating these context-specific responses are unclear. Bulk and single-cell transcriptional profiling demonstrates that human migratory LCs are robustly programmed for MHC-I and MHC-II antigen presentation. Chromatin analysis reveals enrichment of ETS-IRF and AP1-IRF composite regulatory elements in antigen-presentation genes, coinciding with expression of the TFs, PU.1, IRF4 and BATF3 but not IRF8. Migration of LCs from the epidermis is accompanied by upregulation of IRF4, antigen processing components and co-stimulatory molecules. TNF stimulation augments LC cross-presentation while attenuating IRF4 expression. CRISPR-mediated editing reveals IRF4 to positively regulate the LC activation programme, but repress NF2EL2 and NF-kB pathway genes that promote responsiveness to oxidative stress and inflammatory cytokines. Thus, IRF4-dependent genomic programming of human migratory LCs appears to enable LC maturation while attenuating excessive inflammatory and immunogenic responses in the epidermis. Langerhans cells (LC) can prime tolerogenic as well as immunogenic responses in the skin. Here the authors show, by transcriptomic, epigenetic and CRISPR editing analyses, that during LC migration and maturation the transcription factor IRF4 regulates expression of antigen presentation and co-stimulatory gene modules while attenuating inflammatory response genes.
Collapse
Affiliation(s)
- Sofia Sirvent
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - James Davies
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Kalum Clayton
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Zhiguo Wu
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeongmin Woo
- Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea
| | - Jeremy Riddell
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Virendra K Chaudhri
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Patrick Stumpf
- Human Development and Health, Faculty of Medicine, University of Southampton, SO17 1BJ, Southampton, UK
| | - Liliya Angelova Nazlamova
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, SO17 1BJ, Southampton, UK
| | - Matthew Rose-Zerilli
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Jonathan West
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | | | - Ben MacArthur
- Cancer Sciences, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Michael Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Peter S Friedmann
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
| | - Harinder Singh
- Division of Immunobiology & Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA. .,Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK. .,Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| |
Collapse
|
109
|
Borek I, Köffel R, Feichtinger J, Spies M, Glitzner-Zeis E, Hochgerner M, Sconocchia T, Krump C, Tam-Amersdorfer C, Passegger C, Benezeder T, Tittes J, Redl A, Painsi C, Thallinger GG, Wolf P, Stary G, Sibilia M, Strobl H. BMP7 aberrantly induced in the psoriatic epidermis instructs inflammation-associated Langerhans cells. J Allergy Clin Immunol 2019; 145:1194-1207.e11. [PMID: 31870764 DOI: 10.1016/j.jaci.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/08/2019] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Epidermal hyperplasia represents a morphologic hallmark of psoriatic skin lesions. Langerhans cells (LCs) in the psoriatic epidermis engage with keratinocytes (KCs) in tight physical interactions; moreover, they induce T-cell-mediated immune responses critical to psoriasis. OBJECTIVE This study sought to improve the understanding of epidermal factors in psoriasis pathogenesis. METHODS BMP7-LCs versus TGF-β1-LCs were phenotypically characterized and their functional properties were analyzed using flow cytometry, cell kinetic studies, co-culture with CD4 T cells, and cytokine measurements. Furthermore, immunohistology of healthy and psoriatic skin was performed. Additionally, in vivo experiments with Junf/fJunBf/fK5cre-ERT mice were carried out to assess the role of bone morphogenetic protein (BMP) signaling in psoriatic skin inflammation. RESULTS This study identified a KC-derived signal (ie, BMP signaling) to promote epidermal changes in psoriasis. Whereas BMP7 is strictly confined to the basal KC layer in the healthy skin, it is expressed at high levels throughout the lesional psoriatic epidermis. BMP7 instructs precursor cells to differentiate into LCs that phenotypically resemble psoriatic LCs. These BMP7-LCs exhibit proliferative activity and increased sensitivity to bacterial stimulation. Moreover, aberrant high BMP signaling in the lesional epidermis is mediated by a KC intrinsic mechanism, as suggested from murine data and clinical outcome after topical antipsoriatic treatment in human patients. CONCLUSIONS These data indicate that available TGF-β family members within the lesional psoriatic epidermis preferentially signal through the canonical BMP signaling cascade to instruct inflammatory-type LCs and to promote psoriatic epidermal changes. Targeting BMP signaling might allow to therapeutically interfere with cutaneous psoriatic manifestations.
Collapse
Affiliation(s)
- Izabela Borek
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - René Köffel
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Melanie Spies
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Elisabeth Glitzner-Zeis
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Mathias Hochgerner
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Corinna Krump
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Christina Passegger
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Theresa Benezeder
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Julia Tittes
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna Redl
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Clemens Painsi
- Department of Dermatology, State Hospital Klagenfurt, Klagenfurt, Austria
| | - Gerhard G Thallinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria; Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Georg Stary
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Herbert Strobl
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
110
|
Chang C, Sun J, Hayashi H, Suzuki A, Sakaguchi Y, Miyazaki H, Nishikawa T, Nakagami H, Yamashita K, Kaneda Y. Stable Immune Response Induced by Intradermal DNA Vaccination by a Novel Needleless Pyro-Drive Jet Injector. AAPS PharmSciTech 2019; 21:19. [PMID: 31820256 PMCID: PMC6901418 DOI: 10.1208/s12249-019-1564-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022] Open
Abstract
DNA vaccination can be applied to the treatment of various infectious diseases and cancers; however, technical difficulties have hindered the development of an effective delivery method. The efficacy of a DNA vaccine depends on optimal antigen expression by the injected plasmid DNA. The pyro-drive jet injector (PJI) is a novel system that allows for adjustment of injection depth and may, thus, provide a targeted delivery approach for various therapeutic or preventative compounds. Herein, we investigated its potential for use in delivering DNA vaccines. This study evaluated the optimal ignition powder dosage, as well as its delivery effectiveness in both rat and mouse models, while comparing the results of the PJI with that of a needle syringe delivery system. We found that the PJI effectively delivered plasmid DNA to intradermal regions in both rats and mice. Further, it efficiently transfected plasmid DNA directly into the nuclei, resulting in higher protein expression than that achieved via needle syringe injection. Moreover, results from animal ovalbumin (OVA) antigen induction models revealed that animals receiving OVA expression plasmids (pOVA) via PJI exhibited dose-dependent (10 μg, 60 μg, and 120 μg) production of anti-OVA antibodies; while only low titers (< 1/100) of OVA antibodies were detected when 120 μg of pOVA was injected via needle syringe. Thus, PJI is an effective, novel method for delivery of plasmid DNA into epidermal and dermal cells suggesting its promise as a tool for DNA vaccination.
Collapse
|
111
|
Leech JM, Dhariwala MO, Lowe MM, Chu K, Merana GR, Cornuot C, Weckel A, Ma JM, Leitner EG, Gonzalez JR, Vasquez KS, Diep BA, Scharschmidt TC. Toxin-Triggered Interleukin-1 Receptor Signaling Enables Early-Life Discrimination of Pathogenic versus Commensal Skin Bacteria. Cell Host Microbe 2019; 26:795-809.e5. [PMID: 31784259 DOI: 10.1016/j.chom.2019.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/27/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window. Rather, neonatal colonization by Staphylococcus aureus minimally enriches for antigen-specific Tregs and does not prevent skin inflammation upon later-life exposure. S. aureus α-toxin contributes to this response by stimulating myeloid cell production of IL-1β, which limits S. aureus-specific Tregs. Loss of α-toxin or the IL-1 receptor increases Treg enrichment, whereas topical application of IL-1β or α-toxin diminishes tolerogenic responses to S. epidermidis. Thus, the preferential activation of a key alarmin pathway facilitates early discrimination of microbial "foe" from "friend," thereby preventing tolerance to a common skin pathogen.
