101
|
Ishwar D, Venkatakrishnan K, Tan B, Haldavnekar R. DNA Methylation Signatures of Tumor-Associated Natural Killer Cells with Self-Functionalized Nanosensor Enable Colorectal Cancer Diagnosis. NANO LETTERS 2023; 23:4142-4151. [PMID: 37134017 DOI: 10.1021/acs.nanolett.2c04914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Natural killer (NK) cells undergo multiple DNA genomic alterations, especially methylation-based modifications that affect activation and function. Several epigenetic modifier markers have been targeted for immunotherapy to date, but the possibility of cancer diagnosis using NK cell's DNA has been overlooked. Here, we investigated the potential use of NK cell DNA genome modifications as markers for the diagnosis of colorectal cancer (CRC) and validated their efficacy in CRC patients. Using Raman spectroscopy as the detection methodology, we identified CRC-specific methylation signatures by comparing CRC-interacted NK cells to healthy circulating NK cells. Subsequently, we identified methylation-dependent alterations in these NK cell populations. These markers were then utilized by a machine learning algorithm to develop a diagnostic model with predictive capabilities. The diagnostic prediction model accurately differentiated CRC patients from normal controls. Our findings demonstrated the utility of NK DNA markers in the diagnosis of CRC.
Collapse
Affiliation(s)
- Deeptha Ishwar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Krishnan Venkatakrishnan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Bo Tan
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
102
|
Roelands J, Kuppen PJK, Ahmed EI, Mall R, Masoodi T, Singh P, Monaco G, Raynaud C, de Miranda NFCC, Ferraro L, Carneiro-Lobo TC, Syed N, Rawat A, Awad A, Decock J, Mifsud W, Miller LD, Sherif S, Mohamed MG, Rinchai D, Van den Eynde M, Sayaman RW, Ziv E, Bertucci F, Petkar MA, Lorenz S, Mathew LS, Wang K, Murugesan S, Chaussabel D, Vahrmeijer AL, Wang E, Ceccarelli A, Fakhro KA, Zoppoli G, Ballestrero A, Tollenaar RAEM, Marincola FM, Galon J, Khodor SA, Ceccarelli M, Hendrickx W, Bedognetti D. An integrated tumor, immune and microbiome atlas of colon cancer. Nat Med 2023; 29:1273-1286. [PMID: 37202560 PMCID: PMC10202816 DOI: 10.1038/s41591-023-02324-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/28/2023] [Indexed: 05/20/2023]
Abstract
The lack of multi-omics cancer datasets with extensive follow-up information hinders the identification of accurate biomarkers of clinical outcome. In this cohort study, we performed comprehensive genomic analyses on fresh-frozen samples from 348 patients affected by primary colon cancer, encompassing RNA, whole-exome, deep T cell receptor and 16S bacterial rRNA gene sequencing on tumor and matched healthy colon tissue, complemented with tumor whole-genome sequencing for further microbiome characterization. A type 1 helper T cell, cytotoxic, gene expression signature, called Immunologic Constant of Rejection, captured the presence of clonally expanded, tumor-enriched T cell clones and outperformed conventional prognostic molecular biomarkers, such as the consensus molecular subtype and the microsatellite instability classifications. Quantification of genetic immunoediting, defined as a lower number of neoantigens than expected, further refined its prognostic value. We identified a microbiome signature, driven by Ruminococcus bromii, associated with a favorable outcome. By combining microbiome signature and Immunologic Constant of Rejection, we developed and validated a composite score (mICRoScore), which identifies a group of patients with excellent survival probability. The publicly available multi-omics dataset provides a resource for better understanding colon cancer biology that could facilitate the discovery of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Jessica Roelands
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Eiman I Ahmed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Tariq Masoodi
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Gianni Monaco
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Neuropathology, Medical Center-University of Freiburg, Freiburg, Germany
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Christophe Raynaud
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Luigi Ferraro
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
| | | | - Najeeb Syed
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Arun Rawat
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Amany Awad
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - William Mifsud
- Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shimaa Sherif
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mahmoud G Mohamed
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Women's Wellness and Research Center, Hamad Medical Corporation, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
| | - Darawan Rinchai
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Marc Van den Eynde
- Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Rosalyn W Sayaman
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Inserm UMR1068, CNRS UMR725, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Mahir Abdulla Petkar
- Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Stephan Lorenz
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Lisa Sara Mathew
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | - Kun Wang
- Integrated Genomics Services, Research Branch, Sidra Medicine, Doha, Qatar
| | | | - Damien Chaussabel
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Computational Sciences Department, The Jackson Laboratory, Farmington, CT, USA
| | | | - Ena Wang
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Nurix Therapeutics, San Francisco, CA, USA
| | - Anna Ceccarelli
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Khalid A Fakhro
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Weill-Cornell Medicine Qatar, Doha, Qatar
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesco M Marincola
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
- Sonata Therapeutics, Watertown, MA, USA
| | - Jérôme Galon
- Inserm, Laboratory of Integrative Cancer Immunology, Equipe Labellisée Ligue Contre Le Cancer, Centre de Recherche de Cordeliers, Université de Paris, Sorbonne Université, Paris, France
| | - Souhaila Al Khodor
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Michele Ceccarelli
- BIOGEM Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples Federico II, Naples, Italy
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Wouter Hendrickx
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Davide Bedognetti
- Translational Medicine Division, Research Branch, Sidra Medicine, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy.
| |
Collapse
|
103
|
Zhang H, Bao M, Liao D, Zhang Z, Tian Z, Yang E, Luo P, Jiang X. Identification of INSRR as an immune-related gene in the tumor microenvironment of glioblastoma by integrated bioinformatics analysis. Med Oncol 2023; 40:161. [PMID: 37099121 DOI: 10.1007/s12032-023-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Gliomas are the most common malignant tumors in the central nervous system. The tumor microenvironment (TME) plays a crucial role in tumor proliferation, invasion, angiogenesis, and immune escape. However, little is known about TME in gliomas. The purpose of this study was to explore the biomarkers associated with TME in glioblastoma (GBM) to predict immunotherapy effectiveness and prognosis in patients. Based on RNA-seq transcriptome data and clinical features of 1222 samples (113 normal samples and 1109 tumor samples) in The Cancer Genome Atlas (TCGA) database, the ImmuneScore, StromalScore, and ESTIMATEScore were calculated by ESTIMATE algorithm. The differentially expressed genes (DEGs) and differentially mutated genes (DMGs) were determined in the TCGA GBM cohort. Furthermore, gene set enrichment analysis (GSEA) was used to investigate the enrichment pathways of INSRR genes with abnormal expression. The proportion of tumor-infiltrating immune cells (TIICs) was evaluated by CIBERSORT. Frequent mutations of TP53, EGFR, and PTEN occurred in high and low immune scores. The cross-analysis of DEGs and DMGs revealed that INSRR was an immune-related biomarker in the TCGA GBM cohort. According to GSEA, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway with INSRR abnormal expression were IgA-produced intestinal immune network and Alzheimer's disease, oxidative phosphorylation, and Parkinson's disease, respectively. Additionally, INSRR expression was correlated with dendritic cells activated, dendritic cells resting, T cells CD8, and T cell gamma delta. INSRR is associated with the immune microenvironment in GBM and is used as a biomarker to predict immune invasion.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, 710127, Shaanxi Province, China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
104
|
Ferrari M, Alessandrini L, Savietto E, Cazzador D, Schiavo G, Taboni S, Carobbio ALC, Calvanese L, Contro G, Gaudioso P, Emanuelli E, Sbaraglia M, Zanoletti E, Marioni G, Dei Tos AP, Nicolai P. The Prognostic Role of the Immune Microenvironment in Sinonasal Intestinal-Type Adenocarcinoma: A Computer-Assisted Image Analysis of CD3 + and CD8 + Tumor-Infiltrating Lymphocytes. J Pers Med 2023; 13:jpm13050726. [PMID: 37240896 DOI: 10.3390/jpm13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The prognostic value of conventional histopathological parameters in the sinonasal intestinal-type adenocarcinoma (ITAC) has been debated and novel variables should be investigated. Increasing evidence demonstrated that the evolution of cancer is strongly dependent upon the complex interactions within tumor microenvironment. The aim of this retrospective study was to assess the features of immune microenvironment in terms of CD3+ and CD8+ cells in a series of ITAC and explore their prognostic role, as well as their relations with clinicopathological variables. A computer-assisted image analysis of CD3+ and CD8+ tumor-infiltrating lymphocytes (TIL) density was conducted on surgical specimens of 51 patients with ITAC that underwent a curative treatment including surgery. ITAC displays variable TIL density, which is associated with OS. In a univariate model, the density of CD3+ TIL was significantly related to OS (p = 0.012), whereas the association with CD8+ TIL density resulted in being non-significant (p = 0.056). Patients with intermediate CD3+ TIL density were associated with the best outcome, whereas 5-year OS was the lowest for intermediate CD8+ TIL density. CD3+ TIL density maintained a significant association with OS in the multivariable analysis. TIL density was not significantly related to demographic and clinicopathological variables. CD3+ TIL density was independently associated with OS in a non-linear fashion and patients with intermediate CD3+ TIL density had the best outcome. Though based on a preliminary analysis on a relatively small series of patients, this finding makes TIL density a potential independent prognostic factor of ITAC.
Collapse
Affiliation(s)
- Marco Ferrari
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON M5G1L7, Canada
- Technology for Health (PhD Program), Department of Information Engineering, University of Brescia, 25123 Brescia, Italy
| | - Lara Alessandrini
- Section of Pathology, Department of Medicine, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Enrico Savietto
- Unit of Otolaryngology, Hospital of Treviso AULSS 2-Marca Trevigiana, 31100 Treviso, Italy
| | - Diego Cazzador
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Gloria Schiavo
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Stefano Taboni
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON M5G1L7, Canada
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology, Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Andrea L C Carobbio
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Leonardo Calvanese
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Giacomo Contro
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
- Technology for Health (PhD Program), Department of Information Engineering, University of Brescia, 25123 Brescia, Italy
| | - Piergiorgio Gaudioso
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Enzo Emanuelli
- Unit of Otolaryngology, Hospital of Treviso AULSS 2-Marca Trevigiana, 31100 Treviso, Italy
| | - Marta Sbaraglia
- Section of Pathology, Department of Medicine, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Elisabetta Zanoletti
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Gino Marioni
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Angelo P Dei Tos
- Section of Pathology, Department of Medicine, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, "Azienda Ospedale Università di Padova", University of Padua, 35128 Padua, Italy
| |
Collapse
|
105
|
Meyiah A, Mahmoodi Chalbatani G, Al-Mterin MA, Malekraeisi MA, Murshed K, Elkord E. Co-expression of PD-1 with TIGIT or PD-1 with TIM-3 on tumor-infiltrating CD8 + T cells showed synergistic effects on improved disease-free survival in treatment-naïve CRC patients. Int Immunopharmacol 2023; 119:110207. [PMID: 37099940 DOI: 10.1016/j.intimp.2023.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Immune checkpoints (ICs) are highly expressed on tumor-infiltrating immune cells (TIICs) in different malignancies, including colorectal cancer (CRC). T cells play crucial roles in shaping CRC, and their presence in the tumor microenvironment (TME) has proven to be one of the best predictors of clinical outcomes. A crucial component of the immune system is cytotoxic CD8+ T cells (CTLs), which play decisive roles in the prognosis of CRC. In this study, we investigated associations of immune checkpoints expressed on tumor-infiltrating CD8+ T cells with disease-free survival (DFS) in 45 naïve-treatment CRC patients. First, we examined the associations of single ICs, and found that CRC patients with higher levels of T-cell immunoglobulin and ITIM-domain (TIGIT), T-cell immunoglobulin and mucin domain-3 (TIM-3) and programmed cell death-1 (PD-1) CD8+ T cells tended to have longer DFS. Interestingly, when PD-1 expression was combined with other ICs, there were more evident and stronger associations between higher levels of PD-1+ with TIGIT+ or PD-1+ with TIM-3+ tumor-infiltrating CD8+ T cells and longer DFS. Our findings for TIGIT were validated in The Cancer Genome Atlas (TCGA) CRC dataset. This study is the first to report on the association of co-expression of PD-1 with TIGIT and PD-1 with TIM-3 in CD8+ T cells and improved DFS in treatment-naïve CRC patients. This work highlights the significance of immune checkpoint expression on tumor-infiltrating CD8+ T cells as critical predictive biomarkers, especially when co-expression of different ICs is considered.
Collapse
Affiliation(s)
- Abdo Meyiah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Mohamed A Al-Mterin
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | | | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
106
|
Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, Veldhuizen GP, Hutchins GGA, Richman SD, Foersch S, Brinker TJ, Fukuoka J, Bychkov A, Uegami W, Truhn D, Brenner H, Brobeil A, Hoffmeister M, Kather JN. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Rep Med 2023; 4:100980. [PMID: 36958327 PMCID: PMC10140458 DOI: 10.1016/j.xcrm.2023.100980] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.
