101
|
Zhang B, Tian X, Qu Z, Liu J, Yang L, Zhang W. Efficacy of extracellular vesicles from mesenchymal stem cells on osteoarthritis in animal models: a systematic review and meta-analysis. Nanomedicine (Lond) 2021; 16:1297-1310. [PMID: 34044578 DOI: 10.2217/nnm-2021-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Some studies have reported results from the use of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) to treat osteoarthritis (OA). Objective: To evaluate the efficacy of MSC-EVs as a treatment for OA. Data sources: Databases were searched using the terms 'mesenchymal stem cells', 'osteoarthritis' and 'extracellular vesicles.' Study eligibility criteria: Studies performed in animal models utilizing MSC-EVs to treat OA that described the macroscopic evaluation or histological evaluation were included. Study appraisal: The quality of the studies was examined using the CAMARADES quality checklist. Results: MSC-EVs were superior to the placebo in the macroscopic evaluation and histological evaluation. MSC-EVs were more effective in the early stage of OA and once a week was better than multiple times a week. Limitations: The included studies were highly heterogeneous. Conclusion: MSC-EVs may improve the results of macroscopic and histological evaluations of OA.
Collapse
Affiliation(s)
- Bocheng Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116000, China.,Graduate School, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Xiaoyuan Tian
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116000, China.,Graduate School, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Zhenan Qu
- Orthopedics IV, Affiliated Zhongshan Hospital of Dalian University, Liaoning, 116000, China
| | - Jiaming Liu
- Graduate School, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Liang Yang
- Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116000, China
| | - Weiguo Zhang
- Department of Orthopaedics, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, 116000, China.,Graduate School, Dalian Medical University, Dalian, Liaoning, 116000, China
| |
Collapse
|
102
|
Tao Y, Zhou J, Wang Z, Tao H, Bai J, Ge G, Li W, Zhang W, Hao Y, Yang X, Geng D. Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-κB signaling pathway. Bioorg Chem 2021; 113:104978. [PMID: 34052737 DOI: 10.1016/j.bioorg.2021.104978] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/05/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Osteoarthritis (OA) is a chronic disease featured by joint hyperplasia, deterioration of articular cartilage, and progressive degeneration. Abnormal expression of microRNAs (miRNAs) has been found to be implicated in the pathological process of OA. In this study, the role of miR-361-5p transferred by exosomes derived from human bone mesenchymal stem cells (hBMSCs) in OA was investigated. The expression of Asp-Glu-Ala-Asp-box polypeptide 20 (DDX20) and miR-361-5p in interleukin-1β (IL-1β)-treated chondrocytes was determined by reverse transcription quantitative polymerase chain reaction. DDX20 was knocked down by transfection of short hairpin RNA targeting DDX20, and the effects of DDX20 downregulation on IL-1β-induced damage of chondrocytes were detected. The interaction between DDX20 and miR-361-5p was tested by luciferase report assay. hBMSCs-derived exosomes loaded with miR-361-5p were co-incubated with chondrocytes followed by detection of cell viability, proliferation and inflammatory response. An OA rat model was established to further explore the role of miR-361-5p in vivo. Western blot, luciferase reporter and immunofluorescence staining assays were used to evaluate the activation of the nuclear factor kappa-B (NF-κB) signaling pathway. We found that DDX20 was upregulated, while miR-361-5p was underexpressed in IL-1β-treated chondrocytes. Downregulation of DDX20 inhibits levels of matrix metalloproteinases (MMPs) and suppresses inflammation induced by IL-1β. Mechanistically, miR-361-5p was verified to directly target DDX20. In addition, hBMSC-derived exosomes-transferred miR-361-5p alleviates chondrocyte damage and inhibits the NF-κB signaling pathway via targeting DDX20. Inhibition of NF-κB signaling reverses the effect of overexpressed DDX20 on IL-1β-induced chondrocyte damage. Moreover, exosomal miR-361-5p alleviates OA damage in vivo. Overall, hBMSC-derived exosomal miR-361-5p alleviates OA damage by targeting DDX20 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunxia Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China
| | - Zhen Wang
- Department of Orthopaedics, Suzhou Kowloon Hospital Shanghai Jiao Tong University School of Medicine, Suzhou 215006, Jiangsu, China
| | - Huaqiang Tao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
103
|