Collapse
Affiliation(s)
- John M Leech
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Miqdad O Dhariwala
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Chu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Geil R Merana
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Clémence Cornuot
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Antonin Weckel
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica M Ma
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Elizabeth G Leitner
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Jeanmarie R Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly S Vasquez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Binh An Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tiffany C Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
112
|
Yang HW, Ju SP, Chen HY, Cheng YC, Hsu WL. Ovalbumin-Loaded Gelation Microneedles Made of Predictive Formulation by Molecular Dynamics Simulation for Enhancement of Skin Immunization. ACS Biomater Sci Eng 2019; 5:6012-6021. [PMID: 33405723 DOI: 10.1021/acsbiomaterials.9b01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gelation microneedle (GMNs) based vaccinations with tumor antigens have been considered to be an attractive method for transcutaneous immunization because of their superior ability to deliver vaccines through the stratum corneum (SC) in a minimally invasive manner, which subsequently induces adaptive antitumor immunity. In this study, molecular dynamics (MD) uniaxial tension simulations were conducted to predict the formulation of poly(vinyl alcohol) (PVA; possesses high water solubility) and poly(methyl vinyl ether-altmaleic anhydride) (PMVEMA; possesses high mechanical strength) blend that has the strongest mechanical properties. To validate the accuracy of the Dreiding potential for these two polymers, their densities and Hildebrand solubility parameters were first predicted using MD simulations. These values exhibited good agreement with the corresponding experimental results, indicating the accuracy of the Dreiding potential for the polymers. Regarding the simulation results, the number density of H-bonds between PVA and PMVEMA was the highest at 50% PMVEMA, which can significantly enhance the mechanical strength of pristine PVA for enhanced skin immunization. In terms of further experimental validation, evidence from mechanical strength, solubility, in vitro porcine skin penetration tests, and in vivo immunization were consistent with our simulation predictions. In addition, our results indicated that delivery of ovalbumin (OVA) using GMN patches fabricated using PVA/PMVEMA (50%/50%) provided even stronger immune responses. Using this molecular simulation procedure, the optimal fraction of PVA/PMVEMA composite for the strongest mechanical properties can be rapidly predicted to reduce research time and costs in related experiments.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | - Yi-Chi Cheng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| | - Wen-Lin Hsu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, Republic of China
| |
Collapse
|
113
|
Vidal Yucha SE, Tamamoto KA, Kaplan DL. The importance of the neuro-immuno-cutaneous system on human skin equivalent design. Cell Prolif 2019; 52:e12677. [PMID: 31441145 PMCID: PMC6869210 DOI: 10.1111/cpr.12677] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022] Open
Abstract
The skin is a highly complex organ, responsible for sensation, protection against the environment (pollutants, foreign proteins, infection) and thereby linked to the immune and sensory systems in the neuro-immuno-cutaneous (NIC) system. Cutaneous innervation is a key part of the peripheral nervous system; therefore, the skin should be considered a sensory organ and an important part of the central nervous system, an 'active interface' and the first connection of the body to the outside world. Peripheral nerves are a complex class of neurons within these systems, subsets of functions are conducted, including mechanoreception, nociception and thermoception. Epidermal and dermal cells produce signalling factors (such as cytokines or growth factors), neurites influence skin cells (such as via neuropeptides), and peripheral nerves have a role in both early and late stages of the inflammatory response. One way this is achieved, specifically in the cutaneous system, is through neuropeptide release and signalling, especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). Cutaneous, neuronal and immune cells play a central role in many conditions, including psoriasis, atopic dermatitis, vitiligo, UV-induced immunosuppression, herpes and lymphomas. Therefore, it is critical to understand the connections and interplay between the peripheral nervous system and the skin and immune systems, the NIC system. Relevant in vitro tissue models based on human skin equivalents can be used to gain insight and to address impact across research and clinical needs.
Collapse
Affiliation(s)
- Sarah E Vidal Yucha
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Kasey A Tamamoto
- Department of Chemistry, Tufts University, Medford, Massachusetts
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
114
|
Ritprajak P, Kaewraemruaen C, Hirankarn N. Current Paradigms of Tolerogenic Dendritic Cells and Clinical Implications for Systemic Lupus Erythematosus. Cells 2019; 8:cells8101291. [PMID: 31640263 PMCID: PMC6830089 DOI: 10.3390/cells8101291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the initiation and maintenance of immune tolerance and subsequent prevention of autoimmunity. Recent advances in treatment of autoimmune diseases including systemic lupus erythematosus (SLE) have focused on inducing specific tolerance to avoid long-term use of immunosuppressive drugs. Therefore, DC-targeted therapies to either suppress DC immunogenicity or to promote DC tolerogenicity are of high interest. This review describes details of the typical characteristics of in vivo and ex vivo tolDC, which will help to select a protocol that can generate tolDC with high functional quality for clinical treatment of autoimmune disease in individual patients. In addition, we discuss the recent studies uncovering metabolic pathways and their interrelation intertwined with DC tolerogenicity. This review also highlights the clinical implications of tolDC-based therapy for SLE treatment, examines the current clinical therapeutics in patients with SLE, which can generate tolDC in vivo, and further discusses on possibility and limitation on each strategy. This synthesis provides new perspectives on development of novel therapeutic approaches for SLE and other autoimmune diseases.
Collapse
Affiliation(s)
- Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Chamraj Kaewraemruaen
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
115
|
Major Differences in Expression of Inflammatory Pathways in Skin from Different Body Sites of Healthy Individuals. J Invest Dermatol 2019; 139:2228-2232.e10. [DOI: 10.1016/j.jid.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
|
116
|
Remedios KA, Zirak B, Sandoval PM, Lowe MM, Boda D, Henley E, Bhattrai S, Scharschmidt TC, Liao W, Naik HB, Rosenblum MD. The TNFRSF members CD27 and OX40 coordinately limit T H17 differentiation in regulatory T cells. Sci Immunol 2019; 3:3/30/eaau2042. [PMID: 30578350 DOI: 10.1126/sciimmunol.aau2042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are closely related to TH17 cells and use aspects of the TH17-differentiation program for optimal immune regulation. In several chronic inflammatory human diseases, Tregs express IL-17A, suggesting that dysregulation of TH17-associated pathways in Tregs may result in either loss of suppressive function and/or conversion into pathogenic cells. The pathways that regulate the TH17 program in Tregs are poorly understood. We have identified two TNF receptor superfamily (TNFRSF) members, CD27 and OX40, that are preferentially expressed by skin-resident Tregs Both CD27 and OX40 signaling suppressed the expression of TH17-associated genes from Tregs in a cell-intrinsic manner in vitro and in vivo. However, only OX40 played a nonredundant role in promoting Treg accumulation. Tregs that lacked both CD27 and OX40 were defective in controlling skin inflammation and expressed high levels of IL-17A, as well as the master TH17 transcription factor, RORγt. Last, we found that CD27 expression was inversely correlated with Treg IL-17 production in skin of patients with psoriasis and hidradenitis suppurativa. Together, our results suggest that TNFRSF members play both redundant and distinct roles in regulating Treg plasticity in tissues.