Collapse
Affiliation(s)
- Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, the Netherlands
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Yoni Schirris
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; University of Amsterdam, 1012 WP Amsterdam, the Netherlands
| | - Gregory P Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gordon G A Hutchins
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Susan D Richman
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Bank, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Medicine I, University Hospital Dresden, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
107
|
Moretto R, Rossini D, Catteau A, Antoniotti C, Giordano M, Boccaccino A, Ugolini C, Proietti A, Conca V, Kassambara A, Pietrantonio F, Salvatore L, Lonardi S, Tamberi S, Tamburini E, Poma AM, Fieschi J, Fontanini G, Masi G, Galon J, Cremolini C. Dissecting tumor lymphocyte infiltration to predict benefit from immune-checkpoint inhibitors in metastatic colorectal cancer: lessons from the AtezoT RIBE study. J Immunother Cancer 2023; 11:jitc-2022-006633. [PMID: 37085190 PMCID: PMC10124320 DOI: 10.1136/jitc-2022-006633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Tumor immune cells influence the efficacy of immune-checkpoint inhibitors (ICIs) and many efforts aim at identifying features of tumor immune microenvironment able to predict benefit from ICIs in proficient mismatch repair (pMMR)/microsatellite stable (MSS) metastatic colorectal cancer (mCRC). METHODS We characterized tumor immune cell infiltrate, by assessing tumor-infiltrating lymphocytes (TILs), Immunoscore, Immunoscore-IC, and programmed death ligand-1 (PD-L1) expression in tumor samples of patients with mCRC enrolled in the AtezoTRIBE study, a phase II randomized trial comparing FOLFOXIRI/bevacizumab/atezolizumab to FOLFOXIRI/bevacizumab, with the aim of evaluating the prognostic and predictive value of these features. RESULTS Out of 218 patients enrolled, 181 (83%), 77 (35%), 157 (72%) and 162 (74%) specimens were successfully tested for TILs, Immunoscore, Immunoscore-IC and PD-L1 expression, respectively, and 69 (38%), 45 (58%), 50 (32%) and 21 (13%) tumors were classified as TILs-high, Immunoscore-high, Immunoscore-IC-high and PD-L1-high, respectively. A poor agreement was observed between TILs and Immunoscore or Immunoscore-IC (K of Cohen <0.20). In the pMMR population, longer progression-free survival (PFS) was reported for Immunoscore-high and Immunoscore-IC-high groups compared with Immunoscore-low (16.4 vs 12.2 months; HR: 0.55, 95% CI: 0.30 to 0.99; p=0.049) and Immunoscore-IC-low (14.8 vs 11.5 months; HR: 0.55, 95% CI: 0.35 to 0.85; p=0.007), respectively, with a significant interaction effect between treatment arms and Immunoscore-IC (p for interaction: 0.006) and a trend for Immunoscore (p for interaction: 0.13). No PFS difference was shown according to TILs and PD-L1 expression. Consistent results were reported in the overall population. CONCLUSIONS The digital evaluation of tumor immune cell infiltrate by means of Immunoscore-IC or Immunoscore identifies the subset of patients with pMMR mCRC achieving more benefit from the addition of the anti-PD-L1 to the upfront treatment. Immunoscore-IC stands as the most promising predictor of benefit from ICIs.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Boccaccino
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Agnese Proietti
- Unit of Pathological Anatomy 3, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Filippo Pietrantonio
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa Salvatore
- Oncologia Medica, Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Oncologia Medica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Tamberi
- Oncology Unit, Ravenna Hospital, AUSL Romagna, Ravenna, Italy
| | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale G Panico, Tricase City Hospital, Tricase, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, Paris, F-75006, France
- Sorbonne Université, Université de Paris, Centre de Recherche des Cordeliers, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
108
|
Bonnereau J, Courau T, Asesio N, Salfati D, Bouhidel F, Corte H, Hamoudi S, Hammoudi N, Lavolé J, Vivier-Chicoteau J, Chardiny V, Maggiori L, Blery M, Remark R, Bonnafous C, Cattan P, Toubert A, Bhat P, Allez M, Aparicio T, Le Bourhis L. Autologous T cell responses to primary human colorectal cancer spheroids are enhanced by ectonucleotidase inhibition. Gut 2023; 72:699-709. [PMID: 35803702 DOI: 10.1136/gutjnl-2021-326553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/29/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE T cells are major effectors of the antitumoural immune response. Their activation by tumour-associated antigens can unleash their proliferation and cytotoxic functions, leading to tumour cell elimination. However, tumour-related immunosuppressive mechanisms including the overexpression of immune checkpoints like programmed cell death protein-1 (PD-1), are also engaged, promoting immune escape. Current immunotherapies targeting these pathways have demonstrated weak efficacy in colorectal cancer (CRC). It is thus crucial to find new targets for immunotherapy in this cancer type. DESIGN In a prospective cohort of patients with CRC, we investigated the phenotype of tumour-related and non-tumour related intestinal T cells (n=44), particularly the adenosinergic pathway, correlating with clinical phenotype. An autologous coculture model was developed between patient-derived primary tumour spheroids and their autologous tumour-associated lymphocytes. We used this relevant model to assess the effects of CD39 blockade on the antitumour T cell response. RESULTS We show the increased expression of CD39, and its co-expression with PD-1, on tumour infiltrating T cells compared with mucosal lymphocytes. CD39 expression was higher in the right colon and early-stage tumours, thus defining a subset of patients potentially responsive to CD39 blockade. Finally, we demonstrate in autologous conditions that CD39 blockade triggers T cell infiltration and tumour spheroid destruction in cocultures. CONCLUSION In CRC, CD39 is strongly expressed on tumour infiltrating lymphocytes and its inhibition represents a promising therapeutic strategy for treating patients.
Collapse
Affiliation(s)
- Julie Bonnereau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Tristan Courau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Nicolas Asesio
- Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Delphine Salfati
- Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Fatiha Bouhidel
- Anatomopathology Department, Hôpital Saint-Louis, Paris, France
| | - Hélène Corte
- Digestive Surgery Department, Hôpital Saint-Louis, Paris, France
| | - Sarah Hamoudi
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Nassim Hammoudi
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France.,Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Julie Lavolé
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Justine Vivier-Chicoteau
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France.,Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Victor Chardiny
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Leon Maggiori
- Digestive Surgery Department, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Pierre Cattan
- Digestive Surgery Department, Hôpital Saint-Louis, Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| | - Purnima Bhat
- Medical School, The Australian National University, Canberra, Australian Capital Territory, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Matthieu Allez
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France.,Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Thomas Aparicio
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France.,Department of Hepato-Gastroenterology, Hôpital Saint-Louis, Paris, France
| | - Lionel Le Bourhis
- INSERM U1160, Institut de Recherche Saint-Louis, Saint Louis Hospital, Université de Paris, Paris, France
| |
Collapse
|
109
|
Shi R, Zhou X, Pang L, Wang M, Li Y, Chen C, Ning H, Zhang L, Yue G, Qiu L, Zhao W, Qi Y, Wu Y, Gao Y. Peptide vaccine from cancer-testis antigen ODF2 can potentiate the cytotoxic T lymphocyte infiltration through IL-15 in non-MSI-H colorectal cancer. Cancer Immunol Immunother 2023; 72:985-1001. [PMID: 36251028 DOI: 10.1007/s00262-022-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 03/20/2023]
Abstract
About 85% of patients with colorectal cancer (CRC) have the non-microsatellite instability-high (non-MSI-H) subtype, and many cannot benefit from immune checkpoint blockade. A potential reason for this is that most non-MSI-H colorectal cancers are immunologically "cold" due to poor CD8+ T cell infiltration. In the present study, we screened for potential cancer-testis antigens (CTAs) by comparing the bioinformatics of CD8+ T effector memory (Tem) cell infiltration between MSI-H and non-MSI-H CRC. Two ODF2-derived epitope peptides, P433 and P609, displayed immunogenicity and increased the proportion of CD8+ T effector memory (Tem) cells in vitro and in vivo. The adoptive transfer of peptide pool-induced CTLs inhibited tumor growth and enhanced CD8+ T cell infiltration in tumor-bearing NOD/SCID mice. The mechanistic study showed that knockdown of ODF2 in CRC cells promoted interleukin-15 expression, which facilitated CD8+ T cell proliferation. In conclusion, ODF2, a CTA, was negatively correlated with CD8+ T cell infiltration in "cold" non-MSI-H CRC and was selected based on the results of bioinformatics analyses. The corresponding HLA-A2 restricted epitope peptide induced antigen-specific CTLs. Immunotherapy targeting ODF2 could improve CTA infiltration via upregulating IL-15 in non-MSI-H CRC. This tumor antigen screening strategy could be exploited to develop therapeutic vaccines targeting non-MSI-H CRC.
Collapse
Affiliation(s)
- Ranran Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yubing Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lihan Zhang
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Guangxing Yue
- Department of Integrated Chinse and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou, 450001, China.
- International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
110
|
Kosumi K, Baba Y, Yamamura K, Nomoto D, Okadome K, Yagi T, Toihata T, Kiyozumi Y, Harada K, Eto K, Sawayama H, Ishimoto T, Iwatsuki M, Iwagami S, Miyamoto Y, Yoshida N, Watanabe M, Baba H. Intratumour Fusobacterium nucleatum and immune response to oesophageal cancer. Br J Cancer 2023; 128:1155-1165. [PMID: 36599917 PMCID: PMC10006219 DOI: 10.1038/s41416-022-02112-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Experimental evidence suggests a role of intratumour Fusobacterium nucleatum in the aggressive behaviour of gastrointestinal cancer through downregulating anti-tumour immunity. We investigated the relationship between intratumour F. nucleatum and immune response to oesophageal cancer. METHODS Utilising an unbiased database of 300 resected oesophageal cancers, we measured F. nucleatum DNA in tumour tissue using a quantitative polymerase chain reaction assay, and evaluated the relationship between the abundance of F. nucleatum and the densities of T cells (CD8 + , FOXP3 + and PDCD1 + ), as well as lymphocytic reaction patterns (follicle lymphocytic reaction, peritumoural lymphocytic reaction, stromal lymphocytic reaction and tumour-infiltrating lymphocytes) in oesophageal carcinoma tissue. RESULTS F. nucleatum was significantly and inversely associated only with the peritumoural lymphocytic reaction (P = 0.0002). Compared with the F. nucleatum-absent group, the F. nucleatum-high group showed a much lower level of the peritumoural lymphocytic reaction (univariable odds ratio, 0.33; 95% confidence interval, 0.16-0.65; P = 0.0004). A multivariable model yielded a similar finding (multivariable odds ratio, 0.34; 95% confidence interval 0.16-0.69; P = 0.002). CONCLUSIONS Intratumour F. nucleatum is associated with a diminished peritumoural lymphocytic reaction, providing a platform for further investigations on the potential interactive roles between intratumour F. nucleatum and host immunity.
Collapse
Affiliation(s)
- Keisuke Kosumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Surgery, Amakusa Medical Center, 854-1 Jikiba, Kameba-machi, Amakusa, 863-0046, Japan
- Department of Next-Generation Surgical Therapy Development, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Next-Generation Surgical Therapy Development, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kensuke Yamamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Daichi Nomoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuo Okadome
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Ave., EBRC Room 404A, Boston, MA, 02115, USA
| | - Taisuke Yagi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tasuku Toihata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
111
|
Ma N, Hua R, Yang Y, Liu ZC, Pan J, Yu BY, Sun YF, Xie D, Wang Y, Li ZG. PES1 reduces CD8 + T cell infiltration and immunotherapy sensitivity via interrupting ILF3-IL15 complex in esophageal squamous cell carcinoma. J Biomed Sci 2023; 30:20. [PMID: 36959575 PMCID: PMC10037800 DOI: 10.1186/s12929-023-00912-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Although immune checkpoint blockade (ICB) therapy has brought survival benefits to patients with specific cancer types, most of cancer patients remain refractory to the ICB therapy, which is largely attributed to the immunosuppressive tumor microenvironment. Thereby, it is urgent to profile key molecules and signal pathways responsible for modification of tumor microenvironment. METHODS Multiple databases of esophageal squamous cell carcinoma (ESCC) were integratively analyzed to screen candidate genes responsible for infiltration of CD8+ T cells. Expression of pescadillo ribosomal biogenesis factor 1 (PES1) in clinical ESCC samples was examined by qRT-PCR, western blotting, and immunohistochemistry. The mechanisms of PES1 were investigated via RNA sequencing and mass spectrometry followed by immunoprecipitation and proximity ligation assay. The clinical and therapeutic significance of PES1 in ESCC was comprehensively investigated using ESCC cells and mouse model. RESULTS PES1 was significantly upregulated and correlated with poor prognosis in ESCC patients. PES1 knockdown decreased ESCC cell growth in vitro and in vivo and enhanced the efficacy of ICB therapy in mouse model, which was established through subcutaneous inoculation with ESCC cells. Analyses on RNA sequencing and mass spectrometry suggested that PES1 expression was negatively correlated with IL15 and ILF3 was one of the PES1-associated proteins. It has been known that ILF3 interacts with and stabilizes IL15 mRNA to increase IL15 protein level. Our data further indicated that PES1 interfered with the interaction between ILF3 and IL15 mRNA and impaired ILF3-mediated stabilization of IL15 mRNA, which eventually reduced the protein level of IL15. Interestingly, the inhibitory effect of ICB therapy boosted by PES1 knockdown dramatically antagonized by knockdown of IL15, which suppressed the tumor-infiltrated CD8+ T cells in ESCC. Finally, we confirmed the relationships among PES1, IL15, and CD8+ T cell infiltration in 10 locally advanced ESCC patients receiving ICB neoadjuvant therapy and demonstrated that ICB therapy would be more effective in those with low expression of PES1. CONCLUSIONS Altogether, our findings herein provided novel insights on biological function and clinical significance of PES1 and suggested that high expression of PES1 could suppress ILF3-IL15 axis-mediated immunosurveillance and promote resistance to ICB through restraining tumor-infiltrated CD8+ T cells.
