101
|
Liu X, Shao Y, Sun J, Tu J, Wang Z, Tao J, Chen J. Egg consumption improves vascular and gut microbiota function without increasing inflammatory, metabolic, and oxidative stress markers. Food Sci Nutr 2022; 10:295-304. [PMID: 35035930 PMCID: PMC8751450 DOI: 10.1002/fsn3.2671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Egg consumption is one of the many inconsistencies in evidence linking dietary cholesterol to cardiovascular disease (CVD). In addition, the gut microbiota and its metabolite, trimethylamine-N-oxide (TMAO), have been shown to play a crucial role in the development of CVD. The fact that egg is rich in choline suggests that excessive egg consumption may increase TMAO production by altering the gut microbiota. However, the effects of egg consumption on vascular function and gut microbiota remain unclear. Here, the diet of nine young male subjects was supplemented with two boiled eggs daily for 2 weeks. Changes in vascular function, inflammation, metabolism, oxidative stress, and gut microbiota were examined. We found that egg consumption increased flow-mediated dilation and decreased brachial-ankle pulse wave velocity. Furthermore, egg consumption positively modulated the gut microbiota function but had no effects on the levels of C-reactive protein, glucose, lipid profile, malondialdehyde, superoxide dismutase, or TMAO. The current study provides evidence that egg consumption improves vascular function, which may be related to the alterations seen in the gut microbiota. Therefore, moderate egg consumption may help to improve vascular and intestinal function in individuals at low risk of developing CVD and other metabolic disorders.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yijia Shao
- Department of Hypertension and Vascular DiseasesThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation (Sun Yat‐sen University)GuangzhouChina
| | - Jiapan Sun
- Department of GeriatricsPeking University Shenzhen HospitalShenzhen Peking University‐The Hong Kong University of Science and Technology Medical CenterShenzhenChina
| | - Jiazichao Tu
- Department of Cardiac SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Zhichao Wang
- Department of Hypertension and Vascular DiseasesThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation (Sun Yat‐sen University)GuangzhouChina
| | - Jun Tao
- Department of Hypertension and Vascular DiseasesThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- NHC Key Laboratory of Assisted Circulation (Sun Yat‐sen University)GuangzhouChina
| | - Jimei Chen
- Department of Cardiac SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
- Guangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
- School of MedicineSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
102
|
Sanhueza-Olivares F, Troncoso MF, Pino-de la Fuente F, Martinez-Bilbao J, Riquelme JA, Norambuena-Soto I, Villa M, Lavandero S, Castro PF, Chiong M. A potential role of autophagy-mediated vascular senescence in the pathophysiology of HFpEF. Front Endocrinol (Lausanne) 2022; 13:1057349. [PMID: 36465616 PMCID: PMC9713703 DOI: 10.3389/fendo.2022.1057349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.
Collapse
Affiliation(s)
- Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mayarling F. Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Francisco Pino-de la Fuente
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Monica Villa
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontifical University Catholic of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
- *Correspondence: Mario Chiong,
| |
Collapse
|
103
|
Effects of different exercise programs on cardiorespiratory reserve in HFpEF: a systematic review and meta-analysis. Hellenic J Cardiol 2021; 64:58-66. [PMID: 34861401 DOI: 10.1016/j.hjc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/09/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
HFpEF represents an heterogeneous syndrome with complex pathophysiologic substrate and multiple clinical manifestations. Much attention has been recently focused on cardiac rehabilitation programs for HFpEF patients and studies have examined the effects of exercise training on this specific population. This systematic review and meta-analysis included studies of adult patients with HFpEF and evaluated the impact of exercise on cardiorespiratory fitness variables measured during CPET. The primary outcome was the difference between groups in the change of peak oxygen uptake (Δpeak VO2). Literature search involved PubMed/MEDLINE, Cochrane/CENTRAL and Scopus databases. From an initial 5,143 literature records, we identified 18 studies fulfilling inclusion criteria; 11 studies with 515 patients were finally included in primary outcome analysis. Δpeak VO2 between baseline and study-end was significantly higher in the groups of exercise training versus control (WMD 2.25 ml/kg/min, 95%CI 1.81-2.70). Exercise training resulted in greater change in the 6MWT distance (WMD 2.25 meters, 95%CI 1.81-2.70). Health related quality of life (WMD: -3.36, 95%CI -9.42-2.70, I2=14%, p=0.33) and echocardiographic indexes of diastolic function showed no differences between exercise and control groups at study end. In subgroup analysis, no difference between resistance versus aerobic exercise was noted on Δpeak VO2, but high intensity interval training showed greater increase in peak VO2 versus aerobic exercise (WMD 1.62 ml/kg/min, 95%CI 0.96-2.29, I2=0%, p=0.82). Exercise training in HFpEF results in significant improvements in peak VO2 and 6MWT distance compared to controls. High intensity interval training may offer greater enhancement of exercise capacity of these patients than standard aerobic exercise.
Collapse
|
104
|
Omar M, Jensen J, Burkhoff D, Frederiksen PH, Kistorp C, Videbæk L, Poulsen MK, Gustafsson F, Køber L, Borlaug BA, Schou M, Møller JE. Effect of Empagliflozin on Blood Volume Redistribution in Patients With Chronic Heart Failure and Reduced Ejection Fraction: An Analysis from the Empire HF Randomized Clinical Trial. Circ Heart Fail 2021; 15:e009156. [PMID: 34743533 DOI: 10.1161/circheartfailure.121.009156] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Stressed blood volume (SBV) is a major determinant of systemic and pulmonary venous pressures which, in turn, determine left and right ventricular fillings and regulates cardiac output via the Frank-Starling mechanism. It is not known whether inhibition of the sodium-glucose cotransporter-2 (SGLT2) favorably affects SBV. We investigated the effect of empagliflozin on estimated stressed blood volume (eSBV) in patients with heart failure andreduced ejection fraction (HFrEF) compared to placebo. Methods: This was a post-hoc analysis of an investigator-initiated, double-blinded, placebo controlled, randomized trial. Seventy patients were assigned to empagliflozin 10 mg or matching placebo once-daily for 12 weeks. Patients underwent right heart catheterization at rest and during exercise at baseline and follow-up. The outcome was change in eSBV after 12 weeks of empagliflozin treatment over the full range of exercise, determined using a recently introduced analytical approach based on invasive hemodynamic assessment. Results: Patients with HFrEF, mean age, 57 years and mean ejection fraction 27 %, with 47 patients (71%) receiving diuretics were randomized. The effect of empagliflozin on eSBV over the full range of exercise loads showed a statistically significant reduction compared with placebo (-198.4 mL, 95%CI: -317.4; -79.3, p=0.001), a 9% decrease. The decrease in eSBV by empagliflozin was significantly correlated with the decrease in PCWP ((R= ̶ 0.33, p<0.0001). The effect of empagliflozin was consistent across subgroup analysis. Conclusions: Empagliflozin treatment significantly reduced stressed blood volume compared with placebo after 12 weeks of treatment in patients with stable chronic HFrEF during sub maximal exercise. Registration: URL: https://www.clinicaltrials.gov, Unique identifier: NCT03198585.
