101
|
O’Halloran S, O’Leary A, Kuijper T, Downer EJ. MyD88 acts as an adaptor protein for inflammatory signalling induced by amyloid-β in macrophages. Immunol Lett 2014; 162:109-18. [DOI: 10.1016/j.imlet.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/18/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
102
|
Abstract
Toll-like receptors (TLRs) have generated an extraordinary amount of interest in cancer research since the last decade. TLRs are a family of pattern recognition receptors that is involved in the host defense against microbial infections. It is well known that the activation of TLRs leads to the production of biological factors that drive inflammatory responses and activate the adaptive immune system. More recently, TLR-mediated signaling pathways have been shown to support tumor cell growth in vitro and in vivo. In this review, we describe recently emerged links between TLR4 and breast cancer oncogenesis, and future perspectives for the targeting of TLR4 in breast cancer therapy.
Collapse
Affiliation(s)
- Abubakr Ahmed
- Department of Academic Surgery; University College Cork (UCC); Cork University Hospital; Cork, Ireland
| | | | | |
Collapse
|
103
|
Tan Y, Zou KF, Qian W, Chen S, Hou XH. Expression and implication of toll-like receptors TLR2, TLR4 and TLR9 in colonic mucosa of patients with ulcerative colitis. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2014; 34:785-790. [PMID: 25318894 DOI: 10.1007/s11596-014-1353-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/25/2014] [Indexed: 12/20/2022]
Abstract
Toll-like receptors (TLRs) family may play important roles in inflammatory bowel disease. This study examined the expression of TLR2, TLR4 and TLR9 in the colonic tissues of patients with ulcerative colitis (UC) and explored their roles in the pathogenesis of UC. Colonic biopsies were taken from the colon of 30 patients with mild or moderate UC (at active phase) and 10 healthy controls during colonoscopy. TLR2, TLR4 and TLR9 protein expression levels were immunohistochemically detected. The mRNA expression levels of TLR2, TLR4 and TLR9 were assessed by reverse transcription polymerase chain reaction (RT-PCR). The disease activity index (DAI), colonoscopic and histologic grades and fecal microbial flora were determined. Histological examination showed that the intestinal mucous membrane of UC patients underwent acute inflammation changes. Immunohistochemistry exhibited that the expression levels of TLR2, TLR4 and TLR9 in colon epithelia and inflammatory cells were higher in UC patients than in control group (P<0.01). The mRNA expression levels of TLR2, TLR4 and TLR9 were increased in UC patients but were not detected in the normal controls. Expression levels of TLR2, TLR4 and TLR9 were positively correlated, and bore close correlation with DAI, colonoscopic and histologic grades and fecal microbial flora. An important mechanism of UC might be that abnormal activation of mucosal immunity by intestinal dysbacteriosis caused dysregulation of TLRS that mediates innate immunity.
Collapse
Affiliation(s)
- Yan Tan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastroenterology, Affiliated Hospital of Hainan Medical College, Haikou, 570102, China
| | - Kai-Fang Zou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sheng Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Hua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
104
|
Patel MC, Shirey KA, Pletneva LM, Boukhvalova MS, Garzino-Demo A, Vogel SN, Blanco JC. Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virol 2014; 9:811-829. [PMID: 25620999 DOI: 10.2217/fvl.14.70] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved 'pathogen-associated molecular patterns' of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release 'danger-associated molecular patterns' that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy.
Collapse
Affiliation(s)
- Mira C Patel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | | | | - Alfredo Garzino-Demo
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA ; Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology & Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
105
|
RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ 2014; 22:225-36. [PMID: 25146926 DOI: 10.1038/cdd.2014.126] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023] Open
Abstract
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.
Collapse
|
106
|
Eiró N, Altadill A, Juárez LM, Rodríguez M, González LO, Atienza S, Bermúdez S, Fernandez-Garcia B, Fresno-Forcelledo MF, Rodrigo L, Vizoso FJ. Toll-like receptors 3, 4 and 9 in hepatocellular carcinoma: Relationship with clinicopathological characteristics and prognosis. Hepatol Res 2014; 44:769-78. [PMID: 23742263 DOI: 10.1111/hepr.12180] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 12/12/2022]
Abstract
AIM Hepatocellular carcinoma (HCC) is in the 10 leading cancer types, being difficult to detect as most of patients who develop this tumor have no symptoms other than those related to their long-standing liver disease. The liver is constantly exposed to bacterial products, viral infection, alcohol or other products, which may be the cause of chronic liver damage, and thus an increasing risk for HCC. Toll-like receptors (TLR) have gained an extraordinary interest in cancer research due to their role in several biological processes such as innate immune responses, the induction of adaptive immune responses, regulation of inflammation, would healing and carcinogenesis. Therefore, the aim of this study was to investigate the expression and clinical relevance of TLR3, 4 and 9 in HCC. METHODS The expression levels of TLR3, TLR4 and TLR9 were analyzed in tumors from 30 patients with HCC. The analysis was performed by immunohistochemistry. Results were correlated with various clinicopathological findings and with overall survival. RESULTS TLR3 was significantly high in large tumors (>4 cm in diameter) compared with small tumors (P < 0.05). Our results demonstrated that patients whose tumors showed both TLR4 and TLR9 positive immunostaining had poor prognosis. In addition, TLR9 expression by fibroblast-like cells was significantly associated with a shortened overall survival (P = 0.015). CONCLUSION The results demonstrated an association between TLR3, TLR4 and TLR9 expression and tumor aggressiveness and poor prognosis in HCC.
Collapse
Affiliation(s)
- Noemí Eiró
- Research Unit, Foundation Hospital of Jove, Gijón, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Chow CP, Faqi AS. Developmental toxicity study of CBLB502 in Wistar rats. Reprod Toxicol 2014; 46:12-9. [DOI: 10.1016/j.reprotox.2014.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 02/18/2014] [Accepted: 02/22/2014] [Indexed: 01/29/2023]
|
108
|
Li X, Jiang J, Shi S, Bligh SWA, Li Y, Jiang Y, Huang D, Ke Y, Wang S. A RG-II type polysaccharide purified from Aconitum coreanum alleviates lipopolysaccharide-induced inflammation by inhibiting the NF-κB signal pathway. PLoS One 2014; 9:e99697. [PMID: 24927178 PMCID: PMC4057409 DOI: 10.1371/journal.pone.0099697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/17/2014] [Indexed: 01/08/2023] Open
Abstract
Korean mondshood root polysaccharides (KMPS) isolated from the root of Aconitum coreanum (Lévl.) Rapaics have shown anti-inflammatory activity, which is strongly influenced by their chemical structures and chain conformations. However, the mechanisms of the anti-inflammatory effect by these polysaccharides have yet to be elucidated. A RG-II polysaccharide (KMPS-2E, Mw 84.8 kDa) was isolated from KMPS and its chemical structure was characterized by FT-IR and NMR spectroscopy, gas chromatography-mass spectrometry and high-performance liquid chromatography. The backbone of KMPS-2E consisted of units of [→6) -β-D-Galp (1→3)-β-L-Rhap-(1→4)-β-D-GalpA-(1→3)-β-D-Galp-(1→] with the side chain →5)-β-D-Arap (1→3, 5)-β-D-Arap (1→ attached to the backbone through O-4 of (1→3,4)-L-Rhap. T-β-D-Galp is attached to the backbone through O-6 of (1→3,6)-β-D-Galp residues and T-β-D-Ara is connected to the end group of each chain. The anti-inflammatory effects of KMPS-2E and the underlying mechanisms using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and carrageenan-induced hind paw edema were investigated. KMPS-2E (50, 100 and 200 µg/mL) inhibits iNOS, TLR4, phospho-NF-κB-p65 expression, phosphor-IKK, phosphor-IκB-α expression as well as the degradation of IκB-α and the gene expression of inflammatory cytokines (TNF-α, IL-1β, iNOS and IL-6) mediated by the NF-κB signal pathways in macrophages. KMPS-2E also inhibited LPS-induced activation of NF-κB as assayed by electrophorectic mobility shift assay (EMSA) in a dose-dependent manner and it reduced NF-κB DNA binding affinity by 62.1% at 200 µg/mL. In rats, KMPS-2E (200 mg/kg) can significantly inhibit carrageenan-induced paw edema as ibuprofen (200 mg/kg) within 3 h after a single oral dose. The results indicate that KMPS-2E is a promising herb-derived drug against acute inflammation.
