101
|
Li S, Li F, Wan D, Chen Z, Pan J, Liang XJ. A micelle-based stage-by-stage impelled system for efficient doxorubicin delivery. Bioact Mater 2023; 25:783-795. [PMID: 37056277 PMCID: PMC10086681 DOI: 10.1016/j.bioactmat.2022.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Chemotherapy remains the mainstay of cancer treatment, benefiting millions of patients each year, but the side effects of chemotherapy drugs severely limit their clinical use. Doxorubicin (DOX) can cause various side effects such as heart damage and treatment-related tumors. The effective use of active and passive targeting will improve the clinical application of DOX. Here, TPGS3350 and bioactive peptides were utilized to construct a micelle-based stage-by-stage impelled efficient system (missiles) for DOX delivery (DOX missiles). By taking advantage of the EPR effect, DOX missiles are efficiently enriched at the tumor site. After being cleaved by matrix metalloproteinase2 (MMP2), the peptide (VRGD) targets tumor cells to facilitate uptake of the missiles by the tumor cells via receptor-mediated endocytosis. The intracellular activated caspase-3-catalyzed explosion of DOX missiles further enables efficient tumor killing. This study provides an efficient approach for DOX delivery and toxicity reduction.
Collapse
Affiliation(s)
- Sunfan Li
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Dong Wan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Zuqin Chen
- Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, PR China
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, PR China
- Department of Radiology, Chinese PAP Guangxi Corps Hospital, Nanning, Guangxi, PR China
| | - Jie Pan
- School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
102
|
Bertorello N, Luksch R, Bisogno G, Haupt R, Spallarossa P, Cenna R, Fagioli F. Cardiotoxicity in children with cancer treated with anthracyclines: A position statement on dexrazoxane. Pediatr Blood Cancer 2023; 70:e30515. [PMID: 37355856 DOI: 10.1002/pbc.30515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Cardiovascular disease is the leading cause of non-malignant morbidity and mortality in childhood cancer survivors (CCSs). Anthracyclines are included in many treatment regimens for paediatric cancer, but unfortunately, these compounds are cardiotoxic. One in 10 CCSs who has received an anthracycline will develop a symptomatic cardiac event over time. Given the crucial need to mitigate anthracycline-related cardiotoxicity (ARC), the authors critically examined published data to identify effective cardioprotective strategies. Based on their expert analysis of contemporary literature data, it was concluded that consideration should be given for routine use of dexrazoxane in children with cancer who are at risk of ARC.
Collapse
Affiliation(s)
- Nicoletta Bertorello
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
| | - Roberto Luksch
- Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gianni Bisogno
- Hematology and Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Riccardo Haupt
- Epidemiology and Biostatistics Unit and DOPO clinic, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Rosita Cenna
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
| | - Franca Fagioli
- Paediatric Oncology Division, Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza, Turin, Italy
- University of Turin, Turin, Italy
| |
Collapse
|
103
|
Szponar J, Ciechanski E, Ostrowska-Lesko M, Gorska A, Tchorz M, Dabrowska A, Dudka J, Murias M, Kowalczyk M, Korga-Plewko A, Mandziuk S. The Lack of Synergy between Carvedilol and the Preventive Effect of Dexrazoxane in the Model of Chronic Anthracycline-Induced Cardiomyopathy. Int J Mol Sci 2023; 24:10202. [PMID: 37373350 DOI: 10.3390/ijms241210202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The anticancer efficacy of doxorubicin (DOX) is dose-limited because of cardiomyopathy, the most significant adverse effect. Initially, cardiotoxicity develops clinically silently, but it eventually appears as dilated cardiomyopathy with a very poor prognosis. Dexrazoxane (DEX) is the only FDA-approved drug to prevent the development of anthracycline cardiomyopathy, but its efficacy is insufficient. Carvedilol (CVD) is another product being tested in clinical trials for the same indication. This study's objective was to evaluate anthracycline cardiotoxicity in rats treated with CVD in combination with DEX. The studies were conducted using male Wistar rats receiving DOX (1.6 mg/kg b.w. i.p., cumulative dose: 16 mg/kg b.w.), DOX and DEX (25 mg/kg b.w. i.p.), DOX and CVD (1 mg/kg b.w. i.p.), or a combination (DOX + DEX + CVD) for 10 weeks. Afterward, in the 11th and 21st weeks of the study, echocardiography (ECHO) was performed, and the tissues were collected. The addition of CVD to DEX as a cardioprotective factor against DOX had no favorable advantages in terms of functional (ECHO), morphological (microscopic evaluation), and biochemical alterations (cardiac troponin I and brain natriuretic peptide levels), as well as systemic toxicity (mortality and presence of ascites). Moreover, alterations caused by DOX were abolished at the tissue level by DEX; however, when CVD was added, the persistence of DOX-induced unfavorable alterations was observed. The addition of CVD normalized the aberrant expression of the vast majority of indicated genes in the DOX + DEX group. Overall, the results indicate that there is no justification to use a simultaneous treatment of DEX and CVD in DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jaroslaw Szponar
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, 100 Krasnik Avenue, 20-550 Lublin, Poland
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, 100 Krasnik Avenue, 20-550 Lublin, Poland
| | - Erwin Ciechanski
- Clinical Department of Cardiology, Regional Specialist Hospital, 100 Krasnik Avenue, 20-550 Lublin, Poland
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Marta Ostrowska-Lesko
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Agnieszka Gorska
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, 100 Krasnik Avenue, 20-550 Lublin, Poland
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, 100 Krasnik Avenue, 20-550 Lublin, Poland
| | - Michal Tchorz
- Toxicology Clinic, Faculty of Medicine, Medical University of Lublin, 100 Krasnik Avenue, 20-550 Lublin, Poland
- Clinical Department of Toxicology and Cardiology, Regional Specialist Hospital, 100 Krasnik Avenue, 20-550 Lublin, Poland
| | - Anna Dabrowska
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Jaroslaw Dudka
- Chair and Department of Toxicology, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Marek Murias
- Chair and Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 60-572 Poznan, Poland
| | - Michał Kowalczyk
- First Department of Anaesthesiology and Intensive Care, Medical University of Lublin, ul. Jaczewskiego 8, 20-954 Lublin, Poland
| | - Agnieszka Korga-Plewko
- Independent Medical Biology Unit, Medical University of Lublin, 8b Jaczewski Street, 20-090 Lublin, Poland
| | - Slawomir Mandziuk
- Department of Pneumology, Oncology and Allergology, Medical University of Lublin, 8 Jaczewski Street, 20-090 Lublin, Poland
| |
Collapse
|
104
|
Tolani D, Wilcox J, Shyam S, Bansal N. Cardio-oncology for Pediatric and Adolescent/Young Adult Patients. Curr Treat Options Oncol 2023:10.1007/s11864-023-01100-4. [PMID: 37296365 DOI: 10.1007/s11864-023-01100-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
OPINION STATEMENT As chemotherapy continues to improve the lives of patients with cancer, understanding the effects of these drugs on other organ systems, and the cardiovascular system in particular, has become increasingly important. The effects of chemotherapy on the cardiovascular system are a major determinant of morbidity and mortality in these survivors. Although echocardiography continues to be the most widely used modality for assessing cardiotoxicity, newer imaging modalities and biomarker concentrations may detect subclinical cardiotoxicity earlier. Dexrazoxane continues to be the most effective therapy for preventing anthracycline-induced cardiomyopathy. Neurohormonal modulating drugs have not prevented cardiotoxicity, so their widespread, long-term use for all patients is currently not recommended. Advanced cardiac therapies, including heart transplant, have been successful in cancer survivors with end-stage HF and should be considered for these patients. Research on new targets, especially genetic associations, may produce treatments that help reduce cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Drishti Tolani
- Division of Pediatric Cardiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia Wilcox
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sharvari Shyam
- Division of Pediatrics, St. Barnabas Hospital, Bronx, NY, USA
| | - Neha Bansal
- Division of Pediatric Cardiology, Mount Sinai Kravis Children's Hospital, New York, NY, USA.
| |
Collapse
|
105
|
Chatur S, Fu E, Vaduganathan M. Interpreting Nonrandomized Evidence for Clinical Decision Making in Cardio-Oncology. JACC CardioOncol 2023; 5:329-331. [PMID: 37397081 PMCID: PMC10308051 DOI: 10.1016/j.jaccao.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Affiliation(s)
- Safia Chatur
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edouard Fu
- Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Muthiah Vaduganathan
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
106
|
Chen J, Chapski DJ, Jong J, Awada J, Wang Y, Slamon DJ, Vondriska TM, Packard RRS. Integrative transcriptomics and cell systems analyses reveal protective pathways controlled by Igfbp-3 in anthracycline-induced cardiotoxicity. FASEB J 2023; 37:e22977. [PMID: 37219486 PMCID: PMC10286824 DOI: 10.1096/fj.202201885rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapeutic agents; however, their use is hampered by subsequent cardiotoxicity risk. Our understanding of cardiomyocyte protective pathways activated following anthracycline-induced cardiotoxicity (AIC) remains incomplete. Insulin-like growth factor binding protein (IGFBP) 3 (Igfbp-3), the most abundant IGFBP family member in the circulation, is associated with effects on the metabolism, proliferation, and survival of various cells. Whereas Igfbp-3 is induced by Dox in the heart, its role in AIC is ill-defined. We investigated molecular mechanisms as well as systems-level transcriptomic consequences of manipulating Igfbp-3 in AIC using neonatal rat ventricular myocytes and human-induced pluripotent stem cell-derived cardiomyocytes. Our findings reveal that Dox induces the nuclear enrichment of Igfbp-3 in cardiomyocytes. Furthermore, Igfbp-3 reduces DNA damage, impedes topoisomerase IIβ expression (Top2β) which forms Top2β-Dox-DNA cleavage complex leading to DNA double-strand breaks (DSB), alleviates detyrosinated microtubule accumulation-a hallmark of increased cardiomyocyte stiffness and heart failure-and favorably affects contractility following Dox treatment. These results indicate that Igfbp-3 is induced by cardiomyocytes in an effort to mitigate AIC.
Collapse
Affiliation(s)
- Junjie Chen
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
| | - Douglas J. Chapski
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jeremy Jong
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jerome Awada
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Yijie Wang
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
| | - Dennis J. Slamon
- Division of Hematology & Oncology, Department of
Medicine, David Geffen School of Medicine, University of California, Los Angeles,
CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
| | - Thomas M. Vondriska
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Department of Anesthesiology & Perioperative Medicine,
David Geffen School of Medicine, University of California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
| | - René R. Sevag Packard
- Molecular, Cellular, and Integrative Physiology Program,
College of Letters and Science, and David Geffen School of Medicine, University of
California, Los Angeles, CA
- Division of Cardiology, Department of Medicine, David
Geffen School of Medicine, University of California, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of
California, Los Angeles, CA
- Department of Physiology, David Geffen School of Medicine,
University of California, Los Angeles, CA
- Molecular Biology Institute, University of California, Los
Angeles, CA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA
- Veterans Affairs West Los Angeles Medical Center, Los
Angeles, CA
- California NanoSystems Institute, University of
California, Los Angeles, CA
| |
Collapse
|
107
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
108
|
Jamrozik M, Piska K, Bucki A, Koczurkiewicz-Adamczyk P, Sapa M, Władyka B, Pękala E, Kołaczkowski M. In Silico and In Vitro Assessment of Carbonyl Reductase 1 Inhibition Using ASP9521-A Potent Aldo-Keto Reductase 1C3 Inhibitor with the Potential to Support Anticancer Therapy Using Anthracycline Antibiotics. Molecules 2023; 28:molecules28093767. [PMID: 37175180 PMCID: PMC10180078 DOI: 10.3390/molecules28093767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Anthracycline antibiotics (ANT) are among the most widely used anticancer drugs. Unfortunately, their use is limited due to the development of drug resistance and cardiotoxicity. ANT metabolism, performed mainly by two enzymes-aldo-keto reductase 1C3 (AKR1C3) and carbonyl reductase 1 (CBR1)-is one of the proposed mechanisms generated by the described effects. In this study, we evaluated the CBR1 inhibitory properties of ASP9521, a compound already known as potent AKR1C3 inhibitor. First, we assessed the possibility of ASP9521 binding to the CBR1 catalytic site using molecular docking and molecular dynamics. The research revealed a potential binding mode of ASP9521. Moderate inhibitory activity against CBR1 was observed in studies with recombinant enzymes. Finally, we examined whether ASP9521 can improve the cytotoxic activity of daunorubicin against human lung carcinoma cell line A549 and assessed the cardioprotective properties of ASP9521 in a rat cardiomyocytes model (H9c2) against doxorubicin- and daunorubicin-induced toxicity. The addition of ASP9521 ameliorated the cytotoxic activity of daunorubicin and protected rat cardiomyocytes from the cytotoxic effect of both applied drugs. Considering the favorable bioavailability and safety profile of ASP9521, the obtained results encourage further research. Inhibition of both AKR1C3 and CBR1 may be a promising method of overcoming ANT resistance and cardiotoxicity.