Collapse
Affiliation(s)
- Massar Omar
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Steno Diabetes Center Odense, 5000 Odense C, Denmark; Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000 Odense C, Denmark
| | - Jesper Jensen
- Department of Cardiology, Herlev and Gentofte University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | - Peter H Frederiksen
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000 Odense C, Denmark
| | - Caroline Kistorp
- Department of Endocrinology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 København Ã, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lars Videbæk
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Mikael Kjær Poulsen
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark
| | - Finn Gustafsson
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lars Køber
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Barry A Borlaug
- Division of Cardiovascular Diseases, Department of Cardiovascular Medicine, Mayo Clinic Hospital, Rochester, MN
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte University Hospital, Borgmester Ib Juuls Vej 1, 2730 Herlev Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense C, Denmark; Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 19, 3, 5000 Odense C, Denmark
| |
Collapse
|
105
|
Wang Y, Wang J, Peng J, Huo M, Yang Z, Giridharan GA, Luan Y, Qin K. Effects of a Short-Term Left Ventricular Assist Device on Hemodynamics in a Heart Failure Patient-Specific Aorta Model: A CFD Study. Front Physiol 2021; 12:733464. [PMID: 34621186 PMCID: PMC8491745 DOI: 10.3389/fphys.2021.733464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Patients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support. Specifically, blood velocity, wall shear stress, and pressure difference are altered within the aorta. In this study, computational fluid dynamics (CFD) was used to elucidate the effects of a short-term LVAD for hemodynamic performance in a patient-specific aorta model. The three-dimensional (3D) geometric models of a patient-specific aorta and a short-term LVAD, Impella CP, were created. Velocity, wall shear stress, and pressure difference in the patient-specific aorta model with the Impella CP assistance were calculated and compared with the baseline values of the aorta without Impella CP support. Impella CP support augmented cardiac output, blood velocity, wall shear stress, and pressure difference in the aorta. The proposed CFD study could analyze the quantitative changes in the important hemodynamic parameters while considering the effects of Impella CP, and provide a scientific basis for further predicting and assessing the effects of these hemodynamic signals on the aorta.
Collapse
Affiliation(s)
- Yu Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Junwei Wang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Jing Peng
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Mingming Huo
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| | - Zhiqiang Yang
- Department of Cardiovascular Computed Tomography (CT) Examination, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kairong Qin
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
| |
Collapse
|
106
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
107
|
Egbe AC, Miranda WR, Connolly HM. Predictors of left ventricular reverse remodelling after coarctation of aorta intervention. Eur Heart J Cardiovasc Imaging 2021; 22:1168-1173. [PMID: 33020809 DOI: 10.1093/ehjci/jeaa199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2023] Open
Abstract
AIMS Several coarctation of aorta (COA) severity indices are used for timing of COA intervention, and to define severity of residual coarctation post-intervention. However, it is unclear how many of these COA indices are required in order to recommend intervention, and what degree of residual coarctation results in suboptimal recovery of the left ventricle (LV). Our aim was to assess the correlation between different COA indices and effects of chronic LV pressure overload (LV hypertrophy, diastolic, and systolic dysfunction), and to determine the effect of residual coarctation on LV reverse remodelling after COA intervention. METHODS AND RESULTS COA severity indices were defined as Doppler COA gradient, systolic blood pressure (SBP, upper-to-lower-extremity SBP gradient, aortic isthmus ratio. LV remodelling indices were defined as LV mass index (LVMI), LV global longitudinal strain (LVGLS), e' and E/e'. LV reverse remodelling was defined as the difference between indices obtained pre-intervention and 5-year post-intervention (delta LVMI, e', E/e', LVGLS).Of the COA indices analysed in 546 adult COA patients, aortic isthmus ratio had the strongest correlation with LVMI (β ± standard error -28.3 ± 14.1, P < 0.001), LVGLS (1.51 ± 0.42, P = 0.005), e' (3.11 ± 1.10, P = 0.014), and E/e' (-13.4 ± 6.67, P = 0.008). Residual aortic isthmus ratio also had the strongest correlation with LV reverse remodelling, and residual aortic isthmus ratio <0.7 was predictive of suboptimal LV reverse remodelling post-intervention. CONCLUSION Considering the known prognostic implications of LV remodelling and reverse remodelling in response to pressure overload, these results support the use of aortic isthmus ratio for timing of COA intervention, and for prognostication post-intervention.
Collapse
Affiliation(s)
- Alexander C Egbe
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - William R Miranda
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Heidi M Connolly
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
108
|
Pandey A, Shah SJ, Butler J, Kellogg DL, Lewis GD, Forman DE, Mentz RJ, Borlaug BA, Simon MA, Chirinos JA, Fielding RA, Volpi E, Molina AJA, Haykowsky MJ, Sam F, Goodpaster BH, Bertoni AG, Justice JN, White JP, Ding J, Hummel SL, LeBrasseur NK, Taffet GE, Pipinos II, Kitzman D. Exercise Intolerance in Older Adults With Heart Failure With Preserved Ejection Fraction: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 78:1166-1187. [PMID: 34503685 PMCID: PMC8525886 DOI: 10.1016/j.jacc.2021.07.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022]
Abstract
Exercise intolerance (EI) is the primary manifestation of chronic heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure among older individuals. The recent recognition that HFpEF is likely a systemic, multiorgan disorder that shares characteristics with other common, difficult-to-treat, aging-related disorders suggests that novel insights may be gained from combining knowledge and concepts from aging and cardiovascular disease disciplines. This state-of-the-art review is based on the outcomes of a National Institute of Aging-sponsored working group meeting on aging and EI in HFpEF. We discuss aging-related and extracardiac contributors to EI in HFpEF and provide the rationale for a transdisciplinary, "gero-centric" approach to advance our understanding of EI in HFpEF and identify promising new therapeutic targets. We also provide a framework for prioritizing future research, including developing a uniform, comprehensive approach to phenotypic characterization of HFpEF, elucidating key geroscience targets for treatment, and conducting proof-of-concept trials to modify these targets.
Collapse
Affiliation(s)
- Ambarish Pandey
- University of Texas Southwestern Medical Center, Dallas, Texas, USA. https://twitter.com/ambarish4786
| | - Sanjiv J Shah
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Javed Butler
- University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Dean L Kellogg
- University of Texas Health Science Center and GRECC, South Texas Veterans Affairs Health System, San Antonio, Texas, USA
| | | | - Daniel E Forman
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Robert J Mentz
- Duke Clinical Research Center, Durham, North Carolina, USA
| | | | - Marc A Simon
- University of Pittsburgh and VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Elena Volpi
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bret H Goodpaster
- Advent Health Translational Research Institute, Orlando, Florida, USA
| | - Alain G Bertoni
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jamie N Justice
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jingzhone Ding
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Scott L Hummel
- University of Michigan and the VA Ann Arbor Health System, Ann Arbor, Michigan, USA
| | | | | | | | - Dalane Kitzman
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
109
|
Chi C, Liu Y, Xu Y, Xu D. Association Between Arterial Stiffness and Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med 2021; 8:707162. [PMID: 34458336 PMCID: PMC8385653 DOI: 10.3389/fcvm.2021.707162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/14/2021] [Indexed: 01/23/2023] Open
Abstract
Cardiovascular diseases are the leading cause of mortality in the world. Heart failure with preserved ejection fraction (HFpEF) accounts for about half of all heart failure. Unfortunately, the mechanisms of HFpEF are still unclear, leading to little progress of effective treatment of HFpEF. Arterial stiffness is the decrement of arterial compliance. The media of large arteries degenerate in both physiological and pathological conditions. Many studies have proven that arterial stiffness is an independent risk factor for cardiovascular disorders including diastolic dysfunction. In this perspective, we discussed if arterial stiffness is related to HFpEF, and how does arterial stiffness contribute to HFpEF. Finally, we briefly summarized current treatment strategies on arterial stiffness and HFpEF. Though some new drugs were developed, the safety and effectiveness were not adequately assessed. New pharmacologic treatment for arterial stiffness and HFpEF are urgently needed.