Collapse
Affiliation(s)
- Xiaojun Li
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Jiang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| | - S. W. Annie Bligh
- Department of Complementary Medicine, Faculty of Science and Technology, University of Westminster, Westminster, United Kingdom
| | - Yuan Li
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbo Jiang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Huang
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ke
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai R&D Center for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|
109
|
Maiti A, Jiranek WA. Inhibition of Methicillin-resistant Staphylococcus aureus-induced cytokines mRNA production in human bone marrow derived mesenchymal stem cells by 1,25-dihydroxyvitamin D3. BMC Cell Biol 2014; 15:11. [PMID: 24661536 PMCID: PMC3987888 DOI: 10.1186/1471-2121-15-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/18/2014] [Indexed: 11/26/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) is the predominant cause of bone infection. Toll like receptors (TLRs) are an important segments of host response to infection and are expressed by a variety of cells including human mesenchymal stem cells (hMSCs). The active form of Vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) has potent immunoregulatory properties, but the mechanism remains poorly understood. The genomic action of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), hormone-regulated transcription factor. VDR interacts with co-activators and co-repressors are associated with chromatin histone modifications and transcriptional regulation. The aim of our study is to explore MRSA-induced TLRs-mediated pro-inflammatory cytokines expression in hMSCs. Further, we hypothesized that 1,25(OH)2D3 inhibits MRSA-induced cytokines synthesis in hMSCs via inhibition of NF-кB transcription factor. Finally, we explored the regulatory role of 1,25(OH)2D3 in MRSA-mediated global epigenetic histone H3 mark, such as, trimethylated histone H3 lysine 9 (H3K9me3), which is linked to gene silencing. Results Quantitative PCR data revealed that MRSA-infection predominantly induced expression of TLRs 1, 2, 6, NR4A2, and inflammatory cytokines IL-8, IL-6, TNFα in hMSCs. MRSA-mediated TLR ligands reduced osteoblast differentiation and increased hMSCs proliferation, indicating the disrupted multipotency function of hMSCs. Pretreatment of 1,25(OH)2D3 followed by MRSA co-culture inhibited nuclear translocation of NF-кB-p65, reduced expression of NR4A2 and pro-inflammatory cytokines IL-8, IL-6, and TNFα in hMSCs. Further, NF-κB-p65, VDR, and NR4A2 were present in the same nuclear protein complex, indicating that VDR is an active part of the nuclear protein complexes for transcriptional regulation. Finally, 1,25(OH)2D3 activated VDR, restores the global level of H3K9me3, to repress MRSA-stimulated inflammatory cytokine IL-8 expression. Pretreatment of 5-dAZA, DNA methylatransferases (Dnmts) inhibitor, dramatically re-expresses 1,25(OH)2D3-MRSA-mediated silenced IL-8 gene. Conclusions This data indicates that TLR 1, 2, and 6 can be used as markers for localized S. aureus bone infection. 1,25(OH)2D3-VDR may exhibits its anti-inflammatory properties in MRSA-stimulated infection by inhibiting nuclear translocation of NF-kB-p65 and transcripts of IL-8, IL-6, TNFα, and NR4A2 in hMSCs. Finally, 1,25(OH)2D3-activated VDR, acting as an epigenetic regulator, inhibits synthesis of cytokines in MRSA-stimulated infection by restoring the global level of H3K9me3, a histone H3 mark for gene silencing.
Collapse
Affiliation(s)
- Aparna Maiti
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratory, 1112 East Clay Street, Richmond, USA.
| | | |
Collapse
|
110
|
Toll-like receptors in lymphoid malignancies: Double-edged sword. Crit Rev Oncol Hematol 2014; 89:262-83. [DOI: 10.1016/j.critrevonc.2013.08.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
|
111
|
Hartung HP, Aktas O, Menge T, Kieseier BC. Immune regulation of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:3-14. [PMID: 24507511 DOI: 10.1016/b978-0-444-52001-2.00001-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Multiple sclerosis (MS) is considered a prototype inflammatory autoimmune disorder of the central nervous system (CNS). The etiology of this disease remains unknown, but an interplay between as yet unidentified environmental factors and susceptibility genes appears most likely. In consequence, these factors trigger a cascade, involving an inflammatory response within the CNS that results in demyelination, oligodendrocyte death, axonal damage, gliosis, and neurodegeneration. How these complex traits translate into the clinical presentation of the disease is a focus of ongoing research. The central hypothesis is that T lymphocytes with receptors for CNS myelin components are driving the disease. The initial activation of autoreactive lymphocytes is thought to take place in the systemic lymphoid organs, most likely through molecular mimickry or nonspecifically through bystander activation. These autoreactive lymphocytes can migrate to the CNS where they become reactivated upon encountering their target antigen, initiating an autoimmune inflammatory attack. This ultimately leads to demyelination and axonal damage. This chapter focuses on the role of T and B lymphocytes in the immunopathogenesis of MS.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Til Menge
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Bernd C Kieseier
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
112
|
Shim DW, Han JW, Sun X, Jang CH, Koppula S, Kim TJ, Kang TB, Lee KH. Lysimachia clethroides Duby extract attenuates inflammatory response in Raw 264.7 macrophages stimulated with lipopolysaccharide and in acute lung injury mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:1007-1015. [PMID: 24145006 DOI: 10.1016/j.jep.2013.09.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lysimachia clethroides Duby (LC) is a traditional medicinal herb used to treat edema, hepatitis and inflammatory diseases in China and other Asian countries. In this study, the anti-inflammatory effects of LC extract and the mechanisms underlying were explored in both in vitro cell lines and acute lung injury (ALI) animal model of inflammation in vivo. MATERIALS AND METHODS Lipopolysaccharide (LPS)-stimulated Raw 264.7 murine macrophages were used to study the regulatory effects of LC extract on inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokine expression. Western blotting or ELISA techniques were employed to estimate protein levels. RT-PCR was used for analyzing the interferon (IFN)-β production. LPS-induced ALI mouse model in vivo was employed to study the effect of LC extract. Further high-performance liquid chromatography (HPLC) fingerprinting technique was used to evaluate the active constituents present in LC extract, compared with reference standards. RESULTS Pre-treatment with LC extract inhibited the LPS-stimulated NO release, interleukin (IL)-1β and IL-6 production in Raw 264.7 cells dose dependently. LC extract inhibited the LPS-stimulated IRF3 and STAT1 phosphorylation. Further, in vivo experiments revealed that LC extract suppressed the infiltration of immune cells into the lung and proinflammatory cytokine production in broncho-alveolar lavage fluid (BALF) in the LPS-induced ALI mouse model. CONCLUSIONS Our results indicate that LC extract attenuates LPS-stimulated inflammatory responses in macrophages via regulating the key inflammatory mechanisms, providing a scientific support for its traditional use in treating various inflammatory diseases.
Collapse
Affiliation(s)
- Do-Wan Shim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Koopman G, Beenhakker N, Burm S, Bouwhuis O, Bajramovic J, Sommandas V, Mudde G, Mooij P, 't Hart BA, Bogers WMJM. Whole blood stimulation with Toll-like receptor (TLR)-7/8 and TLR-9 agonists induces interleukin-12p40 expression in plasmacytoid dendritic cells in rhesus macaques but not in humans. Clin Exp Immunol 2013; 174:161-71. [PMID: 23750720 DOI: 10.1111/cei.12155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2013] [Indexed: 12/14/2022] Open
Abstract
Macaques provide important animal models in biomedical research into infectious and chronic inflammatory disease. Therefore, a proper understanding of the similarities and differences in immune function between macaques and humans is needed for adequate interpretation of the data and translation to the human situation. Dendritic cells are important as key regulators of innate and adaptive immune responses. Using a new whole blood assay we investigated functional characteristics of blood plasmacytoid dendritic cells (pDC), myeloid dendritic cells (mDC) and monocytes in rhesus macaques by studying induction of activation markers and cytokine expression upon Toll-like receptor (TLR) stimulation. In a head-to-head comparison we observed that rhesus macaque venous blood contained relatively lower numbers of pDC than human venous blood, while mDC and monocytes were present at similar percentages. In contrast to humans, pDC in rhesus macaques expressed the interleukin (IL)-12p40 subunit in response to TLR-7/8 as well as TLR-9 stimulation. Expression of IL-12p40 was confirmed by using different monoclonal antibodies and by reverse transcription-polymerase chain reaction (RT-PCR). Both in humans and rhesus macaques, TLR-4 stimulation induced IL-12p40 expression in mDC and monocytes, but not in pDC. The data show that, in contrast to humans, pDC in macaques are able to express IL-12p40, which could have consequences for evaluation of human vaccine candidates and viral infection.