Miao C, Zhou W, Wang X, Fang J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021; 12:685623. [PMID: 34093208 PMCID: PMC8176107 DOI: 10.3389/fphar.2021.685623] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a kind of degenerative disease, which is caused by many factors such as aging, obesity, strain, trauma, congenital joint abnormalities, joint deformities. Exosomes are mainly derived from the invagination of intracellular lysosomes, which are released into the extracellular matrix after fusion of the outer membrane of multi vesicles with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying non-coding RNA, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), proteins and lipids. Evidences show that exosomes are involved in the pathogenesis of OA. In view of the important roles of exosomes in OA, this paper systematically reviewed the roles of exosomes in the pathogenesis of OA, including the roles of exosomes in OA diagnosis, the regulatory mechanisms of exosomes in the pathogenesis, and the intervention roles of exosomes in the treatment of OA. Reviewing the roles of exosomes in OA will help to clarify the pathogenesis of OA and explore new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jihong Fang
- Department of Nursing, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China.,Department of Orthopedics, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
104
|
Lakshmanan DK, Ravichandran G, Elangovan A, Jeyapaul P, Murugesan S, Thilagar S. Cissus quadrangularis (veldt grape) attenuates disease progression and anatomical changes in mono sodium iodoacetate (MIA)-induced knee osteoarthritis in the rat model. Food Funct 2021; 11:7842-7855. [PMID: 32812575 DOI: 10.1039/d0fo00992j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Cissus quadrangularis (CQ) stem has interesting nutritional and pharmacological properties to promote the health of the skeletal system. It is a well-recognized plant in the conventional system of medicine in India for treating bone and joint-associated complications. This study focuses on identifying the active constituents from the stem and root extracts of CQ and validating its anti-osteoarthritic activity by the in vivo model. Notable levels of phenolics and flavonoids were found in the ethanol extracts of both CQ stem (CQSE) and root (CQRE), among other solvent fractions. UPLC-MS/MS analysis of these selective extracts resulted in different classes of active compounds from both positive and negative ionization modes. By analyzing their mass spectra and fragmentation pattern, 25 active compounds were identified. The CQSE and CQRE extracts, along with the standard drug (naproxen), were further tested in mono-sodium iodoacetate-induced experimental OA animals. The modulatory effects of the test extracts were assessed by haematology, synovial and cartilage marker profiling, radiology and histopathological analysis. The in vivo findings from the biochemical and physiological studies have led to the conclusion that the CQSE extract is a good choice for the management of OA. The results were substantially better than CQ root extract and naproxen drug-treated groups. Thus, CQS has bioactive constituents, which could facilitate recovery from joint tissue damage, cellular metabolism and associated risk factors attributable to dysfunctions in OA incidence and progression.
Collapse
Affiliation(s)
- Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Preethi Jeyapaul
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Selvakumar Murugesan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
105
|
Velot É, Madry H, Venkatesan JK, Bianchi A, Cucchiarini M. Is Extracellular Vesicle-Based Therapy the Next Answer for Cartilage Regeneration? Front Bioeng Biotechnol 2021; 9:645039. [PMID: 33968913 PMCID: PMC8102683 DOI: 10.3389/fbioe.2021.645039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/15/2021] [Indexed: 01/22/2023] Open
Abstract
"Extracellular vesicles" (EVs) is a term gathering biological particles released from cells that act as messengers for cell-to-cell communication. Like cells, EVs have a membrane with a lipid bilayer, but unlike these latter, they have no nucleus and consequently cannot replicate. Several EV subtypes (e.g., exosomes, microvesicles) are described in the literature. However, the remaining lack of consensus on their specific markers prevents sometimes the full knowledge of their biogenesis pathway, causing the authors to focus on their biological effects and not their origins. EV signals depend on their cargo, which can be naturally sourced or altered (e.g., cell engineering). The ability for regeneration of adult articular cartilage is limited because this avascular tissue is partly made of chondrocytes with a poor proliferation rate and migration capacity. Mesenchymal stem cells (MSCs) had been extensively used in numerous in vitro and preclinical animal models for cartilage regeneration, and it has been demonstrated that their therapeutic effects are due to paracrine mechanisms involving EVs. Hence, using MSC-derived EVs as cell-free therapy tools has become a new therapeutic approach to improve regenerative medicine. EV-based therapy seems to show similar cartilage regenerative potential compared with stem cell transplantation without the associated hindrances (e.g., chromosomal aberrations, immunogenicity). The aim of this short review is to take stock of occurring EV-based treatments for cartilage regeneration according to their healing effects. The article focuses on cartilage regeneration through various sources used to isolate EVs (mature or stem cells among others) and beneficial effects depending on cargos produced from natural or tuned EVs.