Collapse
Affiliation(s)
- Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Adam Bucki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Michał Sapa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Benedykt Władyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St, 31-007 Cracow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St, 31-008 Cracow, Poland
| |
Collapse
|
109
|
Dean M, Kim MJ, Dimauro S, Tannenbaum S, Graham G, Liang BT, Kim AS. Cardiac and noncardiac biomarkers in patients undergoing anthracycline chemotherapy - a prospective analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:23. [PMID: 37106424 PMCID: PMC10133897 DOI: 10.1186/s40959-023-00174-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Biomarkers represent a potential tool to identify individuals at risk for anthracycline-induced cardiotoxicity (AICT) prior to symptom onset or left ventricular dysfunction. METHODS This study examined the levels of cardiac and noncardiac biomarkers before, after the last dose of, and 3-6 months after completion of doxorubicin chemotherapy. Cardiac biomarkers included 5th generation high-sensitivity cardiac troponin T (cTnT), N-terminal pro-brain natriuretic peptide, growth/differentiation factor-15 (GDF-15), and soluble suppression of tumorigenesis-2 (sST2). Noncardiac biomarkers included activated caspase-1 (CASP-1), activated caspase-3, C-reactive protein, tumor necrosis factor-α, myeloperoxidase (MPO), galectin-3, and 8-hydroxy-2'-deoxyguanosine. Echocardiographic data (LVEF and LVGLS) were obtained at pre- and post-chemotherapy. Subanalysis examined interval changes in biomarkers among high (cumulative doxorubicin dose ≥ 250 mg/m2) and low exposure groups. RESULTS The cardiac biomarkers cTnT, GDF-15, and sST2 and the noncardiac biomarkers CASP-1 and MPO demonstrated significant changes over time. cTnT and GDF-15 levels increased after anthracycline exposure, while CASP-1 and MPO decreased significantly. Subanalysis by cumulative dose did not demonstrate a larger increase in any biomarker in the high-dose group. CONCLUSIONS The results identify biomarkers with significant interval changes in response to anthracycline therapy. Further research is needed to understand the clinical utility of these novel biomarkers.
Collapse
Affiliation(s)
- Matthew Dean
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
- Virginia Commonwealth University Health System Internal Medicine Residency, 1101 E. Marshall St, Richmond, VA 23298 USA
| | - Min Jung Kim
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
- Pat and Jim Calhoun Cardiology Center, UConn Health, 300 UConn Health Boulevard, Farmington, CT USA
| | - Sharon Dimauro
- Pat and Jim Calhoun Cardiology Center, UConn Health, 300 UConn Health Boulevard, Farmington, CT USA
| | - Susan Tannenbaum
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
- Carole & Ray Neag Comprehensive Cancer Center, UConn Health, 263 Farmington Avenue, Farmington, CT 06030 USA
| | - Garth Graham
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
| | - Bruce T. Liang
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
- Pat and Jim Calhoun Cardiology Center, UConn Health, 300 UConn Health Boulevard, Farmington, CT USA
| | - Agnes S. Kim
- Department of Medicine, Calhoun Cardiology Center, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030 USA
- Pat and Jim Calhoun Cardiology Center, UConn Health, 300 UConn Health Boulevard, Farmington, CT USA
| |
Collapse
|
110
|
Mejia G, Su L, Pandey P, Jeanne Dit Fouque K, McGoron AJ, Fernandez-Lima F, He J, Mebel AM, Leng F. Anticancer Drug Doxorubicin Spontaneously Reacts with GTP and dGTP. Chem Res Toxicol 2023; 36:660-668. [PMID: 37000908 DOI: 10.1021/acs.chemrestox.2c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Here, we reported a spontaneous reaction between anticancer drug doxorubicin and GTP or dGTP. Incubation of doxorubicin with GTP or dGTP at 37 °C or above yields a covalent product: the doxorubicin-GTP or -dGTP conjugate where a covalent bond is formed between the C14 position of doxorubicin and the 2-amino group of guanine. Density functional theory calculations show the feasibility of this spontaneous reaction. Fluorescence imaging studies demonstrate that the doxorubicin-GTP and -dGTP conjugates cannot enter nuclei although they rapidly accumulate in human SK-OV-3 and NCI/ADR-RES cells. Consequently, the doxorubicin-GTP and -dGTP conjugates are less cytotoxic than doxorubicin. We also demonstrate that doxorubicin binds to ATP, GTP, and other nucleotides with a dissociation constant (Kd) in the sub-millimolar range. Since human cells contain millimolar levels of ATP and GTP, these results suggest that doxorubicin may target ATP and GTP, energy molecules that support essential processes in living organisms.
Collapse
Affiliation(s)
- German Mejia
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Linjia Su
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Popular Pandey
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Kevin Jeanne Dit Fouque
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Anthony J McGoron
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Biomedical Engineering, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Jin He
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
111
|
El-Sherbeny WS, Sabry NM, El-Saied SB, Elnagar B. Detection of right ventricular dysfunction by three - dimensional echocardiography and two - dimensional speckle tracking in breast cancer patients receiving anthracycline- based chemotherapy. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:20. [PMID: 37024988 PMCID: PMC10077607 DOI: 10.1186/s40959-023-00169-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Despite the cardiotoxic effect of anthracycline on the left ventricle (LV) was totally identified. The assessment of the anthracycline effect on the right ventricle(RV) by conventional echocardiography was a challenge due to its complex geometry. We aimed to evaluate the impact of anthracycline on the RV volume and function using 3 dimensional -echocardiography (3DE) and 2 dimensional -speckle tracking echocardiography (2D-STE) in patients with breast cancer. METHODS This prospective study was conducted on 66 female patients with breast cancer receiving anthracycline chemotherapy, in addition to full echocardiography, 2D-STE and 3DE evaluation of RV function and volume were done at baseline, after 4th cycle of chemotherapy, six and nine months after the end of chemotherapy. RESULTS Cardiotoxicity from anthracycline occurred in 18 patients whose LV ejection fraction became significantly reduced after 9 months of therapy according to that, the patients were divided into the non-cardiotoxic group (n:48) and the cardiotoxic group (n:18). At cardiotoxic group, 3D RV end-systolic volume, and 3D RV end-diastolic volume increased significantly at 6 months and continued till 9 months after the therapy end compared to baseline values (42.50 ± 5.98 vs. 50.44 ± 7.01, p = 0.005) and (86.78 ± 9.16 vs. 95.78 ± 9.23, p = 0.021).LV global longitudinal strain (GLS) showed a significant reduction early after 6 months of therapy, 2D GLS and free wall longitudinal strain (FWLS) of RV were significantly decreased at 6 months and continued till 9 months after therapy (-22.54 ± 0.79 vs. -19.53 ± 1.32, p = 0.001) and (-24.67 ± 1.27vs. -22.22 ± 1.41, p = 0.001) respectively. The variation of RV FWLS was a predictor of cardiotoxicity, the relative drop of RV FWLS > 19.3% had 83% sensitivity and 71% specificity, (AUC = 0.82) to identify patients who developed cardiotoxicity. CONCLUSION 3DE is a promising modality in recognizing the early changes in RV volumes and minute alteration in RV function and 2D-STE is a reliable predictor of RV systolic dysfunction which identify the subclinical affliction.
Collapse
Affiliation(s)
- Wafaa S El-Sherbeny
- Cardiovascular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Nesreen M Sabry
- Clinical Oncology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa B El-Saied
- Cardiovascular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Basma Elnagar
- Cardiovascular Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
112
|
Chianca M, L'Abbate S, Fabiani I, Aimo A, Emdin M, Passino C, Fedele A, Cipolla CM, Cardinale DM. Clinical management of drug-induced cardiotoxicity in patients with HER-2+ breast cancer: current recommendations and future outlook. Expert Opin Drug Metab Toxicol 2023; 19:109-119. [PMID: 36989398 DOI: 10.1080/17425255.2023.2197589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
INTRODUCTION Human epidermal growth factor receptor two (HER2) target therapies have drastically revolutionised the treatment of HER2-positive breast cancer. Starting with trastuzumab, early phase III trials have already highlighted its significant cardiotoxicity, which is also present, albeit to a lesser extent, in the new generation drugs. Also given the growing population of patients with cardiovascular diseases, it is vital to set up proper long-term follow-up to prevent morbidity related to the development of cardiotoxicity. AREAS COVERED This review discusses the mechanisms of action underlying the cardiotoxicity of HER2 targeted therapies and the main clinical evidence on the toxicity of these drugs. In addition, the patterns of patient assessment prior to the initiation of therapy with HER2 targeted therapies are discussed, as well as the main evidence concerning the follow-up and management of cardiotoxicity. EXPERT OPINION the mechanisms of cardiotoxicity of new HER2 drugs need further study and, likewise, methods to prevent, monitor and identify HER-2-induced cardiotoxicity need to be implemented. Although some studies highlight the validity of cardiac biomarkers as predictive factors for cardiotoxicity, their actual usefulness and timing is still debated. Further studies are needed to assess the effectiveness of possible pharmacological primary prevention.
Collapse
Affiliation(s)
- Michela Chianca
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, 56127, Italy
| | - Serena L'Abbate
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, 56127, Italy
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Alberto Aimo
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, 56127, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, 56127, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Claudio Passino
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della libertà 33, Pisa, 56127, Italy
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Antonella Fedele
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Via Ripamonti 435, Milan, 20141, Italy
| | - Carlo Maria Cipolla
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Via Ripamonti 435, Milan, 20141, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardioncology and Second Opinion Division, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico, Via Ripamonti 435, Milan, 20141, Italy
| |
Collapse
|
113
|
Xu Q, Duan YY, Pan M, Jin QW, Tao JP, Huang SY. In Vitro Evaluation Reveals Effect and Mechanism of Artemether against Toxoplasma gondii. Metabolites 2023; 13:metabo13040476. [PMID: 37110135 PMCID: PMC10145583 DOI: 10.3390/metabo13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Due to the limited effectiveness of existing drugs for the treatment of toxoplasmosis, there is a dire need for the discovery of new therapeutic options. Artemether is an important drug for malaria and several studies have indicated that it also exhibits anti-T. gondii activity. However, its specific effect and mechanisms are still not clear. To elucidate its specific role and potential mechanism, we first evaluated its cytotoxicity and anti-Toxoplasma effect on human foreskin fibroblast cells, and then analyzed its inhibitory activity during T. gondii invasion and intracellular proliferation. Finally, we examined its effect on mitochondrial membrane potential and reactive oxygen species (ROS) in T. gondii. The CC50 value of artemether was found to be 866.4 μM, and IC50 was 9.035 μM. It exhibited anti-T. gondii activity and inhibited the growth of T. gondii in a dose-dependent manner. We also found that the inhibition occurred primarily in intracellular proliferation, achieved by reducing the mitochondrial membrane integrity of T. gondii and stimulating ROS production. These findings suggest that the mechanism of artemether against T. gondii is related to a change in the mitochondrial membrane and the increase in ROS production, which may provide a theoretical basis for optimizing artemether derivatives and further improving their anti-Toxoplasma efficacy.