Collapse
Affiliation(s)
- Kelly A Remedios
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | | | - Margaret M Lowe
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Devi Boda
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Evan Henley
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Shrishti Bhattrai
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | | | - Wilson Liao
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Haley B Naik
- Department of Dermatology, University of California, San Francisco, CA 94143, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
117
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
118
|
Luo Y, Wang S, Liu X, Wen H, Li W, Yao X. Langerhans cells mediate the skin-induced tolerance to ovalbumin via Langerin in a murine model. Allergy 2019; 74:1738-1747. [PMID: 30964950 DOI: 10.1111/all.13813] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/18/2019] [Accepted: 03/16/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Epicutaneous sensitization is an important route of immunization for allergens in atopic diseases; however, studies have also shown that application with protein on the intact skin induces antigen-specific tolerance. Langerhans cells (LCs) play an immunosuppressive role in several inflammatory skin diseases and mouse models, and the role of LCs in the skin-induced tolerance is not fully understood. METHODS Langerin-DTA mice that were deficient in LCs were utilized to produce the model of skin-induced tolerance to ovalbumin (OVA). Binding of Langerin to OVA was analyzed by enzyme-linked immunosorbent assay, flow cytometry, and immunofluorescence. Homozygous Langerin-DTR mice that were deficient in Langerin were introduced to assess the role of Langerin in the skin-induced tolerance. RESULTS Application with OVA onto the intact, but not tape-stripped, skin attenuated the production of OVA-specific IgE, IgG1, and IgG2a induced by subsequent subcutaneous immunization with OVA, and the inhibitory effects were abolished in Langerin-DTA mice. In contrast to the tape-stripped skin, the intact skin induced the production of IL-10 by LCs in draining lymph node after application with OVA. Langerin could bind OVA, and homozygous Langerin-DTR mice demonstrated similar humoral and cellular immune responses in the model of skin-induced tolerance compared to wide-type mice. CONCLUSION Our data suggested that LCs were critical in the intact skin-induced tolerance to protein antigen via Langerin, and LCs might be targeted via Langerin to regulate the immune responses in systemic and (or) skin inflammatory diseases.
Collapse
Affiliation(s)
- Yang Luo
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| | - Su Wang
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| | - Xiaochun Liu
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| | - He Wen
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| | - Wei Li
- Department of Dermatology, Huashan Hospital Fudan University Shanghai China
| | - Xu Yao
- Institute of Dermatology Chinese Academy of Medical Sciences and Peking Union Medical College Nanjing China
| |
Collapse
|
119
|
Kobayashi T, Naik S, Nagao K. Choreographing Immunity in the Skin Epithelial Barrier. Immunity 2019; 50:552-565. [PMID: 30893586 DOI: 10.1016/j.immuni.2019.02.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/21/2022]
Abstract
The skin interfaces with the external environment and is home to a myriad of immune cells that patrol the barrier to ward off harmful agents and aid in tissue repair. The formation of the cutaneous immune arsenal begins before birth and evolves throughout our lifetime, incorporating exogenous cues from microbes and inflammatory encounters, to achieve optimal fitness and function. Here, we discuss the context-specific signals that drive productive immune responses in the skin epithelium, highlighting key modulators of these reactions, including hair follicles, neurons, and commensal microbes. We thus also discuss the causal and mechanistic underpinning of inflammatory skin diseases that have been revealed in recent years. Finally, we discuss the non-canonical functions of cutaneous immune cells including their burgeoning role in epithelial regeneration and repair. The rapidly growing field of cutaneous immunity is revealing immune mechanisms and functions that can be harnessed to boost skin health and treat disease.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shruti Naik
- Department of Pathology, Ronald O. Perelman Department of Dermatology, and Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
120
|
Abstract
Tissue-resident macrophages (TRMs), generally found in tissues under normal physiological conditions, play crucial roles not only in immunity but also in tissue development and homeostasis. Because of their diverse functions, dysregulation of their development and function has been implicated in many human disorders. In the past decade, a great deal of extensive studies have been conducted in various model organisms with cutting-edge technologies to explore the origin and function of TRMs. In this review, we summarize the recent findings on TRMs in mouse and zebrafish and compare the similarity/differences between these two species.
Collapse
|
121
|
Abstract
Skin is our primary interface with the environment, and T cells are crucial for orchestrating host immune responses against pathogenic microorganisms at this site. Effective skin immune responses require the generation of antigen-specific effector T cells, which home to cutaneous sites of injury or infection. Long-lasting immunity against future immune challenges is mediated by memory T cells. Among the memory T cells found in skin are both recirculating cells that transit between skin and blood and tissue-resident memory T (TRM) cells, which remain in skin for long periods of time and mediate durable protective immunity. These TRM cells also appear to drive many inflammatory diseases of skin. Here, we consider how a better understanding of cutaneous T cell responses can aid in the development of effective new therapies for immune-mediated cutaneous diseases.
Collapse
Affiliation(s)
- Allen W Ho
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas S Kupper
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
122
|
Rabinovich OF, Abramova ES. [Bullous lesions of the oral mucosa clinics and diagnostics]. STOMATOLOGII︠A︡ 2019; 98:97-103. [PMID: 31322604 DOI: 10.17116/stomat20199803197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- O F Rabinovich
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| | - E S Abramova
- Central Research Institute of Dentistry and Maxillofacial Surgery, Moscow, Russia
| |
Collapse
|
123
|
Bouteau A, Kervevan J, Su Q, Zurawski SM, Contreras V, Dereuddre-Bosquet N, Le Grand R, Zurawski G, Cardinaud S, Levy Y, Igyártó BZ. DC Subsets Regulate Humoral Immune Responses by Supporting the Differentiation of Distinct Tfh Cells. Front Immunol 2019; 10:1134. [PMID: 31191525 PMCID: PMC6545976 DOI: 10.3389/fimmu.2019.01134] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
To determine the contribution of skin DC subsets in the regulation of humoral immunity, we used a well-characterized antigen targeting system to limit antigen availability and presentation to certain skin-derived DC subsets. Here we show that delivery of foreign antigen to steady state Langerhans cells (LCs) and cDC1s through the same receptor (Langerin) led to, respectively, robust vs. minimal-to-null humoral immune response. LCs, unlike cDC1s, supported the formation of germinal center T follicular helper cells (GC-Tfh) antigen dose-dependently and then, likely licensed by these T cells, some of the LCs migrated to the B cell area to initiate B cell responses. Furthermore, we found that the cDC1s, probably through their superior T cell activation capacity, prevented the LCs from inducing GC-Tfh cells and humoral immune responses. We further show that targeted delivery of cytokines to DCs can be used to modulate DC-induced humoral immune responses, which has important therapeutic potential. Finally, we show that human LCs, unlike monocyte-derived DCs, can support GC Tfh generation in an in vitro autologous system; and in agreement with mouse data, we provide evidence in NHP studies that targeting LCs without adjuvants is an effective way to induce antibody responses, but does not trigger CD8+ T cell responses. Our findings suggest that the major limitations of some relatively ineffective vaccines currently in use or in development might be that (1) they are not formulated to specifically target a certain subset of DCs and/or (2) the antigen dose is not tailored to maximize the intrinsic/pre-programmed capabilities of the specific DC subset. This new and substantial departure from the status quo is expected to overcome problems that have hindered our ability to generate effective vaccines against some key pathogens.