Collapse
Affiliation(s)
- G Koopman
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Liu BS, Stoop JN, Huizinga TW, Toes REM. IL-21 Enhances the Activity of the TLR–MyD88–STAT3 Pathway but Not the Classical TLR–MyD88–NF-κB Pathway in Human B Cells To Boost Antibody Production. THE JOURNAL OF IMMUNOLOGY 2013; 191:4086-94. [DOI: 10.4049/jimmunol.1300765] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
115
|
Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Mol Cell Neurosci 2013; 56:148-58. [DOI: 10.1016/j.mcn.2013.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 02/07/2023] Open
|
116
|
Xu G, Zhang Z, Wei J, Zhang Y, Zhang Y, Guo L, Liu X. microR-142-3p down-regulates IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis (Edinb) 2013; 93:606-11. [PMID: 24053976 DOI: 10.1016/j.tube.2013.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2013] [Accepted: 08/10/2013] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) have been demonstrated to play a pivotal role in the regulation of target gene expression at the post-transcriptional level. In order to better understand the role of miRNA in the immunological regulation of macrophages against Mycobacterium bovis BCG infection, we explored the alteration of immune-related miRNA profile in macrophage RAW264.7 cells in response to BCG infection in this study. Our results demonstrated that miR-142-3p was a potential to negatively regulate the production of pro-inflammatory mediators NF-κB (NF-κB1), TNF-α and IL-6 in the macrophages in part through a mechanism of targeting IRAK-1 gene and post-transcriptionally down-regulating IRAK-1 protein expression.
Collapse
Affiliation(s)
- Guangxian Xu
- General Hospital of Ningxia Medical University, Yinchuan 750004, China; School of Laboratory Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | | | | | | | | | | | | |
Collapse
|
117
|
Pellino3 ubiquitinates RIP2 and mediates Nod2-induced signaling and protective effects in colitis. Nat Immunol 2013; 14:927-36. [PMID: 23892723 DOI: 10.1038/ni.2669] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
Abstract
Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-κB and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation.
Collapse
|
118
|
Sisino G, Bouckenooghe T, Aurientis S, Fontaine P, Storme L, Vambergue A. Diabetes during pregnancy influences Hofbauer cells, a subtype of placental macrophages, to acquire a pro-inflammatory phenotype. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1959-68. [PMID: 23872577 DOI: 10.1016/j.bbadis.2013.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022]
Abstract
Growing evidence indicates that maternal pathophysiological conditions, such as diabetes, influence fetal growth and could program metabolic disease in adulthood. Placental cells, particularly Hofbauer cells (HBCs), which are placental macrophages characterized by an anti-inflammatory profile (M2), can sense the modified maternal environment. The goal of this study was to investigate the direct effect of hyperglycemia on HBCs. We studied, at mRNA and protein levels, some markers of M2 and M1 (pro-inflammatory) macrophages in placentae from control and diabetic patients to assess the balance between pro- and anti-inflammatory macrophages: an imbalance of M2 to M1 macrophages has been observed in humans. We used pregnant rats, receiving a single injection of streptozotocin (STZ), as a model of maternal diabetes. We noticed a M2-to-M1 macrophage unbalance as we observed in human. An in vitro model of isolated rat HBCs was used to identify the direct effects of high glucose. We found that high glucose stimulation activated genes belonging to TLR (Toll-Like Receptor)-dependent inflammatory pathways. Moreover, the HBCs stimulated by high glucose switched their M2 profile towards M1, with increased expression of pro-inflammatory cytokines and markers. We also noticed that the oxidative-stress pathway was activated in response to high glucose driven by Hif-1α. In this study, we demonstrated that diabetes/hyperglycemia affect the anti-inflammatory profile of HBCs, by stimulating these cells to acquire an inflammatory profile leading to adverse consequences for the fetal-placental-maternal axis.
Collapse
Affiliation(s)
- Giorgia Sisino
- EA4489, Lille F-59000, France; Université Lille Nord de France, Lille F-59000, France; UDSL, Lille F-59000, France.
| | | | | | | | | | | |
Collapse
|
119
|
Dauphinee SM, Clayton A, Hussainkhel A, Yang C, Park YJ, Fuller ME, Blonder J, Veenstra TD, Karsan A. SASH1 Is a Scaffold Molecule in Endothelial TLR4 Signaling. THE JOURNAL OF IMMUNOLOGY 2013; 191:892-901. [DOI: 10.4049/jimmunol.1200583] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
120
|
Costello DA, Lynch MA. Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-β. Hippocampus 2013; 23:696-707. [PMID: 23554175 DOI: 10.1002/hipo.22129] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2013] [Indexed: 12/26/2022]
Abstract
The family of toll-like receptors (TLR) plays a major role in innate immunity due to their pathogen-recognition abilities. TLR3 is a sensor for double-stranded RNA, and regulates host-defense responses to several viruses, via the production of type I interferons. Interferon-β (IFNβ) is a primary product of TLR3 activation, and its transcription is elevated in the CNS response to the synthetic TLR3 ligand, polyinosinic-polycytidylic acid (poly(I:C)). Peripheral infections, along with TLR-induced inflammatory mediators, are known to have detrimental effects on brain function, exerting a negative impact on cognition and enhancing seizure susceptibility. In this study, we assessed hippocampal function in vitro, in response to systemic delivery of a TLR3 agonist. Unlike agonists of other TLRs, intraperitoneal injection of poly(I:C) did not adversely affect evoked short- and long-term synaptic plasticity in mouse hippocampal slices. However, sustained and interictal-like spontaneous activity was observed in CA1 pyramidal cells in response to poly(I:C) and this was associated with alterations in the expression of phosphorylated NR2B subunit-containing NMDA receptors and an astrocyte-specific glutamate/aspartate transporter (GLAST) which impact on extracellular glutamate concentration and contribute to the genesis of epileptiform activity. We provide evidence for the production of IFNβ from microglia and astrocytes, and using mice deficient in the type I IFN receptor α 1 (IFNAR1), demonstrate that its subsequent activation is likely to underlie the TLR3-mediated modulation of hippocampal excitability.
Collapse
Affiliation(s)
- Derek A Costello
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
121
|
Kan-o K, Matsunaga Y, Fukuyama S, Moriwaki A, Hirai-Kitajima H, Yokomizo T, Aritake K, Urade Y, Nakanishi Y, Inoue H, Matsumoto K. Mast cells contribute to double-stranded RNA-induced augmentation of airway eosinophilia in a murine model of asthma. Respir Res 2013; 14:28. [PMID: 23452625 PMCID: PMC3599763 DOI: 10.1186/1465-9921-14-28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Clinical studies showed the contribution of viral infection to the development of asthma. Although mast cells have multiple roles in the pathogenesis of allergic asthma, their role of in the virus-associated pathogenesis of asthma remains unknown. Most respiratory viruses generate double-stranded (ds) RNA during their replication. dsRNA provokes innate immune responses. We recently showed that an administration of polyinocinic polycytidilic acid (poly IC), a mimetic of viral dsRNA, during allergen sensitization augments airway eosinophilia and hyperresponsiveness in mice via enhanced production of IL-13. METHODS The effect of poly IC on allergen-induced airway eosinophilia was investigated for mast cell-conserved Kit+/+ mice and -deficient KitW/KitW-v mice. The outcome of mast cell reconstitution was further investigated. RESULTS Airway eosinophilia and IL-13 production were augmented by poly IC in Kit+/+ mice but not in KitW/KitW-v mice. When KitW/KitW-v mice were reconstituted with bone marrow-derived mast cells (BMMCs), the augmentation was restored. The augmentation was not induced in the mice systemically deficient for TIR domain-containing adaptor-inducing IFN-β (TRIF) or interferon regulatory factor (IRF)-3, both mediate dsRNA-triggered innate immune responses. The augmentation was, however, restored in KitW/KitW-v mice reconstituted with TRIF-deficient or IRF-3-deficient BMMCs. Although leukotriene B4 and prostaglandin D2 are major lipid mediators released from activated mast cells, no their contribution was shown to the dsRNA-induced augmentation of airway eosinophilia. CONCLUSIONS We conclude that mast cells contribute to dsRNA-induced augmentation of allergic airway inflammation without requiring direct activation of mast cells with dsRNA or involvement of leukotriene B4 or prostaglandin D2.