Collapse
Affiliation(s)
- Qiong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Yin-Yan Duan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
114
|
Rahimi K, Amoozgar H, Zareifar S, Shahriari M, Zekavat OR, Karimi M, Fathpour G, Saleh F, Shakibazad N, Bordbar S, Bordbar M. Cardioprotective effects of deferoxamine in acute and subacute cardiotoxicities of doxorubicin: a randomized clinical trial. Egypt Heart J 2023; 75:21. [PMID: 36961611 PMCID: PMC10039151 DOI: 10.1186/s43044-023-00347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Cardiotoxicity is a major concern following doxorubicin (DOX) use in the treatment of malignancies. We aimed to investigate whether deferoxamine (DFO) can prevent acute cardiotoxicity in children with cancer who were treated with DOX as part of their chemotherapy. RESULTS Sixty-two newly-diagnosed pediatric cancer patients aged 2-18 years with DOX as part of their treatment regimens were assigned to three groups: group 1 (no intervention, n = 21), group II (Deferoxamine (DFO) 10 times DOX dose, n = 20), and group III (DFO 50 mg/kg, n = 21). Patients in the intervention groups were pretreated with DFO 8-h intravenous infusion in each chemotherapy course during and after completion of DOX infusion. Conventional and tissue Doppler echocardiography, serum concentrations of human brain natriuretic peptide (BNP), and cardiac troponin I (cTnI) were checked after the last course of chemotherapy. Sixty patients were analyzed. The level of cTnI was < 0.01 in all patients. Serum BNP was significantly lower in group 3 compared to control subjects (P = 0.036). No significant differences were observed in the parameters of Doppler echocardiography. Significant lower values of tissue Doppler late diastolic velocity at the lateral annulus of the tricuspid valve were noticed in group 3 in comparison with controls. By using Pearson analysis, tissue Doppler systolic velocity of the septum showed a marginally significant negative correlation with DOX dose (P = 0.05, r = - 0.308). No adverse effect was reported in the intervention groups. CONCLUSIONS High-dose DFO (50 mg/kg) may serve as a promising cardioprotective agent at least at the molecular level in cancer patients treated with DOX. Further multicenter trials with longer follow-ups are needed to investigate its protective role in delayed DOX-induced cardiac damage. Trial registration IRCT, IRCT2016080615666N5. Registered 6 September 2016, http://www.irct.ir/IRCT2016080615666N5 .
Collapse
Affiliation(s)
- Kosar Rahimi
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Amoozgar
- Department of Pediatrics, and Divisions of Pediatric Cardiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Zareifar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Shahriari
- Department of Pediatrics, and Divisions of Pediatric Hematology and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Reza Zekavat
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Fathpour
- Department of Pediatrics, and Divisions of Pediatric Hematology and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fazl Saleh
- Department of Pediatrics, and Divisions of Pediatric Hematology and Oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Shakibazad
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shayan Bordbar
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Bordbar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
115
|
Zhang W, Wang X, Tang Y, Huang C. Melatonin alleviates doxorubicin-induced cardiotoxicity via inhibiting oxidative stress, pyroptosis and apoptosis by activating Sirt1/Nrf2 pathway. Biomed Pharmacother 2023; 162:114591. [PMID: 36965257 DOI: 10.1016/j.biopha.2023.114591] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/13/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023] Open
Abstract
Melatonin confers cardioprotective effects on multiple cardiovascular diseases, including doxorubicin-induced cardiomyopathy. The effectiveness of melatonin in mitigating myocardial injuries caused by Doxorubicin through enhancement of mitochondrial function is already established, however, the role of melatonin in regulating the Sirtuin-1 (Sirt1)/Nuclear factor E2-associated factor 2 (Nrf2) pathway in lessening the onset of Doxorubicin-induced cardiomyopathy is yet to be elucidated. To address this, H9C2 cardiomyocytes and C57BL/6 mice were employed to construct in vitro and in vivo models of Dox-induced myocardial impairments, respectively. Results showed that Dox markedly evoked oxidative stress, pyroptosis and apoptosis both in vitro and in vivo, which were significantly alleviated by melatonin administration. Mechanistically, melatonin attenuated Dox-induced downregulation of Sirt1 and Nrf2, and both inhibition of Sirt1 and Nrf2 significantly reversed the cardioprotective effects of melatonin. In conclusion, our studies suggest that the activation of the Sirt1/Nrf2 pathway is the underlying mechanism behind melatonin's ability to curtail oxidative stress, pyroptosis, and apoptosis in Dox-induced cardiomyopathy. These promising results demonstrated the potential application of melatonin as a treatment for doxorubicin-induced cardiac injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
116
|
Chen Y, Deng Y, Chen L, Huang Z, Yan Y, Huang Z. miR-16-5p Regulates Ferroptosis by Targeting SLC7A11 in Adriamycin-Induced Ferroptosis in Cardiomyocytes. J Inflamm Res 2023; 16:1077-1089. [PMID: 36941983 PMCID: PMC10024494 DOI: 10.2147/jir.s393646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction Adriamycin (ADR) is commonly used in tumor chemotherapy, but its nonreversible cardiotoxicity severely hampers its clinical application. Ferroptosis is an implicated cause of ADR-induced injury. However, the underlying molecular mechanisms remain poorly understood. This study explored whether ferroptosis is a pivotal pathogenic pathway underlying ADR-induced cardiotoxicity and the possible molecular mechanisms involved. Methods In vivo and in vitro experimental models were used to study the mechanism of ADR-mediated ferroptosis. Ferroptosis levels were examined in mice and human/rat cardiomyocytes. Mechanistically, the expression levels of SLC7A11 and related miRNAs were examined. Bioinformatics prediction and luciferase reporter assays were used to verify the potential interaction between miR-16-5p and SLC7A11. The biological functions and interaction of SLC7A11 and miR-16-5p were investigated in vivo and in vitro. Results Our study observed that ADR treatment significantly increased ferroptosis levels in vivo and in vitro. Ferroptosis-related pharmacological interventions further confirmed these results. Our data displayed that the SLC7A11 level was significantly decreased in cardiac tissues and cells, while an increased expression level of miR-16-5p was observed. Moreover, upregulation of SLC7A1 and inhibition of miR-16-5p attenuated ADR-induced cardiomyocyte ferroptosis injury. Interactive rescue experiments showed that the protective effects of miR-16-5p inhibition on ADR-induced cardiomyocyte injury were blocked by SLC7A11 knockdown. Discussion Based on these findings, targeting miR-16-5p could partially reverse the ADR-induced cardiotoxicity by rescuing the SLC7A11 to attenuate ferroptosis. This study presents a pre-clinical basis to identify miR-16-5p/SLC7A11 as a potential treatment target for ADR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yongquan Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yecheng Deng
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linghua Chen
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziyao Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yi Yan
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhaoqi Huang
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
117
|
Chen X, Tian C, Zhang Z, Qin Y, Meng R, Dai X, Zhong Y, Wei X, Zhang J, Shen C. Astragaloside IV Inhibits NLRP3 Inflammasome-Mediated Pyroptosis via Activation of Nrf-2/HO-1 Signaling Pathway and Protects against Doxorubicin-Induced Cardiac Dysfunction. FRONT BIOSCI-LANDMRK 2023; 28:45. [PMID: 37005753 DOI: 10.31083/j.fbl2803045] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 03/06/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is an effective broad-spectrum antitumor drug, but its clinical application is limited due to the side effects of cardiac damage. Astragaloside IV (AS-IV) is a significant active component of Astragalus membranaceus that exerts cardioprotective effects through various pathways. However, whether AS-IV exerts protective effects against DOX-induced myocardial injury by regulating the pyroptosis is still unknown and is investigated in this study. METHODS The myocardial injury model was constructed by intraperitoneal injection of DOX, and AS-IV was administered via oral gavage to explore its specific protective mechanism. Cardiac function and cardiac injury indicators, including lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzyme (CK-MB), and brain natriuretic peptide (BNP), and histopathology of the cardiomyocytes were assessed 4 weeks post DOX challenge. Serum levels of IL-1β, IL-18, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) and the expression of pyroptosis and signaling proteins were also determined. RESULTS Cardiac dysfunction was observed after the DOX challenge, as evidenced by reduced ejection fraction, increased myocardial fibrosis, and increased BNP, LDH, cTnI, and CK-MB levels (p < 0.05, N = 3-10). AS-IV attenuated DOX-induced myocardial injury. The mitochondrial morphology and structure were also significantly damaged after DOX treatment, and these changes were restored after AS-IV treatment. DOX induced an increase in the serum levels of IL-1β, IL-18, SOD, MDA and GSH as well as an increase in the expression of pyroptosis-related proteins (p < 0.05, N = 3-6). Besides, AS-IV depressed myocardial inflammatory-related pyroptosis via activation of the expressions of nuclear factor E2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1) (p < 0.05, N = 3). CONCLUSIONS Our results showed that AS-IV had a significant protective effect against DOX-induced myocardial injury, which may be associated with the activation of Nrf-2/HO-1 to inhibit pyroptosis.
Collapse
Affiliation(s)
- Xueheng Chen
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Chao Tian
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Zhiqiang Zhang
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Yiran Qin
- Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong, China
| | - Runqi Meng
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Xuening Dai
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Yuanyuan Zhong
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Xiqing Wei
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Jinguo Zhang
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| | - Cheng Shen
- Affiliated Hospital of Jining Medical University, Clinical Medical College, Jining Medical University, 272000 Jining, Shandong, China
- Jining Key Laboratory for Diagnosis and Treatment of Cardiovascular Diseases, 272000 Jining, Shandong, China
| |
Collapse
|
118
|
Baruch R, Zahler D, Zornitzki L, Arbel Y, Rozenbaum Z, Arnold JH, Raphael A, Khoury S, Banai S, Topilsky Y, Kapusta L, Laufer-Perl M. High neutrophil-to-lymphocyte ratio as an early sign of cardiotoxicity in breast cancer patients treated with anthracycline. Clin Cardiol 2023; 46:328-335. [PMID: 36660883 PMCID: PMC10018102 DOI: 10.1002/clc.23966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cardiotoxicity, defined mainly as left ventricle (LV) dysfunction, is a significant side effect of anthracyclines (ANT) therapy. The need for an early simple marker to identify patients at risk is crucial. A high neutrophil-to-lymphocyte ratio (NLR) has been associated with poor prognosis in cancer patients; however, its role as a predictor for cardiotoxicity development is unknown. OBJECTIVE Evaluating whether elevated NLR, during ANT exposure, plays a predictive role in the development of cardiotoxicity as defined by LV global longitudinal strain (LV GLS) relative reduction (≥10%). METHODS AND RESULTS Data were prospectively collected as part of the Israel Cardio-Oncology Registry. A total of 74 female patients with breast cancer, scheduled for ANT therapy were included. NLR levels were assessed at baseline (T1) and during ANT therapy (T2). All patients underwent serial echocardiography at baseline (T1) and after the completion of ANT therapy (T3). NLR ≥ 2.58 at T2 was found to be the optimal predictive cutoff for LV GLS deterioration. A relative LV GLS reduction ≥10% was significantly more common among patients with high NLR (50% vs. 20%, p = .009). NLR ≥ 2.58 at T2 increases the risk for LV GLS reduction by fourfold (odds ratio [OR]: 4.63, 95% confidence interval [CI]: 1.29-16.5, p = .02), with each increase of 1-point NLR adding an additional 15% risk (OR: 1.15, 95% CI: 1.01-1.32, p = .046). CONCLUSIONS Our study provides novel data that high NLR levels, during ANT exposure, have an independent association with the development of LV dysfunction. Routine surveillance of NLR may be an effective means of risk-stratifying.