Collapse
Affiliation(s)
- Chen Chi
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
110
|
Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci Rep 2021; 11:16501. [PMID: 34389755 PMCID: PMC8363603 DOI: 10.1038/s41598-021-95534-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
There is an established link between cardiometabolic abnormality, central arterial stiffness, and preserved ejection fraction heart failure (HFpEF). Adipocyte free fatty acid binding protein (a-FABP) has been shown to signal endothelial dysfunction through fatty acid toxicity, though its role in mediating ventricular-arterial dysfunction remains unclear. We prospectively examined the associations of a-FABP with central arterial pressure using non-invasive applanation tonometry (SphygmoCor) and cardiac structure/function (i.e., tissue Doppler imaging [TDI] and global longitudinal myocardial strain [GLS]) in patients with cardiometabolic (CM) risk (n = 150) and HFpEF (n = 50), with healthy volunteers (n = 49) serving as a control. We observed a graded increase of a-FABP across the healthy controls, CM individuals, and HFpEF groups (all paired p < 0.05). Higher a-FABP was independently associated with higher central systolic and diastolic blood pressures (CSP/CPP), increased arterial augmentation index (Aix), lower early myocardial relaxation velocity (TDI-e'), higher left ventricle (LV) filling (E/TDI-e') and worsened GLS (all p < 0.05). During a median of 3.85 years (interquartile range: 3.68-4.62 years) follow-up, higher a-FABP (cutoff: 24 ng/mL, adjusted hazard ratio: 1.01, 95% confidence interval: 1.001-1.02, p = 0.04) but not brain natriuretic peptide, and higher central hemodynamic indices were related to the incidence of heart failure (HF) in fully adjusted Cox models. Furthermore, a-FABP improved the HF risk classification over central hemodynamic information. We found a mechanistic pathophysiological link between a-FABP, central arterial stiffness, and myocardial dysfunction. In a population with a high metabolic risk, higher a-FABP accompanied by worsened ventricular-arterial coupling may confer more unfavorable outcomes in HFpEF.
Collapse
|
111
|
Málek F, Gajewski P, Zymliński R, Janczak D, Chabowski M, Fudim M, Martinca T, Neužil P, Biegus J, Mates M, Krüger A, Skalský I, Bapna A, Engelman ZJ, Ponikowski PP. Surgical ablation of the right greater splanchnic nerve for the treatment of heart failure with preserved ejection fraction: first-in-human clinical trial. Eur J Heart Fail 2021; 23:1134-1143. [PMID: 33932262 DOI: 10.1002/ejhf.2209] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/28/2022] Open
Abstract
AIMS Inappropriate control of blood volume redistribution may be a mechanism responsible for exercise intolerance in heart failure with preserved ejection fraction (HFpEF). We propose to address this underlying pathophysiology with selective blockade of sympathetic signalling to the splanchnic circulation by surgical ablation of the right greater splanchnic nerve (GSN). METHODS AND RESULTS In a single-arm, prospective, two-centre trial, 10 patients with HFpEF (50% male, mean age 70 ± 3 years) all with New York Heart Association (NYHA) class III, left ventricular ejection fraction >40%, pulmonary capillary wedge pressure (PCWP) ≥15 mmHg at rest or ≥25 mmHg with supine cycle ergometry, underwent ablation of the right GSN via thoracoscopic surgery. Patients were evaluated at baseline, 1, 3, 6 and 12 months after the procedure. The primary endpoint was a reduction in exercise PCWP at 3 months. There were no adverse events related to the blockade of the nerve during 12-month follow-up but three patients had significant peri-procedural adverse events related to the surgical procedure itself. At 3 months post-GSN ablation, patients demonstrated a reduction in 20 W exercise PCWP when compared to baseline [-4.5 mmHg (95% confidence interval, CI -14 to -2); P = 0.0059], which carried over to peak exercise [-5 mmHg (95% CI -11 to 0; P = 0.016). At 12 months, improvements were seen in NYHA class [3 (3) vs. 2 (1, 2); P = 0.0039] and quality of life assessed with the Minnesota Living with Heart Failure Questionnaire [60 (51, 71) vs. 22 (16, 27); P = 0.0039]. CONCLUSION In this first-in-human study, GSN ablation in HFpEF proved to be feasible, with a suggestion of reduced cardiac filling pressure during exercise, improved quality of life and exercise capacity.
Collapse
Affiliation(s)
- Filip Málek
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | - Piotr Gajewski
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| | - Robert Zymliński
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| | - Dariusz Janczak
- Department of Vascular, General and Transplant Surgery, Medical University, Wroclaw, Poland
| | - Mariusz Chabowski
- Division of Surgical Specialties, Department of Clinical Nursing, Faculty of Health Science, Medical University, Wroclaw, Poland
- Department of Surgery, 4th Military Hospital, Wroclaw, Poland
| | - Marat Fudim
- Duke Clinical Research Institute, Durham, NC, USA
| | - Tomas Martinca
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | - Petr Neužil
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | - Jan Biegus
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| | - Martin Mates
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | - Andreas Krüger
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | - Ivo Skalský
- Na Homolce Hospital, Cardiovascular Centre, Prague, Czech Republic
| | | | | | - Piotr P Ponikowski
- Centre for Heart Diseases, University Hospital, Wroclaw, Poland
- Department of Heart Diseases, Medical University, Wroclaw, Poland
| |
Collapse
|
112
|
Fudim M, Ponikowski PP, Burkhoff D, Dunlap ME, Sobotka PA, Molinger J, Patel MR, Felker GM, Hernandez AF, Litwin SE, Borlaug BA, Bapna A, Sievert H, Reddy VY, Engelman ZJ, Shah SJ. Splanchnic nerve modulation in heart failure: mechanistic overview, initial clinical experience, and safety considerations. Eur J Heart Fail 2021; 23:1076-1084. [PMID: 33886137 PMCID: PMC8298285 DOI: 10.1002/ejhf.2196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/20/2022] Open
Abstract
Volume recruitment from the splanchnic compartment is an important physiological response to stressors such as physical activity and blood loss. In the setting of heart failure (HF), excess fluid redistribution from this compartment leads to increased cardiac filling pressures with limitation in exercise capacity. Recent evidence suggests that blocking neural activity of the greater splanchnic nerve (GSN) could have significant benefits in some patients with HF by reducing cardiac filling pressures and improving exercise capacity. However, to date the long-term safety of splanchnic nerve modulation (SNM) in the setting of HF is unknown. SNM is currently used in clinical practice to alleviate some forms of chronic abdominal pain. A systematic review of the series where permanent SNM was used as a treatment for chronic abdominal pain indicates that permanent SNM is well tolerated, with side-effects limited to transient diarrhoea or abdominal colic and transient hypotension. The pathophysiological role of the GSN in volume redistribution, the encouraging findings of acute and chronic pilot SNM studies and the safety profile from permanent SNM for pain provides a strong basis for continued efforts to study this therapeutic target in HF.
Collapse
|
113
|
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of patients with heart failure. Effective treatment of HFpEF has not been established, largely because of the complexities and heterogeneity in the phenotypes of HFpEF. Categorizing patients based on clinical and pathophysiologic phenotype may provide more targeted and efficacious therapies. Despite this clinical need, there is no consensus on how to categorize patients with HFpEF into phenogroups. Possible metrics include the presence or absence of specific comorbidities that influence pathophysiology, imaging, hemodynamics, or other biomarkers. This article describes currently recognized phenotypes of HFpEF and potential treatment strategies.
Collapse
|
114
|
Galli E, Bourg C, Kosmala W, Oger E, Donal E. Phenomapping Heart Failure with Preserved Ejection Fraction Using Machine Learning Cluster Analysis: Prognostic and Therapeutic Implications. Heart Fail Clin 2021; 17:499-518. [PMID: 34051979 DOI: 10.1016/j.hfc.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by a high rate of hospitalization and mortality (up to 84% at 5 years), which are similar to those observed for heart failure with reduced ejection fraction (HFrEF). These epidemiologic data claim for the development of specific and innovative therapies to reduce the burden of morbidity and mortality associated with this disease. Compared with HFrEF, which is due to a primary myocardial damage (eg ischemia, cardiomyopathies, toxicity), a heterogeneous etiologic background characterizes HFpEF. The authors discuss these phenotypes and specificities for defining therapeutic strategies that could be proposed according to phenotypes.