Collapse
Affiliation(s)
- Ning Ma
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo-Yao Yu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Feng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhi-Gang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
112
|
Kula A, Dawidowicz M, Mielcarska S, Kiczmer P, Skiba H, Krygier M, Chrabańska M, Piecuch J, Szrot M, Robotycka J, Ochman B, Strzałkowska B, Czuba Z, Świętochowska E, Waniczek D. Overexpression and Role of HHLA2, a Novel Immune Checkpoint, in Colorectal Cancer. Int J Mol Sci 2023; 24:ijms24065876. [PMID: 36982953 PMCID: PMC10057377 DOI: 10.3390/ijms24065876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The study aimed to investigate correlations between HHLA2 levels and parameters, including microsatellite instability (MSI) status, CD8+ cells, and histopathological features: budding, tumor-infiltrating lymphocytes (TILs), TNM scale, grading, cytokines, chemokines, and cell signaling moleculesin colorectal cancer (CRC). Furthermore, the immune infiltration landscape and HHLA2-related pathways in colorectal cancer using available online datasets were analyzed. The study included 167 patients diagnosed with CRC. Expression of HHLA2 was detected by immunohistochemistry method (IHC) and enzyme-linked immunosorbent assay (ELISA). The IHC was used to evaluate the MSI and CD8+ status. The budding and TILs were measured using a light microscope. The concentrations of cytokines, chemokines, and cell signaling molecules were measured to analyze the data by the Bio-Plex Pro Human cytokine screening panel, 48 cytokine assay, and principal component analysis (PCA). Geneset enrichment analysis (GSEA) was conducted to identify HHLA2-related pathways. The biological function of HHLA2 was predicted by Gene Ontology (GO). Analysis of the immune infiltration landscape of HHLA2 in colorectal cancer was made by the web-based tool Camoip. High HHLA2 expression was detected in CRC tumor tissues compared to the adjacent noncancerous tissues. The percentage of HHLA2-positive tumors was 97%. GSEA and GO showed that HHLA2 upregulation correlated with cancer-related pathways and several biological functions. Tumor-infiltrating lymphocytes score correlated positively with IHC HHLA2 expression level percentage. There was a negative correlation between HHLA2, anti-tumor cytokines and pro-tumor growth factors. This study provides a valuable insight into the role of HHLA2 in CRC. We reveal the role of HHLA2 expression as well as a stimulatory and inhibitory immune checkpoint in colorectal cancer. Further research may verify the therapeutic values of the HHLA2-KIR3DL3/TMIGD2 pathway in colorectal cancer.
Collapse
Affiliation(s)
- Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Paweł Kiczmer
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Hanna Skiba
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Małgorzata Krygier
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Magdalena Chrabańska
- Department and Chair of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 13-15 3 Maja, 41-800 Zabrze, Poland
| | - Jerzy Piecuch
- Department of General and Bariatric Surgery and Emergency Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Monika Szrot
- Department of General and Bariatric Surgery and Emergency Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Julia Robotycka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Bogumiła Strzałkowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| |
Collapse
|
113
|
Liu RX, Wen C, Ye W, Li Y, Chen J, Zhang Q, Li W, Liang W, Wei L, Zhang J, Chan KW, Wang X, Yang X, Liu H. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023; 26:106140. [PMID: 36879799 PMCID: PMC9984553 DOI: 10.1016/j.isci.2023.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
Collapse
Affiliation(s)
- Rui-Xian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Chuangyu Wen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Weibiao Ye
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Yewei Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junxiong Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiqian Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanfei Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xueqin Wang
- International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
114
|
Mastrodomenico L, Piombino C, Riccò B, Barbieri E, Venturelli M, Piacentini F, Dominici M, Cortesi L, Toss A. Personalized Systemic Therapies in Hereditary Cancer Syndromes. Genes (Basel) 2023; 14:684. [PMID: 36980956 PMCID: PMC10048191 DOI: 10.3390/genes14030684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Hereditary cancer syndromes are inherited disorders caused by germline pathogenic variants (PVs) that lead to an increased risk of developing certain types of cancer, frequently at an earlier age than in the rest of the population. The germline PVs promote cancer development, growth and survival, and may represent an ideal target for the personalized treatment of hereditary tumors. PARP inhibitors for the treatment of BRCA and PALB2-associated tumors, immune checkpoint inhibitors for tumors associated with the Lynch Syndrome, HIF-2α inhibitor in the VHL-related cancers and, finally, selective RET inhibitors for the treatment of MEN2-associated medullary thyroid cancer are the most successful examples of how a germline PVs can be exploited to develop effective personalized therapies and improve the outcome of these patients. The present review aims to describe and discuss the personalized systemic therapies for inherited cancer syndromes that have been developed and investigated in clinical trials in recent decades.
Collapse
Affiliation(s)
- Luciana Mastrodomenico
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Beatrice Riccò
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Elena Barbieri
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Marta Venturelli
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Federico Piacentini
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, 41124 Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
115
|
Wang JX, Cao B, Ma N, Wu KY, Chen WB, Wu W, Dong X, Liu CF, Gao YF, Diao TY, Min XY, Yong Q, Li ZF, Zhou W, Li K. Collectin-11 promotes cancer cell proliferation and tumor growth. JCI Insight 2023; 8:e159452. [PMID: 36883567 PMCID: PMC10077485 DOI: 10.1172/jci.insight.159452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Collectin-11 (CL-11) is a recently described soluble C-type lectin that has distinct roles in embryonic development, host defence, autoimmunity, and fibrosis. Here we report that CL-11 also plays an important role in cancer cell proliferation and tumor growth. Melanoma growth was found to be suppressed in Colec11-/- mice in a s.c. B16 melanoma model. Cellular and molecular analyses revealed that CL-11 is essential for melanoma cell proliferation, angiogenesis, establishment of more immunosuppressive tumor microenvironment, and the reprogramming of macrophages to M2 phenotype within melanomas. In vitro analysis revealed that CL-11 can activate tyrosine kinase receptors (EGFR, HER3) and ERK, JNK, and AKT signaling pathways and has a direct stimulatory effect on murine melanoma cell proliferation. Furthermore, blockade of CL-11 (treatment with L-fucose) inhibited melanoma growth in mice. Analysis of open data sets revealed that COLEC11 gene expression is upregulated in human melanomas and that high COLEC11 expression has a trend toward poor survival. CL-11 also had direct stimulatory effects on human tumor cell proliferation in melanoma and several other types of cancer cells in vitro. Overall, our findings provide the first evidence to our knowledge that CL-11 is a key tumor growth-promoting protein and a promising therapeutic target in tumor growth.
Collapse
Affiliation(s)
- Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Kun-Yi Wu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Wan-Bing Chen
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Weiju Wu
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Xia Dong
- Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Ya-Feng Gao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng-Yue Diao
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Qing Yong
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zong-Fang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Wuding Zhou
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
116
|
Hao M, Li H, Yi M, Zhu Y, Wang K, Liu Y, Liang X, Ding L. Development of an immune-related gene prognostic risk model and identification of an immune infiltration signature in the tumor microenvironment of colon cancer. BMC Gastroenterol 2023; 23:58. [PMID: 36890467 PMCID: PMC9996977 DOI: 10.1186/s12876-023-02679-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Colon cancer is a common and highly malignant tumor. Its incidence is increasing rapidly with poor prognosis. At present, immunotherapy is a rapidly developing treatment for colon cancer. The aim of this study was to construct a prognostic risk model based on immune genes for early diagnosis and accurate prognostic prediction of colon cancer. METHODS Transcriptome data and clinical data were downloaded from the cancer Genome Atlas database. Immunity genes were obtained from ImmPort database. The differentially expressed transcription factors (TFs) were obtained from Cistrome database. Differentially expressed (DE) immune genes were identified in 473 cases of colon cancer and 41 cases of normal adjacent tissues. An immune-related prognostic model of colon cancer was established and its clinical applicability was verified. Among 318 tumor-related transcription factors, differentially expressed transcription factors were finally obtained, and a regulatory network was constructed according to the up-down regulatory relationship. RESULTS A total of 477 DE immune genes (180 up-regulated and 297 down-regulated) were detected. We developed and validated twelve immune gene models for colon cancer, including SLC10A2, FABP4, FGF2, CCL28, IGKV1-6, IGLV6-57, ESM1, UCN, UTS2, VIP, IL1RL2, NGFR. The model was proved to be an independent prognostic variable with good prognostic ability. A total of 68 DE TFs (40 up-regulated and 23 down-regulated) were obtained. The regulation network between TF and immune genes was plotted by using TF as source node and immune genes as target node. In addition, Macrophage, Myeloid Dendritic cell and CD4+ T cell increased with the increase of risk score. CONCLUSION We developed and validated twelve immune gene models for colon cancer, including SLC10A2, FABP4, FGF2, CCL28, IGKV1-6, IGLV6-57, ESM1, UCN, UTS2, VIP, IL1RL2, NGFR. This model can be used as a tool variable to predict the prognosis of colon cancer.
Collapse
Affiliation(s)
- Mengdi Hao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Huimin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Meng Yi
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Yubing Zhu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Kun Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Yin Liu
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Xiaoqing Liang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China
| | - Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, No. 10, Tieyi Road, Haidian District, Beijing, 100038, China.
- Department of Oncology, Ninth School of Clinical Medicine, Peking University, Beijing, 100038, China.
| |
Collapse
|
117
|
Zhu J, Lian J, Xu B, Pang X, Ji S, Zhao Y, Lu H. Neoadjuvant immunotherapy for colorectal cancer: Right regimens, right patients, right directions? Front Immunol 2023; 14:1120684. [PMID: 36949951 PMCID: PMC10026962 DOI: 10.3389/fimmu.2023.1120684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Neoadjuvant chemoradiotherapy (NACRT) or chemotherapy (NACT) followed by radical resection and then adjuvant therapy is considered the optimal treatment model for locally advanced colorectal cancer (LACRC). A recent total neoadjuvant therapy (TNT) strategy further improved the tumour regression rate preoperatively and reduced local-regional recurrence in locally advanced rectal cancer (LARC). However, distant metastasis was still high, and little overall survival benefit was obtained from these preoperative treatment models. According to mismatch repair protein expression, MSI-H/dMMR and non-MSI-H/pMMR statuses were defined in colorectal cancer (CRC) patients. Due to the special features of biologics in MSI-H/dMMR CRC patients, this subgroup of patients achieved little treatment efficacy from chemoradiotherapy but benefited from immune checkpoint inhibitors (ICIs). The KEYNOTE-177 trial observed favourable survival outcomes in metastatic CRC patients treated with one-line pembrolizumab with tolerable toxicity. Given the better systemic immune function, increased antigenic exposure, and improved long-term memory induction before surgery, neoadjuvant ICI (NAICI) treatment was proposed. The NICHE trial pioneered the use of NAICI treatment in LACRC, and recent reports from several phase II studies demonstrated satisfactory tumour downsizing in CRC. Preclinical rationales and preliminary early-phase human trials reveal the feasibility of NAICI therapy and the therapeutic efficacy provided by this treatment model. Better tumour regression before surgery also increases the possibility of organ preservation for low LARC. However, the optimal treatment strategy and effective biomarker identification for beneficiary selection remain unknown, and potential pitfalls exist, including tumour progression during neoadjuvant treatment due to drug resistance and surgery delay. Given these foundations and questions, further phase II or III trials with large samples need to be conducted to explore the right regimens for the right patients.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jie Lian
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Benjie Xu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Xiangyi Pang
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shengjun Ji
- Department of Radiotherapy and Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yutian Zhao
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Haibo Lu
- Department of Outpatient Chemotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
118
|
Andric F, Al-Fairouzi A, Wettergren Y, Szeponik L, Bexe-Lindskog E, Cusack JC, Tumusiime G, Quiding-Järbrink M, Ljungman D. Immune Microenvironment in Sporadic Early-Onset versus Average-Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15051457. [PMID: 36900249 PMCID: PMC10001362 DOI: 10.3390/cancers15051457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
The incidence of left-sided colon and rectal cancer in young people are increasing worldwide, but its causes are poorly understood. It is not clear if the tumor microenvironment is dependent on age of onset, and little is known about the composition of tumor-infiltrating T cells in early-onset colorectal cancer (EOCRC). To address this, we investigated T-cell subsets and performed gene expression immune profiling in sporadic EOCRC tumors and matched average-onset colorectal cancer (AOCRC) tumors. Left-sided colon and rectal tumors from 40 cases were analyzed; 20 EOCRC (<45 years) patients were matched 1:1 to AOCRC (70-75 years) patients by gender, tumor location, and stage. Cases with germline pathogenic variants, inflammatory bowel disease or neoadjuvant-treated tumors were excluded. For T cells in tumors and stroma, a multiplex immunofluorescence assay combined with digital image analysis and machine learning algorithms was used. Immunological mediators in the tumor microenvironment were assessed by NanoString gene expression profiling of mRNA. Immunofluorescence revealed no significant difference between EOCRC and AOCRC with regard to infiltration of total T cells, conventional CD4+ and CD8+ T cells, regulatory T cells, or γδ T cells. Most T cells were located in the stroma in both EOCRC and AOCRC. Immune profiling by gene expression revealed higher expression in AOCRC of the immunoregulatory cytokine IL-10, the inhibitory NK cell receptors KIR3DL3 and KLRB1 (CD161), and IFN-a7 (IFNA7). In contrast, the interferon-induced gene IFIT2 was more highly expressed in EOCRC. However, in a global analysis of 770 tumor immunity genes, no significant differences could be detected. T-cell infiltration and expression of inflammatory mediators are similar in EOCRC and AOCRC. This may indicate that the immune response to cancer in left colon and rectum is not related to age of onset and that EOCRC is likely not driven by immune response deficiency.