Collapse
Affiliation(s)
- Keiko Kan-o
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuko Matsunaga
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoru Fukuyama
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Moriwaki
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroko Hirai-Kitajima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8431, Japan
- Department of Medical Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kosuke Aritake
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoshihiro Urade
- Department of Molecular Behavioral Biology, Osaka Bioscience Institute, Osaka 565-0874, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiromasa Inoue
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Koichiro Matsumoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
122
|
Interactions between LPS moieties and macrophage pattern recognition receptors. Vet Immunol Immunopathol 2013; 152:28-36. [DOI: 10.1016/j.vetimm.2012.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
123
|
Singhania R, Khairuddin N, Clarke D, McMillan NA. RNA interference for the treatment of papillomavirus disease. Open Virol J 2012; 6:204-15. [PMID: 23341856 PMCID: PMC3547394 DOI: 10.2174/1874357901206010204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 02/06/2023] Open
Abstract
Human Papillomavirus (HPV)-induced diseases are a significant burden on our healthcare system and current therapies are not curative. Vaccination provides significant prophylactic protection but effective therapeutic treatments will still be required. RNA interference (RNAi) has great promise in providing highly specific therapies for all HPV diseases yet this promise has not been realised. Here we review the research into RNAi therapy for HPV in vitro and in vivo and examine the various targets and outcomes. We discuss the idea of using RNAi with current treatments and address delivery of RNAi, the major issue holding back clinical adoption. Finally, we present our view of a potential path to the clinic.
Collapse
Affiliation(s)
- Richa Singhania
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | | |
Collapse
|
124
|
Eiró N, Ovies C, Fernandez-Garcia B, Álvarez-Cuesta CC, González L, González LO, Vizoso FJ. Expression of TLR3, 4, 7 and 9 in cutaneous malignant melanoma: relationship with clinicopathological characteristics and prognosis. Arch Dermatol Res 2012. [PMID: 23179584 DOI: 10.1007/s00403-012-1300-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Toll-like receptors (TLRs) have achieved an extraordinary amount of interest in cancer research due to their role in tumor progression. The aim of this study was to investigate the expression and clinical relevance of TLR3, 4, 7 and 9 in cutaneous malignant melanoma (CMM). The expression levels of TLR3, 4, 7 and 9 were analyzed in tumors from 30 patients with CMM. The analysis was performed by immunohistochemistry, and the results were correlated with various clinicopathological findings and with relapse-free survival. Our results indicate that there was a wide variability in the immunostaining score values for each receptor. Positive staining for TLRs was generally found in tumor cells, especially for TLR4 and TLR9. Nevertheless, a significant percentage of tumors also showed TLR4 expression in mononuclear inflammatory cells (62.1 %) and in fibroblast-like cells (34.5 %). Our results showed no significant association between score values for each TLR and clinicopathological characteristics of patients. However, our results demonstrated that high TLR4 expression was significantly associated with a shortened relapse-free survival (p = 0.001). Therefore, TLR4 expression may be a new prognostic factor of unfavorable evolution in cutaneous malignant melanoma.
Collapse
Affiliation(s)
- N Eiró
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - C Ovies
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - B Fernandez-Garcia
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | | | - L González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain
| | - L O González
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain.,Servicio de Anatomía Patológica, Fundación Hospital de Jove, Gijón, Spain
| | - F J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro s/n, Gijón, 33920, Asturias, Spain. .,Servicio de Cirugía General, Fundación Hospital de Jove, Gijón, Spain.
| |
Collapse
|
125
|
Siednienko J, Jackson R, Mellett M, Delagic N, Yang S, Wang B, Tang LS, Callanan JJ, Mahon BP, Moynagh PN. Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons. Nat Immunol 2012; 13:1055-62. [PMID: 23042151 DOI: 10.1038/ni.2429] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression.
Collapse
Affiliation(s)
- Jakub Siednienko
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Salit J, Mezey JG, Crystal RG. Airway epithelial expression of TLR5 is downregulated in healthy smokers and smokers with chronic obstructive pulmonary disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:2217-25. [PMID: 22855713 DOI: 10.4049/jimmunol.1101895] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TLRs are important components of the respiratory epithelium host innate defense, enabling the airway surface to recognize and respond to a variety of insults in inhaled air. On the basis of the knowledge that smokers are more susceptible to pulmonary infection and that the airway epithelium of smokers with chronic obstructive pulmonary disease (COPD) is characterized by bacterial colonization and acute exacerbation of airway infections, we assessed whether smoking alters expression of TLRs in human small airway epithelium, the primary site of smoking-induced disease. Microarrays were used to survey the TLR family gene expression in small airway (10th to 12th order) epithelium from healthy nonsmokers (n = 60), healthy smokers (n = 73), and smokers with COPD (n = 36). Using the criteria of detection call of present (P call) ≥ 50%, 6 of 10 TLRs (TLRs 1-5 and 8) were expressed. Compared with nonsmokers, the most striking change was for TLR5, which was downregulated in healthy smokers (1.4-fold, p < 10⁻¹⁰) and smokers with COPD (1.6-fold, p < 10⁻¹¹). TaqMan RT-PCR confirmed these observations. Bronchial biopsy immunofluorescence studies showed that TLR5 was expressed mainly on the apical side of the epithelium and was decreased in healthy smokers and smokers with COPD. In vitro, the level of TLR5 downstream genes, IL-6 and IL-8, was highly induced by flagellin in TLR5 high-expressing cells compared with TLR5 low-expressing cells. In the context that TLR5 functions to recognize pathogens and activate innate immune responses, the smoking-induced downregulation of TLR5 may contribute to smoking-related susceptibility to airway infection, at least for flagellated bacteria.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Guo X, Wang L, Cui D, Ruan W, Liu F, Li H. Differential expression of the Toll-like receptor pathway and related genes of chicken bursa after experimental infection with infectious bursa disease virus. Arch Virol 2012; 157:2189-99. [PMID: 22828777 DOI: 10.1007/s00705-012-1403-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/24/2012] [Indexed: 01/12/2023]
Abstract
Infectious bursa disease virus causes an acute infection in bursal B cells. The Toll-like receptor (TLR) signaling pathway plays a key role in innate immunity during virus infection. In this study, an Agilent microarray was used to investigate different transcriptional profiles of the TLR pathway and related genes of chicken bursa at 48 h after infection with IBDV, compared with simulated infection. Expression of >58 genes changed significantly. Forty-six genes associated with chicken bursa proinflammatory effects, chemotactic effects, and T-cell stimulation were upregulated, which meant enhancement of these features. Twelve genes that are related to proliferation and differentiation of bursal cells were downregulated, implying suppression of these features. These results revealed that genes of the TLR pathway play an important role in the pathogenicity of IBDV infection. The findings are helpful for understanding the molecular basis of viral pathogenesis and the underlying mechanism of the host antiviral response.
Collapse
Affiliation(s)
- Xinfeng Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Changping District, Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
128
|
Downer EJ, Clifford E, Amu S, Fallon PG, Moynagh PN. The synthetic cannabinoid R(+)WIN55,212-2 augments interferon-β expression via peroxisome proliferator-activated receptor-α. J Biol Chem 2012; 287:25440-53. [PMID: 22654113 DOI: 10.1074/jbc.m112.371757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated that R(+)WIN55,212-2, a synthetic cannabinoid that possesses cannabimimetic properties, acts as a novel regulator of Toll-like receptor 3 (TLR3) signaling to interferon (IFN) regulatory factor 3 (IRF3) activation and IFN-β expression, and this is critical for manifesting its protective effects in a murine multiple sclerosis model. Here we investigated the role of peroxisome proliferator-activated receptor-α (PPARα) in mediating the effects of R(+)WIN55,212-2 on this pathway. Data herein demonstrate that the TLR3 agonist poly(I:C) promotes IFN-β expression and R(+)WIN55,212-2 enhances TLR3-induced IFN-β expression in a stereoselective manner via PPARα. R(+)WIN55,212-2 promotes increased transactivation and expression of PPARα. Using the PPARα antagonist GW6471, we demonstrate that R(+)WIN55,212-2 acts via PPARα to activate JNK, activator protein-1, and positive regulatory domain IV to transcriptionally regulate the IFN-β promoter. Furthermore, GW6471 ameliorated the protective effects of R(+)WIN55,212-2 during the initial phase of experimental autoimmune encephalomyelitis. Overall, these findings define PPARα as an important mediator in manifesting the effects of R(+)WIN55,212-2 on the signaling cascade regulating IFN-β expression. The study adds to our molecular appreciation of potential therapeutic effects of R(+)WIN55,212-2 in multiple sclerosis.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | |
Collapse
|
129
|
Huang WT, Weng SW, Huang CC, Lin HC, Tsai PC, Chuang JH. Expression of Toll-like receptor9 in diffuse large B-cell lymphoma: further exploring CpG oligodeoxynucleotide in NFκB pathway. APMIS 2012; 120:872-81. [PMID: 23009111 DOI: 10.1111/j.1600-0463.2012.02915.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
Human Toll-like receptors (TLRs) that recognize a variety of pathogen-associated molecular patterns are associated with activation and immunogenic response in lymphoid neoplasms, but rarely explored in diffuse large B-cell lymphoma (DLBCL). We conducted this study to evaluate the expression of TLR9 in and potential treatment of DLBCL with TLR9 agonist - CpG oligodeoxynucleotide (ODN). The real-time quantitative reverse transcription-polymerase chain reaction was carried out to detect TLR9 expression in 41 formalin-fixed paraffin-embedded samples. The transformation of immunophenotype and NFκB pathway of DLBCL upon CpG ODN stimulation were investigated by a DLBCL cell line. TLR9 was commonly detected in DLBCL with relative mRNA levels above 1.0 × 10(-2) in 35 of 41 cases (85.36%). It was suspected that a high proportion of DLBCL to be activated by CpG stimulation. In vitro study with a DLBCL cell line revealed an increased CD20, but decreased BCL-6 and MUM1/IRF4 expression after treatment with CpG ODN. The NFκB pathway was initially activated, but finally suppressed upon CpG ODN stimulation. The proliferation of tumor cells was also inhibited by long time incubation. These findings provide new insights into the role of TLR9 in DLBCL and potential implication of TLR9 agonist in the treatment of DLBCL.