Collapse
Affiliation(s)
- Elena Galli
- University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes F-35000, France
| | - Corentin Bourg
- University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes F-35000, France
| | - Wojciech Kosmala
- Cardiology Department, Wroclaw Medical University, Wroclaw, Poland
| | - Emmanuel Oger
- University of Rennes, EA 7449 REPERES [Pharmacoepidemiology and Health Services Research], Rennes, France
| | - Erwan Donal
- University of Rennes, CHU Rennes, INSERM, LTSI-UMR 1099, Rennes F-35000, France.
| |
Collapse
|
115
|
Zern EK, Ho JE, Panah LG, Lau ES, Liu E, Farrell R, Sbarbaro JA, Schoenike MW, Pappagianopoulos PP, Namasivayam M, Malhotra R, Nayor M, Lewis GD. Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Arterial Stiffness and Aabnormal Left Ventricular Hemodynamic Responses During Exercise. J Card Fail 2021; 27:625-634. [PMID: 33647476 PMCID: PMC8180488 DOI: 10.1016/j.cardfail.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arterial stiffness is thought to contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF). We sought to examine arterial stiffness in HFpEF and hypertension and investigate associations of arterial and left ventricular hemodynamic responses to exercise. METHODS AND RESULTS A total of 385 symptomatic individuals with an EF of ≥50% underwent upright cardiopulmonary exercise testing with invasive hemodynamic assessment of arterial stiffness and load (aortic augmentation pressure, augmentation index, systemic vascular resistance index, total arterial compliance index, effective arterial elastance index, and pulse pressure amplification) at rest and during incremental exercise. An abnormal hemodynamic response to exercise was defined as a steep increase in pulmonary capillary wedge pressure relative to cardiac output (∆PCWP/∆CO > 2 mm Hg/L/min). We compared rest and exercise measures between HFpEF and hypertension in multivariable analyses. Among 188 participants with HFpEF (mean age 61 ± 13 years, 56% women), resting arterial stiffness parameters were worse compared with 94 hypertensive participants (mean age 55 ± 15 years, 52% women); these differences were accentuated during exercise in HFpEF (all P ≤ .0001). Among all participants, exercise measures of arterial stiffness correlated with worse ∆PCWP/∆CO. Specifically, a 1 standard deviation higher exercise augmentation pressure was associated with 2.15-fold greater odds of abnormal LV hemodynamic response (95% confidence interval 1.52-3.05; P < .001). Further, exercise measures of systemic vascular resistance index, elastance index, and pulse pressure amplification correlated with a lower peak oxygen consumption. CONCLUSIONS Exercise accentuates the increased arterial stiffness found in HFpEF, which in turn correlates with left ventricular hemodynamic responses. Unfavorable ventricular-vascular interactions during exercise in HFpEF may contribute to exertional intolerance and inform future therapeutic interventions.
Collapse
Affiliation(s)
- Emily K Zern
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer E Ho
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.
| | - Lindsay G Panah
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily S Lau
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Liu
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Robyn Farrell
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - John A Sbarbaro
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Schoenike
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul P Pappagianopoulos
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mayooran Namasivayam
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Nayor
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory D Lewis
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
116
|
Sorimachi H, Burkhoff D, Verbrugge FH, Omote K, Obokata M, Reddy YNV, Takahashi N, Sunagawa K, Borlaug BA. Obesity, venous capacitance, and venous compliance in heart failure with preserved ejection fraction. Eur J Heart Fail 2021; 23:1648-1658. [PMID: 34053158 DOI: 10.1002/ejhf.2254] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Circulating blood volume is functionally divided between the unstressed volume, which fills the vascular space, and stressed blood volume (SBV), which generates vascular wall tension and intravascular pressure. With decreases in venous capacitance, blood functionally shifts to the SBV, increasing central venous pressure and pulmonary venous pressures. Obesity is associated with both elevated venous pressure and heart failure with preserved ejection fraction (HFpEF). To explore the mechanisms underlying this association, we evaluated relationships between blood volume distribution, venous compliance, and body mass in patients with and without HFpEF. METHODS AND RESULTS Subjects with HFpEF (n = 62) and non-cardiac dyspnoea (NCD) (n = 79) underwent invasive haemodynamic exercise testing with echocardiography. SBV was estimated (eSBV) from measured haemodynamic variables fit to a comprehensive cardiovascular model. Compared to NCD, patients with HFpEF displayed a leftward-shifted central venous pressure-dimension relationship, indicating reduced venous compliance. eSBV was 81% higher at rest and 69% higher during exercise in HFpEF than NCD (both P < 0.0001), indicating reduced venous capacitance. Despite greater augmented eSBV with exercise, the increase in cardiac output was reduced in HFpEF, suggesting operation on the plateau of the Starling curve. Exercise eSBV was directly correlated with higher body mass index (r = 0.77, P < 0.0001) and inversely correlated with right ventricular-pulmonary arterial coupling (r = -0.57, all P < 0.0001). CONCLUSIONS Patients with HFpEF display reductions in systemic venous compliance and increased eSBV related to reduced venous capacitance, abnormalities in right ventricular-pulmonary artery interaction, and increased body fat. These data provide new evidence supporting an important role of venous dysfunction in obesity-related HFpEF and suggest that therapies that improve venous function may hold promise to improve clinical status in this cohort.
Collapse
Affiliation(s)
- Hidemi Sorimachi
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Daniel Burkhoff
- Cardiovascular Research Foundation, New York Biomedical Research Institute, New York, NY, USA
| | - Frederik H Verbrugge
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Kazunori Omote
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Kenji Sunagawa
- Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
117
|
O'Gallagher K, Cabaco AR, Ryan M, Roomi A, Gu H, Dancy L, Melikian N, Chowienczyk PJ, Webb AJ, Shah AM. Direct cardiac versus systemic effects of inorganic nitrite on human left ventricular function. Am J Physiol Heart Circ Physiol 2021; 321:H175-H184. [PMID: 34018850 PMCID: PMC8505166 DOI: 10.1152/ajpheart.00081.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inorganic nitrite is a source of nitric oxide (NO) and is considered as a potential therapy in settings where endogenous NO bioactivity is reduced and left ventricular (LV) function impaired. However, the effects of nitrite on human cardiac contractile function, and the extent to which these are direct or indirect, are unclear. We studied 40 patients undergoing diagnostic cardiac catheterization who had normal LV systolic function and were not found to have obstructive coronary disease. They received either an intracoronary sodium nitrite infusion (8.7–26 µmol/min, n = 20) or an intravenous sodium nitrite infusion (50 µg/kg/min, n = 20). LV pressure-volume relations were recorded. The primary end point was LV end-diastolic pressure (LVEDP). Secondary end points included indices of LV systolic and diastolic function. Intracoronary nitrite infusion induced a significant reduction in LVEDP, LV end-diastolic pressure-volume relationship (EDPVR), and the time to LV end-systole (LVEST) but had no significant effect on LV systolic function or systemic hemodynamics. Intravenous nitrite infusion induced greater effects, with significant decreases in LVEDP, EDPVR, LVEST, LV dP/dtmin, tau, and mean arterial pressure. Inorganic nitrite has modest direct effects on human LV diastolic function, independent of LV loading conditions and without affecting LV systolic properties. However, the systemic administration of nitrite has larger effects on LV diastolic function, which are related to reduction in both preload and afterload. These contractile effects of inorganic nitrite may indicate a favorable profile for conditions characterized by LV diastolic dysfunction. NEW & NOTEWORTHY This is the first study to assess the direct and indirect effects of inorganic nitrite on invasive measures of left ventricular function in humans in vivo. Inorganic nitrite has a modest direct myocardial effect, improving diastolic function. Systemic administration of nitrite has larger effects related to alterations in cardiac preload and afterload. The changes induced by nitrite appear favorable for potential use in conditions characterized by LV diastolic dysfunction.