Collapse
Affiliation(s)
- Aurélie Bouteau
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, United States.,Institute of Biomedical Studies, Baylor University, Waco, TX, United States
| | - Jérôme Kervevan
- Vaccine Research Institute, Créteil, France.,INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Faculté de Médecine, Université Paris-Est Créteil, Créteil, France
| | - Qingtai Su
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, United States
| | - Sandra M Zurawski
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, United States.,Vaccine Research Institute, Créteil, France
| | - Vanessa Contreras
- Vaccine Research Institute, Créteil, France.,CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Vaccine Research Institute, Créteil, France.,CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Vaccine Research Institute, Créteil, France.,CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Gerard Zurawski
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, United States.,Vaccine Research Institute, Créteil, France
| | - Sylvain Cardinaud
- Vaccine Research Institute, Créteil, France.,INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Faculté de Médecine, Université Paris-Est Créteil, Créteil, France
| | - Yves Levy
- Vaccine Research Institute, Créteil, France.,INSERM, Unité U955, Institut Mondor de Recherche Biomédicale, Créteil, France.,Faculté de Médecine, Université Paris-Est Créteil, Créteil, France
| | - Botond Z Igyártó
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, United States
| |
Collapse
|
124
|
Wamhoff EC, Schulze J, Bellmann L, Rentzsch M, Bachem G, Fuchsberger FF, Rademacher J, Hermann M, Del Frari B, van Dalen R, Hartmann D, van Sorge NM, Seitz O, Stoitzner P, Rademacher C. A Specific, Glycomimetic Langerin Ligand for Human Langerhans Cell Targeting. ACS CENTRAL SCIENCE 2019; 5:808-820. [PMID: 31139717 PMCID: PMC6535779 DOI: 10.1021/acscentsci.9b00093] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 05/30/2023]
Abstract
Langerhans cells are a subset of dendritic cells residing in the epidermis of the human skin. As such, they are key mediators of immune regulation and have emerged as prime targets for novel transcutaneous cancer vaccines. Importantly, the induction of protective T cell immunity by these vaccines requires the efficient and specific delivery of both tumor-associated antigens and adjuvants. Langerhans cells uniquely express Langerin (CD207), an endocytic C-type lectin receptor. Here, we report the discovery of a specific, glycomimetic Langerin ligand employing a heparin-inspired design strategy and structural characterization by NMR spectroscopy and molecular docking. The conjugation of this glycomimetic to liposomes enabled the specific and efficient targeting of Langerhans cells in the human skin. We further demonstrate the doxorubicin-mediated killing of a Langerin+ monocyte cell line, highlighting its therapeutic and diagnostic potential in Langerhans cell histiocytosis, caused by the abnormal proliferation of Langerin+ myeloid progenitor cells. Overall, our delivery platform provides superior versatility over antibody-based approaches and novel modalities to overcome current limitations of dendritic cell-targeted immuno- and chemotherapy.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Jessica Schulze
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| | - Lydia Bellmann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Mareike Rentzsch
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Gunnar Bachem
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Felix F. Fuchsberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Juliane Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Martin Hermann
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Barbara Del Frari
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Rob van Dalen
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - David Hartmann
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nina M. van Sorge
- Medical
Microbiology, University Medical Center
Utrecht, Utrecht University, 3584 CX Utrecht, Netherlands
| | - Oliver Seitz
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Patrizia Stoitzner
- Department of Dermatology, Venereology and Allergology, Department of Anesthesiology
and Intensive Care Medicine, and Department of Plastic, Reconstructive and
Aesthetic Surgery, Medical University of
Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Rademacher
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, 14424 Potsdam, Germany
- Department
of Biology, Chemistry and Pharmacy, Freie
Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
125
|
Rabinovich OF, Rabinovich IM, Abramova ES. [Epidemiology, etiology and pathogenesis of oral mucosa bullous lesions]. STOMATOLOGII︠A︡ 2019; 98:71-75. [PMID: 31089125 DOI: 10.17116/stomat20199802171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Based on the data available in modern literature, to conduct a study on the epidemiology, etiology and pathogenesis of bullous lesions of the oral mucosa (pemphigus vulgaris, pemphigoid bullosa, lichen ruber planus). MATERIAL AND METHODS The article is based on the study of materials of foreign and domestic research databases Pubmed and Elibrary. Used literature data over the past 15 years. RESULTS According to domestic and foreign studies, among dermatological diseases, the most frequently detected diseases are: lichen ruber planus, pemphigoid bullosa and pemphigus vulgaris. The initial signs of these diseases are often neglected, both in patients and doctors, which leads to irreversible changes and severe course of the pathological process. In this connection, the number of patients with these lesions of the oral mucosa increases every year in all countries of the world. Bullous lesions of the oral mucosa are inflammatory and destructive diseases characterized mainly by recurrent course, variety of clinical manifestations, resistance to various therapeutic drugs. The specific features of the course of these diseases are explained both by the anatomical and physiological features of the oral mucosa, and by the etiologic and pathogenetic mechanisms of development. Currently, autoimmune processes play a leading role in the genesis of diseases, developing in response to changes in the antigenic structure of epidermal and epithelial cells under the influence of various damaging agents. CONCLUSION Thanks to the study, it was found that currently there are no data confirming the presence of microbial contamination of the tissues of the oral mucosa in the pathology under study. Not enough information on the factors of the immune response, in particular, on proinflammatory cytokines in the tissues of the oral mucosa.
Collapse
Affiliation(s)
- O F Rabinovich
- Central Research Institute of Dentistry and Maxillofacial surgery, Moscow, Russia
| | - I M Rabinovich
- Central Research Institute of Dentistry and Maxillofacial surgery, Moscow, Russia
| | - E S Abramova
- Central Research Institute of Dentistry and Maxillofacial surgery, Moscow, Russia
| |
Collapse
|
126
|
Polak-Witka K, Rudnicka L, Blume-Peytavi U, Vogt A. The role of the microbiome in scalp hair follicle biology and disease. Exp Dermatol 2019; 29:286-294. [PMID: 30974503 DOI: 10.1111/exd.13935] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/02/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022]
Abstract
The skin surface microbiome and its role in skin diseases have received increasing attention over the past years. Beyond, there is evidence for a continuous exchange with the cutaneous immune system in healthy skin, where hair follicles (HFs) provide unique anatomical niches. Especially, scalp HFs form large tubular invaginations, which extend deeply into the skin and harbour a variety of microorganisms. The distinct immunology of HFs with enhanced immune cell trafficking in superficial compartments in juxtaposition to immune-privileged sites crucial for hair follicle cycling and regeneration makes this organ a highly susceptible structure. Depending on composition and penetration depth, microbiota may cause typical infections, but may also contribute to pro-inflammatory environment in chronic inflammatory scalp diseases. Involvement in hair cycle regulation and immune cell maturation has been postulated. Herein, we review recent insights in hair follicle microbiome, immunology and penetration research and discuss clinical implications for scalp health and disease.
Collapse
Affiliation(s)
- Katarzyna Polak-Witka
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Germany.,Department of Dermatology, Medical University of Warsaw, Warsaw,, Poland
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, Warsaw,, Poland
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
127
|
Langerhans Cells Sense Staphylococcus aureus Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. mBio 2019; 10:mBio.00330-19. [PMID: 31088921 PMCID: PMC6520447 DOI: 10.1128/mbio.00330-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bacterium Staphylococcus aureus is an important cause of skin infections and is also associated with the occurrence and severity of eczema. Langerhans cells (LCs), a specific subset of skin immune cells, participate in the immune response to S. aureus, but it is yet unclear how LCs recognize S. aureus. Therefore, we investigated the molecular mechanism underlying the interaction between LCs and S. aureus. We identified that wall teichoic acid, an abundant polymer on the S. aureus surface, is recognized by langerin, a receptor unique to LCs. This interaction allows LCs to discriminate S. aureus from other related staphylococcal species and initiates a proinflammatory response similar to that observed in patients with eczema. Our data therefore provide important new insights into the relationship between S. aureus, LCs, and eczema. Staphylococcus aureus is a major cause of skin and soft tissue infections and aggravator of the inflammatory skin disease atopic dermatitis (AD [eczema]). Epicutaneous exposure to S. aureus induces Th17 responses through skin Langerhans cells (LCs), which paradoxically contribute to host defense but also to AD pathogenesis. The molecular mechanisms underlying the interaction between S. aureus and LCs are poorly understood. Here we demonstrate that human LCs directly interact with S. aureus through the pattern recognition receptor langerin (CD207). Human, but not mouse, langerin interacts with S. aureus through the conserved β-N-acetylglucosamine (GlcNAc) modifications on wall teichoic acid (WTA), thereby discriminating S. aureus from other staphylococcal species. Importantly, the specific S. aureus WTA glycoprofile strongly influences the level of proinflammatory cytokines that are produced by in vitro-generated LCs. Finally, in a murine epicutaneous infection model, S. aureus strongly upregulated transcripts of Cxcl1, Il6, and Il17, which required the presence of both human langerin and WTA β-GlcNAc. Our findings provide molecular insight into the unique proinflammatory capacities of S. aureus in relation to skin inflammation.