Collapse
Affiliation(s)
- Wan-Ting Huang
- Department of Pathology, Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
130
|
Tsukiyama T, Matsuda-Tsukiyama M, Bohgaki M, Terai S, Tanaka S, Hatakeyama S. Ymer acts as a multifunctional regulator in nuclear factor-κB and Fas signaling pathways. Mol Med 2012; 18:587-97. [PMID: 22331027 DOI: 10.2119/molmed.2011.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 01/08/2023] Open
Abstract
The nuclear factor (NF)-κB family of transcription factors regulates diverse cellular functions, including inflammation, oncogenesis and apoptosis. It was reported that A20 plays a critical role in the termination of NF-κB signaling after activation. Previously, we showed that Ymer interacts and collaborates with A20, followed by degradation of receptor-interacting protein (RIP) and attenuation of NF-κB signaling. Here we show the function of Ymer in regulation of several signaling pathways including NF-κB on the basis of results obtained by using Ymer transgenic (Ymer Tg) mice. Ymer Tg mice exhibited impaired immune responses, including NF-κB and mitogen-activated protein kinase (MAPK) activation, cell proliferation and cytokine production, to tumor necrosis factor (TNF)-α, polyI:C or lipopolysaccharide (LPS) stimulation. Ymer Tg mice were more resistant to LPS-induced septic shock than wild-type mice. Transgene of Ymer inhibited the onset of glomerulonephritis in lpr/lpr mice as an autoimmune disease model. In contrast to the inflammatory immune response to LPS, Fas-mediated cell death was strongly induced in liver cells of Ymer Tg mice in which Ymer is abundantly expressed. These findings suggest that Ymer acts as a regulator downstream of several receptors and that Ymer functions as a positive or negative regulator in a signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
131
|
Singh RK, Srivastava A, Singh N. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis. Microbiol Res 2012; 167:445-51. [PMID: 22326459 DOI: 10.1016/j.micres.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/30/2011] [Accepted: 01/04/2012] [Indexed: 02/06/2023]
Abstract
The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis.
Collapse
Affiliation(s)
- Rakesh K Singh
- Molecular Immunology Laboratory, Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India.
| | | | | |
Collapse
|
132
|
Rance E, Tanner JE, Alfieri C. Inhibition of IκB kinase by thalidomide increases hepatitis C virus RNA replication. J Viral Hepat 2012; 19:e73-80. [PMID: 22239529 DOI: 10.1111/j.1365-2893.2011.01505.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic fibrosis is an integral element in the progression of chronic liver disease. Elevated hepatic interleukin (IL)-8 is an important contributor to fibrosis in patients chronically infected with the hepatitis C virus (HCV). Thalidomide has been used to reduce liver inflammation and fibrosis in HCV-infected patients, but its impact on HCV replication remains unclear. This study examined the effect of thalidomide on HCV replication in vitro. Results revealed that while thalidomide reduced IL-8 and nuclear factor kappa B (NF-κB) activity by 95% and 46% in Huh-7 cells, increasing concentrations of thalidomide correlated with a linear rise in HCV replication (17-fold at 200 μm). The NF-κB inhibitors, wedelolactone and NF-κB activation inhibitor-1, which mimic the actions of thalidomide by preventing phosphorylation and activation of IκB kinase (IKK) and hence block NF-κB activity, increased HCV RNA by 18- and 19-fold, respectively. During in vitro HCV replication in Huh-7 cells, we observed a 30% increase in IKKα protein and 55% decrease in NF-κB(p65)/RelA protein relative to cellular β-actin. Ectopic expression of IKKα to enhance the inactive form of IKK in cells undergoing virus replication led to a 13-fold increase in HCV RNA. Conversely, enhanced expression of NF-κB(p65)/RelA in infected cells resulted in a 17-fold reduction in HCV RNA. In conclusion, HCV RNA replication was significantly augmented by the inhibition of IKK activation and subsequent NF-κB signalling, whereas a restoration of NF-κB activity by the addition of NF-κB/RelA markedly reduced HCV replication. This study lends added importance to the role of the NF-κB signalling pathway in controlling HCV replication.
Collapse
Affiliation(s)
- E Rance
- Laboratory of Viral Pathogenesis, Research Center, Sainte-Justine University Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
133
|
Kim SJ, Choi Y, Choi YH, Park T. Obesity activates toll-like receptor-mediated proinflammatory signaling cascades in the adipose tissue of mice. J Nutr Biochem 2012; 23:113-22. [DOI: 10.1016/j.jnutbio.2010.10.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 10/08/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023]
|
134
|
Yan F, Gao YF, Lv F, Zhang TC, Li X, Yin HF. No association between IRF3 polymorphism and susceptibility to hepatitis B virus infection in Chinese patients. World J Gastroenterol 2012; 18:388-92. [PMID: 22294846 PMCID: PMC3261535 DOI: 10.3748/wjg.v18.i4.388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/28/2011] [Accepted: 10/27/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the association between three tag single nucleotide polymorphisms (tagSNPs) in interferon regulatory factors (IRF3) and the genetic susceptibility to chronic hepatitis B virus (HBV) infection.
METHODS: We performed a case-control study of 985 Chinese cases of chronic HBV infection and 294 self-limiting HBV-infected individuals as controls. Three tagSNPs in IRF3 (rs10415576, rs2304204, rs2304206) were genotyped with the Multiplex SNaPshot technique. The genotype and allele frequencies were calculated and analyzed.
RESULTS: The three SNPs showed no significant genotype/allele associations with chronic HBV infection. Overall allele P values were: rs10415576, P = 0.0908, odds ratio (OR) [95% confidence interval (CI)] = 1.1798 (0.9740-1.4291); rs2304204, P = 0.5959, OR (95% CI) = 1.0597 (0.8552-1.3133); rs2304206, P = 0.8372, OR (95% CI) = 1.0250 (0.8097-1.2976). Overall genotype P values were: rs10415576, P = 0.2106; rs2304204, P = 0.8458; rs2304206, P = 0.8315. There were no statistically significant differences between patients with chronic HBV infection and controls. Haplotypes generated by these three SNPs were also not significantly different between the two groups.
CONCLUSION: The three tagSNPs of IRF3 are not associated with HBV infection in the Han Chinese population.
Collapse
|
135
|
Sweeney SE, Corr M, Kimbler TB. Role of interferon regulatory factor 7 in serum-transfer arthritis: regulation of interferon-β production. ACTA ACUST UNITED AC 2011; 64:1046-56. [PMID: 22076939 DOI: 10.1002/art.33454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Innate immune responses activate synoviocytes and recruit inflammatory cells into the rheumatoid joint. Type I interferons (IFNs) play a role in autoimmunity, and IFN gene transcription is activated by IFN-regulatory factors (IRFs) in response to innate sensor recognition. The purpose of this study was to examine the effect of genetic deficiency of IRF-7 in a passive K/BxN serum-transfer model of arthritis. METHODS Passive-transfer arthritis was induced in IRF-7(-/-) mice, and additional groups were treated with IFNβ or poly(I-C). Clinical arthritis scoring, histologic assessment, micro-computed tomography, and synovial tissue quantitative polymerase chain reaction analysis were performed. Mouse serum was analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS In the passive K/BxN serum-transfer model, arthritis severity was significantly increased in IRF-7(-/-) mice compared with wild-type (WT) mice. In addition, expression of IFNβ in synovium and serum was decreased, potentially contributing to increased arthritis. IRF-7(-/-) mice injected with replacement IFNβ had a decrease in arthritis. Poly(I-C) treatment diminished arthritis in IRF-7(-/-) mice, restored synovial IFNβ gene expression, and increased serum levels of IFNβ. In vitro studies demonstrated that poly(I-C) stimulation of fibroblast-like synoviocytes (FLS) from IRF-7(-/-) mice resulted in increased induction of proinflammatory gene expression as compared with FLS from WT mice; however, IFNβ expression was not significantly different. In contrast, peritoneal macrophages from IRF-7(-/-) mice showed significantly less induction of IFNβ in response to poly(I-C) stimulation. CONCLUSION IRF-7 deficiency exacerbates arthritis and replacement treatment with IFNβ or poly(I-C) decreases arthritis severity. Both macrophage- and synoviocyte-specific roles of IRF-7 likely contribute to the increased arthritis. IRF-7 might play an antiinflammatory role in passive-transfer arthritis through regulation of macrophage IFNβ production.