Collapse
Affiliation(s)
- Kevin O'Gallagher
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom.,Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ana R Cabaco
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Matthew Ryan
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ali Roomi
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Haotian Gu
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Luke Dancy
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Narbeh Melikian
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Philip J Chowienczyk
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Andrew J Webb
- Department of Clinical Pharmacology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Ajay M Shah
- Department of Cardiology, School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
118
|
Hein AM, Scialla JJ, Sun JL, Greene SJ, Shaw LK, Chiswell K, Pun PH, Mentz RJ. Estimated Glomerular Filtration Rate Variability in Patients With Heart Failure and Chronic Kidney Disease. J Card Fail 2021; 27:1175-1184. [PMID: 33971291 DOI: 10.1016/j.cardfail.2021.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Greater variability in the estimated glomerular filtration rate (eGFR) is associated with higher mortality in patients with chronic kidney disease (CKD). Heart failure (HF) is common in CKD and may increase variability through changes in hemodynamic and volume regulation. We sought to determine if patients with vs without HF have higher kidney function variability in CKD, and to define the association with mortality. METHODS AND RESULTS Patients undergoing coronary angiography from 2003 to 2013 with an eGFR of less than 60 mL/min/1.73 m2 were evaluated from the Duke Databank for Cardiovascular Disease. Variability in the eGFR, measured as the coefficient of variation (CV) of residuals from the regression of eGFR vs time, was calculated spanning 3 months to 2 years after catheterization. Mortality was assessed 2 to 7 years after catheterization. Patients were grouped into 3 HF phenotypes: HF with reduced ejection fraction, HF with preserved ejection, and no HF. Regression was used to evaluate associations between HF phenotypes and variability in the eGFR and between variability in the eGFR and mortality rate with stratification by HF phenotype. Among 3767 participants, the median eGFR at baseline was 45 mL/min/1.73 m2 (interquartile range 33-53 mL/min/1.73 m2), and longitudinal measures of eGFR over 21 months had within-patient residual variability (CV) of 14% (9%-20%). In adjusted analyses, variability in the eGFR was greater in those with HF with preserved ejection (n = 695, CV difference 0.98%, 95% confidence interval 0.14%-1.81%) or HF with reduced ejection fraction (n = 800, CV difference 2.51%, 95% confidence interval 1.66%-3.37%) relative to no HF (n = 2272). In 3068 participants eligible for mortality analysis, the presence of HF and greater variability in the eGFR were each associated independently with higher mortality, but there was no evidence of interaction between variability in the eGFR and any HF phenotype (all P for interaction ≥.49). CONCLUSIONS Variability in the eGFR is greater in patients with HF and associated with mortality. Prediction algorithms and classification schemes should consider not only static, but also dynamic eGFR variability in HF and CKD prognostication.
Collapse
Affiliation(s)
- Aaron M Hein
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Departments of Medicine and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia; Duke Clinical Research Institute, Durham, North Carolina
| | - Jie-Lena Sun
- Duke Clinical Research Institute, Durham, North Carolina
| | - Stephen J Greene
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Linda K Shaw
- Duke Clinical Research Institute, Durham, North Carolina
| | - Karen Chiswell
- Duke Clinical Research Institute, Durham, North Carolina
| | - Patrick H Pun
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina
| | - Robert J Mentz
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina; Duke Clinical Research Institute, Durham, North Carolina.
| |
Collapse
|
119
|
Lewis GA, Pearce K, Williams SG, Schelbert EB, Macnab A, Miller CA. The utility of cardiovascular imaging in heart failure with preserved ejection fraction: diagnosis, biological classification and risk stratification. Heart Fail Rev 2021; 26:661-678. [PMID: 33155067 PMCID: PMC8024231 DOI: 10.1007/s10741-020-10047-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) does not exist as a singular clinical or pathological entity but as a syndrome encompassing a wide range of clinical and biological phenotypes. There is an urgent need to progress from the unsuccessful 'one-size-fits-all' approach to more precise disease classification, in order to develop targeted therapies, personalise risk stratification and guide future research. In this regard, this review discusses the current and emerging roles of cardiovascular imaging for the diagnosis of HFpEF, for distilling HFpEF into distinct disease entities according to underlying pathobiology and for risk stratification.
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Keith Pearce
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Simon G Williams
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anita Macnab
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK
| | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester University NHS Foundation Trust, Southmoor Road, WythenshaweManchester, M23 9LT, UK.
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Wellcome Centre for Cell-Matrix Research, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
120
|
Novel technologies in the management of heart failure with preserved ejection fraction: a promise during the time of disappointment from pharmacological approaches? Curr Opin Cardiol 2021; 36:211-218. [PMID: 33394706 DOI: 10.1097/hco.0000000000000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Despite numerous attempts, none of a wide variety of tested drugs achieved meaningful improvement in the outcomes of heart failure with preserved ejection fraction (HFpEF), making new therapeutic strategies a major unmet medical need. The medical device industry embraced the challenge, developing novel technologies directed to face specific aspects of the pathophysiology of HFpEF. This review focuses on some of the most promising technologies attaining meaningful clinical progress recently in the field of HFpEF therapy. RECENT FINDINGS Implantable pulmonary artery pressure, monitoring for optimization of medical therapy, proved to be beneficial in heart failure admissions in a large postmarketing clinical study. Investigational devices, such as inter-atrial shunts and transvenous phrenic nerve stimulators for the treatment of central sleep apnea with Cheyne-Stokes breathing, are currently being evaluated in HFpEF cohorts in recent trials. SUMMARY Device-based therapies for HFpEF demonstrated encouraging safety and efficacy results in various stages of the disease. Further efforts are needed to ensure that these devices will reach clinical use and contribute to the management of HFpEF patients.
Collapse
|
121
|
Watanabe K, Yoshihisa A, Sato Y, Hotsuki Y, Anzai F, Ichijo Y, Kimishima Y, Yokokawa T, Misaka T, Sato T, Kaneshiro T, Oikawa M, Kobayashi A, Takeishi Y. Cardio-Ankle Vascular Index Reflects Impaired Exercise Capacity and Predicts Adverse Prognosis in Patients With Heart Failure. Front Cardiovasc Med 2021; 8:631807. [PMID: 33869301 PMCID: PMC8044779 DOI: 10.3389/fcvm.2021.631807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: We aimed to assess the associations of CAVI with exercise capacity in heart failure (HF) patients. In addition, we further examined their prognosis. Methods: We collected the clinical data of 223 patients who had been hospitalized for decompensated HF and had undergone both CAVI and cardiopulmonary exercise testing. Results: For the prediction of an impaired peak oxygen uptake (VO2) of < 14 mL/kg/min, receiver-operating characteristic curve demonstrated that the cutoff value of CAVI was 8.9. In the multivariate logistic regression analysis for predicting impaired peak VO2, high CAVI was found to be an independent factor (odds ratio 2.343, P = 0.045). We divided these patients based on CAVI: the low-CAVI group (CAVI < 8.9, n = 145) and the high-CAVI group (CAVI ≥ 8.9, n = 78). Patient characteristics and post-discharge cardiac events were compared between the two groups. The high-CAVI group was older (69.0 vs. 58.0 years old, P < 0.001) and had lower body mass index (23.0 vs. 24.1 kg/m2, P = 0.013). During the post-discharge follow-up period of median 1,623 days, 58 cardiac events occurred. The Kaplan-Meier analysis demonstrated that the cardiac event rate was higher in the high-CAVI group than in the low-CAVI group (log-rank P = 0.004). The multivariate Cox proportional hazard analysis revealed that high CAVI was an independent predictor of cardiac events (hazard ratio 1.845, P = 0.035). Conclusion: High CAVI is independently associated with impaired exercise capacity and a high cardiac event rate in HF patients.