Collapse
Affiliation(s)
- Ranny Baruch
- The B. Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - David Zahler
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Zornitzki
- Department of Internal Medicine B, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Arbel
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zach Rozenbaum
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joshua H Arnold
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ari Raphael
- Oncology Department, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shafik Khoury
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Banai
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yan Topilsky
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Livia Kapusta
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Cardiology Unit, Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michal Laufer-Perl
- Department of Cardiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
119
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
120
|
Méndez-Valdés G, Gómez-Hevia F, Bragato MC, Lillo-Moya J, Rojas-Solé C, Saso L, Rodrigo R. Antioxidant Protection against Trastuzumab Cardiotoxicity in Breast Cancer Therapy. Antioxidants (Basel) 2023; 12:antiox12020457. [PMID: 36830015 PMCID: PMC9952697 DOI: 10.3390/antiox12020457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Breast cancer is the most frequent malignant neoplastic disease in women, with an estimated 2.3 million cases in 2020 worldwide. Its treatment depends on characteristics of the patient and the tumor. In the latter, characteristics include cell type and morphology, anatomical location, and immunophenotype. Concerning this latter aspect, the overexpression of the HER2 receptor, expressed in 15-25% of tumors, is associated with greater aggressiveness and worse prognosis. In recent times some monoclonal antibodies have been developed in order to target HER2 receptor overexpression. Trastuzumab is part of the monoclonal antibodies used as targeted therapy against HER2 receptor, whose major problem is its cardiac safety profile, where it has been associated with cardiotoxicity. The appearance of cardiotoxicity is an indication to stop therapy. Although the pathophysiological mechanism is poorly known, evidence indicates that oxidative stress plays a fundamental role causing DNA damage, increased cytosolic and mitochondrial ROS production, changes in mitochondrial membrane potential, intracellular calcium dysregulation, and the consequent cell death through different pathways. The aim of this review was to explore the use of antioxidants as adjuvant therapy to trastuzumab to prevent its cardiac toxicity, thus leading to ameliorate its safety profile in its administration.
Collapse
Affiliation(s)
- Gabriel Méndez-Valdés
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisca Gómez-Hevia
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | | | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
- Correspondence: ; Tel.: +56-229786126
| |
Collapse
|
121
|
Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. Rab10 protects against DOX-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett 2023; 373:84-93. [PMID: 36309171 DOI: 10.1016/j.toxlet.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug, but its clinical application is limited by cardiotoxicity. As a member of the Rab family, Rab10 has multiple subcellular localizations and carries out a wide variety of functions. Here, we explored the role of Rab10 on DOX-induced cardiotoxicity. Cardiac-specific Rab10 transgenic mice were constructed and treated with DOX or saline. We found that cardiac-specific overexpression of Rab10 alleviated cardiac dysfunction and attenuated cytoplasmic vacuolization and mitochondrial damage in DOX-treated mouse heart tissues. Immunofluorescence staining and Western blot analysis showed that Rab10 alleviated DOX-induced apoptosis and oxidative stress in cardiomyocytes in mouse heart tissues. We demonstrated that DOX mediated apoptosis, oxidative stress and depolarization of the mitochondrial membrane potential in H9c2 cells, while overexpression and knockdown of Rab10 attenuated and aggravated these effects, respectively. Furthermore, we found that Mst1, a serine-threonine kinase, was cleaved and translocated into the nucleus in H9c2 cells after DOX treatment, and knockdown of Mst1 alleviated DOX-induced cardiomyocyte apoptosis. Overexpression of Rab10 inhibited the cleavage of Mst1 mediated by DOX treatment in vivo and in vitro. Together, our findings demonstrated that cardiac-specific overexpression of Rab10 alleviated DOX-induced cardiac dysfunction and injury via inhibiting oxidative stress and apoptosis of cardiomyocytes, which may be partially ascribed to the inhibition of Mst1 activity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Song Lai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Liping Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
122
|
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8373406. [PMID: 36942197 PMCID: PMC10024631 DOI: 10.1155/2023/8373406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/14/2023] [Accepted: 02/08/2023] [Indexed: 03/13/2023]
Abstract
The present study determines the possible protective role of fig fruit extract with olive oil and date palm fruit extract (FOD) in decreasing the oral subchronic blood and cardiovascular toxicity of SiO2NPs, Al2O3NPs, or ZnONPs. The present study used 80 male Wistar rats (8 groups, n = 10) distributed according to the treatment. The FOD treatments were used at their recommended antioxidant doses. All nanoparticles (NPs) were given orally and daily at doses of 100 mg/kg for 75 days. The oral administration of different NPs alone led to dramatic, oxidative stress, inflammatory markers, blood coagulation, endothelial dysfunction markers, myocardial enzymes, hematological parameters, lipid profile, and histopathological features compared with the control group. The FOD-NP-treated groups recorded significantly ameliorated blood and cardiovascular toxicity hazards compared to the groups administered with the NPs alone. In conclusion, the administration of FOD provides considerable chemopreventive and ameliorative effects against NP toxicity.
Collapse
Affiliation(s)
- Riyadh Musaed Naji
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
- 2Department of Zoology, Faculty of Science and Education, Aden University, Yemen
| | - Mohamed A. Bashandy
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Abdallah H. Fathy
- 3Department of Animal House Facility, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
123
|
Bhadana R, Rani V. A Patent Review on Cardiotoxicity of Anticancerous Drugs. Cardiovasc Hematol Agents Med Chem 2023; 22:28-39. [PMID: 36683367 DOI: 10.2174/1871525721666230120155734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023]
Abstract
Chemotherapy-induced cardiotoxicity is an increasing concern and it is critical to avoid heart dysfunction induced by medications used in various cancers. Dysregulated cardiomyocyte homeostasis is a critical phenomenon of drug-induced cardiotoxicity, which hinders the cardiac tissue's natural physiological function. Drug-induced cardiotoxicity is responsible for various heart disorders such as myocardial infarction, myocardial hypertrophy, and arrhythmia, among others. Chronic cardiac stress due to drug toxicity restricts the usage of cancer medications. Anticancer medications can cause a variety of adverse effects, especially cardiovascular toxicity. This review is focused on anticancerous drugs anthracyclines, trastuzumab, nonsteroidal anti-inflammatory medications (NSAIDs), and immune checkpoint inhibitors (ICI) and associated pathways attributed to the drug-induced cardiotoxicity. Several factors responsible for enhanced cardiotoxicity are age, gender specificity, diseased conditions, and therapy are also discussed. The review also highlighted the patents assigned for different methodologies involved in the assessment and reducing cardiotoxicity. Recent advancements where the usage of trastuzumab and bevacizumab have caused cardiac dysfunction and their effects alone or in combination on cardiac cells are explained. Extensive research on patents associated with protection against cardiotoxicity has shown that chemicals like bis(dioxopiperazine)s and manganese compounds were cardioprotective when combined with other selected anticancerous drugs. Numerous patents are associated with druginduced toxicity, prevention, and diagnosis, that may aid in understanding the current issues and developing novel therapies with safer cardiovascular outcomes. Also, the advancements in technology and research going on are yet to be explored to overcome the present issue of cardiotoxicity with the development of new drug formulations.
Collapse
Affiliation(s)
- Renu Bhadana
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida 201307, Uttar Pradesh, India
| |
Collapse
|
124
|
Pharmacological Activation of Rev-erb α Attenuates Doxorubicin-Induced Cardiotoxicity by PGC-1 α Signaling Pathway. Cardiovasc Ther 2023; 2023:2108584. [PMID: 36874248 PMCID: PMC9977526 DOI: 10.1155/2023/2108584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Background Doxorubicin-induced cardiotoxicity has been closely concerned in clinical practice. Rev-erbα is a transcriptional repressor that emerges as a drug target for heart diseases recently. This study is aimed at investigating the role and mechanism of Rev-erbα in doxorubicin-induced cardiotoxicity. Methods H9c2 cells were treated with 1.5 μM doxorubicin, and C57BL/6 mice were treated with a 20 mg/kg cumulative dose of doxorubicin to construct doxorubicin-induced cardiotoxicity models in vitro and in vivo. Agonist SR9009 was used to activate Rev-erbα. PGC-1α expression level was downregulated by specific siRNA in H9c2 cells. Cell apoptosis, cardiomyocyte morphology, mitochondrial function, oxidative stress, and signaling pathways were measured. Results SR9009 alleviated doxorubicin-induced cell apoptosis, morphological disorder, mitochondrial dysfunction, and oxidative stress in H9c2 cells and C57BL/6 mice. Meanwhile, PGC-1α and downstream signaling NRF1, TAFM, and UCP2 expression levels were preserved by SR9009 in doxorubicin-treated cardiomyocytes in vitro and in vivo. When downregulating PGC-1α expression level by specific siRNA, the protective role of SR9009 in doxorubicin-treated cardiomyocytes was attenuated with increased cell apoptosis, mitochondrial dysfunction, and oxidative stress. Conclusion Pharmacological activation of Rev-erbα by SR9009 could attenuate doxorubicin-induced cardiotoxicity through preservation of mitochondrial function and alleviation of apoptosis and oxidative stress. The mechanism is associated with the activation of PGC-1α signaling pathways, suggesting that PGC-1α signaling is a mechanism for the protective effect of Rev-erbα against doxorubicin-induced cardiotoxicity.
Collapse
|
125
|
Lee MS, Tsai WT, Yang HJ, Hung SK, Chiou WY, Liu DW, Chen LC, Chew CH, Yu BH, Hsu FC, Wu TH, Lin HY. Hazard-based risk grouping effectively stratifying breast cancer patients in post-irradiation long-term heart diseases: a population-based cohort study. Front Cardiovasc Med 2023; 10:980101. [PMID: 37180774 PMCID: PMC10172475 DOI: 10.3389/fcvm.2023.980101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background Even though advanced radiotherapy techniques provide a better protective effect on surrounding normal tissues, the late sequelae from radiation exposure to the heart are still considerable in breast cancer patients. The present population-based study explored the role of cox-regression-based hazard risk grouping and intended to stratify patients with post-irradiation long-term heart diseases. Materials and methods The present study investigated the Taiwan National Health Insurance (TNHI) database. From 2000 to 2017, we identified 158,798 breast cancer patients. Using a propensity score match of 1:1, we included 21,123 patients in each left and right breast irradiation cohort. Heart diseases, including heart failure (HF), ischemic heart disease (IHD), and other heart diseases (OHD), and anticancer agents, including epirubicin, doxorubicin, and trastuzumab, were included for analysis. Results Patients received left breast irradiation demonstrated increased risks on IHD (aHR, 1.16; 95% CI, 1.06-1.26; p < 0.01) and OHD (aHR, 1.08; 95% CI, 1.01-1.15; p < 0.05), but not HF (aHR, 1.11; 95% CI, 0.96-1.28; p = 0.14), when compared with patients received right breast irradiation. In patients who received left breast irradiation dose of >6,040 cGy, subsequent epirubicin might have a trend to increase the risk of heart failure (aHR, 1.53; 95% CI, 0.98-2.39; p = 0.058), while doxorubicin (aHR, 0.59; 95% CI, 0.26-1.32; p = 0.19) and trastuzumab (aHR, 0.93; 95% CI, 0.33-2.62; p = 0.89) did not. Older age was the highest independent risk factor for post-irradiation long-term heart diseases. Conclusion Generally, systemic anticancer agents are safe in conjunction with radiotherapy for managing post-operative breast cancer patients. Hazard-based risk grouping may help stratify breast cancer patients associated with post-irradiation long-term heart diseases. Notably, radiotherapy should be performed cautiously for elderly left breast cancer patients who received epirubicin. Limited irradiation dose to the heart should be critically considered. Regular monitoring of potential signs of heart failure may be conducted.