Collapse
|
128
|
Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 2019; 97:700-713. [PMID: 30989674 DOI: 10.1111/imcb.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 04/12/2019] [Indexed: 12/31/2022]
Abstract
Langerhans cells (LCs) are epidermal immune cells of myeloid origin. Although these cells were primarily thought to play a defensive role in the skin, evidence now indicates a diverse range of LC-mediated effects including the relay of viral antigens in herpes simplex infection, recruitment of eosinophils in atopic dermatitis and promotion of a Th17 response in Candida infection. LCs may have a protective or suppressive function in pathologies of the skin, with differing functions being driven by the skin milieu. Understanding LC function will help guide the development of interventions that modulate these cells for therapeutic benefit.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
129
|
An Ectoderm-Derived Myeloid-like Cell Population Functions as Antigen Transporters for Langerhans Cells in Zebrafish Epidermis. Dev Cell 2019; 49:605-617.e5. [DOI: 10.1016/j.devcel.2019.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
|
130
|
Dang AT, Teles RM, Liu PT, Choi A, Legaspi A, Sarno EN, Ochoa MT, Parvatiyar K, Cheng G, Gilliet M, Bloom BR, Modlin RL. Autophagy links antimicrobial activity with antigen presentation in Langerhans cells. JCI Insight 2019; 4:126955. [PMID: 30996142 PMCID: PMC6538337 DOI: 10.1172/jci.insight.126955] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
DC, through the uptake, processing, and presentation of antigen, are responsible for activation of T cell responses to defend the host against infection, yet it is not known if they can directly kill invading bacteria. Here, we studied in human leprosy, how Langerhans cells (LC), specialized DC, contribute to host defense against bacterial infection. IFN-γ treatment of LC isolated from human epidermis and infected with Mycobacterium leprae (M. leprae) activated an antimicrobial activity, which was dependent on the upregulation of the antimicrobial peptide cathelicidin and induction of autophagy. IFN-γ induction of autophagy promoted fusion of phagosomes containing M. leprae with lysosomes and the delivery of cathelicidin to the intracellular compartment containing the pathogen. Autophagy enhanced the ability of M. leprae-infected LC to present antigen to CD1a-restricted T cells. The frequency of IFN-γ labeling and LC containing both cathelicidin and autophagic vesicles was greater in the self-healing lesions vs. progressive lesions, thus correlating with the effectiveness of host defense against the pathogen. These data indicate that autophagy links the ability of DC to kill and degrade an invading pathogen, ensuring cell survival from the infection while facilitating presentation of microbial antigens to resident T cells.
Collapse
Affiliation(s)
- Angeline Tilly Dang
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Phillip T. Liu
- Division of Dermatology, Department of Medicine, and
- UCLA and Orthopaedic Hospital, Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California, USA
| | - Aaron Choi
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | | | - Euzenir N. Sarno
- Leprosy Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maria T. Ochoa
- Department of Dermatology, University of Southern California School of Medicine, Los Angeles, California, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| | - Michel Gilliet
- Department of Medicine, Dermatology Service, Lausanne University Hospital of Lausanne, Lausanne, Switzerland
| | - Barry R. Bloom
- Harvard School of Public Health, Boston, Massachusetts, USA
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, and
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, UCLA, Los Angeles, California, USA
| |
Collapse
|
131
|
Guttman-Yassky E, Zhou L, Krueger JG. The skin as an immune organ: Tolerance versus effector responses and applications to food allergy and hypersensitivity reactions. J Allergy Clin Immunol 2019; 144:362-374. [PMID: 30954522 DOI: 10.1016/j.jaci.2019.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Skin is replete with immunocompetent cells that modulate signaling pathways to maintain a salubrious immunogenic/tolerogenic balance. This fertile immune environment plays a significant role in the development of allergic responses and sensitivities, but the mechanisms underlying these pathways have been underappreciated and underused with respect to developing therapeutics. Among the complex repertoire of cells that promote tolerogenic pathways in the periphery, 2 key classes include dendritic cells and regulatory T (Treg) cells. Immature dendritic cells are the first line of defense, patrolling the periphery, sampling antigens, and secreting cytokines that suppress immune cells and promote the survival of Treg cells. Skin-homing Treg cells also play a critical role in mitigating the reactivity of immune cells, secreting high levels of cytokines that promote tolerance. Therapeutic approaches that capitalize on our knowledge of the rich cellular and molecular environment are emerging and show great promise. We will discuss the advantages and challenges of 5 such strategies and how these therapies might mitigate the atopic march by facilitating tolerance. We conclude that skin is a multifaceted structure that provides a fertile ground for therapeutic discovery. Accordingly, ongoing work in this domain will no doubt continue to deliver exciting progress for improved health outcomes.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - Lisa Zhou
- Columbia University Medical Center, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
132
|
van der Burg NMD, Depelsenaire ACI, Crichton ML, Kuo P, Phipps S, Kendall MAF. A low inflammatory, Langerhans cell-targeted microprojection patch to deliver ovalbumin to the epidermis of mouse skin. J Control Release 2019; 302:190-200. [PMID: 30940498 DOI: 10.1016/j.jconrel.2019.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
In a low inflammatory skin environment, Langerhans cells (LCs) - but not dermal dendritic cells (dDCs) - contribute to the pivotal process of tolerance induction. Thus LCs are a target for specific-tolerance therapies. LCs reside just below the stratum corneum, within the skin's viable epidermis. One way to precisely deliver immunotherapies to LCs while remaining minimally invasive is with a skin delivery device such as a microprojection arrays (MPA). Today's MPAs currently achieve rapid delivery (e.g. within minutes of application), but are focussed primarily at delivery of therapeutics to the dermis, deeper within the skin. Indeed, no MPA currently delivers specifically to the epidermal LCs of mouse skin. Without any convenient, pre-clinical device available, advancement of LC-targeted therapies has been limited. In this study, we designed and tested a novel MPA that delivers ovalbumin to the mouse epidermis (eMPA) while maintaining a low, local inflammatory response (as defined by low erythema after 24 h). In comparison to available dermal-targeted MPAs (dMPA), only eMPAs with larger projection tip surface areas achieved shallow epidermal penetration at a low application energy. The eMPA characterised here induced significantly less erythema after 24 h (p = 0.0004), less epidermal swelling after 72 h (p < 0.0001) and 52% less epidermal cell death than the dMPA. Despite these differences in skin inflammation, the eMPA and dMPA promoted similar levels of LC migration out of the skin. However, only the eMPA promoted LCs to migrate with a low MHC II expression and in the absence of dDC migration. Implementing this more mouse-appropriate and low-inflammatory eMPA device to deliver potential immunotherapeutics could improve the practicality and cell-specific targeting of such therapeutics in the pre-clinical stage. Leading to more opportunities for LC-targeted therapeutics such as for allergy immunotherapy and asthma.