Collapse
Affiliation(s)
- Émilie Velot
- Faculté de Médecine, Biopôle de l’Université de Lorraine, Campus Brabois-Santé, Laboratoire UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Université de Lorraine, Vandoeuvre-Lès-Nancy, France
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Arnaud Bianchi
- Campus Brabois-Santé, Laboratoire de Travaux Pratiques de Physiologie, Faculté de Pharmacie, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| |
Collapse
|
106
|
Wang Y, Zhao M, Li W, Yang Y, Zhang Z, Ma R, Wu M. BMSC-Derived Small Extracellular Vesicles Induce Cartilage Reconstruction of Temporomandibular Joint Osteoarthritis via Autotaxin-YAP Signaling Axis. Front Cell Dev Biol 2021; 9:656153. [PMID: 33869221 PMCID: PMC8047210 DOI: 10.3389/fcell.2021.656153] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Temporomandibular joint osteoarthritis (TMJOA) seriously affects the health of patients, and the current treatments are invasive and only used for advanced cases. Bone marrow mesenchymal stem cell (BMSC)-derived small extracellular vesicles (BMSC-sEVs) may represent a safer and more effective treatment, but their role in TMJOA has not been elucidated. This study attempted to analyze the cartilage reconstruction effect of BMSC-sEVs on TMJOA and the mechanism underlying this effect. Methods: BMSC-sEVs were isolated and purified by microfiltration and ultrafiltration and were subsequently characterized by nanoparticle tracking analysis, electron microscopy, and immunoblotting. TMJOA models were established in vivo and in vitro, and hematoxylin–eosin staining, immunohistochemistry, and histological scoring were performed to analyze the histological changes in TMJOA cartilage tissues treated with BMSC-sEVs. The proliferation, migratory capacity, and cell cycle distribution of TMJOA cartilage cells treated with BMSC-sEVs were detected. Furthermore, the related mechanisms were studied by bioinformatic analysis, immunoblotting, and quantitative PCR, and they were further analyzed by knockdown and inhibitor techniques. Results: The acquisition and identification of BMSC-sEVs were efficient and satisfactory. Compared with the osteoarthritis (OA) group, the condylar tissue of the OA group treated with BMSC-sEV (OAsEV) showed an increase in cartilage lacuna and hypertrophic cartilage cells in the deep area of the bone under the cartilage. Significantly upregulated expression of proliferating cell nuclear antigen and cartilage-forming factors and downregulated expression of cartilage inflammation-related factors in OAsEV were observed. In addition, we found higher rates of cell proliferation and migratory activity and alleviated G1 stagnation of the cell cycle of OAsEV. Autotaxin was found in the BMSC-sEVs, and key factors of the Hippo pathway, Yes-associated protein (YAP), phosphorylated Yes-associated protein (p-YAP), etc. were upregulated in the OAsEV group. Treatment with BMSC-sEVs after autotaxin knockdown or inhibition no longer resulted in expression changes in cartilage-forming and inflammation-related factors and key factors of the Hippo pathway. Conclusions: These results suggest that the autotaxin–YAP signaling axis plays an important role in the mechanism by which BMSC-sEVs promote cartilage reconstruction in TMJOA, which may provide guidance regarding their therapeutic applications as early and minimally invasive therapies for TMJOA, and provide insight into the internal mechanisms of TMJOA.