Collapse
Affiliation(s)
- Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Ta Tsai
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsuan-Ju Yang
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Dai-Wei Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Departments of Radiation Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Computer Science and Information Engineering, National Cheng Kung University, Chiayi, Taiwan
| | - Chia-Hui Chew
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ben-Hui Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Correspondence: Tung-Hsin Wu Hon-Yi Lin
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi, Taiwan
- Correspondence: Tung-Hsin Wu Hon-Yi Lin
| |
Collapse
|
126
|
Attar A, Behnagh AK, Hosseini M, Amanollahi F, Shafiekhani P, Kabir A. Beta-Blockers for Primary Prevention of Anthracycline-Induced Cardiac Toxicity: An Updated Meta-Analysis of Randomized Clinical Trials. Cardiovasc Ther 2022; 2022:8367444. [PMID: 36687509 PMCID: PMC9818032 DOI: 10.1155/2022/8367444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/31/2022] Open
Abstract
AIM Cardiotoxicity is a well-recognized complication of chemotherapy with Anthracyclines. However, results from trials evaluating beta-blockers for prevention are controversial. Therefore, we performed a meta-analysis to find whether prophylactic administration of beta-blockers can help prevent Anthracyclines-induced cardiotoxicity. METHODS We assessed randomized trials and observational studies where a prophylactic intervention was compared with a control arm in patients with a normal left ventricular ejection fraction (LVEF) receiving Anthracyclines. The primary outcome was EF reduction. The secondary outcome was the development of Cancer Therapeutics-Related Cardiac Dysfunction (CTRCD), defined as a decrease in the LVEF of >10% to a value of <53%. RESULTS We included 17 trials comprising 1291 patients (671 patients in the intervention arm and 620 in the control arm). Carvedilol was administered in eight studies, and others used bisoprolol, metoprolol, or nebivolol. Compared with baseline, LVEF reduced in both intervention and control groups after chemotherapy (MD = -1.93%, 95% CI: -2.94, -0.92, p = 0.001, I2 = 72.1% vs. MD = -4.78%, 95% CI: -6.51, -3.04, p = 0.001, I 2 = 91.6%, respectively). LVEF was less reduced among the beta-blocker receivers (MD = 3.44%, 95% CI: 1.41-5.46, p = 0.001, I2 = 94.0%). Among the eight studies reporting the incidence of CTRCD, 45 out of 370 participants in the intervention arm and 54 out of 341 in the control arm were reported to experience this complication (RR = 0.76; 95% CI: 0.53,1.09; I 2 = 24.4%; p = 0.235). CONCLUSION Treatment with beta-blockers prevents dilatation of the left ventricle, development of diastolic dysfunction, and reduction of LVEF. However, these hemodynamic effects do not translate into a significant reduction in CTRCD incidence and prevention of hospitalization for heart failure or cardiac death.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arman Karimi Behnagh
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrasa Hosseini
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Foad Amanollahi
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Shafiekhani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
127
|
Metformin Alleviates Epirubicin-Induced Endothelial Impairment by Restoring Mitochondrial Homeostasis. Int J Mol Sci 2022; 24:ijms24010343. [PMID: 36613786 PMCID: PMC9820471 DOI: 10.3390/ijms24010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular endothelial injury is important in anthracycline-induced cardiotoxicity. Anthracyclines seriously damage the mitochondrial function and mitochondrial homeostasis. In this study, we investigated the damage of epirubicin to vascular endothelial cells and the protective role of metformin from the perspective of mitochondrial homeostasis. We found that epirubicin treatment resulted in DNA double-strand breaks (DSB), elevated reactive oxygen species (ROS) production, and excessive Angiotensin II release in HUVEC cells. Pretreatment with metformin significantly mitigated the injuries caused by epirubicin. In addition, inhibited expression of Mitochondrial transcription factor A (TFAM) and increased mitochondria fragmentation were observed in epirubicin-treated cells, which were partially resumed by metformin pretreatment. In epirubicin-treated cells, knockdown of TFAM counteracted the attenuated DSB formation due to metformin pretreatment, and inhibition of mitochondrial fragmentation with Mdivi-1 decreased DSB formation but increased TFAM expression. Furthermore, epirubicin treatment promoted mitochondrial fragmentation by stimulating the expression of Dynamin-1-like protein (DRP1) and inhibiting the expression of Optic atrophy-1(OPA1) and Mitofusin 1(MFN1), which could be partially prevented by metformin. Finally, we found metformin could increase TFAM expression and decrease DRP1 expression in epirubicin-treated HUVEC cells by upregulating the expression of calcineurin/Transcription factor EB (TFEB). Taken together, this study provided evidence that metformin treatment was an effective way to mitigate epirubicin-induced endothelial impairment by maintaining mitochondrial homeostasis.
Collapse
|
128
|
Liu J, Lane S, Lall R, Russo M, Farrell L, Debreli Coskun M, Curtin C, Araujo-Gutierrez R, Scherrer-Crosbie M, Trachtenberg BH, Kim J, Tolosano E, Ghigo A, Gerszten RE, Asnani A. Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice. SCIENCE ADVANCES 2022; 8:eadc9245. [PMID: 36563141 PMCID: PMC9788780 DOI: 10.1126/sciadv.adc9245] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Anthracyclines such as doxorubicin (Dox) are effective chemotherapies, but their use is limited by cardiac toxicity. We hypothesized that plasma proteomics in women with breast cancer could identify new mechanisms of anthracycline cardiac toxicity. We measured changes in 1317 proteins in anthracycline-treated patients (n = 30) and replicated key findings in a second cohort (n = 31). An increase in the heme-binding protein hemopexin (Hpx) 3 months after anthracycline initiation was associated with cardiac toxicity by echocardiography. To assess the functional role of Hpx, we administered Hpx to wild-type (WT) mice treated with Dox and observed improved cardiac function. Conversely, Hpx-/- mice demonstrated increased Dox cardiac toxicity compared to WT mice. Initial mechanistic studies indicate that Hpx is likely transported to the heart by circulating monocytes/macrophages and that Hpx may mitigate Dox-induced ferroptosis to confer cardioprotection. Together, these observations suggest that Hpx induction represents a compensatory response during Dox treatment.
Collapse
Affiliation(s)
- Jing Liu
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Lane
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rahul Lall
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michele Russo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Laurie Farrell
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Melis Debreli Coskun
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Casie Curtin
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Raquel Araujo-Gutierrez
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Marielle Scherrer-Crosbie
- Division of Cardiovascular Diseases, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry H. Trachtenberg
- Division of Advanced Heart Failure and Transplantation, Houston Methodist Heart and Vascular Center, Houston, TX, USA
| | - Jonghan Kim
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, "Guido Tarone," University of Torino, Torino, Italy
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
129
|
Liu W, Li W, Li H, Li Z, Zhao P, Guo Z, Liu C, Sun L, Wang Z. Two-dimensional speckle tracking echocardiography help identify breast cancer therapeutics–related cardiac dysfunction. BMC Cardiovasc Disord 2022; 22:548. [DOI: 10.1186/s12872-022-03007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Cancer therapeutics–related cardiac dysfunction (CTRCD) from different chemotherapy strategies are underdetermined by echocardiography. As an imaging marker of subclinical cardiac dysfunction, two-dimensional speckle tracking echocardiography (2D-STE) may assist in identifying the impact patterns of different CTRCD.
Methods
A total of 67 consecutive patients with invasive ductal breast carcinoma who will undertake neoadjuvant chemotherapy were enrolled and grouped according to their different chemotherapy regimens based on their biopsy results. Group A included 34 patients who received anthracycline without trastuzumab, whereas Group B had 33 patients who received trastuzumab without anthracycline. Echocardiography was performed at three time-points, i.e., baseline (T0), cycle-2 (T2), and cycle-4 (T4) of chemotherapy. Conventional echocardiographic measurements and 2D-STE strain values, and myocardial work (MW) parameters, were compared between different groups at different time-points.
Results
The mean age had no statistical difference between the two groups. E/e′ was the only conventional echocardiographic parameter that had variation in group A (P < 0.05). Compared with baseline, GLS in group A decreased at T2, and GCS decreased at T4 (P < 0.05). GLS and GCS in group B both decreased at T4 (P < 0.05). More patients in group A had a more than 15% fall of baseline GLS rather than GCS at T2 (P < 0.05), however, there was no difference of either GLS or GCS decline rate at T4 between the two groups. All the MW parameters in group A had variations overtime, whereas only GCW in group B (P < 0.05).
Conclusion
Early subclinical myocardial dysfunction can be identified by 2D-STE in breast cancer patients with chemotherapy, and GLS provides profound value in demonstrating the temporal changes in early myocardial damage induced by anthracycline. LV contractility injury in patients with trastuzumab may be mild at first but increases in severity with exposure time as early as cycle-4. Awareness of these differences may help to stratify the prevention of late cardiovascular events caused by different CTRCDs. In addition, GCW may be the most sensitive myocardial work parameter of CTRCD.
Collapse
|
130
|
Nemoto H, Umemura M, Suzuki F, Nagasako A, Nagao K, Hidaka Y, Nakakaji R, Uchida K, Suzuki S, Masuda M, Ishikawa Y. Store-operated calcium entry via ORAI1 regulates doxorubicin-induced apoptosis and prevents cardiotoxicity in cardiac fibroblasts. PLoS One 2022; 17:e0278613. [PMID: 36472998 PMCID: PMC9725120 DOI: 10.1371/journal.pone.0278613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Despite exhibiting cardiotoxicity, doxorubicin (DOX) is widely used for cancer treatments. Cardiac fibroblasts (CFs) are important in the pathogenesis of heart failure. This necessitates the study of the effect of DOX on CFs. The impairment of calcium (Ca2+) homeostasis is a common mechanism of heart failure. Store-operated Ca2+ entry (SOCE) is a receptor-regulated Ca2⁺ entry pathway that maintains calcium balance by sensing reduced calcium stores in the endoplasmic reticulum. ORAI1, a calcium channel protein and the most important component of SOCE, is highly expressed in human cardiac fibroblasts (HCFs). It is upregulated in CFs from failing ventricles. However, whether ORAI1 in HCFs is increased and/or plays a role in DOX-induced cardiotoxicity remains unknown. In this study, we aimed to elucidate the relationship between ORAI1/SOCE and DOX-induced heart failure. Induction of apoptosis by DOX was characterized in HCFs. Apoptosis and cell cycle analyses were performed by fluorescence-activated cell sorting (FACS). Reactive oxygen species (ROS) production was measured using fluorescence. YM-58483 was used as an ORAI1/SOCE inhibitor. ORAI1-knockdown cells were established by RNA interference. In vivo experiments were performed by intraperitoneally injecting YM-58483 and DOX into mice. We first demonstrated that DOX significantly increased the protein expression level of p53 in HCFs by western blotting. FACS analysis revealed that DOX increased early apoptosis and induced cell cycle arrest in the G2 phase in fibroblasts. DOX also increased ROS production. DOX significantly increased the expression level of ORAI1 in CFs. Both YM-58483 and ORAI1 gene knockdown attenuated DOX-induced apoptosis. Similarly, YM-58483 attenuated cell cycle arrest in the G2 phase, and ORAI1 knockdown attenuated DOX-induced ROS production in HCFs. In the animal experiment, YM-58483 attenuated DOX-induced apoptosis. In HCFs, ORAI1/SOCE regulates p53 expression and plays an important role in DOX-induced cardiotoxicity. ORAI1 may serve as a new target for preventing DOX-induced heart failure.