Collapse
Affiliation(s)
- Fanny Andric
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Ala Al-Fairouzi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Yvonne Wettergren
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Elinor Bexe-Lindskog
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
| | - James C. Cusack
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gerald Tumusiime
- Department of Surgery, Uganda Christian University School of Medicine, Mukono P.O. Box 4, Uganda
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - David Ljungman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 412 96 Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, 413 45 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
119
|
Plewa N, Poncette L, Blankenstein T. Generation of TGFβR2(-1) neoantigen-specific HLA-DR4-restricted T cell receptors for cancer therapy. J Immunother Cancer 2023; 11:jitc-2022-006001. [PMID: 36822673 PMCID: PMC9950979 DOI: 10.1136/jitc-2022-006001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Adoptive transfer of patient's T cells, engineered to express a T cell receptor (TCR) with defined novel antigen specificity, is a convenient form of cancer therapy. In most cases, major histocompatibility complex (MHC) I-restricted TCRs are expressed in CD8+ T cells and the development of CD4+ T cells engineered to express an MHC II-restricted TCR lacks behind. Critical is the choice of the target antigen, whether the epitope is efficiently processed and binds with high affinity to MHC molecules. A mutation in the transforming growth factor β receptor 2 (TGFβR2(-1)) gene creates a frameshift peptide caused by the deletion of one adenine (-1) within a microsatellite sequence. This somatic mutation is recurrent in microsatellite instable colorectal and gastric cancers and, therefore, is a truly tumor-specific antigen detected in many patients. METHODS ABabDR4 mice, which express a diverse human TCR repertoire restricted to human MHC II molecule HLA-DRA/DRB1*0401 (HLA-DR4), were immunized with the TGFβR2(-1) peptide and TGFβR2(-1)-specific TCRs were isolated from responding CD4+ T cells. The TGFβR2(-1)-specific TCRs were expressed in human CD4+ T cells and their potency and safety profile were assessed by co-cultures and other functional assays. RESULTS We demonstrated that TGFβR2(-1) neoantigen is immunogenic and elicited CD4+ T cell responses in ABabDR4 mice. When expressed in human CD4+ T cells, the HLA-DR4 restricted TGFβR2(-1)-specific TCRs induced IFNy expression at low TGFβR2(-1) peptide amounts. The TGFβR2(-1)-specific TCRs recognized HLA-DR4+ lymphoblastoid cells, which endogenously processed and presented the neoantigen, and colorectal cancer cell lines SW48 and HCT116 naturally expressing the TGFβR2(-1) mutation. No MHC II alloreactivity or cross-reactivity to peptides with a similar TCR-recognition motif were observed, indicating the safety of the TCRs. CONCLUSIONS The data suggest that HLA-DR4-restricted TCRs specific for the TGFβR2(-1) recurrent neoantigen can be valuable candidates for adoptive T cell therapy of a sizeable number of patients with cancer.
Collapse
Affiliation(s)
- Natalia Plewa
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | - Lucia Poncette
- Max Delbruck Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
120
|
Huss R, Raffler J, Märkl B. Artificial intelligence and digital biomarker in precision pathology guiding immune therapy selection and precision oncology. Cancer Rep (Hoboken) 2023:e1796. [PMID: 36813293 PMCID: PMC10363837 DOI: 10.1002/cnr2.1796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The currently available immunotherapies already changed the strategy how many cancers are treated from first to last line. Understanding even the most complex heterogeneity in tumor tissue and mapping the spatial cartography of the tumor immunity allows the best and optimized selection of immune modulating agents to (re-)activate the patient's immune system and direct it against the individual cancer in the most effective way. RECENT FINDINGS Primary cancer and metastases maintain a high degree of plasticity to escape any immune surveillance and continue to evolve depending on many intrinsic and extrinsic factors In the field of immune-oncology (IO) immune modulating agents are recognized as practice changing therapeutic modalities. Recent studies have shown that an optimal and lasting efficacy of IO therapeutics depends on the understanding of the spatial communication network and functional context of immune and cancer cells within the tumor microenvironment. Artificial intelligence (AI) provides an insight into the immune-cancer-network through the visualization of very complex tumor and immune interactions in cancer tissue specimens and allows the computer-assisted development and clinical validation of such digital biomarker. CONCLUSIONS The successful implementation of AI-supported digital biomarker solutions guides the clinical selection of effective immune therapeutics based on the retrieval and visualization of spatial and contextual information from cancer tissue images and standardized data. As such, computational pathology (CP) turns into "precision pathology" delivering individual therapy response prediction. Precision Pathology does not only include digital and computational solutions but also high levels of standardized processes in the routine histopathology workflow and the use of mathematical tools to support clinical and diagnostic decisions as the basic principle of a "precision oncology".
Collapse
Affiliation(s)
- Ralf Huss
- Medical Faculty University Augsburg, Augsburg, Germany
- Institute for Digital Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Johannes Raffler
- Institute for Digital Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Medical Faculty University Augsburg, Augsburg, Germany
| |
Collapse
|
121
|
Liu JL, Yang M, Bai JG, Liu Z, Wang XS. "Cold" colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15:240-250. [PMID: 36908324 PMCID: PMC9994051 DOI: 10.4251/wjgo.v15.i2.240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/14/2023] Open
Abstract
The advent of immunotherapy and the development of immune checkpoint inhibitors (ICIs) are changing the way we think about cancer treatment. ICIs have shown clinical benefits in a variety of tumor types, and ICI-based immunotherapy has shown effective clinical outcomes in immunologically "hot" tumors. However, for immunologically "cold" tumors such as colorectal cancer (CRC), only a limited number of patients are currently benefiting from ICIs due to limitations such as individual differences and low response rates. In this review, we discuss the classification and differences between hot and cold CRC and the current status of research on cold CRC, and summarize the treatment strategies and challenges of immunotherapy for cold CRC. We also explain the mechanism, biology, and role of immunotherapy for cold CRC, which will help clarify the future development of immunotherapy for cold CRC and discovery of more emerging strategies for the treatment of cold CRC.
Collapse
Affiliation(s)
- Jia-Liang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Ming Yang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Jun-Ge Bai
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Zheng Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| | - Xi-Shan Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
122
|
Skubleny D, Lin A, Garg S, McLean R, McCall M, Ghosh S, Spratlin JL, Schiller D, Rayat G. Increased CD4/CD8 Lymphocyte ratio predicts favourable neoadjuvant treatment response in gastric cancer: A prospective pilot study. World J Gastrointest Oncol 2023; 15:303-317. [PMID: 36908322 PMCID: PMC9994053 DOI: 10.4251/wjgo.v15.i2.303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 01/12/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Despite optimal neoadjuvant chemotherapy only 40% of gastric cancer tumours achieve complete or partial treatment response. In the absence of treatment response, neoadjuvant chemotherapy in gastric cancer contributes to adverse events without additional survival benefit compared to adjuvant treatment or surgery alone. Additional strategies and methods are required to optimize the allocation of existing treatment regimens such as FLOT chemotherapy (5-Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel). Predictive biomarkers detected using immunohistochemistry (IHC) methods may provide useful data regarding treatment response.
AIM To investigate the utility of CD4, CD8, Galectin-3 and E-cadherin in predicting neoadjuvant FLOT chemotherapy tumour response in gastric adenocarcinoma.
METHODS Forty-three adult patients with gastric adenocarcinoma, of which 18 underwent neoadjuvant chemotherapy, were included in a prospective clinical cohort. Endoscopic biopsies were obtained from gastric cancer and normal adjacent gastric mucosa. Differences in expression of Galectin-3, E-cadherin, CD4+ and CD8+ molecules between tumours with and without treatment response to neoadjuvant chemotherapy were assessed with IHC. Treatment response was graded by clinical pathologists using the Tumour Regression Score according to the College of American Pathologists criteria. Treatment response was defined as complete or near complete tumour response, whereas partial or poor/no response was defined as incomplete. Digital IHC images were annotated and quantitatively assessed using QuPath 0.3.1. Biomarker expression between responsive and incomplete response tumours was assessed using a two-sided Wilcoxon test. Biomarker expression was also compared between normal and cancer tissue and between 15 paired tumour samples before and after chemotherapy. We performed a preliminary multivariate analysis and power analysis to guide future study. Statistical analyses were completed using R 4.1.2.
RESULTS The ratio between CD4+ and CD8+ lymphocytes was significantly greater in treatment responsive tumours (Wilcoxon, P = 0.03). In univariate models, CD4+/CD8+ ratio was the only biomarker that significantly predicted favourable treatment response (Accuracy 86%, P < 0.001). Using a glmnet multivariate model, high CD4+/CD8+ ratio and low Galectin-3 expression were the most influential variables in predicting a favourable treatment response. Analyses of paired samples found that FLOT chemotherapy also results in increased expression of CD4+ and CD8+ tumour infiltrating lymphocytes (Paired Wilcoxon, P = 0.002 and P = 0.008, respectively). Our power analysis suggests future study requires at least 35 patients in each treatment response group for CD8 and Galectin-3 molecules, whereas 80 patients in each treatment response group are required to assess CD4 and E-cadherin biomarkers.
CONCLUSION We demonstrate that an elevated CD4+/CD8+ Ratio is a promising IHC-based biomarker to predict favourable treatment response to FLOT neoadjuvant chemotherapy in locally advanced gastric cancer.
Collapse
Affiliation(s)
- Daniel Skubleny
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, AB, Canada
| | - Andrea Lin
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Saurabh Garg
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Ross McLean
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Michael McCall
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Sunita Ghosh
- Department of Oncology, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Jennifer L Spratlin
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton T5G 1Z2, AB, Canada
| | - Daniel Schiller
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| | - Gina Rayat
- Department of Surgery, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
123
|
Wang Q, Shen X, Chen G, Du J. How to overcome resistance to immune checkpoint inhibitors in colorectal cancer: From mechanisms to translation. Int J Cancer 2023. [PMID: 36752642 DOI: 10.1002/ijc.34464] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Immunotherapy, especially with immune checkpoint inhibitors (ICIs), has shown advantages in cancer treatment and is a new hope for patients who have failed multiline therapy. However, in colorectal cancer (CRC), the benefit is limited to a small subset of patients with microsatellite instability-high (MSI-H) or mismatch repair-deficient (dMMR) metastatic CRC (mCRC). In addition, 45% to 60% of dMMR/MSI-H mCRC patients showed primary or acquired resistance to ICIs. This means that these patients may have potential unknown pathways mediating immune escape. Almost all mismatch repair-proficient (pMMR) or microsatellite-stable (MSS) mCRC patients do not benefit from ICIs. In this review, we discuss the mechanisms of action of ICIs and their current status in CRC. We then discuss the mechanisms of primary and acquired resistance to ICIs in CRC. Finally, we discuss promising therapeutic strategies to overcome resistance to ICIs in the clinic.