Collapse
Affiliation(s)
- Susan E Sweeney
- University of California San Diego, La Jolla, CA 92093-0663, USA.
| | | | | |
Collapse
|
136
|
Siednienko J, Maratha A, Yang S, Mitkiewicz M, Miggin SM, Moynagh PN. Nuclear factor κB subunits RelB and cRel negatively regulate Toll-like receptor 3-mediated β-interferon production via induction of transcriptional repressor protein YY1. J Biol Chem 2011; 286:44750-63. [PMID: 22065573 DOI: 10.1074/jbc.m111.250894] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of β-interferon (IFN-β) is a key anti-viral response to infection by RNA viruses. Virus-induced expression of IFN-β requires the co-operative action of the transcription factors IRF-3/7, NF-κB, and ATF-2/c-Jun on the IFN-β promoter leading to the orderly recruitment of chromatin remodeling complexes. Although viruses strongly activate NF-κB and promote its binding to the IFN-β promoter, recent studies have indicated that NF-κB is not essential for virus-induced expression of IFN-β. Herein, we examined the role of NF-κB in regulating IFN-β expression in response to the viral-sensing Toll-like receptor 3 (TLR3). Intriguingly pharmacological inhibition of the NF-κB pathway augments late phase expression of IFN-β expression in response to TLR3 stimulation. We show that the negative effect of NF-κB on IFN-β expression is dependent on the induction of the transcriptional repressor protein YinYang1. We demonstrate that the TLR3 ligand polyriboinosinic:polyribocytidylic acid (poly(I:C)) induces expression and nuclear translocation of YinYang1 where it interacts with the IFN-β promoter and inhibits the binding of IRF7 to the latter. Evidence is also presented showing that the NF-κB subunits c-Rel and RelB are the likely key drivers of these negative effects on IFN-β expression. These findings thus highlight for the first time a novel self-regulatory mechanism that is employed by TLR3 to limit the level and duration of IFN-β expression.
Collapse
Affiliation(s)
- Jakub Siednienko
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
137
|
Ha T, Liu L, Kelley J, Kao R, Williams D, Li C. Toll-like receptors: new players in myocardial ischemia/reperfusion injury. Antioxid Redox Signal 2011; 15:1875-93. [PMID: 21091074 PMCID: PMC3159106 DOI: 10.1089/ars.2010.3723] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune and inflammatory responses have been implicated in myocardial ischemia/reperfusion (I/R) injury. However, the mechanisms by which innate immunity and inflammatory response are involved in myocardial I/R have not been elucidated completely. Recent studies highlight the role of Toll-like receptors (TLRs) in the induction of innate immune and inflammatory responses. Growing evidence has demonstrated that TLRs play a critical role in myocardial I/R injury. Specifically, deficiency of TLR4 protects the myocardium from ischemic injury, whereas modulation of TLR2 induces cardioprotection against ischemic insult. Importantly, cardioprotection induced by modulation of TLRs involves activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, suggesting that there is a crosstalk between TLRs and PI3K/Akt signaling pathways. In addition, TLRs also associate with other coreceptors, such as macrophage scavenger receptors in the recognition of their ligands. TLRs are also involved in the induction of angiogenesis, modulation of stem cell function, and expression of microRNA, which are currently important topic areas in myocardial I/R. Understanding how TLRs contribute to myocardial I/R injury could provide basic scientific knowledge for the development of new therapeutic approaches for the treatment and management of patients with heart attack.
Collapse
Affiliation(s)
- Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | |
Collapse
|
138
|
|
139
|
Meng J, Gong M, Björkbacka H, Golenbock DT. Genome-wide expression profiling and mutagenesis studies reveal that lipopolysaccharide responsiveness appears to be absolutely dependent on TLR4 and MD-2 expression and is dependent upon intermolecular ionic interactions. THE JOURNAL OF IMMUNOLOGY 2011; 187:3683-93. [PMID: 21865549 DOI: 10.4049/jimmunol.1101397] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipid A (a hexaacylated 1,4' bisphosphate) is a potent immune stimulant for TLR4/MD-2. Upon lipid A ligation, the TLR4/MD-2 complex dimerizes and initiates signal transduction. Historically, studies also suggested the existence of TLR4/MD-2-independent LPS signaling. In this article, we define the role of TLR4 and MD-2 in LPS signaling by using genome-wide expression profiling in TLR4- and MD-2-deficient macrophages after stimulation with peptidoglycan-free LPS and synthetic Escherichia coli lipid A. Of the 1396 genes significantly induced or repressed by any one of the treatments in the wild-type macrophages, none was present in the TLR4- or MD-2-deficient macrophages, confirming that the TLR4/MD-2 complex is the only receptor for endotoxin and that both are required for responses to LPS. Using a molecular genetics approach, we investigated the mechanism of TLR4/MD-2 activation by combining the known crystal structure of TLR4/MD-2 with computer modeling. According to our murine TLR4/MD-2-activation model, the two phosphates on lipid A were predicted to interact extensively with the two positively charged patches on mouse TLR4. When either positive patch was abolished by mutagenesis into Ala, the responses to LPS and lipid A were nearly abrogated. However, the MyD88-dependent and -independent pathways were impaired to the same extent, indicating that the adjuvant activity of monophosphorylated lipid A most likely arises from its decreased potential to induce an active receptor complex and not more downstream signaling events. Hence, we concluded that ionic interactions between lipid A and TLR4 are essential for optimal LPS receptor activation.
Collapse
Affiliation(s)
- Jianmin Meng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | | | | | |
Collapse
|
140
|
Huang YH, Wang PW, Tiao MM, Chou MH, Du YY, Huang CC, Chuang JH. Glucocorticoid modulates high-mobility group box 1 expression and Toll-like receptor activation in obstructive jaundice. J Surg Res 2011; 170:e47-55. [PMID: 21737101 DOI: 10.1016/j.jss.2011.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/01/2011] [Accepted: 05/19/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obstructive jaundice is associated with bacterial translocation and inflammatory cytokine induction. It is unknown if toll-like receptors (TLRs) and their upstream molecule high mobility group box-1 (HMGB1) are involved in the pathogenetic mechanism and if glucocorticoid is effective in modulating the process. MATERIALS AND METHODS A rat model of cholestasis by ligation of the extrahepatic bile duct (BDL) for 2 wk was created. TLRs, interferon regulatory factors (IRFs), IL-6, IL-8, antimicrobial peptide β-defensin, and cathelicidin, as well as HMGB1 expressions were studied by using real-time quantitative reverse transcription-polymerase chain reaction, immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay (ELISA). Glucocorticoid treatment was applied to a group of BDL rats. RESULTS Obstructive jaundice for 2 wk was associated with significant up-regulation of TLR1, 2, 4, 6, 7, and 9 mRNA expressions. There were significant increases of liver IRF5, IL-6, and β-defensin 1 mRNA levels in the BDL rats than in the sham and nonoperative control rats, which were associated with significant increase of immunoreactive IRF5 protein staining in the nucleus of Kupffer cells and neutrophils. Hepatic HMGB1 expression and release into serum were significantly elevated in the cholestatic rats than in the sham and control rats. Glucocorticoid treatment significantly decreased hepatic HMGB1 expression and release into serum, which was associated with significantly decreased hepatic TLR4 mRNA expression in the cholestatic rats. CONCLUSIONS The results indicate that obstructive jaundice may induce hepatic HMGB1 expression with activation of TLR4 and a number of downstream signaling molecules, which can be reversed by glucocorticoid administration.