Collapse
Affiliation(s)
- Yingnan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Miaomiao Zhao
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Wen Li
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yuzhi Yang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Zhenliang Zhang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Ruijie Ma
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Mengjie Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
107
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
108
|
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S, Hassanzadeh A. Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther 2021; 12:192. [PMID: 33736695 PMCID: PMC7971361 DOI: 10.1186/s13287-021-02265-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Over recent years, mesenchymal stem/stromal cells (MSCs) and their potential biomedical applications have received much attention from the global scientific community in an increasing manner. Firstly, MSCs were successfully isolated from human bone marrow (BM), but in the next steps, they were also extracted from other sources, mostly from the umbilical cord (UC) and adipose tissue (AT). The International Society for Cellular Therapy (ISCT) has suggested minimum criteria to identify and characterize MSCs as follows: plastic adherence, surface expression of CD73, D90, CD105 in the lack of expression of CD14, CD34, CD45, and human leucocyte antigen-DR (HLA-DR), and also the capability to differentiate to multiple cell types including adipocyte, chondrocyte, or osteoblast in vitro depends on culture conditions. However, these distinct properties, including self-renewability, multipotency, and easy accessibility are just one side of the coin; another side is their huge secretome which is comprised of hundreds of mediators, cytokines, and signaling molecules and can effectively modulate the inflammatory responses and control the infiltration process that finally leads to a regulated tissue repair/healing or regeneration process. MSC-mediated immunomodulation is a direct result of a harmonic synergy of MSC-released signaling molecules (i.e., mediators, cytokines, and chemokines), the reaction of immune cells and other target cells to those molecules, and also feedback in the MSC-molecule-target cell axis. These features make MSCs a respectable and eligible therapeutic candidate to be evaluated in immune-mediated disorders, such as graft versus host diseases (GVHD), multiple sclerosis (MS), Crohn's disease (CD), and osteoarthritis (OA), and even in immune-dysregulating infectious diseases such as the novel coronavirus disease 2019 (COVID-19). This paper discussed the therapeutic applications of MSC secretome and its biomedical aspects related to immune-mediated conditions. Sources for MSC extraction, their migration and homing properties, therapeutic molecules released by MSCs, and the pathways and molecular mechanisms possibly involved in the exceptional immunoregulatory competence of MSCs were discussed. Besides, the novel discoveries and recent findings on immunomodulatory plasticity of MSCs, clinical applications, and the methods required for their use as an effective therapeutic option in patients with immune-mediated/immune-dysregulating diseases were highlighted.
Collapse
Affiliation(s)
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), 69120 Heidelberg, Germany
| | | | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL USA
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Shamlou
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
109
|
Potential of Exosomes for Diagnosis and Treatment of Joint Disease: Towards a Point-of-Care Therapy for Osteoarthritis of the Knee. Int J Mol Sci 2021; 22:ijms22052666. [PMID: 33800860 PMCID: PMC7961842 DOI: 10.3390/ijms22052666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
In the knee joint, articular cartilage injury can often lead to osteoarthritis of the knee (OAK). Currently, no point-of-care treatment can completely address OAK symptoms and regenerate articular cartilage to restore original functions. While various cell-based therapies are being developed to address OAK, exosomes containing various components derived from their cells of origin have attracted attention as a cell-free alternative. The potential for exosomes as a novel point-of-care treatment for OAK has been studied extensively, especially in the context of intra-articular treatments. Specific exosomal microRNAs have been identified as possibly effective in treating cartilage defects. Additionally, exosomes have been studied as biomarkers through their differences in body fluid composition between joint disease patients and healthy subjects. Exosomes themselves can be utilized as a drug delivery system through their manipulation and encapsulation of specific contents to be delivered to specific cells. Through the combination of exosomes with tissue engineering, novel sustained release drug delivery systems are being developed. On the other hand, many of the functions and activities of exosomes are unknown and challenges remain for clinical applications. In this review, the possibilities of intra-articular treatments utilizing exosomes and the challenges in using exosomes in therapy are discussed.
Collapse
|
110
|
Zhang L, Ouyang P, He G, Wang X, Song D, Yang Y, He X. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J Cell Mol Med 2021; 25:2148-2162. [PMID: 33350092 PMCID: PMC7882955 DOI: 10.1111/jcmm.16192] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