Collapse
Affiliation(s)
- Qianyu Wang
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiaofei Shen
- Department of General Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Gang Chen
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junfeng Du
- Medical Department of General Surgery, The 1st Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, The 7th Medical Center, Chinese PLA General Hospital, Beijing, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
124
|
Challenges and Therapeutic Opportunities in the dMMR/MSI-H Colorectal Cancer Landscape. Cancers (Basel) 2023; 15:cancers15041022. [PMID: 36831367 PMCID: PMC9954007 DOI: 10.3390/cancers15041022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
About 5 to 15% of all colorectal cancers harbor mismatch repair deficient/microsatellite instability-high status (dMMR/MSI-H) that associates with high tumor mutation burden and increased immunogenicity. As a result, and in contrast to other colorectal cancer phenotypes, a significant subset of dMMR/MSI-H cancer patients strongly benefit from immunotherapy. Yet, a large proportion of these tumors remain unresponsive to any immuno-modulating treatment. For this reason, current efforts are focused on the characterization of resistance mechanisms and the identification of predictive biomarkers to guide therapeutic decision-making. Here, we provide an overview on the new advances related to the diagnosis and definition of dMMR/MSI-H status and focus on the distinct clinical, functional, and molecular cues that associate with dMMR/MSI-H colorectal cancer. We review the development of novel predictive factors of response or resistance to immunotherapy and their potential application in the clinical setting. Finally, we discuss current and emerging strategies applied to the treatment of localized and metastatic dMMR/MSI-H colorectal tumors in the neoadjuvant and adjuvant setting.
Collapse
|
125
|
Alterations in Natural Killer Cells in Colorectal Cancer Patients with Stroma AReactive Invasion Front Areas (SARIFA). Cancers (Basel) 2023; 15:cancers15030994. [PMID: 36765951 PMCID: PMC9913252 DOI: 10.3390/cancers15030994] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/22/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Recently, our group introduced Stroma AReactive Invasion Front Areas (SARIFA) as an independent prognostic predictor for a poorer outcome in colon cancer patients, which is probably based on immunologic alterations combined with a direct tumor-adipocyte interaction: the two together reflecting a distinct tumor biology. Considering it is already known that peripheral immune cells are altered in colorectal cancer (CRC) patients, this study aims to investigate the changes in lymphocyte subsets in SARIFA-positive cases and correlate these changes with the local immune response. METHODS Flow cytometry was performed to analyze B, T, and natural killer (NK) cells in the peripheral blood (PB) of 45 CRC patients. Consecutively, lymphocytes in PB, tumor-infiltrating lymphocytes (TILs), and CD56+ and CD57+ lymphocytes at the invasion front and the tumor center were compared between patients with SARIFA-positive and SARIFA-negative CRCs. RESULTS Whereas no differences could be observed regarding most PB lymphocyte populations as well as TILs, NK cells were dramatically reduced in the PB of SARIFA-positive cases. Moreover, CD56 and CD57 immunohistochemistry suggested SARIFA-status-dependent changes regarding NK cells and NK-like lymphocytes in the tumor microenvironment. CONCLUSION This study proves that our newly introduced biomarker, SARIFA, comes along with distinct immunologic alterations, especially regarding NK cells.
Collapse
|
126
|
Merhi M, Ahmad F, Taib N, Inchakalody V, Uddin S, Shablak A, Dermime S. The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Semin Cancer Biol 2023; 89:1-17. [PMID: 36621515 DOI: 10.1016/j.semcancer.2023.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Cancer immunity is regulated by several mechanisms that include co-stimulatory and/or co-inhibitory molecules known as immune checkpoints expressed by the immune cells. In colorectal cancer (CRC), CTLA-4, LAG3, TIM-3 and PD-1 are the major co-inhibitory checkpoints involved in tumor development and progression. On the other hand, the deregulation of transcription factors and cancer stem cells activity plays a major role in the development of drug resistance and in the spread of metastatic disease in CRC. In this review, we describe how the modulation of such transcription factors affects the response of CRC to therapies. We also focus on the role of cancer stem cells in tumor metastasis and chemoresistance and discuss both preclinical and clinical approaches for targeting stem cells to prevent their tumorigenic effect. Finally, we provide an update on the clinical applications of immune checkpoint inhibitors in CRC and discuss the regulatory effects of transcription factors on the expression of the immune inhibitory checkpoints with specific focus on the PD-1 and PD-L1 molecules.
Collapse
Affiliation(s)
- Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Fareed Ahmad
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Alaaeldin Shablak
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
127
|
Garcia P, Hartman D, Choudry H, Pai RK. CD8 + T-cell Density Is an Independent Predictor of Survival and Response to Adjuvant Chemotherapy in Stage III Colon Cancer. Appl Immunohistochem Mol Morphol 2023; 31:69-76. [PMID: 36508180 PMCID: PMC11199076 DOI: 10.1097/pai.0000000000001094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/12/2022] [Indexed: 12/14/2022]
Abstract
We assessed CD8 + T-cell density in 351 resected stage II to III colon cancers from 2011 to 2015 and correlated the findings with disease-free survival and survival effect of adjuvant chemotherapy. Most tumors (70%) had high/intermediate CD8 + T-cell density, and this was significantly associated with mismatch repair deficiency compared with tumors with low CD8 + T-cell density (28% vs. 13%, P =0.003). Fewer tumors with high/intermediate CD8 + T-cell density had adverse histologic features compared with tumors with low CD8 + T-cell density including high tumor budding (16% vs. 27%) and venous (22% vs. 35%), lymphatic (54% vs. 65%), and perineural (23% vs. 33%) invasion (all with P <0.05). In the stage III cohort, high/intermediate CD8 + T-cell density was an independent predictor of disease-free survival on multivariate analysis (hazard ratio: 0.39, 0.21 to 0.71 95% CI, P =0.002). For stage III patients with high/intermediate CD8 + T-cell density, adjuvant chemotherapy was significantly associated with improved disease-free survival (hazard ratio: 0.28, 0.11 to 0.74 95% CI, P =0.01) whereas stage III patients with low CD8 + T-cell density did not have improved survival with adjuvant chemotherapy. In conclusion, in stage III colon cancer, CD8 + T-cell density is an independent prognostic biomarker for disease-free survival and may help to identify patients who benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Paulo Garcia
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Douglas Hartman
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Haroon Choudry
- Departments of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Reetesh K. Pai
- Departments of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
128
|
The Controversial Role of Intestinal Mast Cells in Colon Cancer. Cells 2023; 12:cells12030459. [PMID: 36766801 PMCID: PMC9914221 DOI: 10.3390/cells12030459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Mast cells are tissue-resident sentinels involved in large number of physiological and pathological processes, such as infection and allergic response, thanks to the expression of a wide array of receptors. Mast cells are also frequently observed in a tumor microenvironment, suggesting their contribution in the transition from chronic inflammation to cancer. In particular, the link between inflammation and colorectal cancer development is becoming increasingly clear. It has long been recognized that patients with inflammatory bowel disease have an increased risk of developing colon cancer. Evidence from experimental animals also implicates the innate immune system in the development of sporadically occurring intestinal adenomas, the precursors to colorectal cancer. However, the exact role of mast cells in tumor initiation and growth remains controversial: mast cell-derived mediators can either exert pro-tumorigenic functions, causing the progression and spread of the tumor, or anti-tumorigenic functions, limiting the tumor's growth. Here, we review the multifaceted and often contrasting findings regarding the role of the intestinal mast cells in colon cancer progression focusing on the molecular pathways mainly involved in the regulation of mast cell plasticity/functions during tumor progression.
Collapse
|
129
|
San-Román-Gil M, Torres-Jiménez J, Pozas J, Esteban-Villarrubia J, Albarrán-Fernández V, Álvarez-Ballesteros P, Chamorro-Pérez J, Rosero-Rodríguez D, Orejana-Martín I, Martínez-Delfrade Í, Reguera-Puertas P, Fuentes-Mateos R, Ferreiro-Monteagudo R. Current Landscape and Potential Challenges of Immune Checkpoint Inhibitors in Microsatellite Stable Metastatic Colorectal Carcinoma. Cancers (Basel) 2023; 15:863. [PMID: 36765821 PMCID: PMC9913409 DOI: 10.3390/cancers15030863] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is the third most frequent cancer and the second most common cause of cancer-related death in Europe. High microsatellite instability (MSI-H) due to a deficient DNA mismatch repair (dMMR) system can be found in 5% of metastatic CRC (mCRC) and has been established as a biomarker of response to immunotherapy in these tumors. Therefore, immune checkpoint inhibitors (ICIs) in mCRC with these characteristics were evaluated with results showing remarkable response rates and durations of response. The majority of mCRC cases have high levels of DNA mismatch repair proteins (pMMR) with consequent microsatellite stability or low instability (MSS or MSI-low), associated with an inherent resistance to ICIs. This review aims to provide a comprehensive analysis of the possible approaches to overcome the mechanisms of resistance and evaluates potential biomarkers to establish the role of ICIs in pMMR/MSS/MSI-L (MSS) mCRC.
Collapse
Affiliation(s)
- María San-Román-Gil
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Javier Torres-Jiménez
- Medical Oncology Department, Clínico San Carlos University Hospital, 28040 Madrid, Spain
| | - Javier Pozas
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | - Jesús Chamorro-Pérez
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
130
|
Cai D, Wang W, Zhong ME, Fan D, Liu X, Li CH, Huang ZP, Zhu Q, Lv MY, Hu C, Duan X, Wu XJ, Gao F. An immune, stroma, and epithelial-mesenchymal transition-related signature for predicting recurrence and chemotherapy benefit in stage II-III colorectal cancer. Cancer Med 2023; 12:8924-8936. [PMID: 36629124 PMCID: PMC10134284 DOI: 10.1002/cam4.5534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Debates exist on the treatment decision of the stage II/III colorectal cancer (CRC) due to the insufficiency of the current TNM stage-based risk stratification system. Epithelial-mesenchymal transition (EMT) and tumor microenvironment (TME) have both been linked to CRC progression in recent studies. We propose to improve the prognosis prediction of CRC by integrating TME and EMT. METHODS In total, 2382 CRC patients from seven datasets and one in-house cohort were collected, and 1640 stage II/III CRC patients with complete survival information and gene expression profiles were retained and divided into a training cohort and three independent validation cohorts. Integrated analysis of 398 immune, stroma, and epithelial-mesenchymal transition (ISE)-related genes identified an ISE signature independently associated with the recurrence of CRC. The underlying biological mechanism of the ISE signature and its influence on adjuvant chemotherapy was further explored. RESULTS We constructed a 26-gene signature which was significantly associated with poor outcome in Training cohort (p < 0.001, HR [95%CI] = 4.42 [3.25-6.01]) and three independent validation cohorts (Validation cohort-1: p < 0.01, HR [95%CI] = 1.70 [1.15-2.51]; Validation cohort-2: p < 0.001, HR [95% CI] = 2.30 [1.67-3.16]; Validation cohort-3: p < 0.01, HR [95% CI] = 2.42 [1.25-4.70]). After adjusting for known clinicopathological factors, multivariate cox analysis confirmed the ISE signature's independent prognostic value. Subgroup analysis found that stage III patients with low ISE score might benefit from adjuvant chemotherapy (p < 0.001, HR [95%CI] = 0.15 [0.04-0.55]). Hypergeometric test and enrichment analysis revealed that low-risk group was enriched in thr immune pathway while high-risk group was associated with the EMT pathway and CMS4 subtype. CONCLUSION We proposed an ISE signature for robustly predicting the recurrence of stage II/III CRC and help treatment decision by identifying patients who will not benefit from current standard treatment.
Collapse
Affiliation(s)
- Du Cai
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Clinical Laboratory, Haining People's Hospital, Jiaxing, China
| | - Min-Er Zhong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dejun Fan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuanhui Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng-Hang Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Ping Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiqi Zhu
- Department of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Min-Yi Lv
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuling Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Duan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng Gao
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Institute of Gastroenterology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
131
|
Tissue resident iNKT17 cells facilitate cancer cell extravasation in liver metastasis via interleukin-22. Immunity 2023; 56:125-142.e12. [PMID: 36630911 PMCID: PMC9839362 DOI: 10.1016/j.immuni.2022.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023]
Abstract
During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.