Collapse
Affiliation(s)
- Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
141
|
Oncogenic IRFs provide a survival advantage for Epstein-Barr virus- or human T-cell leukemia virus type 1-transformed cells through induction of BIC expression. J Virol 2011; 85:8328-37. [PMID: 21680528 DOI: 10.1128/jvi.00570-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
miR-155, processed from the B-cell integration cluster (BIC), is one of the few well-studied microRNAs (miRNAs) and is involved in both innate immunity and tumorigenesis. BIC/miR-155 is induced by distinct signaling pathways, but little is known about the underlying mechanisms. We have identified two conserved potential interferon (IFN) regulatory factor (IRF)-binding/interferon-stimulated response element motifs in the Bic gene promoter. Two oncogenic IRFs, IRF4 and -7, in addition to some other members of the family, bind to and significantly transactivate the Bic promoter. Correspondingly, the endogenous levels of IRF4 and -7 are correlated with that of the BIC transcript in Epstein-Barr virus (EBV)-transformed cells. However, RNA interference studies have shown that depletion of IRF4, rather than of IRF7, dramatically decreases the endogenous level of BIC by up to 70% in EBV- or human T-cell leukemia virus type 1 (HTLV1)-transformed cell lines and results in apoptosis and reduction of proliferation rates that are restored by transient expression of miR-155. Moreover, the endogenous levels of the miR-155 target, SHIP1, are consistently elevated in EBV- and HTLV1-transformed cell lines stably expressing shIRF4. In contrast, transient expression of IRF4 decreases the SHIP1 level in EBV-negative B cells. Furthermore, the level of IRF4 mRNA is significantly correlated with that of BIC in adult T-cell lymphoma/leukemia (ATLL) tumors. These results show that IRF4 plays an important role in the regulation of BIC in the context of EBV and HTLV1 infection. Our findings have identified Bic as the first miRNA-encoding gene for IRFs and provide evidence for a novel molecular mechanism underlying the IRF/BIC pathway in viral oncogenesis.
Collapse
|
142
|
Cappelletti C, Baggi F, Zolezzi F, Biancolini D, Beretta O, Severa M, Coccia EM, Confalonieri P, Morandi L, Mora M, Mantegazza R, Bernasconi P. Type I interferon and Toll-like receptor expression characterizes inflammatory myopathies. Neurology 2011; 76:2079-88. [PMID: 21670437 DOI: 10.1212/wnl.0b013e31821f440a] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Juvenile dermatomyositis (JDM), adult dermatomyositis, and polymyositis (PM) are idiopathic inflammatory myopathies (IIMs) characterized by muscle infiltration and specific muscle fiber alterations. They are thought to have an autoimmune etiology, but triggering factors, and how immunologic attack induces muscle weakness, remain unknown. Recent evidence suggests a key role for type I interferon (IFN)-mediated innate immunity in dermatomyositis, which we explored in JDM, dermatomyositis, and PM by gene expression profiling, and other methods. METHODS Ten IIM and 5 control muscle biopsies were assessed for expression of approximately 16,000 genes by microarray; 37 additional IIM, 10 dystrophinopathic, and 14 nonmyopathic control muscles were studied for type I IFN-dependent genes, and Toll-like receptor (TLR) expression by immunochemistry and PCR. RESULTS Type I IFN-dependent transcripts were significantly upregulated in IIM muscles compared to controls; in JDM the most expressed were ISG15 (408-fold), IFIT3 (261-fold), MX1 (99-fold), and IRF7 (37-fold). IFN-β (but not IFN-α) transcripts were upregulated in PM as well as dermatomyositis/JDM. TLR3 was upregulated particularly in JDM, being localized on vascular endothelial cells, muscle infiltrating cells (mainly myeloid dendritic cells), and regenerating myofibers; TLR7 and TLR9 proteins were present in IIM (prominently in PM), mainly on cell infiltrates, particularly plasma cells, and on some injured myofibers. CONCLUSIONS IFN-β and type I IFN-induced molecules are involved in PM as well as JDM/dermatomyositis. Endosomal TLRs (effectors of innate immunity) are also involved (but differently) in the 3 conditions, further suggesting viral involvement, although TLR activation could be secondary to tissue damage.
Collapse
Affiliation(s)
- C Cappelletti
- Department of Neurology IV, Neurological Institute Foundation Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Ryan A, Lynch M, Smith SM, Amu S, Nel HJ, McCoy CE, Dowling JK, Draper E, O'Reilly V, McCarthy C, O'Brien J, Ní Eidhin D, O'Connell MJ, Keogh B, Morton CO, Rogers TR, Fallon PG, O'Neill LA, Kelleher D, Loscher CE. A role for TLR4 in Clostridium difficile infection and the recognition of surface layer proteins. PLoS Pathog 2011; 7:e1002076. [PMID: 21738466 PMCID: PMC3128122 DOI: 10.1371/journal.ppat.1002076] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/07/2011] [Indexed: 11/18/2022] Open
Abstract
Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4⁻/⁻ and Myd88⁻/⁻, but not TRIF⁻/⁻ mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system.
Collapse
Affiliation(s)
- Anthony Ryan
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Mark Lynch
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Sinead M. Smith
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Sylvie Amu
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Hendrik J. Nel
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Claire E. McCoy
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Jennifer K. Dowling
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Eve Draper
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Vincent O'Reilly
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Ciara McCarthy
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| | - Julie O'Brien
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Déirdre Ní Eidhin
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Mary J. O'Connell
- Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Brian Keogh
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Charles O. Morton
- Department of Clinical Microbiology, St James Hospital, Trinity College, Dublin, Ireland
| | - Thomas R. Rogers
- Department of Clinical Microbiology, St James Hospital, Trinity College, Dublin, Ireland
| | - Padraic G. Fallon
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Luke A. O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Dermot Kelleher
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Christine E. Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Ireland
| |
Collapse
|
144
|
Abstract
Pattern recognition receptors (PRRs) in innate immune cells play a pivotal role in the first line of host defense system. PRRs recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) to initiate and regulate innate and adaptive immune responses. PRRs include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs), which have their own features in ligand recognition and cellular location. Activated PRRs deliver signals to adaptor molecules (MyD88, TRIF, MAL/TIRAP, TRAM, IPS-1) which act as important messengers to activate downstream kinases (IKK complex, MAPKs, TBK1, RIP-1) and transcription factors (NF-κB, AP-1, IRF3), which produce effecter molecules including cytokines, chemokines, inflammatory enzymes, and type I interferones. Since excessive PRR activation is closely linked to the development of chronic inflammatory diseases, the role of intrinsic and extrinsic regulators in the prevention of over- or unnecessary activation of PRRs has been widely studied. Intracellular regulators include MyD88s, SOCS1, TOLLIP, A20, and CYLD. Extrinsic regulators have also been identified with their molecular targets in PRR signaling pathways. TLR dimerization has been suggested as an inhibitory target for small molecules such as curcumin, cinnamaldehyde, and sulforaphane. TBK1 kinase can be a target for certain flavonoids such as EGCG, luteolin, quercetin, chrysin, and eriodictyol to regulate TRIF-dependent TLR pathways. This review focuses on the features of PRR signaling pathways and the therapeutic targets of intrinsic and extrinsic regulators in order to provide beneficial strategies for controlling the activity of PRRs and the related inflammatory diseases and immune disorders.
Collapse
Affiliation(s)
- Eunshil Jeong
- School of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea.
| | | |
Collapse
|
145
|
Mellett M, Atzei P, Jackson R, O'Neill LA, Moynagh PN. Mal mediates TLR-induced activation of CREB and expression of IL-10. THE JOURNAL OF IMMUNOLOGY 2011; 186:4925-35. [PMID: 21398611 DOI: 10.4049/jimmunol.1002739] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TLRs initiate immune responses by direct detection of molecular motifs that distinguish invading microbes from host cells. Five intracellular adaptor proteins, each containing a Toll/IL-1R (TIR) domain, are used by TLRs and play key roles in dictating gene expression patterns that are tailored to the invader. Such gene expression is mediated by transcription factors, and although TIR adaptor-induced activation of NF-κB and the IFN regulatory factors have been intensively studied, there is a dearth of information on the role of TIR adaptors in regulating CREB. In this paper, we describe a role for the TIR adaptor Mal in enhancing activation of CREB. Mal-deficient murine bone marrow-derived macrophages show a loss in responsiveness to TLR2 and TLR4 ligands with respect to activation of CREB. Mal-deficient cells also fail to express the CREB-responsive genes IL-10 and cyclooxygenase 2 in response to Pam(2)Cys-Ser-(Lys)4 and LPS. We reveal that Mal-mediated activation of CREB is dependent on Pellino3 and TNFR-associated factor 6, because CREB activation is greatly diminished in Pellino3 knockdown cells and TNFR-associated factor 6-deficient cells. We also demonstrate the importance of p38 MAPK in this pathway with the p38 inhibitor SB203580 abolishing activation of CREB in murine macrophages. MAPK-activated protein kinase 2 (MK2), a substrate for p38 MAPK, is the likely downstream mediator of p38 MAPK in this pathway, because Mal is shown to activate MK2 and inhibition of MK2 decreases TLR4-induced activation of CREB. Overall, these studies demonstrate a new role for Mal as a key upstream regulator of CREB and as a contributor to the expression of both pro- and anti-inflammatory genes.