Collapse
Affiliation(s)
- Nicole M D van der Burg
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Alexandra C I Depelsenaire
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Michael L Crichton
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia
| | - Paula Kuo
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QL 4102, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, Herston, QL 4006, Australia
| | - Mark A F Kendall
- The Delivery of Drugs and Genes Group (D(2)G(2)), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QL 4072, Australia; The Australian National University, Canberra, Australian Capital Territory 2600, Australia.
| |
Collapse
|
133
|
Regulatory T cell adaptation in the intestine and skin. Nat Immunol 2019; 20:386-396. [PMID: 30890797 DOI: 10.1038/s41590-019-0351-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
The intestine and skin are distinct microenvironments with unique physiological functions and are continually exposed to diverse environmental challenges. Host adaptation at these sites is an active process that involves interaction between immune cells and tissue cells. Regulatory T cells (Treg cells) play a pivotal role in enforcing homeostasis at barrier surfaces, illustrated by the development of intestinal and skin inflammation in diseases caused by primary deficiency in Treg cells. Treg cells at barrier sites are phenotypically distinct from their lymphoid-organ counterparts, and these 'tissue' signatures often reflect their tissue-adapted function. We discuss current understanding of Treg cell adaptation in the intestine and skin, including unique phenotypes, functions and metabolic demands, and how increased knowledge of Treg cells at barrier sites might guide precision medicine therapies.
Collapse
|
134
|
Jain P, Rahi P, Pandey V, Asati S, Soni V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Priyanka Jain
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Prerna Rahi
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Vikas Pandey
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Saket Asati
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, Madhya Pradesh 470 003, India
| |
Collapse
|
135
|
Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS, Tomaras GD, Montefiori DC, Moss B, Barouch DH, Clements JD, Kozlowski PA, Varadarajan R, Amara RR. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat Commun 2019; 10:798. [PMID: 30778066 PMCID: PMC6379385 DOI: 10.1038/s41467-019-08739-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/25/2019] [Indexed: 02/08/2023] Open
Abstract
The oral mucosa is an attractive site for mucosal vaccination, however the thick squamous epithelium limits antigen uptake. Here we utilize a modified needle-free injector to deliver immunizations to the sublingual and buccal (SL/B) tissue of rhesus macaques. Needle-free SL/B vaccination with modified vaccinia Ankara (MVA) and a recombinant trimeric gp120 protein generates strong vaccine-specific IgG responses in serum as well as vaginal, rectal and salivary secretions. Vaccine-induced IgG responses show a remarkable breadth against gp70-V1V2 sequences from multiple clades of HIV-1. In contrast, topical SL/B immunizations generates minimal IgG responses. Following six intrarectal pathogenic SHIV-SF162P3 challenges, needle-free but not topical immunization results in a significant delay of acquisition of infection. Delay of infection correlates with non-neutralizing antibody effector function, Env-specific CD4+ T-cell responses, and gp120 V2 loop specific antibodies. These results demonstrate needle-free MVA/gp120 oral vaccination as a practical and effective route to induce protective immunity against HIV-1.
Collapse
Affiliation(s)
- Andrew T Jones
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Korey L Walter
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Linda S Wyatt
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, 8638, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, Georgia, 30329, USA.
| |
Collapse
|
136
|
Honda T, Egawa G, Kabashima K. Antigen presentation and adaptive immune responses in skin. Int Immunol 2019; 31:423-429. [DOI: 10.1093/intimm/dxz005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Abstract
For the induction of adequate cutaneous immune responses, the antigen presentation and recognition that occur in both the skin and skin-draining lymph nodes are essential. In each process of cutaneous immune responses, several distinct subsets of immune cells, including dendritic cells and T cells, are involved, and they elicit their respective functions in a harmonious manner. For example, in the elicitation phase of cutaneous acquired immunity, immune cells form a specific lymphoid structure named inducible skin-associated lymphoid tissue (iSALT) to facilitate efficient antigen presentation in situ. In this short review, we will overview the mechanisms of how antigens are presented and how cutaneous adaptive immune responses are conducted in the skin, especially focusing on contact hypersensitivity, a prototypic adaptive immune response in the skin.
Collapse
Affiliation(s)
- Tetsuya Honda
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Gyohei Egawa
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto, Japan
- Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Biopolis, Immunos, Singapore
| |
Collapse
|
137
|
Boniface K, Seneschal J. Vitiligo as a skin memory disease: The need for early intervention with immunomodulating agents and a maintenance therapy to target resident memory T cells. Exp Dermatol 2019; 28:656-661. [PMID: 30636075 DOI: 10.1111/exd.13879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 02/01/2023]
Abstract
The understanding of the immune mechanisms of vitiligo has profoundly improved over the past years. The recent discovery of a new population of antigen-experienced memory T cells called resident memory T cells (TRM ) has changed the concept of immune surveillance in peripheral tissue as skin, and the presence of melanocyte-specific TRM is clearly demonstrated in vitiligo, a disease that could be now seen such as a memory skin disease. This review summarizes the recent knowledge on skin TRM and their role in vitiligo. Future management or therapies for this disease will have the goal to block their migration/differentiation, to dampen their activation and/or their accumulation in the vitiligo skin to prevent flare-up or to promote repigmentation.
Collapse
Affiliation(s)
- Katia Boniface
- INSERM U 1035, BMGIC, Immuno-Dermatology, ATIP-AVENIR, Bordeaux University, Bordeaux, France
| | - Julien Seneschal
- INSERM U 1035, BMGIC, Immuno-Dermatology, ATIP-AVENIR, Bordeaux University, Bordeaux, France.,Department of Dermatology, National Reference Center for Rare Skin Diseases, Bordeaux University Hospitals, Bordeaux, France
| |
Collapse
|
138
|
Esteves E, Bizzarro B, Costa FB, Ramírez-Hernández A, Peti APF, Cataneo AHD, Wowk PF, Timóteo RP, Labruna MB, Silva Junior PI, Silva CL, Faccioli LH, Fogaça AC, Sorgi CA, Sá-Nunes A. Amblyomma sculptum Salivary PGE 2 Modulates the Dendritic Cell- Rickettsia rickettsii Interactions in vitro and in vivo. Front Immunol 2019; 10:118. [PMID: 30778355 PMCID: PMC6369204 DOI: 10.3389/fimmu.2019.00118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/15/2019] [Indexed: 01/06/2023] Open
Abstract
Amblyomma sculptum is an important vector of Rickettsia rickettsii, causative agent of Rocky Mountain spotted fever and the most lethal tick-borne pathogen affecting humans. To feed on the vertebrate host's blood, A. sculptum secretes a salivary mixture, which may interact with skin resident dendritic cells (DCs) and modulate their function. The present work was aimed at depicting the A. sculptum saliva-host DC network and the biochemical nature of the immunomodulatory component(s) involved in this interface. A. sculptum saliva inhibits the production of inflammatory cytokines by murine DCs stimulated with LPS. The fractionation of the low molecular weight salivary content by reversed-phase chromatography revealed active fractions eluting from 49 to 55% of the acetonitrile gradient. Previous studies suggested that this pattern of elution matches with that observed for prostaglandin E2 (PGE2) and the molecular identity of this lipid mediator was unambiguously confirmed by a new high-resolution mass spectrometry methodology. A productive infection of murine DCs by R. rickettsii was demonstrated for the first time leading to proinflammatory cytokine production that was inhibited by both A. sculptum saliva and PGE2, a result also achieved with human DCs. The adoptive transfer of murine DCs incubated with R. rickettsii followed by treatment with A. sculptum saliva or PGE2 did not change the cytokine profile associated to cellular recall responses while IgG2a-specific antibodies were decreased in the serum of these mice. Together, these findings emphasize the role of PGE2 as a universal immunomodulator of tick saliva. In addition, it contributes to new approaches to explore R. rickettsii-DC interactions both in vitro and in vivo.