Collapse
|
132
|
Mlecnik B, Lugli A, Bindea G, Marliot F, Bifulco C, Lee JKJ, Zlobec I, Rau TT, Berger MD, Nagtegaal ID, Vink-Börger E, Hartmann A, Geppert CI, Kolwelter J, Merkel S, Grützmann R, Van den Eynde M, Jouret-Mourin A, Kartheuser A, Léonard D, Remue C, Wang J, Bavi P, Roehrl MHA, Ohashi PS, Nguyen LT, Han S, MacGregor HL, Hafezi-Bakhtiari S, Wouters BG, Masucci GV, Andersson EK, Zavadova E, Vocka M, Spacek J, Petruzelka L, Konopasek B, Dundr P, Skalova H, Nemejcova K, Botti G, Tatangelo F, Delrio P, Ciliberto G, Maio M, Laghi L, Grizzi F, Fredriksen T, Buttard B, Lafontaine L, Maby P, Majdi A, Hijazi A, El Sissy C, Kirilovsky A, Berger A, Lagorce C, Paustian C, Ballesteros-Merino C, Dijkstra J, van de Water C, Vliet SVLV, Knijn N, Mușină AM, Scripcariu DV, Popivanova B, Xu M, Fujita T, Hazama S, Suzuki N, Nagano H, Okuno K, Torigoe T, Sato N, Furuhata T, Takemasa I, Patel P, Vora HH, Shah B, Patel JB, Rajvik KN, Pandya SJ, Shukla SN, Wang Y, Zhang G, Kawakami Y, Marincola FM, Ascierto PA, Fox BA, Pagès F, Galon J. Multicenter International Study of the Consensus Immunoscore for the Prediction of Relapse and Survival in Early-Stage Colon Cancer. Cancers (Basel) 2023; 15:418. [PMID: 36672367 PMCID: PMC9856473 DOI: 10.3390/cancers15020418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Background: The prognostic value of Immunoscore was evaluated in Stage II/III colon cancer (CC) patients, but it remains unclear in Stage I/II, and in early-stage subgroups at risk. An international Society for Immunotherapy of Cancer (SITC) study evaluated the pre-defined consensus Immunoscore in tumors from 1885 AJCC/UICC-TNM Stage I/II CC patients from Canada/USA (Cohort 1) and Europe/Asia (Cohort 2). METHODS: Digital-pathology is used to quantify the densities of CD3+ and CD8+ T-lymphocyte in the center of tumor (CT) and the invasive margin (IM). The time to recurrence (TTR) was the primary endpoint. Secondary endpoints were disease-free survival (DFS), overall survival (OS), prognosis in Stage I, Stage II, Stage II-high-risk, and microsatellite-stable (MSS) patients. RESULTS: High-Immunoscore presented with the lowest risk of recurrence in both cohorts. In Stage I/II, recurrence-free rates at 5 years were 78.4% (95%-CI, 74.4−82.6), 88.1% (95%-CI, 85.7−90.4), 93.4% (95%-CI, 91.1−95.8) in low, intermediate and high Immunoscore, respectively (HR (Hi vs. Lo) = 0.27 (95%-CI, 0.18−0.41); p < 0.0001). In Cox multivariable analysis, the association of Immunoscore to outcome was independent (TTR: HR (Hi vs. Lo) = 0.29, (95%-CI, 0.17−0.50); p < 0.0001) of the patient’s gender, T-stage, sidedness, and microsatellite instability-status (MSI). A significant association of Immunoscore with survival was found for Stage II, high-risk Stage II, T4N0 and MSS patients. The Immunoscore also showed significant association with TTR in Stage-I (HR (Hi vs. Lo) = 0.07 (95%-CI, 0.01−0.61); P = 0.016). The Immunoscore had the strongest (69.5%) contribution χ2 for influencing survival. Patients with a high Immunoscore had prolonged TTR in T4N0 tumors even for patients not receiving chemotherapy, and the Immunoscore remained the only significant parameter in multivariable analysis. CONCLUSION: In early CC, low Immunoscore reliably identifies patients at risk of relapse for whom a more intensive surveillance program or adjuvant treatment should be considered.
Collapse
Affiliation(s)
- Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Carlo Bifulco
- Department of Pathology, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Jiun-Kae Jack Lee
- Department of Biostatistics, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Tilman T. Rau
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| | - Martin D. Berger
- Department of Medical Oncology, University Hospital of Bern, 3010 Bern, Switzerland
| | - Iris D. Nagtegaal
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Elisa Vink-Börger
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Arndt Hartmann
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Carol I. Geppert
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julie Kolwelter
- Department of Pathology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Susanne Merkel
- Department of Surgery, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marc Van den Eynde
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
- Institut de Recherche Clinique et Experimentale (Pole MIRO), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Anne Jouret-Mourin
- Department of Pathology, Cliniques Universitaires St-Luc, 1200 Brussels, Belgium
- Institut de Recherche Clinique et Experimentale (Pole GAEN), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Alex Kartheuser
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Daniel Léonard
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christophe Remue
- Institut Roi Albert II, Department of Digestive Surgery, Cliniques Universitaires St-Luc Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Julia Wang
- Curandis, New York, NY 10583, USA
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Prashant Bavi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael H. A. Roehrl
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Linh T. Nguyen
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | - SeongJun Han
- Princess Margaret Cancer Centre, Toronto, ON M5G 2C1, Canada
| | | | - Sara Hafezi-Bakhtiari
- Department of Pathology, Laboratory Medicine Program, University Health Network, 11-E444, Toronto, ON M5G 2C4, Canada
| | | | - Giuseppe V. Masucci
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University, 17177 Stockholm, Sweden
| | - Emilia K. Andersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University, 17177 Stockholm, Sweden
| | - Eva Zavadova
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Michal Vocka
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Jan Spacek
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Lubos Petruzelka
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Bohuslav Konopasek
- Department of Oncology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Helena Skalova
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Kristyna Nemejcova
- Institute of Pathology, First Faculty of Medicine, General University Hospital in Prague, Charles University, 12808 Prague, Czech Republic
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy
| | - Paolo Delrio
- Colorectal Surgery Department, Instituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy
| | | | - Michele Maio
- Center for Immuno-Oncology, University Hospital, 53100 Siena, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20090 Milan, Italy
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20090 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Tessa Fredriksen
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Bénédicte Buttard
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Lucie Lafontaine
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Pauline Maby
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Anne Berger
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Digestive Surgery Department, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Christine Lagorce
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Department of Pathology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Christopher Paustian
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Carmen Ballesteros-Merino
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jeroen Dijkstra
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | | | | | - Nikki Knijn
- Pathology Department, Radboud University, 6500 HC Nijmegen, The Netherlands
| | - Ana-Maria Mușină
- Department of Surgical Oncology, Regional Institute of Oncology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
| | - Dragos-Viorel Scripcariu
- Department of Surgical Oncology, Regional Institute of Oncology, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iaşi, Romania
| | - Boryana Popivanova
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Mingli Xu
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University School of Medicine, Yamaguchi 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan
| | - Kiyotaka Okuno
- Department of Surgery, School of Medicine, Kindai University, Osaka-sayama 589-0014, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Tomohisa Furuhata
- Department of Surgery, Surgical Oncology, and Science, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Ichiro Takemasa
- Department of Surgery, Surgical Oncology, and Science, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Prabhu Patel
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Hemangini H. Vora
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Birva Shah
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | | | - Kruti N. Rajvik
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Shashank J. Pandya
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Shilin N. Shukla
- The Gujarat Cancer & Research Institute, Asarwa, Ahmedabad 380016, India
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Xi’an 710061, China
- Health Science Center of Xi’an Jiaotong University, Xi’an 710061, China
| | - Guanjun Zhang
- Institute for Cancer Research, School of Basic Medical Science, Xi’an 710061, China
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | - Paolo A. Ascierto
- Melanoma Cancer Immunotherapy and Innovative Therapies Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, 80131 Napoli, Italy
| | - Bernard A. Fox
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
- Laboratory of Molecular and Tumor Immunology, Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR 97213, USA
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| |
Collapse
|
133
|
Gan C, Li M, Lu Y, Peng G, Li W, Wang H, Peng Y, Hu Q, Wei W, Wang F, Liu L, Zhao Q. SPOCK1 and POSTN are valuable prognostic biomarkers and correlate with tumor immune infiltrates in colorectal cancer. BMC Gastroenterol 2023; 23:4. [PMID: 36611136 PMCID: PMC9826581 DOI: 10.1186/s12876-022-02621-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Immune cells and stromal cells in the tumor microenvironment play a vital role in the progression of colorectal cancer (CRC). The study aimed to screen valuable prognostic biomarkers in CRC based on stromal and immune scores. METHOD The ESTIMATE algorithm was used to calculate the immune and stromal scores of CRC samples in TCGA. Then samples were divided into high and low score groups based on the median value of the scores. Differentially expressed genes (DEGs) associated with immune and stromal scores were screened. WGCNA and univariate COX regression analysis were performed to further identify key prognostic genes. Analysis of scRNA-seq for CRC was used for verifying the main source of the key genes. The prognostic value of they was validated based on The Gene Expression Profiling Interactive Analysis and GSE17536 dataset. TIMER and CIBERSORT algorithms were applied to analyze the correlations among key genes and tumor-infiltrating immune cells. Several pairs of colon cancer tissue were used to be proven. RESULT 1314 upregulated and 4 downregulated genes were identified, which were significantly enriched in immune-related biological processes and pathways. Among these DEGs, SPOCK1 and POSTN were identified as key prognostic genes and mainly expressed in cancer-associated fibroblasts for CRC. High expression of SPCOK1 and POSTN was associated with advanced clinical stage, T stage, N stage, and poor prognosis of CRC. The results from CIBERSORT and TIMER revealed that SPOCK1 and POSTN were associated with tumor-infiltrating immune cells, especially macrophages and neutrophils. Meanwhile, in several pairs of human colorectal tissue samples, SPOK1 and POSTN were found to be significantly overexpressed in colorectal tissue compared with para-cancer tissue, and macrophage surface markers CD68 (co-expressed by M1 and M2 macrophages) and CD206 (M2-specific macrophage expression) were also overexpressed in cancer tissue. Besides, SPOCK1 and POSTN expression were positively correlated with the expression of immune checkpoints. CONCLUSION Collectively, our results indicate that SPOCK1 and POSTN associated with CAF may be novel prognostic biomarkers in CRC and correlate with immune infiltrates.
Collapse
Affiliation(s)
- Caiqin Gan
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Mengting Li
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Yuanyuan Lu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Ganjing Peng
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Wenjie Li
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Haizhou Wang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Yanan Peng
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Qian Hu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Wanhui Wei
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Fan Wang
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Lan Liu
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| | - Qiu Zhao
- grid.413247.70000 0004 1808 0969Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430000 China ,grid.413247.70000 0004 1808 0969Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, 430000 China
| |
Collapse
|
134
|
Wu Q, Yue X, Liu H, Zhu Y, Ke H, Yang X, Yin S, Li Z, Zhang Y, Hu T, Lan P, Wu X. MAP7D2 reduces CD8 + cytotoxic T lymphocyte infiltration through MYH9-HMGB1 axis in colorectal cancer. Mol Ther 2023; 31:90-104. [PMID: 36081350 PMCID: PMC9840115 DOI: 10.1016/j.ymthe.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/17/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a new paradigm in cancer immunotherapy, but can be largely restricted by the limited presence of CD8+ cytotoxic T lymphocytes (CTLs) in colorectal cancer (CRC) patients with microsatellite stable (MSS) tumors. Here, through next-generation sequencing, we identify microtubule-associated protein 7 domain 2 (MAP7D2) as an exploitable therapeutic maneuver to improve the efficacy of ICIs for MSS CRC therapy. In human CRC tissues, MAP7D2 expression is significantly increased in MSS CRC, and MAP7D2 adversely correlates with the presence of antitumor T lymphocytes. In vitro and in vivo experiments demonstrate that MAP7D2 knockdown significantly increases the infiltration of CD8+ CTLs, thereby inhibiting tumor progression and improving the efficacy of ICIs in MSS CRC murine models. Mechanistically, MAP7D2 interacts with MYH9 and protects it from ubiquitin-mediated degradation, subsequently decreasing the secretion of HMGB1, which suppresses the infiltration of CD8+ CTLs in MSS CRC. These findings highlight the importance of MAP7D2 in determining the infiltration of CD8+ CTLs and indicate that targeting MAP7D2 in MSS CRC may present a novel antitumor immunotherapy.