microRNA-126 (miR-126), an endothelial-specific miRNA, is associated with vascular homeostasis and angiogenesis. However, the efficiency of miR-126-based treatment is partially compromised due to the low efficiency of miRNA delivery in vivo. Lately, exosomes have emerged as a natural tool for therapeutic molecule delivery. Herein, we investigated whether exosomes derived from bone marrow mesenchymal stem cells (BMMSCs) can be utilized to deliver miR-126 to promote angiogenesis. Exosomes were isolated from BMMSCs overexpressed with miR-126 (Exo-miR-126) by ultracentrifugation. In vitro study, Exo-miR-126 treatment promoted the proliferation, migration and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, the gene/protein expression of angiogenesis-related vascular endothelial growth factor (VEGF) and angiotensin-1 (Ang-1) were up-regulated after incubation with Exo-miR-126. Additionally, the expression level of phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2) showed an inverse correlation with miR-126 in HUVECs. Particularly, the Exo-miR-126 treatment contributed to enhanced angiogenesis of HUVECs by targeting PIK3R2 to activate the PI3K/Akt signalling pathway. Similarly, Exo-miR-126 administration profoundly increased the number of newly formed capillaries in wound sites and accelerated the wound healing in vivo. The results demonstrate that exosomes derived from BMMSCs combined with miR-126 may be a promising strategy to promote angiogenesis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Pengrong Ouyang
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Gaole He
- Department of Spine SurgeryHong Hui HospitalXi’an Jiaotong UniversityXi’anShaanxi ProvinceChina
| | - Xiaowei Wang
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Defu Song
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Yijun Yang
- Department of Orthopaedic SurgeryXi'an Children's HospitalXi’anShaanxi ProvinceChina
| | - Xijing He
- Department of Orthopaedic SurgerySecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- Xi'an International Medical Center HospitalXi’anShaanxi ProvinceChina
| |
Collapse
|
111
|
MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1β induced osteoarthritis via targeting HMGB1. Life Sci 2021; 269:118987. [PMID: 33417958 DOI: 10.1016/j.lfs.2020.118987] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
AIMS To explore the therapeutic effect of miR-129-5p carried by exosomes from Human Synovial Mesenchymal Stem Cell (HS-MSC) on osteoarthritis(OA). MATERIALS AND METHODS The levels of miR-129-5p and high mobility group protein -1 (HMGB1) and interleukin-1β (IL-1β) in the joint fluid of OA patients were respectively detected via real-time quantitative reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). IL-1β was taken to act on chondrocytes for the establishment of OA model in vitro. Ultracentrifugation was conducted to isolate HS-MSC exosomes (HS-MSC-Exo) from the supernatant. Western blot and ELISA were carried out to measure the expression of iNOS, COX2, MMP13, Collagen 2, TLR4, NF-κB, Caspase3, Bcl-2, HMGB1 in chondrocytes. Flow cytometry was conducted to detect the apoptosis of chondrocytes. Besides, bioinformatics was employed to predict the targeted relationship between miR-129-5p and HMGB1, which was further verified via dual luciferase activity experiments. KEY FINDINGS The results illustrated that miR-129-5p was decreased in OA patients and IL-1β-induced chondrocytes, while HMGB1 was notably upregulated. HS-MSC-Exo rich in miR-129-5p remarkably declined the inflammatory response and apoptosis of chondrocytes, while HS-MSC-Exo deficient in miR-129-5p increased the IL-1β-mediated inflammatory response and apoptosis of chondrocytes. In terms of mechanism, miR-129-5p targets the 3'UTR end of HMGB1 and inhibits IL-1β-mediated upregulation of HMGB1. SIGNIFICANCE In a word, this paper proved that miR-129-5p, existing in HS-MSC-Exo, can suppress the IL-1β-mediated OA by inhibiting HMGB1 release.
Collapse
|
112
|
Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem Cell Rev Rep 2021; 17:471-501. [PMID: 33398717 DOI: 10.1007/s12015-020-10082-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow mesenchymal stem cells have been investigated for many years, especially for tissue regeneration, and have inherent limitations. One of the rapidly developing fields in the scientific world in recent years is extracellular vesicles. Especially, bone marrow mesenchymal stem cell originated extracellular vesicles are known to have positive contributions in tissue regeneration, and these extracellular vesicles have also been used as gene transfer systems for cellular therapy. Through gene expression analysis and bioinformatics tools, it is possible to determine which genes have changed in the targeted tissue or cell and which miRNAs that can correct this gene expression disorder. This approach connecting the stem cell, extracellular vesicles, epigenetics regulation and bioinformatics fields is one of the promising areas for the treatment of diseases in the future. With this review, it is aimed to present the studies carried out for the use of bone marrow stem cell-derived extracellular vesicles loaded with targeted miRNAs in different in vivo and in vitro human disease models and to discuss recent developments in this field.