Collapse
Affiliation(s)
- Hiroko Nemoto
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| | - Fumina Suzuki
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Akane Nagasako
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kagemichi Nagao
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Rina Nakakaji
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Keiji Uchida
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shinichi Suzuki
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Munetaka Masuda
- Department of Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
- * E-mail: (MU); (YI)
| |
Collapse
|
131
|
Gab1 Overexpression Alleviates Doxorubicin-Induced Cardiac Oxidative Stress, Inflammation, and Apoptosis Through PI3K/Akt Signaling Pathway. J Cardiovasc Pharmacol 2022; 80:804-812. [PMID: 35856909 DOI: 10.1097/fjc.0000000000001333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Grb2-associated binding protein 1 (Gab1), an intracellular scaffolding adaptor, was involved in several cardiovascular diseases. However, the role of Gab1 in doxorubicin (DOX)-induced cardiotoxicity remains largely unknown. The present study investigated whether Gab1 protected against DOX-induced cardiotoxicity and the underlying mechanism. We overexpressed Gab1 in the hearts using an adeno-associated virus 9 system through tail vein injection. C57BL/6 mice were subjected to DOX (15 mg/kg/d, i.p.) to generate DOX-induced cardiotoxicity. Echocardiography, histological analysis, immunofluorescence and enzyme-linked immunosorbent assay (ELISA) kits, Western blotting, and quantitative real-time polymerase chain reaction (PCR) evaluated DOX-induced cardiotoxicity and the underlying mechanisms. Myocardial Gab1 protein and messenger RNA (mRNA) levels were markedly decreased in DOX-administered mice. Overexpression of Gab1 in myocardium significantly improved cardiac function and attenuated cardiac oxidative stress, inflammatory response, and apoptosis induced by DOX. Mechanistically, we found that PI3K/Akt signaling pathway was downregulated after DOX treatment, and Gab1 overexpression activated PI3K/Akt signaling pathway, whereas PI3K/Akt signaling pathway inhibition abolished the beneficial effect of Gab1 overexpression in the heart. Collectively, our results indicated that Gab1 is essential for cardioprotection against DOX-induced oxidative stress, inflammatory response, and apoptosis by mediating PI3K/Akt signaling pathway. And cardiac gene therapy with Gab1 provides a novel therapeutic strategy against DOX-induced cardiotoxicity.
Collapse
|
132
|
Podyacheva E, Shmakova T, Kushnareva E, Onopchenko A, Martynov M, Andreeva D, Toropov R, Cheburkin Y, Levchuk K, Goldaeva A, Toropova Y. Modeling Doxorubicin-Induced Cardiomyopathy With Fibrotic Myocardial Damage in Wistar Rats. Cardiol Res 2022; 13:339-356. [PMID: 36660062 PMCID: PMC9822674 DOI: 10.14740/cr1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Cardiovascular complications, arising after anthracycline chemotherapy, cause a significant deterioration in the life quality and expectancy of those patients who were previously successfully treated for malignant neoplasms. A number of clinical studies have demonstrated that patients with cardiotoxicity manifested during anthracyclines therapy also have extensive fibrotic changes in the cardiac muscle in the long term. Given the lack of an unambiguous understanding of the mechanisms of fibrotic changes formation under doxorubicin treatment in the myocardium, there is the obvious necessity to create a relevant experimental model of chronic doxorubicin-induced cardiomyopathy with fibrotic myocardial lesions and delayed development of diastolic dysfunction. Methods The study was divided into two stages: first stage (creation of acute doxorubicin cardiomyopathy) - 35 male Wistar rats; second stage (creation of chronic doxorubicin cardiomyopathy) - 40 male Wistar rats. The animals were split into eight groups (two control ones and six experimental ones), which determined the doxorubicin dose (first stage: 25, 20.4, 15 mg/kg; second stage: 5, 10, 15 mg/kg, intraperitoneally) and the frequency of injection. Echocardiographic, hematological, histological, and molecular methods were used to confirm the successful modeling of acute and chronic doxorubicin-induced cardiomyopathy with fibrotic lesions. Results A model of administration six times every other day with a cumulative dose of doxorubicin 20 mg/kg is suitable for evaluation of acute cardiotoxicity. The 15 mg/kg doxorubicin dose is highly cardiotoxic; what's more, it correlates with progressive deterioration of the clinical condition of the animals after 2 months. The optimal cumulative dose of doxorubicin leads to clinical manifestations confirmed by echocardiographic, histological, molecular changes associated with the development of chronic doxorubicin-induced cardiomyopathy with fibrotic lesions of the left ventricular of the cardiac muscle and ensure long-term survival of animals is 10 mg/kg doxorubicin. A dose of 5 mg/kg of the doxorubicin does not ensure the development of fibrous changes formation. Conclusion We assume that cumulative dose of 10 mg/kg with a frequency of administration of six times in 2 days can be used to study the mechanisms of anthracycline cardiomyopathy development.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation,Corresponding Author: Ekaterina Podyacheva, Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation.
| | - Tatiana Shmakova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ekaterina Kushnareva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Anatoliya Onopchenko
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Mikhail Martynov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Daria Andreeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Roman Toropov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yuri Cheburkin
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Ksenia Levchuk
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Alexandra Goldaeva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341, Saint-Petersburg, Russian Federation
| |
Collapse
|
133
|
Podyacheva E, Toropova Y. SIRT1 activation and its effect on intercalated disc proteins as a way to reduce doxorubicin cardiotoxicity. Front Pharmacol 2022; 13:1035387. [PMID: 36408244 PMCID: PMC9672938 DOI: 10.3389/fphar.2022.1035387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
According to the World Health Organization, the neoplasm is one of the main reasons for morbidity and mortality worldwide. At the same time, application of cytostatic drugs like an independent type of cancer treatment and in combination with surgical methods, is often associated with the development of cardiovascular complications both in the early and in the delayed period of treatment. Doxorubicin (DOX) is the most commonly used cytotoxic anthracycline antibiotic. DOX can cause both acute and delayed side effects. The problem is still not solved, as evidenced by the continued activity of researchers in terms of developing approaches for the prevention and treatment of cardiovascular complications. It is known, the heart muscle consists of cardiomyocytes connected by intercalated discs (ID), which ensure the structural, electrical, metabolic unity of the heart. Various defects in the ID proteins can lead to the development of cardiovascular diseases of various etiologies, including DOX-induced cardiomyopathy. The search for ways to influence the functioning of ID proteins of the cardiac muscle can become the basis for the creation of new therapeutic approaches to the treatment and prevention of cardiac pathologies. SIRT1 may be an interesting cardioprotective variant due to its wide functional significance. SIRT1 activation triggers nuclear transcription programs that increase the efficiency of cellular, mitochondrial metabolism, increases resistance to oxidative stress, and promotes cell survival. It can be assumed that SIRT1 can not only provide a protective effect at the cardiomyocytes level, leading to an improvement in mitochondrial and metabolic functions, reducing the effects of oxidative stress and inflammatory processes, but also have a protective effect on the functioning of IDs structures of the cardiac muscle.
Collapse
|
134
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 2022; 43:4229-4361. [PMID: 36017568 DOI: 10.1093/eurheartj/ehac244] [Citation(s) in RCA: 1262] [Impact Index Per Article: 420.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
135
|
Podyacheva E, Semenova N, Zinserling V, Mukhametdinova D, Goncharova I, Zelinskaya I, Sviridov E, Martynov M, Osipova S, Toropova Y. Intravenous Nicotinamide Riboside Administration Has a Cardioprotective Effect in Chronic Doxorubicin-Induced Cardiomyopathy. Int J Mol Sci 2022; 23:13096. [PMID: 36361882 PMCID: PMC9653852 DOI: 10.3390/ijms232113096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Doxorubicin, which is widely used to treat a broad spectrum of malignancies, has pronounced dose-dependent side effects leading to chronic heart failure development. Nicotinamide riboside (NR) is one of the promising candidates for leveling the cardiotoxic effect. In the present work, we performed a comparative study of the cardioprotective and therapeutic actions of various intravenous NR administration modes in chronic doxorubicin-induced cardiomyopathy in Wistar rats. The study used 60 mature male SPF Wistar rats. The animals were randomized into four groups (a control group and three experimental groups) which determined the doxorubicin (intraperitoneally) and NR (intravenous) doses as well as the specific modes of NR administration (combined, preventive). We demonstrated the protective effect of NR on the cardiovascular system both with combined and preventive intravenous drug administration, which was reflected in a fibrous tissue formation decrease, reduced fractional-shortening decrease, and better antioxidant system performance. At the same time, it is important to note that the preventive administration of NR had a more significant protective effect on the animal organism as a whole. This was confirmed by better physical activity parameters and vascular bed conditions. Thus, the data obtained during the study can be used for further investigation into chronic doxorubicin-induced cardiomyopathy prevention and treatment approaches.
Collapse
Affiliation(s)
- Ekaterina Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Natalia Semenova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Vsevolod Zinserling
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Daria Mukhametdinova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Irina Goncharova
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 194021 Saint-Petersburg, Russia
| | - Irina Zelinskaya
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Eric Sviridov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Michael Martynov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Svetlana Osipova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia
| |
Collapse
|
136
|
Cao X, Du X, Jiao H, An Q, Chen R, Fang P, Wang J, Yu B. Carbohydrate-based drugs launched during 2000 -2021. Acta Pharm Sin B 2022; 12:3783-3821. [PMID: 36213536 PMCID: PMC9532563 DOI: 10.1016/j.apsb.2022.05.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Carbohydrates are fundamental molecules involved in nearly all aspects of lives, such as being involved in formating the genetic and energy materials, supporting the structure of organisms, constituting invasion and host defense systems, and forming antibiotics secondary metabolites. The naturally occurring carbohydrates and their derivatives have been extensively studied as therapeutic agents for the treatment of various diseases. During 2000 to 2021, totally 54 carbohydrate-based drugs which contain carbohydrate moities as the major structural units have been approved as drugs or diagnostic agents. Here we provide a comprehensive review on the chemical structures, activities, and clinical trial results of these carbohydrate-based drugs, which are categorized by their indications into antiviral drugs, antibacterial/antiparasitic drugs, anticancer drugs, antidiabetics drugs, cardiovascular drugs, nervous system drugs, and other agents.