Collapse
Affiliation(s)
- Qian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yue
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huashan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haoxian Ke
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Yang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shi Yin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihao Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yunfeng Zhang
- Department of the General Surgery, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Tuo Hu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor, Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
135
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
136
|
Chen X, Yi G, Zhou Y, Hu W, Xi L, Han W, Wang F. Prognostic Biomarker SLCO4A1 Is Correlated with Tumor Immune Infiltration in Colon Adenocarcinoma. Mediators Inflamm 2023; 2023:4926474. [PMID: 37124063 PMCID: PMC10137198 DOI: 10.1155/2023/4926474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Background Solute carrier organic anion transporter family member 4A1 (SLCO4A1), a member of solute carrier organic anion family, is a key gene regulating bile metabolism, organic anion transport, and ABC transport. However, the association of SLCO4A1 with prognosis and tumor immune infiltration in colon adenocarcinoma (COAD) remains indistinct. Methods Firstly, we explored the expression level of SLCO4A1 in COAD via GEPIA, Oncomine, and UALCAN databases. Secondly, we used the Kaplan-Meier plotter and PrognoScan databases to investigate the effect of SLCO4A1 on prognosis in COAD patients. In addition, the correlation between SLCO4A1 and tumor immune infiltration was studied by using TIMER and TISIDB databases. Results Our results showed that SLCO4A1 was overexpressed in COAD tissues. At the same time, our study showed that high expression of SLCO4A1 was associated with poor overall survival, disease-free survival, and disease-specific survival in COAD patients. The expression level of SLCO4A1 was negatively linked to the infiltrating levels of B cells, CD8+ T cells, and dendritic cells in COAD. Moreover, the expression of SLCO4A1 was significantly correlated with numerous immune markers in COAD. Conclusions These results indicated that SLCO4A1 could be associated with the prognosis of COAD patients and the levels of tumor immune infiltration. Our study suggested that SLCO4A1 could be a valuable biomarker for evaluating prognosis and tumor immune infiltration in COAD patients.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Gangfeng Yi
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Yu Zhou
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Weijun Hu
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Lingyun Xi
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Weilan Han
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| | - Fei Wang
- Department of General Surgery, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwestern University, Xi'an, Shaanxi Province, China
| |
Collapse
|
137
|
Che J, Yu S. Ecological niches for colorectal cancer stem cell survival and thrival. Front Oncol 2023; 13:1135364. [PMID: 37124519 PMCID: PMC10134776 DOI: 10.3389/fonc.2023.1135364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
To date, colorectal cancer is still ranking top three cancer types severely threatening lives. According to cancer stem cell hypothesis, malignant colorectal lumps are cultivated by a set of abnormal epithelial cells with stem cell-like characteristics. These vicious stem cells are derived from intestinal epithelial stem cells or transformed by terminally differentiated epithelial cells when they accumulate an array of transforming genomic alterations. Colorectal cancer stem cells, whatever cell-of-origin, give rise to all morphologically and functionally heterogenous tumor daughter cells, conferring them with overwhelming resilience to intrinsic and extrinsic stresses. On the other hand, colorectal cancer stem cells and their daughter cells continuously participate in constructing ecological niches for their survival and thrival by communicating with adjacent stromal cells and circulating immune guardians. In this review, we first provide an overview of the normal cell-of-origin populations contributing to colorectal cancer stem cell reservoirs and the niche architecture which cancer stem cells depend on at early stage. Then we survey recent advances on how these aberrant niches are fostered by cancer stem cells and their neighbors. We also discuss recent research on how niche microenvironment affects colorectal cancer stem cell behaviors such as plasticity, metabolism, escape of immune surveillance as well as resistance to clinical therapies, therefore endowing them with competitive advantages compared to their normal partners. In the end, we explore therapeutic strategies available to target malignant stem cells.
Collapse
Affiliation(s)
- Jiayun Che
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyan Yu
- Shanghai Institute of Precision Medicine, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, 9 Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shiyan Yu,
| |
Collapse
|
138
|
Kim Y, Lee J, Lee C, Lawler S. Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling. J Math Biol 2022; 86:14. [PMID: 36512100 DOI: 10.1007/s00285-022-01850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/29/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Cellular senescence can induce dual effects (promotion or inhibition) on cancer progression. While immune cells naturally respond and migrate toward various chemotactic sources from the tumor mass, various factors including senescent tumor cells (STCs) in the tumor microenvironment may affect this chemotactic movement. In this work, we investigate the mutual interactions between the tumor cells and the immune cells that either inhibit or facilitate tumor growth by developing a mathematical model that consists of taxis-reaction-diffusion equations and receptor kinetics for the key players in the interaction network. We apply a mathematical model to a transwell Boyden chamber invasion assay used in the experiments to illustrate that STCs can play a pivotal role in negating immune attack through tight regulation of intra- and extra-cellular signaling molecules. In particular, we show that senescent tumor cells in cell cycle arrest can block intratumoral infiltration of CD8+ T cells by secreting a high level of CXCL12, which leads to significant reduction its receptors, CXCR4, on T cells, and thus impaired chemotaxis. The predictions of nonlinear responses to CXCL12 were in good agreement with experimental data. We tested several hypotheses on immune-tumor interactions under various biochemical conditions in the tumor microenvironment and developed new concepts for anti-tumor strategies targeting senescence induced immune impairment.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, 05029, Republic of Korea
| | - Chaeyoung Lee
- Department of Mathematics, Korea University, Seoul, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Brown Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
139
|
Thelen M, Keller D, Lehmann J, Wennhold K, Weitz H, Bauer E, Gathof B, Brüggemann M, Kotrova M, Quaas A, Mallmann C, Chon SH, Hillmer AM, Bruns C, von Bergwelt-Baildon M, Garcia-Marquez MA, Schlößer HA. Immune responses against shared antigens are common in esophago-gastric cancer and can be enhanced using CD40-activated B cells. J Immunother Cancer 2022; 10:jitc-2022-005200. [PMID: 36600602 PMCID: PMC9743382 DOI: 10.1136/jitc-2022-005200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Specific immune response is a hallmark of cancer immunotherapy and shared tumor-associated antigens (TAAs) are important targets. Recent advances using combined cellular therapy against multiple TAAs renewed the interest in this class of antigens. Our study aims to determine the role of TAAs in esophago-gastric adenocarcinoma (EGA). METHODS RNA expression was assessed by NanoString in tumor samples of 41 treatment-naïve EGA patients. Endogenous T cell and antibody responses against the 10 most relevant TAAs were determined by FluoroSpot and protein-bound bead assays. Digital image analysis was used to evaluate the correlation of TAAs and T-cell abundance. T-cell receptor sequencing, in vitro expansion with autologous CD40-activated B cells (CD40Bs) and in vitro cytotoxicity assays were applied to determine specific expansion, clonality and cytotoxic activity of expanded T cells. RESULTS 68.3% of patients expressed ≥5 TAAs simultaneously with coregulated clusters, which were similar to data from The Cancer Genome Atlas (n=505). Endogenous cellular or humoral responses against ≥1 TAA were detectable in 75.0% and 53.7% of patients, respectively. We found a correlation of T-cell abundance and the expression of TAAs and genes related to antigen presentation. TAA-specific T-cell responses were polyclonal, could be induced or enhanced using autologous CD40Bs and were cytotoxic in vitro. Despite the frequent expression of TAAs co-occurrence with immune responses was rare. CONCLUSIONS We identified the most relevant TAAs in EGA for monitoring of clinical trials and as therapeutic targets. Antigen-escape rather than missing immune response should be considered as mechanism underlying immunotherapy resistance of EGA.
Collapse
Affiliation(s)
- Martin Thelen
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Diandra Keller
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Jonas Lehmann
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Kerstin Wennhold
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hendrik Weitz
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Eugen Bauer
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Birgit Gathof
- Institute of Transfusion Medicine, University of Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Monika Brüggemann
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Michaela Kotrova
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Quaas
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christoph Mallmann
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Department of Internal Medicine III, University Hospital, Ludwig Maximilians University Munich, München, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Maria Alejandra Garcia-Marquez
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Hans Anton Schlößer
- Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany,Department of General, Visceral, Cancer and Transplantation Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
140
|
Tan TG, Zybina Y, McKenna C, Olow A, Rukmini SJ, Wong MT, Sadekova S, Chackerian A, Bauché D. SPATA2 and CYLD inhibit T cell infiltration into colorectal cancer via regulation of IFN-γ/STAT1 axis. Front Oncol 2022; 12:1016307. [DOI: 10.3389/fonc.2022.1016307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
IntroductionColorectal cancer (CRC) is largely refractory to currently available immunotherapies such as blockade of programmed cell death protein-1 (PD-1).ResultsIn this study, we identified SPATA2 and its protein partner CYLD as novel regulators of CXC-ligand 10 (CXCL10), a T-cell-attractant chemokine, in CRC. By specifically deleting SPATA2 and CYLD in human and mouse CRC cell lines, we showed that these two proteins inhibit STAT1 accumulation and activation and subsequently CXCL10 expression in tumor cells. At steady-state, STAT1 is highly ubiquitinated in a SPATA2/CYLD-dependent manner. Finally, we demonstrated that tumor-specific deletion of SPATA2 and CYLD enhances anti-PD-1 response in vivo.DiscussionOur data suggest that SPATA2 and CYLD represent two potential novel targets for treatment of immune-excluded, PD-1-resistant tumors.
Collapse
|
141
|
Sherif S, Roelands J, Mifsud W, Ahmed EI, Raynaud CM, Rinchai D, Sathappan A, Maaz A, Saleh A, Ozer E, Fakhro KA, Mifsud B, Thorsson V, Bedognetti D, Hendrickx WRL. The immune landscape of solid pediatric tumors. J Exp Clin Cancer Res 2022; 41:199. [PMID: 35690832 PMCID: PMC9188257 DOI: 10.1186/s13046-022-02397-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Large immunogenomic analyses have demonstrated the prognostic role of the functional orientation of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric counterpart.
Methods
We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clustered more than 100 well characterized immune traits to define immune subtypes and compared their outcome.
Results
A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS.
Conclusions
We demonstrated that extracranial pediatric tumors could be classified according to their immune disposition, unveiling similarities with adults’ tumors. Immunological parameters might be explored to refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.
Collapse
|
142
|
Loughrey MB. Neoadjuvant immunotherapy and colorectal cancer treatment: Implications for the primary role of surgery. Colorectal Dis 2022; 24:1460-1461. [PMID: 36576416 DOI: 10.1111/codi.16416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
143
|
Roelands J, van der Ploeg M, Ijsselsteijn ME, Dang H, Boonstra JJ, Hardwick JCH, Hawinkels LJAC, Morreau H, de Miranda NFCC. Transcriptomic and immunophenotypic profiling reveals molecular and immunological hallmarks of colorectal cancer tumourigenesis. Gut 2022:gutjnl-2022-327608. [PMID: 36442992 DOI: 10.1136/gutjnl-2022-327608] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Biological insights into the stepwise development and progression of colorectal cancer (CRC) are imperative to develop tailored approaches for early detection and optimal clinical management of this disease. Here, we aimed to dissect the transcriptional and immunologic alterations that accompany malignant transformation in CRC and to identify clinically relevant biomarkers through spatial profiling of pT1 CRC samples. DESIGN We employed digital spatial profiling (GeoMx) on eight pT1 CRCs to study gene expression in the epithelial and stromal segments across regions of distinct histology, including normal mucosa, low-grade and high-grade dysplasia and cancer. Consecutive histology sections were profiled by imaging mass cytometry to reveal immune contextures. Finally, publicly available single-cell RNA-sequencing data was analysed to determine the cellular origin of relevant transcripts. RESULTS Comparison of gene expression between regions within pT1 CRC samples identified differentially expressed genes in the epithelium (n=1394 genes) and the stromal segments (n=1145 genes) across distinct histologies. Pathway analysis identified an early onset of inflammatory responses during malignant transformation, typified by upregulation of gene signatures such as innate immune sensing. We detected increased infiltration of myeloid cells and a shift in macrophage populations from pro-inflammatory HLA-DR+CD204- macrophages to HLA-DR-CD204+ immune-suppressive subsets from normal tissue through dysplasia to cancer, accompanied by the upregulation of the CD47/SIRPα 'don't eat me signal'. CONCLUSION Spatial profiling revealed the molecular and immunological landscape of CRC tumourigenesis at early disease stage. We identified biomarkers with strong association with disease progression as well as targetable immune processes that are exploitable in a clinical setting.
Collapse
Affiliation(s)
- Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hao Dang
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurjen J Boonstra
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - James C H Hardwick
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
144
|
Liang Z, Pan L, Shi J, Zhang L. C1QA, C1QB, and GZMB are novel prognostic biomarkers of skin cutaneous melanoma relating tumor microenvironment. Sci Rep 2022; 12:20460. [PMID: 36443341 PMCID: PMC9705312 DOI: 10.1038/s41598-022-24353-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is the most lethal form of skin cancers owing to high invasiveness and high metastatic potential. Tumor microenvironment (TME) provides powerful evidences for discerning SKCM, raising the prospect to identify biomarkers of SKCM. Based on the transcriptome profiles of patients with SKCM and the corresponding clinical information from The Cancer Genome Atlas (TCGA), we used ESTIMATE algorithm to calculate ImmuneScore and StromalScore and identified the TME-Related differentially expressed genes (DEGs), than the intersected TME-Related DEGs were used for subsequent functional enrichment analysis. Protein-protein interaction (PPI) analysis was used to identify the functionality-related DEGs and univariate Cox regression analysis was used to identify the survival-related DEGs. Furthermore, SKCM-related DEGs were identified based on two Gene Expression Omnibus (GEO) datasets. Finally, we intersected functionality-related DEGs, survival-related DEGs, and SKCM-related DEGs, ascertaining that six DEGs (CCL4, CXCL10, CCL5, GZMB, C1QA, and C1QB) function as core TME-related genes (CTRGs). Significant differences of GZMB, C1QA, and C1QB expressions were found in gender and clinicopathologic staging of SKCM. High levels of GZMB, C1QA, and C1QB expressions were associated with favorable prognosis. Gene set enrichment analysis (GSEA) showed that cell-cell interaction, cell behavior, and intracellular signaling transduction may be mainly involved in both C1QA, C1QB and GZMB expressions and metabolism of phospholipid and amino acid, transcription, and translation may be implicated in low GZMB expressions. C1QA, C1QB, and GZMB are novel SKCM-relating CTRGs, providing promising immune-related prognostic biomarkers for SKCM.