Collapse
Affiliation(s)
- Mark Mellett
- Institute of Immunology, National University of Ireland Maynooth, Maynooth, Ireland
| | | | | | | | | |
Collapse
|
146
|
Vettermann C, Castor D, Mekker A, Gerrits B, Karas M, Jäck HM. Proteome profiling suggests a pro-inflammatory role for plasma cells through release of high-mobility group box 1 protein. Proteomics 2011; 11:1228-37. [PMID: 21319304 DOI: 10.1002/pmic.201000491] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/07/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
The final step of B-cell maturation is to differentiate into plasma cells, a process that is accompanied by gross changes in subcellular organization to enable antibody secretion. To better understand this critical step in mounting a humoral immune response, we analyzed proteome dynamics during plasma cell differentiation with combined 2-DE/MS. Thirty-two identified protein spots changed in relative abundance when lipopolysaccharide (LPS)-stimulated primary B cells differentiated into antibody-secreting plasma cells. A correlative analysis of protein and transcript abundance suggested that one third of these proteins are post-transcriptionally regulated. Apart from ER-resident chaperones, lipid metabolic enzymes, and translation initiation factors, we identified several proteins that had not been previously studied in plasma cells. Among them is the transiently upregulated proteasome activator (PA) 28γ, a component of the putative nuclear proteasome. Additionally, we discovered that the non-canonical inflammatory cytokine high-mobility group box 1 (HMG1) was released from plasma cells into the extracellular milieu. This suggests a novel role for plasma cells as pro-inflammatory mediators, which has important implications for various autoimmune diseases and chronic inflammation.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Molecular Immunology, Department of Internal Medicine, Nikolaus-Fiebiger-Center for Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
147
|
Steevels TAM, Meyaard L. Immune inhibitory receptors: essential regulators of phagocyte function. Eur J Immunol 2011; 41:575-87. [PMID: 21312193 DOI: 10.1002/eji.201041179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 01/21/2023]
Abstract
Phagocytes, including neutrophils, monocytes, and macrophages, play a crucial role in host defense by recognition and elimination of invading pathogens. Phagocytic cells produce reactive oxygen species (ROS), inflammatory cytokines, and chemokines, leading to bacterial killing and to recruitment and activation of additional immune cells. However, inflammatory mediators are potentially harmful for the host and their production is therefore tightly controlled by multiple regulatory mechanisms. One such mechanism is immune suppression by immune inhibitory receptors, which are increasingly acknowledged as potent regulators of the immune response. So far, research has focused on the role of these receptors in the regulation of NK cells, B cells, and T cells. Importantly, an accumulating number of inhibitory receptors have been identified on phagocytes. Here, we review the role of inhibitory receptors in the regulation of phagocyte cytokine production, migration, apoptosis, ROS production, and phagocytosis. Furthermore, we discuss the intracellular mechanisms utilized by distinct inhibitory receptors to regulate specific phagocyte functions. We demonstrate that inhibitory receptors are important regulators of the immune response, which bacteria can use to their advantage.
Collapse
Affiliation(s)
- Tessa A M Steevels
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
148
|
Petrasek J, Dolganiuc A, Csak T, Kurt-Jones EA, Szabo G. Type I interferons protect from Toll-like receptor 9-associated liver injury and regulate IL-1 receptor antagonist in mice. Gastroenterology 2011; 140:697-708.e4. [PMID: 20727895 PMCID: PMC3031737 DOI: 10.1053/j.gastro.2010.08.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 07/27/2010] [Accepted: 08/12/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Liver inflammation and injury are mediated by the innate immune response, which is regulated by Toll-like receptors (TLR). Activation of TLR9 induces type I interferons (IFNs) via the interferon regulatory factor (IRF)-7. We investigated the roles of type I IFNs in TLR9-associated liver injury. METHODS Wild-type (WT), IRF7-deficient, and IFN-α/β receptor 1 (IFNAR1)-deficient mice were stimulated with TLR9 or TLR2 ligands. Findings from mice were verified in cultured hepatocytes and liver mononuclear cells (LMNCs) as well as in vivo experiments using recombinant type I IFN and interleukin-1 receptor antagonist (IL-1ra). RESULTS Type I IFNs were up-regulated during TLR9-associated liver injury in WT mice. IRF7- and IFNAR1-deficient mice, which have disruptions in type I IFN production or signaling, respectively, had increased liver damage and inflammation, decreased recruitment of dendritic cells, and increased production of tumor necrosis factor α by LMNCs. These findings indicate that type I IFNs have anti-inflammatory activities in liver. IL-1ra, which is produced by LMNCs and hepatocytes, is an IFN-regulated antagonist of the proinflammatory cytokine IL-1β; IRF7- and IFNAR1-deficient mice had decreased levels of IL-1ra compared with WT mice. IL-1ra protected cultured hepatocytes from IL-1β-mediated sensitization to cytotoxicity from tumor necrosis factor α. In vivo exposure to type I IFN, which induced IL-1ra, or administration of IL-1ra reduced TLR9-associated liver injury; the protective effect of type I IFNs therefore appears to be mediated by IFN-dependent induction of IL-1ra. CONCLUSIONS Type I IFNs have anti-inflammatory effects mediated by endogenous IL-1ra, which regulates the extent of TLR9-induced liver damage. Type I IFN signaling is therefore required for protection from immune-mediated liver injury.
Collapse
Affiliation(s)
- Jan Petrasek
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
149
|
Downer EJ, Clifford E, Gran B, Nel HJ, Fallon PG, Moynagh PN. Identification of the synthetic cannabinoid R(+)WIN55,212-2 as a novel regulator of IFN regulatory factor 3 activation and IFN-beta expression: relevance to therapeutic effects in models of multiple sclerosis. J Biol Chem 2011; 286:10316-28. [PMID: 21245146 DOI: 10.1074/jbc.m110.188599] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
β-Interferons (IFN-βs) represent one of the first line treatments for relapsing-remitting multiple sclerosis, slowing disease progression while reducing the frequency of relapses. Despite this, more effective, well tolerated therapeutic strategies are needed. Cannabinoids palliate experimental autoimmune encephalomyelitis (EAE) symptoms and have therapeutic potential in MS patients although the precise molecular mechanism for these effects is not understood. Toll-like receptor (TLR) signaling controls innate immune responses and TLRs are implicated in MS. Here we demonstrate that the synthetic cannabinoid R(+)WIN55,212-2 is a novel regulator of TLR3 and TLR4 signaling by inhibiting the pro-inflammatory signaling axis triggered by TLR3 and TLR4, whereas selectively augmenting TLR3-induced activation of IFN regulatory factor 3 (IRF3) and expression of IFN-β. We present evidence that R(+)WIN55,212-2 strongly promotes the nuclear localization of IRF3. The potentiation of IFN-β expression by R(+)WIN55,212-2 is critical for manifesting its protective effects in the murine MS model EAE as evidenced by its reduced therapeutic efficacy in the presence of an anti-IFN-β antibody. R(+)WIN55,212-2 also induces IFN-β expression in MS patient peripheral blood mononuclear cells, whereas down-regulating inflammatory signaling in these cells. These findings identify R(+)WIN55,212-2 as a novel regulator of TLR3 signaling to IRF3 activation and IFN-β expression and highlights a new mechanism that may be open to exploitation in the development of new therapeutics for the treatment of MS.
Collapse
Affiliation(s)
- Eric J Downer
- Institute of Immunology, National University of Ireland Maynooth, Co. Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
150
|
van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IGJ, Buisson M, Hartgers FC, Burmeister WP, Wiertz EJ, Ressing ME. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:1694-702. [PMID: 21191071 DOI: 10.4049/jimmunol.0903120] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition. The viral dsDNA sensor TLR9 is expressed on B cells, a natural target of EBV infection. Here, we show that EBV particles trigger innate immune signaling pathways through TLR9. Furthermore, using an in vitro system for productive EBV infection, it has now been possible to compare the expression of TLRs by EBV(-) and EBV(+) human B cells during the latent and lytic phases of infection. Several TLRs were found to be differentially expressed either in latently EBV-infected cells or after induction of the lytic cycle. In particular, TLR9 expression was profoundly decreased at both the RNA and protein levels during productive EBV infection. We identified the EBV lytic-phase protein BGLF5 as a protein that contributes to downregulating TLR9 levels through RNA degradation. Reducing the levels of a pattern-recognition receptor capable of sensing the presence of EBV provides a mechanism by which the virus could obstruct host innate antiviral responses.
Collapse
Affiliation(s)
- Michiel van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|