Collapse
Affiliation(s)
- Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Xiaojing Du
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Heng Jiao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Quanlin An
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ruoxue Chen
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Pengfei Fang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Wang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
137
|
Li MJ, Sun WS, Yuan Y, Zhang YK, Lu Q, Gao YZ, Ye T, Xing DM. Breviscapine remodels myocardial glucose and lipid metabolism by regulating serotonin to alleviate doxorubicin-induced cardiotoxicity. Front Pharmacol 2022; 13:930835. [PMID: 36238546 PMCID: PMC9551275 DOI: 10.3389/fphar.2022.930835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
Aims: The broad-spectrum anticancer drug doxorubicin (Dox) is associated with a high incidence of cardiotoxicity, which severely affects the clinical application of the drug and patients’ quality of life. Here, we assess how Dox modulates myocardial energy and contractile function and this could aid the development of relevant protective drugs. Methods: Mice were subjected to doxorubicin and breviscapine treatment. Cardiac function was analyzed by echocardiography, and Dox-mediated signaling was assessed in isolated cardiomyocytes. The dual cardio-protective and anti-tumor actions of breviscapine were assessed in mouse breast tumor models. Results: We found that Dox disrupts myocardial energy metabolism by decreasing glucose uptake and increasing fatty acid oxidation, leading to a decrease in ATP production rate, an increase in oxygen consumption rate and oxidative stress, and further energy deficits to enhance myocardial fatty acid uptake and drive DIC development. Interestingly, breviscapine increases the efficiency of ATP production and restores myocardial energy homeostasis by modulating the serotonin-glucose-myocardial PI3K/AKT loop, increasing glucose utilization by the heart and reducing lipid oxidation. It enhances mitochondrial autophagy via the PINK1/Parkin pathway, eliminates damaged mitochondrial accumulation caused by Dox, reduces the degree of cardiac fibrosis and inflammation, and restores cardiac micro-environmental homeostasis. Importantly, its low inflammation levels reduce myeloid immunosuppressive cell infiltration, and this effect is synergistic with the anti-tumor effect of Dox. Conclusion: Our findings suggest that disruption of the cardiac metabolic network by Dox is an important driver of its cardiotoxicity and that serotonin is an important regulator of myocardial glucose and lipid metabolism. Myocardial energy homeostasis and timely clearance of damaged mitochondria synergistically contribute to the prevention of anthracycline-induced cardiotoxicity and improve the efficiency of tumor treatment.
Collapse
Affiliation(s)
- Meng-Jiao Li
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen-She Sun
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yang Yuan
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
| | - Yu-Kun Zhang
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qi Lu
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yuan-Zhen Gao
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Ye
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dong-Ming Xing
- Cancer Institute of the Affiliated Hospital of Qingdao University and Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Dong-Ming Xing,
| |
Collapse
|
138
|
Moro N, Dokshokova L, Perumal Vanaja I, Prando V, Cnudde SJA, Di Bona A, Bariani R, Schirone L, Bauce B, Angelini A, Sciarretta S, Ghigo A, Mongillo M, Zaglia T. Neurotoxic Effect of Doxorubicin Treatment on Cardiac Sympathetic Neurons. Int J Mol Sci 2022; 23:ijms231911098. [PMID: 36232393 PMCID: PMC9569551 DOI: 10.3390/ijms231911098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022] Open
Abstract
Doxorubicin (DOXO) remains amongst the most commonly used anti-cancer agents for the treatment of solid tumors, lymphomas, and leukemias. However, its clinical use is hampered by cardiotoxicity, characterized by heart failure and arrhythmias, which may require chemotherapy interruption, with devastating consequences on patient survival and quality of life. Although the adverse cardiac effects of DOXO are consolidated, the underlying mechanisms are still incompletely understood. It was previously shown that DOXO leads to proteotoxic cardiomyocyte (CM) death and myocardial fibrosis, both mechanisms leading to mechanical and electrical dysfunction. While several works focused on CMs as the culprits of DOXO-induced arrhythmias and heart failure, recent studies suggest that DOXO may also affect cardiac sympathetic neurons (cSNs), which would thus represent additional cells targeted in DOXO-cardiotoxicity. Confocal immunofluorescence and morphometric analyses revealed alterations in SN innervation density and topology in hearts from DOXO-treated mice, which was consistent with the reduced cardiotropic effect of adrenergic neurons in vivo. Ex vivo analyses suggested that DOXO-induced denervation may be linked to reduced neurotrophic input, which we have shown to rely on nerve growth factor, released from innervated CMs. Notably, similar alterations were observed in explanted hearts from DOXO-treated patients. Our data demonstrate that chemotherapy cardiotoxicity includes alterations in cardiac innervation, unveiling a previously unrecognized effect of DOXO on cardiac autonomic regulation, which is involved in both cardiac physiology and pathology, including heart failure and arrhythmias.
Collapse
Affiliation(s)
- Nicola Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Lolita Dokshokova
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Induja Perumal Vanaja
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Valentina Prando
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Sophie Julie A Cnudde
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Annalisa Angelini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza, University of Rome, 04100 Latina, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.M.); (T.Z.); Tel.: +39-0497923229 (M.M.); +39-0497923294 (T.Z.); Fax: +39-0497923250 (M.M.); +39-0497923250 (T.Z.)
| |
Collapse
|
139
|
Kong L, Zhang Y, Ning J, Xu C, Wang Z, Yang J, Yang L. CaMKII
orchestrates endoplasmic reticulum stress and apoptosis in doxorubicin‐induced cardiotoxicity by regulating the
IRE1α
/
XBP1s
pathway. J Cell Mol Med 2022; 26:5303-5314. [PMID: 36111515 PMCID: PMC9575131 DOI: 10.1111/jcmm.17560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lingheng Kong
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Yimeng Zhang
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Jiayi Ning
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
- Department of Cardiovascular Surgery General Hospital of Northern Theatre Command Shenyang China
| | - Zhenyi Wang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
| | - Lifang Yang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| |
Collapse
|
140
|
Stansfeld A, Radia U, Goggin C, Mahalingam P, Benson C, Napolitano A, Jones RL, Rosen SD, Karavasilis V. Pharmacological strategies to reduce anthracycline-associated cardiotoxicity in cancer patients. Expert Opin Pharmacother 2022; 23:1641-1650. [DOI: 10.1080/14656566.2022.2124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Anna Stansfeld
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Utsav Radia
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Caitriona Goggin
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Preethika Mahalingam
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Charlotte Benson
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Andrea Napolitano
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Robin L Jones
- Medical Oncology, The Royal Marsden Hospital NHS Foundation Trust and Institute of Cancer Research, UK
| | - Stuart D Rosen
- Cardiology, London North West University Healthcare NHS Trust and Royal Brompton Hospitals, UK
| | | |
Collapse
|
141
|
Understanding the Protective Role of Exosomes in Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2852251. [PMID: 36132225 PMCID: PMC9484956 DOI: 10.1155/2022/2852251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 12/06/2022]
Abstract
Doxorubicin (DOX) is a class of effective chemotherapeutic agents widely used in clinical practice. However, its use has been limited by cardiotoxicity. The mechanism of DOX-induced cardiotoxicity (DIC) is complex, involving oxidative stress, Ca2+ overload, inflammation, pyroptosis, ferroptosis, apoptosis, senescence, etc. Exosomes (EXOs), as extracellular vesicles (EVs), play an important role in the material exchange and signal transmission between cells by carrying components such as proteins and RNAs. More recently, there has been a growing number of publications focusing on the protective effect of EXOs on DIC. Here, this review summarized the main mechanisms of DIC, discussed the mechanism of EXOs in the treatment of DIC, and further explored the value of EXOs as diagnostic biomarkers and therapeutic strategies for DIC.
Collapse
|
142
|
Li W, Zhang Y, Wang X, Cao J, Qian W, Ling G, Tan N, Jiang J, Sun Q, Li C, Wang W, Wang Y. Qishen Granule Protects against Doxorubicin-Induced Cardiotoxicity by Coordinating MDM2-p53-Mediated Mitophagy and Mitochondrial Biogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4344677. [PMID: 36120600 PMCID: PMC9473341 DOI: 10.1155/2022/4344677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Doxorubicin (DOX), the anthracycline chemotherapeutic agent, is widely used for the treatment of various cancers. However, its clinical application is compromised by dose-dependent and fatal cardiotoxicity. This study is aimed at investigating the cardioprotective effects of Qishen granule (QSG) and the specific mechanism by which QSG alleviates DOX-induced cardiotoxicity (DIC) and providing an alternative for the treatment of DIC. We first evaluated the cardioprotective effects of QSG in a DIC mouse model, and the obtained results showed that QSG significantly protected against DOX-induced myocardial structural and functional damage, mitochondrial oxidative damage, and apoptosis. Subsequently, after a comprehensive understanding of the specific roles and recent developments of p53-mediated mitochondrial quality control mechanisms in DIC, we investigated whether QSG acted on MDM2 to regulate the activity of p53 and downstream mitophagy and mitochondrial biogenesis. The in vivo results showed that DOX inhibited mitochondrial biogenesis and blocked mitophagy in the mouse myocardium, while QSG reversed these effects. Mechanistically, we combined nutlin-3, which inhibits the binding of p53 and MDM2, with DOX and QSG and evaluated their influence on mitophagy and mitochondrial biogenesis in H9C2 cardiomyocytes. The obtained results showed that both DOX and nutlin-3 substantially inhibited mitophagy and mitochondrial biogenesis and induced mitochondrial oxidative damage and apoptosis, which could be partially recovered by QSG. Importantly, the immunoprecipitation results showed that QSG promoted the binding of MDM2 to p53, thus decreasing the level of p53 protein and the binding of p53 to Parkin. Collectively, QSG could promote the degradation of p53 by enhancing the binding of MDM2 to the p53 protein, resulting in the reduced binding of p53 to the Parkin protein, thus improving Parkin-mediated mitophagy. Increased degradation of p53 protein by QSG simultaneously enhanced mitochondrial biogenesis mediated by PGC-1α. Ultimately, QSG relieved DOX-induced mitochondrial oxidative damage and apoptosis by coordinating mitophagy and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weina Qian
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712000, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| |
Collapse
|
143
|
Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, Boriani G, Cardinale D, Cordoba R, Cosyns B, Cutter DJ, de Azambuja E, de Boer RA, Dent SF, Farmakis D, Gevaert SA, Gorog DA, Herrmann J, Lenihan D, Moslehi J, Moura B, Salinger SS, Stephens R, Suter TM, Szmit S, Tamargo J, Thavendiranathan P, Tocchetti CG, van der Meer P, van der Pal HJH. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging 2022; 23:e333-e465. [PMID: 36017575 DOI: 10.1093/ehjci/jeac106] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
144
|
Huang C, Ding Z, Li H, Zhou Z, Yu M. A novel nomogram for predicting long-term heart-disease specific survival among older female primary breast cancer patients that underwent chemotherapy: A real-world data retrospective cohort study. Front Public Health 2022; 10:964609. [PMID: 36091523 PMCID: PMC9449644 DOI: 10.3389/fpubh.2022.964609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023] Open
Abstract
Background The past decade has witnessed an improvement in survival rates for breast cancer, with significant inroads achieved in diagnosis and treatment approaches. Even though chemotherapy is effective for this patient population, cardiotoxicity remains a major challenge, especially in older people. It has been established that cardiovascular events are a major cause of death in older female primary breast cancer patients that underwent chemotherapy. In the present study, the independent prognostic factors were identified to develop a novel nomogram for predicting long-term heart disease-specific survival (HDSS) and improving patient management. Method Older female primary breast cancer patients that underwent chemotherapy from 2010 to 2015 were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database and randomly assigned to a training cohort and a validation cohort at a ratio of 7:3. HDSS was the primary endpoint of this study. Univariate and multivariate Cox regression analyses were conducted on the training cohort to identify independent prognostic factors of HDSS and construct a nomogram to predict the 5- and 8-year HDSS. The performance of the constructed nomogram was evaluated by calibration curve, receiver operating characteristic (ROC) curve, and decision curve analyses. Finally, a risk classification system was constructed to assist in patient management. Result A total of 16,340 patients were included in this study. Multivariate Cox regression analysis identified six independent prognostic factors: age, race, tumor stage, marital status, surgery, and radiotherapy. A nomogram based on these six factors yielded excellent performance, with areas under the curve of the ROC for 5- and 8-year HDSS of 0.759 and 0.727 in the training cohort and 0.718 and 0.747 in the validation cohort. Moreover, the established risk classification system could effectively identify patients at low-, middle-, and high- risk of heart disease-associated death and achieve targeted management. Conclusion Independent prognostic factors of HDSS in older female primary breast cancer patients that underwent chemotherapy were determined in this study. A novel nomogram for predicting 5- and 8-year HDSS in this patient population was also established and validated to help physicians during clinical decision-making and screen high-risk patients to improve outcomes.