Collapse
Affiliation(s)
- Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Lingfeng Pan
- Department of Plastic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Jikang Shi
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
145
|
Alwers E, Kather JN, Kloor M, Brobeil A, Tagscherer KE, Roth W, Echle A, Amitay EL, Chang‐Claude J, Brenner H, Hoffmeister M. Validation of the prognostic value of CD3 and CD8 cell densities analogous to the Immunoscore® by stage and location of colorectal cancer: an independent patient cohort study. J Pathol Clin Res 2022; 9:129-136. [PMID: 36424650 PMCID: PMC9896157 DOI: 10.1002/cjp2.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/07/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
In addition to the traditional staging system in colorectal cancer (CRC), the Immunoscore® has been proposed to characterize the level of immune infiltration in tumor tissue and as a potential prognostic marker. The aim of this study was to examine and validate associations of an immune cell score analogous to the Immunoscore® with established molecular tumor markers and with CRC patient survival in a routine setting. Patients from a population-based cohort study with available CRC tumor tissue blocks were included in this analysis. CD3+ and CD8+ tumor infiltrating lymphocytes in the tumor center and invasive margin were determined in stained tumor tissue slides. Based on the T-cell density in each region, an immune cell score closely analogous to the concept of the Immunoscore® was calculated and tumors categorized into IS-low, IS-intermediate, or IS-high. Logistic regression models were used to assess associations between clinicopathological characteristics with the immune cell score, and Cox proportional hazards models to analyze associations with cancer-specific, relapse-free, and overall survival. From 1,535 patients with CRC, 411 (27%) had IS-high tumors. Microsatellite instability (MSI-high) was strongly associated with higher immune cell score levels (p < 0.001). Stage I-III patients with IS-high had better CRC-specific and relapse-free survival compared to patients with IS-low (hazard ratio [HR] = 0.42 [0.27-0.66] and HR = 0.45 [0.31-0.67], respectively). Patients with microsatellite stable (MSS) tumors and IS-high had better survival (HRCSS = 0.60 [0.42-0.88]) compared to MSS/IS-low patients. In this population-based cohort of CRC patients, the immune cell score was significantly associated with better patient survival. It was a similarly strong prognostic marker in patients with MSI-high tumors and in the larger group of patients with MSS tumors. Additionally, this study showed that it is possible to implement an analogous immune cell score approach and validate the Immunoscore® using open source software in an academic setting. Thus, the Immunoscore® could be useful to improve the traditional staging system in colon and rectal cancer used in clinical practice.
Collapse
Affiliation(s)
- Elizabeth Alwers
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jakob N Kather
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany,Medical Oncology, National Center for Tumor DiseasesHeidelberg University HospitalHeidelbergGermany
| | - Matthias Kloor
- Department of Applied Tumor BiologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany,Clinical Cooperation Unit Applied Tumor BiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Alexander Brobeil
- Department of PathologyInstitute of Pathology, Heidelberg University HospitalHeidelbergGermany,Tissue Bank of the National Center for Tumor Diseases (NCT)HeidelbergGermany
| | | | - Wilfried Roth
- Institute of PathologyUniversity Medical Center MainzMainzGermany
| | - Amelie Echle
- Department of Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany,Cancer Epidemiology GroupUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany,German Cancer Consortium (DKTK)German Cancer Research CenterHeidelbergGermany,Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
146
|
Hou W, Yi C, Zhu H. Predictive biomarkers of colon cancer immunotherapy: Present and future. Front Immunol 2022; 13:1032314. [PMID: 36483562 PMCID: PMC9722772 DOI: 10.3389/fimmu.2022.1032314] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy has revolutionized colon cancer treatment. Immune checkpoint inhibitors (ICIs) have shown clinical benefits for colon cancer patients, especially those with high microsatellite instability (MSI-H). In 2020, the US Food and Drug Administration (FDA)-approved ICI pembrolizumab as the first-line treatment for metastatic MSI-H colon cancer patients. Additionally, neoadjuvant immunotherapy has presented efficacy in treating early-stage colon cancer patients. Although MSI has been thought of as an effective predictive biomarker for colon cancer immunotherapy, only a small proportion of colon cancer patients were MSI-H, and certain colon cancer patients with MSI-H presented intrinsic or acquired resistance to immunotherapy. Thus, further search for predictive biomarkers to stratify patients is meaningful in colon cancer immunotherapy. Except for MSI, other biomarkers, such as PD-L1 expression level, tumor mutation burden (TMB), tumor-infiltrating lymphocytes (TILs), certain gut microbiota, ctDNA, and circulating immune cells were also proposed to be correlated with patient survival and ICI efficacy in some colon cancer clinical studies. Moreover, developing new diagnostic techniques helps identify accurate predictive biomarkers for colon cancer immunotherapy. In this review, we outline the reported predictive biomarkers in colon cancer immunotherapy and further discuss the prospects of technological changes for biomarker development in colon cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Hou
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Cheng Yi
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology Cancer Center, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
147
|
Zheng Z, Bian C, Wang H, Su J, Meng L, Xin Y, Jiang X. Prediction of immunotherapy efficacy and immunomodulatory role of hypoxia in colorectal cancer. Ther Adv Med Oncol 2022; 14:17588359221138383. [PMID: 36425871 PMCID: PMC9679351 DOI: 10.1177/17588359221138383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2023] Open
Abstract
Immunotherapy has been used in the clinical treatment of colorectal cancer (CRC); however, most patients fail to achieve satisfactory survival benefits. Biomarkers with high specificity and sensitivity are being increasingly developed to predict the efficacy of CRC immunotherapy. In addition to DNA alteration markers, such as microsatellite instability/mismatch repair and tumor mutational burden, immune cell infiltration and immune checkpoints (ICs), epigenetic changes and no-coding RNA, and gut microbiomes all show potential predictive ability. Recently, the hypoxic tumor microenvironment (TME) has been identified as a key factor mediating CRC immune evasion and resistance to treatment. Hypoxia-inducible factor-1α is the central transcription factor in the hypoxia response that drives the expression of a vast number of survival genes by binding to the hypoxia response element in cancer and immune cells in the TME. Hypoxia regulates angiogenesis, immune cell infiltration and activation, expression of ICs, and secretion of various immune molecules in the TME and is closely associated with the immunotherapeutic efficacy of CRC. Currently, various agents targeting hypoxia have been found to improve the TME and enhance the efficacy of immunotherapy. We reviewed current markers commonly used in CRC to predict therapeutic efficacy and the mechanisms underlying hypoxia-induced angiogenesis and tumor immune evasion. Exploring the mechanisms by which hypoxia affects the TME will assist the discovery of new immunotherapeutic predictive biomarkers and development of more effective combinations of agents targeting hypoxia and immunotherapy.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Chenbin Bian
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Huanhuan Wang
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Jing Su
- Department of Radiation Oncology, the First Hospital of Jilin University, Changchun China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun 130021, China
| | - Xin Jiang
- Department of Radiation Oncology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun, China
| |
Collapse
|
148
|
Hou X, Zheng Z, Wei J, Zhao L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front Immunol 2022; 13:1030745. [PMID: 36426359 PMCID: PMC9681148 DOI: 10.3389/fimmu.2022.1030745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Accumulating evidence suggests that gut microbial dysbiosis is implicated in colorectal cancer (CRC) initiation and progression through interaction with host immune system. Given the intimate relationship between the gut microbiota and the antitumor immune responses, the microbiota has proven to be effective targets in modulating immunotherapy responses of preclinical CRC models. However, the proposed putative mechanisms of how these bacteria affect immune responses and immunotherapy efficacy remains obscure. In this review, we summarize recent findings of clinical gut microbial dysbiosis in CRC patients, the reciprocal interactions between gut microbiota and the innate and/or the adaptive immune system, as well as the effect of gut microbiota on immunotherapy response in CRC. Increased understanding of the gut microbiota-immune system interactions will benefit the rational application of microbiota to the clinical promising biomarker or therapeutic strategy as a cancer immunotherapy adjuvant.
Collapse
Affiliation(s)
| | | | | | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
149
|
Yin H, Harrison TA, Thomas SS, Sather CL, Koehne AL, Malen RC, Reedy AM, Wurscher MA, Hsu L, Phipps AI, Zaidi SHE, Newcomb PA, Peters U, Huyghe JR. T cell-inflamed gene expression profile is associated with favorable disease-specific survival in non-hypermutated microsatellite-stable colorectal cancer patients. Cancer Med 2022; 12:6583-6593. [PMID: 36341526 PMCID: PMC10067089 DOI: 10.1002/cam4.5429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The anti-tumor immune response plays a key role in colorectal cancer (CRC) progression and survival. The T cell-inflamed gene expression profile (GEP) is a biomarker predicting response to checkpoint inhibitor immunotherapy across immunogenic cancer types, but the prognostic value in CRC is unknown. We evaluated associations with disease-specific survival, somatic mutations, and examined its differentially expressed genes and pathways among 84 sporadic CRC patients from the Seattle Colon Cancer Family Registry. METHODS Gene expression profiling was performed using Nanostring's nCounter PanCancer IO 360 panel. Somatic mutations were identified by a targeted DNA sequencing panel. RESULTS The T cell-inflamed GEP was positively associated with tumor mutation burden and microsatellite instability high (MSI-H). Higher T cell-inflamed GEP had favorable CRC-specific survival (hazard ratio [HR] per standard deviation unit = 0.50, p = 0.004) regardless of hypermutation or MSI status. Analysis of recurrently mutated genes having at least 10 mutation carriers, suggested that the T cell-inflamed GEP is positively associated with RYR1, and negatively associated with APC. However, these associations were attenuated after adjusting for hypermutation or MSI status. We also found that expression of genes RPL23, EPCAM, AREG and ITGA6, and the Wnt signaling pathway was negatively associated with the T cell-inflamed GEP, which might indicate immune-inhibitory mechanisms. CONCLUSIONS Our results show that the T cell-inflamed GEP is a prognostic biomarker in non-hypermutated microsatellite-stable CRC. This also suggests that patient stratification for immunotherapy within this CRC subgroup should be explored further. Moreover, reported immune-inhibitory gene expression signals may suggest targets for therapeutic combination with immunotherapy.
Collapse
Affiliation(s)
- Hang Yin
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, USA
| | - Tabitha A Harrison
- Institute for Public Health Genetics, University of Washington, Seattle, Washington, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Sushma S Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cassie L Sather
- Genomics Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Amanda L Koehne
- Experimental Histopathology, Shared Resource, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rachel C Malen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Adriana M Reedy
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Michelle A Wurscher
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Syed H E Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA.,Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
150
|
Fang X, Huang E, Xie X, Yang K, Wang S, Huang X, Song M. A novel senescence-related lncRNA signature that predicts prognosis and the tumor microenvironment in patients with lung adenocarcinoma. Front Genet 2022; 13:951311. [PMID: 36406130 PMCID: PMC9669975 DOI: 10.3389/fgene.2022.951311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Cellular senescence has recently been considered a new cancer hallmark. However, the factors regulating cellular senescence have not been well characterized. The aim of this study is to identify long non-coding RNAs (lncRNAs) associated with senescence and prognosis in patients with lung adenocarcinoma (LUAD). Methods: Using RNA sequence data from the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) and senescence genes from the CellAge database, a subset of senescence-related lncRNAs was first identified. Then, using univariate and multivariate Cox regression analyses, a senescence lncRNA signature (LUADSenLncSig) associated with LUAD prognosis was developed. Based on the median LUADSenLncSig risk score, LUAD patients were divided into high-risk and low-risk groups. Kaplan-Meier analysis was used to compare the overall survival (OS) in the high- and low-risk score subgroups. Differences in Gene Set Enrichment Analysis (GSEA), immune infiltration, tumor mutation burden (TMB), tumor immune dysfunction and exclusion (TIDE) module score, chemotherapy, and targeted therapy selection were also compared between the high-risk and low-risk groups. Results: A prognostic risk model was obtained consisting of the following nine senescence-related lncRNAs: LINC01116, AC005838.2, SH3PXD2A-AS1, VIMS-AS1, SH3BP5-AS1, AC092279.1, AC026355.1, AC027020.2, and LINC00996. The LUADSenLncSig high-risk group was associated with poor OS (hazard ratio = 1.17, 95% confidence interval = 1.102-1.242; p < 0.001). The accuracy of the model was further supported based on receiver operating characteristic (ROC), principal component analysis (PCA), and internal validation cohorts. In addition, a nomogram was developed consisting of LUADSenLncSig for LUAD prognosis, which is consistent with the actual probability of OS. Furthermore, immune infiltration analysis showed the low-risk group had a stronger anti-tumor immune response in the tumor microenvironment. Notably, the levels of immune checkpoint genes such as CTLA-4, PDCD-1, and CD274, and the TIDE scores were significantly higher in the low-risk subgroups than in high-risk subgroups (p < 0.001). This finding indicates the LUADSenLncSig can potentially predict immunotherapy efficacy. Conclusion: In this study, a lncRNA signature, LUADSenLncSig, that has dual functions of senescence phenotype identification and prognostic prediction as well as the potential to predict the LUAD response to immunotherapy was developed.
Collapse
Affiliation(s)
- Xueying Fang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Enmin Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Supported by National Key Clinical Discipline, Department of Gastroenterological Surgery and Hernia Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xie
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Kai Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuqian Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqing Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mei Song
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|