Collapse
Affiliation(s)
- Eliane Esteves
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Francisco Borges Costa
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Alejandro Ramírez-Hernández
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Paula Ferranti Peti
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | | | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Rodolfo Pessato Timóteo
- Institute of Natural and Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Marcelo Bahia Labruna
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Célio Lopes Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Andréa Cristina Fogaça
- Department de Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| | - Carlos Arterio Sorgi
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Anderson Sá-Nunes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,National Institute of Science and Technology in Molecular Entomology, National Council of Scientific and Technological Development (INCT-EM/CNPq), Rio de Janeiro, Brazil
| |
Collapse
|
139
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
140
|
Lay K, Yuan S, Gur-Cohen S, Miao Y, Han T, Naik S, Pasolli HA, Larsen SB, Fuchs E. Stem cells repurpose proliferation to contain a breach in their niche barrier. eLife 2018; 7:41661. [PMID: 30520726 PMCID: PMC6324878 DOI: 10.7554/elife.41661] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Adult stem cells are responsible for life-long tissue maintenance. They reside in and interact with specialized tissue microenvironments (niches). Using murine hair follicle as a model, we show that when junctional perturbations in the niche disrupt barrier function, adjacent stem cells dramatically change their transcriptome independent of bacterial invasion and become capable of directly signaling to and recruiting immune cells. Additionally, these stem cells elevate cell cycle transcripts which reduce their quiescence threshold, enabling them to selectively proliferate within this microenvironment of immune distress cues. However, rather than mobilizing to fuel new tissue regeneration, these ectopically proliferative stem cells remain within their niche to contain the breach. Together, our findings expose a potential communication relay system that operates from the niche to the stem cells to the immune system and back. The repurposing of proliferation by these stem cells patch the breached barrier, stoke the immune response and restore niche integrity.
Collapse
Affiliation(s)
- Kenneth Lay
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shaopeng Yuan
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shiri Gur-Cohen
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Yuxuan Miao
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Tianxiao Han
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shruti Naik
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - H Amalia Pasolli
- Electron Microscopy Shared Resource, Howard Hughes Medical Institute, Janelia Research Campus, Virginia, United States
| | - Samantha B Larsen
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
141
|
Zhang C, Qiao Y, Huang L, Li F, Zhang Z, Ping Y, Shen Z, Lian J, Li F, Zhao L, Zhang Y. Regulatory T cells were recruited by CCL3 to promote cryo-injured muscle repair. Immunol Lett 2018; 204:29-37. [PMID: 30321562 DOI: 10.1016/j.imlet.2018.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Skeletal muscle injury is a common symptom in daily life. After injury, a distinct population of regulatory T cells (Tregs) will infiltrate skeletal muscle in acute and chronic injury sites. However, the mechanism by which Tregs rapidly accumulate to the site of acute injury remains unclear. BALB/c mice were used to establish a cryo-injured model. Percentage of Tregs in the normal and cryo-injured tissues was detected on different days by flow cytometry. Then, the major factors that contribute to the repair of skeletal muscle by Tregs and the chemokines associated with the chemotaxis of Tregs in the paired muscle were analyzed by qRT-PCR. Finally, Tregs were sorted out by magnetic beads and the transwell analysis was performed in vitro. Compared to the normal muscle, the proportion of Tregs was dramatically-increased in the cryo-injured muscle on day 4. These Tregs produced high level of repair related factors such as amphiregulin (Areg), IL-10 and TGF-β in the cryo-injured muscle. In addition, we found that CCL3, CCL4, CCL5 were the main chemokines that highly expressed in the injured skeletal muscle compared to the normal skeletal muscle. Simultaneously, their receptors CCR1 and CCR5 were highly expressed on Tregs in cryo-injured muscle compared with the normal muscle. Transwell analysis showed CCL3 can significantly chemotize Tregs and the antibody of CCR1 could reverse the chemotaxis in vitro. These results suggest that Tregs in the cryo-injured muscle play a pivotal role that can promote the regeneration of skeletal muscle and CCL3 may serve as the key chemokine to recruit Tregs to the injury sites.
Collapse
Affiliation(s)
- Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yamin Qiao
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhibo Shen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lixuan Zhao
- Department of Cardiac surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, China.
| |
Collapse
|
142
|
Barros JF, Waclawiak I, Pecli C, Borges PA, Georgii JL, Ramos-Junior ES, Canetti C, Courau T, Klatzmann D, Kunkel SL, Penido C, Canto FB, Benjamim CF. Role of Chemokine Receptor CCR4 and Regulatory T Cells in Wound Healing of Diabetic Mice. J Invest Dermatol 2018; 139:1161-1170. [PMID: 30465800 DOI: 10.1016/j.jid.2018.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 01/04/2023]
Abstract
Wound healing is a well-coordinated process that involves inflammatory mediators and cellular responses; however, if any disturbances are present during this process, tissue repair is impaired. Chronic wounds are one of the serious long-term complications associated with diabetes mellitus. The chemokine receptor CCR4 and its respective ligands, CCL17 and CCL22, are involved in regulatory T cell recruitment and activation in inflamed skin; however, the role of regulatory T cells in wounds is still not clear. Our aim was to investigate the role of CCR4 and regulatory T cells in cutaneous wound healing in diabetic mice. Alloxan-induced diabetic wild- type mice (diabetic) developed wounds that were difficult to heal, differently from CCR4-/- diabetic mice (CCR4-/- diabetic), and also from anti-CCL17/22 or anti-CD25-injected diabetic mice that presented with accelerated wound healing and fewer regulatory T cells in the wound bed. Consequently, CCR4-/- diabetic mice also presented with alteration on T cells population in the wound and draining lymph nodes; on day 14, these mice also displayed an increase of collagen fiber deposition. Still, cytokine levels were decreased in the wounds of CCR4-/- diabetic mice on day 2. Our data suggest that the receptor CCR4 and regulatory T cells negatively affect wound healing in diabetic mice.