Collapse
Affiliation(s)
- Koichiro Watanabe
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Yu Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yu Hotsuki
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Fumiya Anzai
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhiro Ichijo
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yusuke Kimishima
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Advanced Cardiac Therapeutics, Fukushima Medical University, Fukushima, Japan
| | - Takamasa Sato
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Kobayashi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
122
|
Fujiwara K, Shimada K, Nishitani-Yokoyama M, Kunimoto M, Matsubara T, Matsumori R, Abulimiti A, Aikawa T, Ouchi S, Shimizu M, Fukao K, Miyazaki T, Honzawa A, Yamada M, Saitoh M, Morisawa T, Takahashi T, Daida H, Minamino T. Arterial Stiffness Index and Exercise Tolerance in Patients Undergoing Cardiac Rehabilitation. Int Heart J 2021; 62:230-237. [PMID: 33731517 DOI: 10.1536/ihj.20-418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Arterial stiffness contributes to the development of cardiovascular disease (CVD). However, the relationship between the arterial stiffness and exercise tolerance in CVD patients with preserved ejection fraction (pEF) and those with reduced EF (rEF) is unclear. We enrolled 358 patients who participated in cardiac rehabilitation and underwent cardiopulmonary exercise testing at Juntendo University Hospital. After excluding 195 patients who had undergone open heart surgery and 20 patients with mid-range EF, the patients were divided into pEF (n = 99) and rEF (n = 44) groups. Arterial stiffness was assessed using arterial velocity pulse index (AVI) and arterial pressure volume index (API) at rest. The patients in the pEF group were significantly older and had a higher prevalence of coronary artery disease than the rEF group. The pEF group had significantly lower AVI levels and higher API levels than the rEF group. In the pEF group, the peak oxygen uptake (peak VO2) and the anaerobic threshold was significantly higher than those in the rEF group. The peak VO2 was significantly and negatively correlated with AVI and API in the pEF group (All, P < 0.05), but not in the rEF group. Multivariate linear regression analyses demonstrated that AVI was independently associated with peak VO2 (β = -0.34, P < 0.05) in the pEF group. In conclusion, AVI may be a useful factor for assessing exercise tolerance, particularly in CVD patients with pEF.
Collapse
Affiliation(s)
- Kei Fujiwara
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Kazunori Shimada
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine.,Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital.,Spotology Center, Juntendo University Graduate School of Medicine
| | - Miho Nishitani-Yokoyama
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine.,Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital
| | - Mitsuhiro Kunimoto
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tomomi Matsubara
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Rie Matsumori
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Abidan Abulimiti
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine.,Spotology Center, Juntendo University Graduate School of Medicine
| | - Tatsuro Aikawa
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Shohei Ouchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Megumi Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Kosuke Fukao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuro Miyazaki
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Akio Honzawa
- Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital
| | - Miki Yamada
- Cardiovascular Rehabilitation and Fitness, Juntendo University Hospital
| | | | | | | | - Hiroyuki Daida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine.,Spotology Center, Juntendo University Graduate School of Medicine.,Juntendo University, Faculty of Health Science
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine.,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development
| |
Collapse
|
123
|
Reddy YNV, Stewart GM, Obokata M, Koepp KE, Borlaug BA. Peripheral and pulmonary effects of inorganic nitrite during exercise in heart failure with preserved ejection fraction. Eur J Heart Fail 2021; 23:814-823. [PMID: 33421267 DOI: 10.1002/ejhf.2093] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/01/2021] [Indexed: 01/06/2023] Open
Abstract
AIMS To determine whether inorganic nitrite improves peripheral and pulmonary oxygen (O2 ) transport during exercise in heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS Data from two invasive, randomized, double-blind, placebo-controlled trials with matched workload exercise of inhaled and intravenous sodium nitrite were pooled for this analysis (n = 51). Directly measured O2 consumption (VO2 ) and blood gas data were used to evaluate the effect of nitrite on skeletal muscle O2 conductance (Dm), VO2 kinetics, alveolar capillary membrane O2 conductance (DL ), and O2 utilization during submaximal exercise. As compared to placebo, treatment with nitrite resulted in an improvement in Dm (+4.9 ± 6.5 vs. -0.9 ± 4.3 mL/mmHg*min, P = 0.0008) as well as VO2 kinetics measured by mean response time (-5.0 ± 6.9 vs. -0.6 ± 6.0 s, P = 0.03), with preserved O2 utilization despite increased convective O2 delivery through cardiac output (+0.4 ± 0.7 vs. -0.3 ± 0.9 L/min, P = 0.02). Nitrite improved DL (+2.5 ± 6.3 vs. -2.0 ± 9.0 mL/mmHg*min, P = 0.05) with exercise, which was associated with lower pulmonary capillary pressures (r = -0.34, P = 0.02), and reduced pulmonary dead space ventilation fraction (-0.01 ± 0.05 vs. +0.02 ± 0.05, P = 0.02). CONCLUSION Sodium nitrite enhances skeletal muscle Dm during exercise as well as pulmonary O2 diffusion, optimizing O2 kinetics in tandem with increased convective O2 delivery through cardiac output augmentation. The favourable combined pulmonary, cardiac and peripheral effects of nitrite may improve exercise tolerance in people with HFpEF and requires further investigation. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID NCT01932606 and NCT02262078.
Collapse
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Glenn M Stewart
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
124
|
Atrial Dysfunction in Patients With Heart Failure With Preserved Ejection Fraction and Atrial Fibrillation. J Am Coll Cardiol 2021; 76:1051-1064. [PMID: 32854840 DOI: 10.1016/j.jacc.2020.07.009] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Paroxysmal and permanent atrial fibrillation (AF) are common in heart failure with preserved ejection fraction (HFpEF). OBJECTIVES This study sought to determine the implications of left atrial (LA) myopathy and dysrhythmia across the spectrum of AF burden in HFpEF. METHODS Consecutive patients with HFpEF (n = 285) and control subjects (n = 146) underwent invasive exercise testing and echocardiographic assessment of cardiac structure, function, and pericardial restraint. RESULTS Patients with HFpEF were categorized into stages of AF progression: 181 (65%) had no history of AF, 49 (18%) had paroxysmal AF, and 48 (17%) had permanent AF. Patients with permanent AF were more congested with greater pulmonary vascular disease and lower cardiac output. LA volumes increased, while LA compliance, LA reservoir strain, and right ventricular function decreased with increasing AF burden. The presence of permanent AF was characterized by a distinct pathophysiology, with greater total heart volume caused by atrial dilatation, leading to elevated filling pressures through heightened pericardial restraint. Survival decreased with increasing AF burden. Ten-year progression to permanent AF was common, particularly in paroxysmal AF (52%), and the likelihood of AF progression increased with higher AF stage, poorer LA compliance, and lower LA strain. CONCLUSIONS LA compliance and mechanics progressively decline with increasing AF burden in HFpEF, increasing risk for new onset AF and progressive AF. These changes promote development of a unique phenotype of HFpEF characterized by heightened ventricular interaction, right heart failure, and worsening pulmonary vascular disease. Further study is required to identify therapeutic interventions targeting LA myopathy to improve outcomes in HFpEF.