Collapse
|
113
|
Zheng W, Li ZY, Zhao DL, Li XL, Liu R. microRNA-26a Directly Targeting MMP14 and MMP16 Inhibits the Cancer Cell Proliferation, Migration and Invasion in Cutaneous Squamous Cell Carcinoma. Cancer Manag Res 2020; 12:7087-7095. [PMID: 32848463 PMCID: PMC7429404 DOI: 10.2147/cmar.s265775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose To investigate the specific effect and underlying mechanism of microRNA-26a-5p (miR-26a) in cutaneous squamous cell carcinoma (CSCC). Methods miR-26a and MMP14/16 mRNA expression were detected by qRT-PCR analysis. Functional experiments were used to detect the role of miR-26a on CSCC progression. Western blot was used for protein detection. Luciferase assay was used to detect miR-26a directly targeting MMP14 and MMP16. Xenograft nude mice model was used to determine the effect of miR-26a on tumorigenesis. Results miR-26a was decreased in CSCC tissues and cells. Forced miR-26a suppressed the progression of SCL-1 and A431 cells. Furthermore, miR-26a directly targeted MMP14 and MMP16 to inhibit their expression. Forced expression of MMP14 and MMP16 removed the miR-26a’s inhibitory effect on CSCC development. The in vivo tumor growth assay showed that miR-26a suppressed CSCC tumorigenesis by targeting MMP14 and MMP16. Conclusion Our study suggested miR-26a inhibits cancer cell proliferation, migration and invasion in CSCC by targeting MMP14 and MMP16.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Zong-Yu Li
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - De-Lai Zhao
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China.,Department of Orthopedic Surgery, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Xing-Long Li
- Department of Burns, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China.,Department of Orthopedic Surgery, The Fifth Hospital of Harbin, Harbin 150040, People's Republic of China
| | - Rui Liu
- Department of Burns, Heilongjiang Provincial Hospital, Harbin 150036, People's Republic of China
| |
Collapse
|
114
|
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12:814-840. [PMID: 32952861 PMCID: PMC7477653 DOI: 10.4252/wjsc.v12.i8.814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/23/2020] [Accepted: 06/27/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with marked potential for regenerative medicine because of their strong immunosuppressive and regenerative abilities. The therapeutic effects of MSCs are based in part on their secretion of biologically active factors in extracellular vesicles known as exosomes. Exosomes have a diameter of 30-100 nm and mediate intercellular communication and material exchange. MSC-derived exosomes (MSC-Exos) have potential for cell-free therapy for diseases of, for instance, the kidney, liver, heart, nervous system, and musculoskeletal system. Hence, MSC-Exos are an alternative to MSC-based therapy for regenerative medicine. We review MSC-Exos and their therapeutic potential for a variety of diseases and injuries.
Collapse
Affiliation(s)
- Zhan-Jun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Jing-Jing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhao-Yang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong 030600, Shaanxi Province, China
| | - Xue-Xi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
115
|
Li S, Jia Y, Xue M, Hu F, Zheng Z, Zhang S, Ren S, Yang Y, Si Z, Wang L, Guan M, Xue Y. Inhibiting Rab27a in renal tubular epithelial cells attenuates the inflammation of diabetic kidney disease through the miR-26a-5p/CHAC1/NF-kB pathway. Life Sci 2020; 261:118347. [PMID: 32853650 DOI: 10.1016/j.lfs.2020.118347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/13/2020] [Accepted: 08/22/2020] [Indexed: 10/23/2022]
Abstract
The effect of exosomes on receptor cells participating in intercellular communication has been extensively studied, but the effect of exosomes on donor cells remains unclear. It has been reported that exosomes secreted by renal proximal tubular epithelial cells (PTECs) under different stimuli accelerate acute and chronic kidney diseases. This study aimed to explore whether inhibiting exosomal secretion in PTECs by knocking out Rab27a, a key exosome regulatory gene, inhibits the excessive inflammatory response in PTECs and delays diabetic kidney disease (DKD). First, we proved that the bovine serum albumin (BSA)-induced inflammatory response in HK-2 cells was inhibited by knocking out Rab27a and that Rab27a, IL-6, TNF-α and COL-1 expression was markedly increased in an HFD/STZ-induced diabetic mouse model. Furthermore, miR-26a-5p expression in exosomes secreted by BSA-treated HK-2 cells was significantly increased but correspondingly decreased in the cells; after knocking out Rab27a, miR-26a-5p levels in the cells rebounded. Next, we confirmed that a miR-26a-5p mimic suppressed the inflammatory response, while a miR-26a-5p inhibitor accelerated the inflammatory response. Then, we found that miR-26a-5p targets the 3'-untranslated region (UTR) of CHAC1. Furthermore, the inflammatory response and NF-κB signalling pathway activation induction by the miR-26a-5p inhibitor were abolished by CHAC1 knockout. Therefore, we conclude that inhibiting exosome secretion by BSA-induced PTECs promotes miR-26a-5p expression in cells, thereby inhibiting the CHAC1/NF-κB pathways to prevent the inflammatory response in PTECs and delaying the development of DKD. This study provides new insight into the pathogenic mechanism of exosomes and a new therapeutic target for DKD.