Collapse
Affiliation(s)
- Janaína F Barros
- Institute of Biomedical Sciences, Pharmacology and Inflammation Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ingrid Waclawiak
- Institute of Biophysics Carlos Chagas Filho, Immunobiology Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cyntia Pecli
- Institute of Biomedical Sciences, Pharmacology and Inflammation Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula A Borges
- Institute of Biomedical Sciences, Pharmacology and Inflammation Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janaína L Georgii
- Institute of Biomedical Sciences, Pharmacology and Inflammation Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Erivan S Ramos-Junior
- Institute of Biophysics Carlos Chagas Filho, Immunobiology Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Institute of Biophysics Carlos Chagas Filho, Immunobiology Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tristan Courau
- Sorbonne Universités, University of Pierre and Madam Curie, University of Paris, Paris, France
| | - David Klatzmann
- Sorbonne Universités, University of Pierre and Madam Curie, University of Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale les Unités Mixtes de Recherche S959, Paris, France
| | - Steven L Kunkel
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Carmen Penido
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratory of Applied Pharmacology, Institute of Drug Technology, Farmanguinhos, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio B Canto
- Institute of Microbiology Paulo de Góes, Immunology Department, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil; Department of Immunobiology, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Claudia F Benjamim
- Institute of Biomedical Sciences, Pharmacology and Inflammation Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Immunobiology Program, Federal University of Rio de Janeiro, Center for Health Sciences, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
143
|
Eaton LH, Dearman RJ, Kimber I, Griffiths CEM. Keratinocytes derived from late-onset-psoriasis skin do not impair Langerhans cell migration. Br J Dermatol 2018; 179:1208-1209. [PMID: 29923325 DOI: 10.1111/bjd.16896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L H Eaton
- The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - R J Dearman
- The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - I Kimber
- The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| | - C E M Griffiths
- The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, M6 8HD, U.K
| |
Collapse
|
144
|
Boniface K, Seneschal J, Picardo M, Taïeb A. Vitiligo: Focus on Clinical Aspects, Immunopathogenesis, and Therapy. Clin Rev Allergy Immunol 2018; 54:52-67. [PMID: 28685247 DOI: 10.1007/s12016-017-8622-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vitiligo is an acquired chronic depigmenting disorder of the skin, with an estimated prevalence of 0.5% of the general population, characterized by the development of white macules resulting from a loss of epidermal melanocytes. The nomenclature has been revised after an extensive international work within the vitiligo global issues consensus conference, and vitiligo (formerly non-segmental vitiligo) is now a consensus umbrella term for all forms of generalized vitiligo. Two other subsets of vitiligo are segmental vitiligo and unclassified/undetermined vitiligo, which corresponds to focal disease and rare variants. A series of hypopigmented disorders may masquerade as vitiligo, and some of them need to be ruled out by specific procedures including a skin biopsy. Multiple mechanisms are involved in melanocyte disappearance, namely genetic predisposition, environmental triggers, metabolic abnormalities, impaired renewal, and altered inflammatory and immune responses. The auto-immune/inflammatory theory is the leading hypothesis because (1) vitiligo is often associated with autoimmune diseases; (2) most vitiligo susceptibility loci identified through genome-wide association studies encode immunomodulatory proteins; and (3) prominent immune cell infiltrates are found in the perilesional margin of actively depigmenting skin. However, other studies support melanocyte intrinsic abnormalities with poor adaptation of melanocytes to stressors leading to melanocyte instability in the basal layer, and release of danger signals important for the activation of the immune system. Recent progress in the understanding of immune pathomechanisms opens interesting perspectives for innovative treatment strategies. The proof of concept in humans of targeting of the IFNγ /Th1 pathway is much awaited. The interplay between oxidative stress and altered immune responses suggests that additional strategies aiming at limiting type I interferon activation pathway as background stabilizing therapies could be an interesting approach in vitiligo. This review covers classification and clinical aspects, pathophysiology with emphasis on immunopathogenesis, and promising therapeutic approaches.
Collapse
Affiliation(s)
- Katia Boniface
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France
| | - Julien Seneschal
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France.,Department of Dermatology and Paediatric Dermatology, National Centre for Rare Skin disorders, Saint-André and Pellegrin Hospital, Bordeaux, France
| | | | - Alain Taïeb
- INSERM U1035, ATIP-AVENIR, Université de Bordeaux, Bordeaux, France. .,Department of Dermatology and Paediatric Dermatology, National Centre for Rare Skin disorders, Saint-André and Pellegrin Hospital, Bordeaux, France. .,Department of Dermatology and Pediatric Dermatology, St André Hospital, Bordeaux University Hospitals, 1 Rue Jean Burguet, 33075, Bordeaux, France.
| |
Collapse
|
145
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa‐Ard‐Iam N, Yongyuth A, Isaraphithakkul B, Rerkyen P, Charatkulangkun O, Pichyangkul S. Memory T cell subsets in healthy gingiva and periodontitis tissues. J Periodontol 2018; 89:1121-1130. [DOI: 10.1002/jper.17-0674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rangsini Mahanonda
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Keskanya Subbalekha
- Department of Oral Maxillofacial SurgeryFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Noppadol Sa‐Ard‐Iam
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Arsarn Yongyuth
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Pimprapa Rerkyen
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Orawan Charatkulangkun
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Sathit Pichyangkul
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| |
Collapse
|
146
|
Kalmykova AV, Svistunov IV, Sulaieva ON. An inside look at prurigo pigmentosa: case report from Ukraine. Int J Dermatol 2018; 58:607-610. [PMID: 30105750 DOI: 10.1111/ijd.14175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Igor V Svistunov
- Department of Dermatology, Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | | |
Collapse
|
147
|
Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H. Keratins and epidermolysis bullosa simplex. J Cell Physiol 2018; 234:289-297. [PMID: 30078200 DOI: 10.1002/jcp.26898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Medical Immunology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology and Laser Surgery, Clinical Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
148
|
Ryu YC, Kim DI, Kim SH, Wang HMD, Hwang BH. Synergistic Transdermal Delivery of Biomacromolecules Using Sonophoresis after Microneedle Treatment. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0070-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
149
|
Muruganandah V, Sathkumara HD, Navarro S, Kupz A. A Systematic Review: The Role of Resident Memory T Cells in Infectious Diseases and Their Relevance for Vaccine Development. Front Immunol 2018; 9:1574. [PMID: 30038624 PMCID: PMC6046459 DOI: 10.3389/fimmu.2018.01574] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resident memory T cells have emerged as key players in the immune response generated against a number of pathogens. Their ability to take residence in non-lymphoid peripheral tissues allows for the rapid deployment of secondary effector responses at the site of pathogen entry. This ability to provide enhanced regional immunity has gathered much attention, with the generation of resident memory T cells being the goal of many novel vaccines. Objectives This review aimed to systematically analyze published literature investigating the role of resident memory T cells in human infectious diseases. Known effector responses mounted by these cells are summarized and key strategies that are potentially influential in the rational design of resident memory T cell inducing vaccines have also been highlighted. Methods A Boolean search was applied to Medline, SCOPUS, and Web of Science. Studies that investigated the effector response generated by resident memory T cells and/or evaluated strategies for inducing these cells were included irrespective of published date. Studies must have utilized an established technique for identifying resident memory T cells such as T cell phenotyping. Results While over 600 publications were revealed by the search, 147 articles were eligible for inclusion. The reference lists of included articles were also screened for other eligible publications. This resulted in the inclusion of publications that studied resident memory T cells in the context of over 25 human pathogens. The vast majority of studies were conducted in mouse models and demonstrated that resident memory T cells mount protective immune responses. Conclusion Although the role resident memory T cells play in providing immunity varies depending on the pathogen and anatomical location they resided in, the evidence overall suggests that these cells are vital for the timely and optimal protection against a number of infectious diseases. The induction of resident memory T cells should be further investigated and seriously considered when designing new vaccines.
Collapse
Affiliation(s)
- Visai Muruganandah
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Harindra D Sathkumara
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Severine Navarro
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andreas Kupz
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
150
|
He S, Chen J, Jiang Y, Wu Y, Zhu L, Jin W, Zhao C, Yu T, Wang T, Wu S, Lin X, Qu JY, Wen Z, Zhang W, Xu J. Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells. eLife 2018; 7:36131. [PMID: 29905527 PMCID: PMC6017808 DOI: 10.7554/elife.36131] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
The origin of Langerhans cells (LCs), which are skin epidermis-resident macrophages, remains unclear. Current lineage tracing of LCs largely relies on the promoter-Cre-LoxP system, which often gives rise to contradictory conclusions with different promoters. Thus, reinvestigation with an improved tracing method is necessary. Here, using a laser-mediated temporal-spatial resolved cell labeling method, we demonstrated that most adult LCs originated from the ventral wall of the dorsal aorta (VDA), an equivalent to the mouse aorta, gonads, and mesonephros (AGM), where both hematopoietic stem cells (HSCs) and non-HSC progenitors are generated. Further fine-fate mapping analysis revealed that the appearance of LCs in adult zebrafish was correlated with the development of HSCs, but not T cell progenitors. Finally, we showed that the appearance of tissue-resident macrophages in the brain, liver, heart, and gut of adult zebrafish was also correlated with HSCs. Thus, the results of our study challenged the EMP-origin theory for LCs.
Collapse
Affiliation(s)
- Sicong He
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jiahao Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunyun Jiang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Lu Zhu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wan Jin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changlong Zhao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Tienan Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Shuting Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zilong Wen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|