Collapse
|
125
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
126
|
Sanderson JE, Fang F, Lu M, Ma CY, Wei YX. Response to 'Obstructive sleep apnoea, intermittent hypoxia and heart failure with a preserved ejection fraction'. Heart 2021; 107:430-431. [PMID: 33414164 DOI: 10.1136/heartjnl-2020-318849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- John Elsby Sanderson
- Beijing Institute of Heart, Lung, and Blood Diseases, Capital Medical University Affiliated Anzhen Hospital, Beijing, Chaoyang-qu, China
| | - Fang Fang
- Beijing Institute of Heart, Lung, and Blood Diseases, Capital Medical University Affiliated Anzhen Hospital, Beijing, Chaoyang-qu, China
| | - Mi Lu
- Beijing Institute of Heart, Lung, and Blood Diseases, Capital Medical University Affiliated Anzhen Hospital, Beijing, Chaoyang-qu, China
| | - Chen Yao Ma
- Beijing Institute of Heart, Lung, and Blood Diseases, Capital Medical University Affiliated Anzhen Hospital, Beijing, Chaoyang-qu, China
| | - Yong Xiang Wei
- Beijing Institute of Heart, Lung, and Blood Diseases, Capital Medical University Affiliated Anzhen Hospital, Beijing, Chaoyang-qu, China
| |
Collapse
|
127
|
Delsart P, Delahaye C, Devos P, Domanski O, Azzaoui R, Sobocinski J, Juthier F, Vincentelli A, Rousse N, Mugnier A, Soquet J, Loobuyck V, Koussa M, Modine T, Jegou B, Bical A, Hysi I, Fabre O, Pontana F, Matran R, Mounier-Vehier C, Montaigne D. Prognostic value of aerobic capacity and exercise oxygen pulse in postaortic dissection patients. Clin Cardiol 2020; 44:252-260. [PMID: 33381882 PMCID: PMC7852169 DOI: 10.1002/clc.23537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Although recommendations encourage daily moderate activities in post aortic dissection, very little data exists regarding cardiopulmonary exercise testing (CPET) to personalize those patient's physical rehabilitation and assess their cardiovascular prognosis. DESIGN We aimed at testing the prognostic insight of CPET regarding aortic and cardiovascular events by exploring a prospective cohort of patients followed-up after acute aortic dissection. METHODS Patients referred to our department after an acute (type A or B) aortic dissection were prospectively included in a cohort between September 2012 and October 2017. CPET was performed once optimal blood pressure control was obtained. Clinical follow-up was done after CPET for new aortic event and major cardio-vascular events (MCE) not directly related to the aorta. RESULTS Among the 165 patients who underwent CPET, no adverse event was observed during exercise testing. Peak oxygen pulse was 1.46(1.22-1.84) mlO2/beat, that is, 97 (83-113) % of its predicted value, suggesting cardiac exercise limitation in a population under beta blockers (92% of the population). During a follow-up of 39(20-51) months from CPET, 42 aortic event recurrences and 22 MCE not related to aorta occurred. Low peak oxygen pulse (<85% of predicted value) was independently predictive of aortic event recurrence, while low peak oxygen uptake (<70% of predicted value) was an independent predictor of MCE occurrence. CONCLUSION CPET is safe in postaortic dissection patients should be used to not only to personalize exercise rehabilitation, but also to identify those patients with the highest risk for new aortic events and MCE not directly related to aorta.
Collapse
Affiliation(s)
| | | | - Patrick Devos
- University of Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Lille, France
| | | | | | - Jonathan Sobocinski
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1008, Lille, France
| | - Francis Juthier
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | - Andre Vincentelli
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | - Natacha Rousse
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | | | - Jerome Soquet
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | - Valentin Loobuyck
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | | | | | - Bruno Jegou
- CHU Lille, Institut Coeur-Poumon, Lille, France
| | | | - Ilir Hysi
- Department of Cardiac Surgery of Artois, Centre Hospitalier de Lens et Hôpital Privé de Bois Bernard, Ramsay Générale de Santé, Lens, France
| | - Olivier Fabre
- Department of Cardiac Surgery of Artois, Centre Hospitalier de Lens et Hôpital Privé de Bois Bernard, Ramsay Générale de Santé, Lens, France
| | - François Pontana
- CHU Lille, Institut Coeur-Poumon, Lille, France.,University of Lille, CHU Lille, Inserm U1011, Lille, France
| | | | | | - David Montaigne
- CHU Lille, Department of Clinical Physiology & echocardiography, Univ. Lille, Inserm U1011-EGID, Lille, France
| |
Collapse
|
128
|
Effect of Empagliflozin on Hemodynamics in Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol 2020; 76:2740-2751. [DOI: 10.1016/j.jacc.2020.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023]
|
129
|
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 2020; 40:3297-3317. [PMID: 31504452 DOI: 10.1093/eurheartj/ehz641] [Citation(s) in RCA: 949] [Impact Index Per Article: 189.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), left ventricular (LV) filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | | | - Stefan D Anker
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany.,Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Germany
| | - Erwan Donal
- Cardiology and CIC, IT1414, CHU de Rennes LTSI, Université Rennes-1, INSERM 1099, Rennes, France
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany
| | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hosptal/Ostra, Göteborg, Sweden
| | - Marco Guazzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy.,Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy
| | - Carolyn S P Lam
- National Heart Centre, Singapore & Duke-National University of Singapore.,University Medical Centre Groningen, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Daniel A Morris
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt.,German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan A Voors
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Switzerland
| | - Walter J Paulus
- Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands
| | - Petar Seferovic
- University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital "Attikon", Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|
130
|
Ho JE, Redfield MM, Lewis GD, Paulus WJ, Lam CSP. Deliberating the Diagnostic Dilemma of Heart Failure With Preserved Ejection Fraction. Circulation 2020; 142:1770-1780. [PMID: 33136513 DOI: 10.1161/circulationaha.119.041818] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a lack of consensus on how we define heart failure with preserved ejection fraction (HFpEF), with wide variation in diagnostic criteria across society guidelines. This lack of uniformity in disease definition stems in part from an incomplete understanding of disease pathobiology, phenotypic heterogeneity, and natural history. We review current knowledge gaps and existing diagnostic tools and algorithms. We present a simple approach to implement these tools within the constraints of the current knowledge base, addressing separately (1) hospitalized individuals with rest congestion, where diagnosis is more straightforward; and (2) individuals with exercise intolerance, where diagnosis is more complex. Here, a potential role for advanced or provocative testing, including evaluation of hemodynamic responses to exercise is considered. More importantly, we propose focus areas for future studies to develop accurate and feasible diagnostic tools for HFpEF, including animal models that recapitulate human HFpEF, and human studies that both address a fundamental understanding of HFpEF pathobiology, and new diagnostic approaches and tools, as well. In sum, there is an urgent need to more accurately define the syndrome of HFpEF to inform diagnosis, patient selection for clinical trials, and, ultimately, future therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer E Ho
- Corrigan Minehan Heart Center (J.E.H., G.D.L.), Massachusetts General Hospital, Harvard Medical School, Boston.,Cardiovascular Research Center (JE.H.), Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Cardiology, Department of Medicine (J.E.H., G.D.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Gregory D Lewis
- Corrigan Minehan Heart Center (J.E.H., G.D.L.), Massachusetts General Hospital, Harvard Medical School, Boston.,Division of Cardiology, Department of Medicine (J.E.H., G.D.L.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Walter J Paulus
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, The Netherlands (W.J.P.)
| | - Carolyn S P Lam
- National Heart Centre Singapore (C.S.P.L.).,National Heart Center Singapore & Duke-NUS Medical School Singapore (C.S.P.L.).,Department of Cardiology, University Medical Centre Groningen, University of Groningen, The Netherlands (C.S.P.L.).,The George Institute for Global Health, Sydney, Australia (C.S.P.L.)