Collapse
Affiliation(s)
- Shuangshuang Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yijie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Fang Hu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Zongji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Endocrinology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shijing Ren
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanlin Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zekun Si
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meiping Guan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaoming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
116
|
Tavallaee G, Rockel JS, Lively S, Kapoor M. MicroRNAs in Synovial Pathology Associated With Osteoarthritis. Front Med (Lausanne) 2020; 7:376. [PMID: 32850892 PMCID: PMC7431695 DOI: 10.3389/fmed.2020.00376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis, a disease that affects the entire joint. The relative involvement of each tissue, and their interactions, add to the complexity of OA, hampering our understanding of the underlying molecular mechanisms, and the generation of a disease modifying therapy. The synovium is essential in maintaining joint homeostasis, and pathologies associated with the synovium contribute to joint destruction, pain and stiffness in OA. MicroRNAs (miRNAs) are post-transcriptional regulators dysregulated in OA tissues including the synovium. MiRNAs are important contributors to OA synovial changes that have the potential to improve our understanding of OA and to act as novel therapeutic targets. The purpose of this review is to summarize and integrate current published literature investigating the roles that miRNAs play in OA-related synovial pathologies including inflammation, matrix deposition and cell proliferation.
Collapse
Affiliation(s)
- Ghazaleh Tavallaee
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jason S. Rockel
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Starlee Lively
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mohit Kapoor
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
117
|
Ni Z, Zhou S, Li S, Kuang L, Chen H, Luo X, Ouyang J, He M, Du X, Chen L. Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8:25. [PMID: 32596023 PMCID: PMC7305215 DOI: 10.1038/s41413-020-0100-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/30/2020] [Accepted: 05/09/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes participate in many physiological and pathological processes by regulating cell-cell communication, which are involved in numerous diseases, including osteoarthritis (OA). Exosomes are detectable in the human articular cavity and were observed to change with OA progression. Several joint cells, including chondrocytes, synovial fibroblasts, osteoblasts, and tenocytes, can produce and secrete exosomes that influence the biological effects of targeted cells. In addition, exosomes from stem cells can protect the OA joint from damage by promoting cartilage repair, inhibiting synovitis, and mediating subchondral bone remodeling. This review summarizes the roles and therapeutic potential of exosomes in OA and discusses the perspectives and challenges related to exosome-based treatment for OA patients in the future.
Collapse
Affiliation(s)
- Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Siru Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury; Medical Cformation of H-type vessel in subchondral enter of Trauma and War Injury; Daping Hospital, Army Medical University of PLA, Chongqing, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- Eleven Squadron Three Brigade, School of Basic Medical Science, Army Medical University, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoqing Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Junjie Ouyang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mei He
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaolan Du
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
118
|
To K, Romain K, Mak C, Kamaraj A, Henson F, Khan W. The Treatment of Cartilage Damage Using Human Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Systematic Review of in vivo Studies. Front Bioeng Biotechnol 2020; 8:580. [PMID: 32596228 PMCID: PMC7300288 DOI: 10.3389/fbioe.2020.00580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Damage to joints through injury or disease can result in cartilage loss, which if left untreated can lead to inflammation and ultimately osteoarthritis. There is currently no cure for osteoarthritis and management focusses on symptom control. End-stage osteoarthritis can be debilitating and ultimately requires joint replacement in order to maintain function. Therefore, there is growing interest in innovative therapies for cartilage repair. In this systematic literature review, we sought to explore the in vivo evidence for the use of human Mesenchymal Stem Cell-derived Extracellular Vesicles (MSC-EVs) for treating cartilage damage. We conducted a systematic literature review in accordance with the PRISMA protocol on the evidence for the treatment of cartilage damage using human MSC-EVs. Studies examining in vivo models of cartilage damage were included. A risk of bias analysis of the studies was conducted using the SYRCLE tool. Ten case-control studies were identified in our review, including a total of 159 murine subjects. MSC-EVs were harvested from a variety of human tissues. Five studies induced osteoarthritis, including cartilage loss through surgical joint destabilization, two studies directly created osteochondral lesions and three studies used collagenase to cause cartilage loss. All studies in this review reported reduced cartilage loss following treatment with MSC-EVs, and without significant complications. We conclude that transplantation of MSC-derived EVs into damaged cartilage can effectively reduce cartilage loss in murine models of cartilage injury. Additional randomized studies in animal models that recapitulates human osteoarthritis will be necessary in order to establish findings that inform clinical safety in humans.