Collapse
Affiliation(s)
- Chao Huang
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zichuan Ding
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Hao Li
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Zongke Zhou
| | - Min Yu
- Department of Anesthesiology, North-Kuanren General Hospital, Chongqing, China,Min Yu
| |
Collapse
|
145
|
Valvular Heart Disease following Anthracycline Therapy-Is It Time to Look beyond Ejection Fraction? Life (Basel) 2022; 12:life12081275. [PMID: 36013454 PMCID: PMC9410142 DOI: 10.3390/life12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The association between anthracycline (ANT) and left ventricle (LV) dysfunction is well known; however, data regarding its direct effect on cardiac valve function is limited. We aimed to evaluate how ANT therapy affected valvular function in patients diagnosed with breast cancer. Data were prospectively collected as part of the Israel Cardio-Oncology Registry (ICOR). Patients underwent echocardiography exams at baseline (T1), during ANT therapy (T2), and after completion within 3 months (T3) and 6 months (T4). A total of 141 female patients were included, with a mean age of 51 ± 12 years. From T1 to T4, we observed a significant deterioration in LV ejection fraction (60.2 ± 1.5 to 59.2 ± 2.7%, p = 0.0004) and LV global longitudinal strain (−21.6 (−20.0−−23.0) to −20.0 (−19.1−−21.1)%, p < 0.0001)), and an increase in LV end-systolic diameter (25 (22−27) to 27 (24−30) mm, p < 0.0001). We observed a significant increase in the incidence of new mitral regurgitation (MR) development (4 to 19%, p < 0.0001), worsening with concomitant trastuzumab therapy (6% to 31%, p = 0.003), and a trend for tricuspid regurgitation development (4% to 8%, p = 0.19). ANT therapy is associated with the development of a new valvular disease, mainly MR, which may imply the need for a valvular focus in the monitoring of cancer patients.
Collapse
|
146
|
Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6260243. [PMID: 35993025 PMCID: PMC9388240 DOI: 10.1155/2022/6260243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 12/30/2022]
Abstract
Anthracyclines constitute the cornerstone of numerous chemotherapy regimens for various cancers. However, the clinical application of anthracyclines is significantly limited to their dose-dependent cardiotoxicity. A comprehensive understanding of the current status of anthracycline-induced cardiotoxicity is necessary for in-depth research and optimal clinical protocols. Bibliometric analysis is widely applied in depicting development trends and tracking frontiers of a specific field. The present study is aimed at revealing the status and trends of anthracycline-induced cardiotoxicity during the past two decades by employing bibliometric software including R-bibliometric, VOSviewer, and CiteSpace. A total of 3504 publications concerning anthracycline-induced cardiotoxicity from 2002 to 2021 were collected from the Web of Science Core Collection database. Results showed significant growth in annual yields from 90 records in 2002 to 304 papers in 2021. The United States was the most productive country with the strongest collaboration worldwide in the field. Charles University in the Czech Republic was the institution that contributed the most papers, while 7 of the top 10 productive institutions were from the United States. The United States Department of Health and Human Services and the National Institutes of Health are the two agencies that provide financial support for more than 50% of sponsored publications. The research categories of included publications mainly belong to Oncology and Cardiac Cardiovascular Systems. The Journal of Clinical Oncology had a comprehensive impact on this research field with the highest IF value and many publications. Simunek Tomas from Charles University contributed the most publications, while Lipshultz Steven E. from the State University of New York possessed the highest H-index. In addition, the future research frontiers of anthracycline-induced cardiotoxicity might include early detection, pharmacogenomics, molecular mechanism, and cardiooncology. The present bibliometric analysis may provide a valuable reference for researchers and practitioners in future research directions.
Collapse
|
147
|
Zhu J, Xie S, Ji H, Gu X, Wu J. Evaluation of anthracycline-induced subclinical LV dysfunction by using myocardial composite index and two-dimension speckle tracking echocardiography technique. Front Cardiovasc Med 2022; 9:936212. [PMID: 36035907 PMCID: PMC9403246 DOI: 10.3389/fcvm.2022.936212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo obtain various myocardial strain parameters by using two-dimension speckle tracking echocardiography (2D-STE) technique, calculate the myocardial composite index (MCI) which combines the global longitudinal strain (GLS) of left ventricle and the left ventricular twist (LVtw), and evaluate their diagnostic efficacies for subclinical left ventricular (LV) dysfunction in patients undergoing anthracycline chemotherapy.MethodsA total of 35 female breast cancer patients, who underwent postoperative chemotherapy in the Department of Thyroid and Breast Surgery of Nantong Third People’s Hospital from September 2018 to December 2019 and had successful follow-up, were included into the chemotherapy group, and the patients were evaluated respectively at baseline and in early, interim and later chemotherapy stages according to the course of chemotherapy; in addition, 30 healthy women undergoing physical examination during the same period were included into the control group. In different chemotherapy stages, the data such as left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), interventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT) and left ventricular ejection fraction (LVEF) were collected by using conventional echocardiography, and various myocardial strain parameters such as GLS, global radial strain (GRS), global circumferential strain(GCS) and LVtw were measured using 2D-STE, and then MCI was calculated. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the application values of various parameters in the diagnosis of early cardiotoxicity.ResultsThere was a difference in MCI between patients at baseline and in the early chemotherapy stage; there were differences in GLS, LVtw and MCI between patients at baseline and in the interim chemotherapy stage; there were differences in four parameters such as MCI, GLS, LVtw and GCS between patients at baseline and in the later chemotherapy stage; The AUC of MCI was 0.915, when the cutoff value was –210.89 (%×°), the sensitivity and specificity were 84.37% and 90.41%, respectively.ConclusionMCI combines the longitudinal and torsional motions of myocardium, and thus has a better diagnostic value for early detection of subclinical LV dysfunction caused by anthracycline chemotherapy drugs compared with strain parameters in a single direction.
Collapse
Affiliation(s)
- Jiabao Zhu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Shuhui Xie
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Hanzhen Ji
- Department of Library and Information Science, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Xingxing Gu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong University, Nantong, China
| | - Jing Wu
- Department of Ultrasound, Nantong Third People’s Hospital, Nantong University, Nantong, China
- *Correspondence: Jing Wu,
| |
Collapse
|
148
|
Kourek C, Touloupaki M, Rempakos A, Loritis K, Tsougkos E, Paraskevaidis I, Briasoulis A. Cardioprotective Strategies from Cardiotoxicity in Cancer Patients: A Comprehensive Review. J Cardiovasc Dev Dis 2022; 9:259. [PMID: 36005423 PMCID: PMC9409997 DOI: 10.3390/jcdd9080259] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiotoxicity is a significant complication of chemotherapeutic agents in cancer patients. Cardiovascular incidents including LV dysfunction, heart failure (HF), severe arrhythmias, arterial hypertension, and death are associated with high morbidity and mortality. Risk stratification of cancer patients prior to initiation of chemotherapy is crucial, especially in high-risk patients for cardiotoxicity. The early identification and management of potential risk factors for cardiovascular side effects seems to contribute to the prevention or minimization of cardiotoxicity. Screening of cancer patients includes biomarkers such as cTnI and natriuretic peptide and imaging measurements such as LV function, global longitudinal strain, and cardiac MRI. Cardioprotective strategies have been investigated over the last two decades. These strategies for either primary or secondary prevention include medical therapy such as ACE inhibitors, ARBs, b-blockers, aldosterone antagonists, statins and dexrazoxane, physical therapy, and reduction of chemotherapeutic dosages. However, data regarding dosages, duration of medical therapy, and potential interactions with chemotherapeutic agents are still limited. Collaboration among oncologists, cardiologists, and cardio-oncologists could establish management cardioprotective strategies and approved follow-up protocols in patients with cancer receiving chemotherapy.
Collapse
Affiliation(s)
- Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Athanasios Rempakos
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Loritis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elias Tsougkos
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Ioannis Paraskevaidis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Alexandros Briasoulis
- Medical School of Athens, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
149
|
Doxycycline Attenuates Doxorubicin-Induced Cardiotoxicity by Improving Myocardial Energy Metabolism in Rats. J Cardiovasc Dev Dis 2022; 9:jcdd9080254. [PMID: 36005418 PMCID: PMC9410319 DOI: 10.3390/jcdd9080254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/06/2022] Open
Abstract
Aim: Evaluate the influence of doxycycline, an anti-inflammatory and matrix metalloproteinase (MMP) inhibitor, on the attenuation of chronic doxorubicin-induced cardiotoxicity in rats. Methods: We allocated male Wistar rats into four groups: control (C), doxorubicin (D), doxycycline (inhibitor of MMP, IM), and Dox + doxycycline (DIM). Groups IM and DIM received doxycycline (5 mg/kg, IP) once a week for 4 weeks. In addition, 48 h after every doxycycline injection, groups D and DIM received Dox (5 mg/kg, IP). We performed echocardiogram and evaluated TIMP-4 and collagen I protein expression, MMP-2 activity, and oxidative stress and myocardial metabolism. Results: Doxorubicin promotes left atrium (LA) and left ventricle (LV) dilatation and decreases in LV fractional shortening, which was improved by doxycycline. Moreover, doxycycline attenuated the LV cardiomyocyte hypertrophy and collagen type I expression. Doxorubicin increased phosphofructokinase and decreased beta-hydroxyacyl Co-A dehydrogenase, pyruvate dehydrogenase, citrate synthase, and ATP synthase activity, which was partially attenuated by doxycycline. Lastly, doxycycline improved antioxidant enzyme activity in the DIM group. Conclusion: Doxorubicin increases oxidative stress and promotes changes in myocardial energy metabolism, accompanied by structural and functional changes. Doxycycline attenuated the doxorubicin-induced cardiotoxicity, at least in part, through changes in myocardial energy metabolism.
Collapse
|
150
|
Jong J, Pinney JR, Packard RRS. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med 2022; 9:919719. [PMID: 35990941 PMCID: PMC9381993 DOI: 10.3389/fcvm.2022.919719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Anthracyclines are a widely used class of chemotherapy in pediatric and adult cancers, however, their use is hampered by the development of cardiotoxic side-effects and ensuing complications, primarily heart failure. Clinically used imaging modalities to screen for cardiotoxicity are mostly echocardiography and occasionally cardiac magnetic resonance imaging. However, the assessment of diastolic and global or segmental systolic function may not be sensitive to detect subclinical or early stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear imaging strategies to improve the detection of anthracycline-induced cardiotoxicity. Anthracyclines can activate all forms of cell death in cardiomyocytes. Injury mechanisms associated with anthracycline usage include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and perturbation in sympathetic drive and myocardial blood flow; some of which have been targeted using nuclear probes. This review retraces the pathobiology of anthracycline-induced cardiac injury, details the evidence to date supporting a molecular nuclear imaging strategy, explores disease mechanisms which have not yet been targeted, and proposes a clinical strategy incorporating molecular imaging to improve patient management.
Collapse
Affiliation(s)
- Jeremy Jong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James R. Pinney
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|