Collapse
Affiliation(s)
- Kendrick To
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Karl Romain
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Mak
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Achi Kamaraj
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frances Henson
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Wasim Khan
- Division of Trauma and Orthopaedics, Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
119
|
Ha DH, Kim HK, Lee J, Kwon HH, Park GH, Yang SH, Jung JY, Choi H, Lee JH, Sung S, Yi YW, Cho BS. Mesenchymal Stem/Stromal Cell-Derived Exosomes for Immunomodulatory Therapeutics and Skin Regeneration. Cells 2020; 9:E1157. [PMID: 32392899 PMCID: PMC7290908 DOI: 10.3390/cells9051157] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are nano-sized vesicles that serve as mediators for cell-to-cell communication. With their unique nucleic acids, proteins, and lipids cargo compositions that reflect the characteristics of producer cells, exosomes can be utilized as cell-free therapeutics. Among exosomes derived from various cellular origins, mesenchymal stem cell-derived exosomes (MSC-exosomes) have gained great attention due to their immunomodulatory and regenerative functions. Indeed, many studies have shown anti-inflammatory, anti-aging and wound healing effects of MSC-exosomes in various in vitro and in vivo models. In addition, recent advances in the field of exosome biology have enabled development of specific guidelines and quality control methods, which will ultimately lead to clinical application of exosomes. This review highlights recent studies that investigate therapeutic potential of MSC-exosomes and relevant mode of actions for skin diseases, as well as quality control measures required for development of exosome-derived therapeutics.
Collapse
Affiliation(s)
- Dae Hyun Ha
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Hyun-keun Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Joon Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea;
| | | | - Gyeong-Hun Park
- Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwasweong-si, Gyeonggi-do 18450, Korea;
| | | | | | | | - Jun Ho Lee
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Sumi Sung
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Yong Weon Yi
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| | - Byong Seung Cho
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc., Seoul 08594, Korea; (D.H.H.); (H.-k.K.); (J.H.L.); (S.S.)
| |
Collapse
|
120
|
Exosomal miRNAs in osteoarthritis. Mol Biol Rep 2020; 47:4737-4748. [DOI: 10.1007/s11033-020-05443-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|
121
|
Chen YR, Yan X, Yuan FZ, Ye J, Xu BB, Zhou ZX, Mao ZM, Guan J, Song YF, Sun ZW, Wang XJ, Chen ZY, Wang DY, Fan BS, Yang M, Song ST, Jiang D, Yu JK. The Use of Peripheral Blood-Derived Stem Cells for Cartilage Repair and Regeneration In Vivo: A Review. Front Pharmacol 2020; 11:404. [PMID: 32308625 PMCID: PMC7145972 DOI: 10.3389/fphar.2020.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral blood (PB) is a potential source of chondrogenic progenitor cells that can be used for cartilage repair and regeneration. However, the cell types, isolation and implantation methods, seeding dosage, ultimate therapeutic effect, and in vivo safety remain unclear. Methods PubMed, Embase, and the Web of Science databases were systematically searched for relevant reports published from January 1990 to December 2019. Original articles that used PB as a source of stem cells to repair cartilage in vivo were selected for analysis. Results A total of 18 studies were included. Eight human studies used autologous nonculture-expanded PB-derived stem cells (PBSCs) as seed cells with the blood cell separation isolation method, and 10 animal studies used autologous, allogenic or xenogeneic culture-expanded PB-derived mesenchymal stem cells (PB-MSCs), or nonculture-expanded PBSCs as seed cells. Four human and three animal studies surgically implanted cells, while the remaining studies implanted cells by single or repeated intra-articular injections. 121 of 130 patients (in 8 human clinical studies), and 230 of 278 animals (in 6 veterinary clinical studies) using PBSCs for cartilage repair achieved significant clinical improvement. All reviewed articles indicated that using PB as a source of seed cells enhances cartilage repair in vivo without serious adverse events. Conclusion Autologous nonculture-expanded PBSCs are currently the most commonly used cells among all stem cell types derived from PB. Allogeneic, autologous, and xenogeneic PB-MSCs are more widely used in animal studies and are potential seed cell types for future applications. Improving the mobilization and purification technology, and shortening the culture cycle of culture-expanded PB-MSCs will obviously promote the researchers' interest. The use of PBSCs for cartilage repair and regeneration in vivo are safe. PBSCs considerably warrant further investigations due to their superiority and safety in clinical settings and positive effects despite limited evidence in humans.
Collapse
Affiliation(s)
- You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Xin Yan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bing-Bing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zhu-Xing Zhou
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Zi-Mu Mao
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jian Guan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Yi-Fan Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Wen Sun
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin-Jie Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ze-Yi Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ding-Yu Wang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Meng Yang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China.,School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shi-Tang Song
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|