| |
Collapse
|
131
|
Pugliese NR, De Biase N, Conte L, Gargani L, Mazzola M, Fabiani I, Natali A, Dini FL, Frumento P, Rosada J, Taddei S, Borlaug BA, Masi S. Cardiac Reserve and Exercise Capacity: Insights from Combined Cardiopulmonary and Exercise Echocardiography Stress Testing. J Am Soc Echocardiogr 2020; 34:38-50. [PMID: 33036818 DOI: 10.1016/j.echo.2020.08.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiopulmonary exercise testing (CPET) represents the gold standard to estimate peak oxygen consumption (VO2) noninvasively. To improve the analysis of the mechanisms behind effort intolerance, we examined whether exercise stress echocardiography measurements relate to directly measured peak VO2 during exercise in a large cohort of patients within the heart failure (HF) spectrum. METHODS We performed a symptom-limited graded ramp bicycle CPET exercise stress echocardiography in 30 healthy controls and 357 patients: 113 at risk of developing HF (American College of Cardiology/American Heart Association stage A-B) and 244 in HF stage C with preserved (HFpEF, n = 101) or reduced ejection fraction (HFrEF, n = 143). RESULTS Peak VO2 significantly decreased from controls (23, 21.7-29.7 mL/kg/minute; median, interquartile range) to stage A-B (18, 15.4-20.7 mL/kg/minute) and stage C (HFpEF: 13.6, 11.8-16.8 mL/kg/minute; HFrEF: 14.2, 10.7-17.5 mL/kg/minute). A regression model to predict peak VO2 revealed that peak left ventricular (LV) systolic annulus tissue velocity (S'), peak tricuspid annular plane systolic excursion/systolic pulmonary artery pressure (right ventricle-pulmonary artery coupling), and low-load left atrial (LA) reservoir strain/E/e' (LA compliance) were independent predictors, in addition to peak heart rate, stroke volume, and workload (adjusted R2 = 0.76, P < .0001). The model was successfully tested in subjects with atrial fibrillation (n = 49) and with (n = 224) and without (n = 163) beta-blockers (all P < .01). Peak S' showed the highest accuracy in predicting peak VO2 < 10 mL/kg/minute (cut point ≤ 7.5 cm/sec, area under the curve = 0.92, P < .0001) and peak VO2 > 20 mL/kg/minute (cut point > 12.5 cm/sec, area under the curve = 0.84, P < .0001) in comparison with the other cardiac variables of the model (P < .05). CONCLUSIONS Peak VO2 is directly related to measures of LV systolic function, LA compliance, and right ventricle-pulmonary artery coupling, in addition to heart rate and stroke volume and independently of workload, age, and sex. The evaluation of cardiac mechanics may provide more insights into the causes of effort intolerance in subjects from HF stages A-C.
Collapse
Affiliation(s)
| | - Nicolò De Biase
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Conte
- Cardiology Unit, Ospedale Castelnuovo Garfagnana, Pisa, Italy
| | - Luna Gargani
- Institute of Clinical Physiology, C.N.R., Pisa, Italy
| | - Matteo Mazzola
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Frank L Dini
- Area Cardiologica, Casa di Cura Villa Esperia, Salice Terme, Pavia, Italy
| | - Paolo Frumento
- Department of Political Sciences, University of Pisa, Pisa, Italy
| | - Javier Rosada
- Fourth Unit of Internal Medicine, University Hospital of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Barry A Borlaug
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
132
|
Rao VN, Fudim M, Mentz RJ, Michos ED, Felker GM. Regional adiposity and heart failure with preserved ejection fraction. Eur J Heart Fail 2020; 22:1540-1550. [PMID: 32619081 PMCID: PMC9991865 DOI: 10.1002/ejhf.1956] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
The role of obesity in the pathogenesis of heart failure (HF), and in particular HF with preserved ejection fraction (HFpEF), has drawn significant attention in recent years. The prevalence of both obesity and HFpEF has increased worldwide over the past decades and when present concomitantly suggests an obese-HFpEF phenotype. Anthropometrics, including body mass index, waist circumference, and waist-to-hip ratio, are associated with incident HFpEF. However, the cardiovascular effects of obesity may actually be driven by the distribution of fat, which can accumulate in the epicardial, visceral, and subcutaneous compartments. Regional fat can be quantified using non-invasive imaging techniques, including computed tomography, magnetic resonance imaging, and dual-energy X-ray absorptiometry. Regional variations in fat accumulation are associated with different HFpEF risk profiles, whereby higher epicardial and visceral fat have a much stronger association with HFpEF risk compared with elevated subcutaneous fat. Thus, regional adiposity may serve a pivotal role in the pathophysiology of HFpEF contributing to decreased cardiopulmonary fitness, impaired left ventricular compliance, upregulation of local and systemic inflammation, promotion of neurohormonal dysregulation, and increased intra-abdominal pressure and vascular congestion. Strategies to reduce total and regional adiposity have shown promise, including intensive exercise, dieting, and bariatric surgery programmes, but few studies have focused on HFpEF-related outcomes among obese. Further understanding the role these variable fat depots play in the progression of HFpEF and HFpEF-related hospitalizations may provide therapeutic targets in treating the obese-HFpEF phenotype.
Collapse
Affiliation(s)
- Vishal N Rao
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Marat Fudim
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Mentz
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| | - Erin D Michos
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - G Michael Felker
- Division of Cardiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
133
|
Guazzi M, Ghio S, Adir Y. Pulmonary Hypertension in HFpEF and HFrEF. J Am Coll Cardiol 2020; 76:1102-1111. [DOI: 10.1016/j.jacc.2020.06.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
|
134
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|
135
|
Kotruchin P, Hoshide S, Ueno H, Shimizu H, Komori T, Kario K. Differential Impact of the Renal Resistive Index on Future Cardiovascular Events in Hospitalized Atherosclerotic Cardiovascular Patients According to Left Ventricular Ejection Fraction - The Jichi Vascular Hemodynamics in Hospitalized Cardiovascular Patients (J-VAS) Study. Circ J 2020; 84:1544-1551. [PMID: 32741880 DOI: 10.1253/circj.cj-19-1166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
BACKGROUND Determinants of poor outcome in atherosclerotic cardiovascular disease (ASCVD) according to left ventricular ejection fraction (LVEF) are unclear. The renal resistive index (RRI) correlates well with atherosclerotic vascular damage, which, in turn, is correlated with cardiovascular outcomes. This study investigated whether high RRI is associated with poor cardiovascular outcomes in ASCVD patients classified by LVEF. METHODS AND RESULTS Records of 1,598 acute coronary syndromes (ACS) and acute decompensated heart failure (ADHF) patients, categorized into preserved (p), mid-range (mr), and reduced (r) ejection fraction (EF) groups (EF ≥50% [n=1,130], 40-50% [n=223], and <40% [n=245], respectively), were analyzed retrospectively. The primary endpoint was any cardiovascular-related event: fatal and non-fatal ACS, ADHF, stroke, and sudden cardiac death. Over 1.9-years follow-up (3,030 person-years), 233 events occurred: 122, 37, and 74 in the pEF, mrEF, and rEF groups, respectively. Adjusted Cox regression analysis revealed RRI ≥0.8 was associated with the primary endpoint in the pEF group (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.09-2.56), but not in the mrEF or rEF groups. The primary endpoint risk of pEF patients with an RRI ≥0.8 was comparable to that of mrEF patients using the pEF+RRI <0.8 group as the reference (HR 1.89 [95% CI 1.26-2.83] and 1.77 [95% CI 1.19-2.63], respectively). CONCLUSIONS RRI was associated with the risk of cardiovascular events in ASCVD patients with pEF.
Collapse
Affiliation(s)
- Praew Kotruchin
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
- Department of Emergency Medicine, Faculty of Medicine, Khon Kaen University
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Hiromi Ueno
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Hayato Shimizu
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Jichi Medical University School of Medicine
| |
Collapse
|
136
|
Nayor M, Houstis NE, Namasivayam M, Rouvina J, Hardin C, Shah RV, Ho JE, Malhotra R, Lewis GD. Impaired Exercise Tolerance in Heart Failure With Preserved Ejection Fraction: Quantification of Multiorgan System Reserve Capacity. JACC. HEART FAILURE 2020; 8:605-617. [PMID: 32535122 PMCID: PMC7395858 DOI: 10.1016/j.jchf.2020.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Exercise intolerance is a principal feature of heart failure with preserved ejection fraction (HFpEF), whether or not there is evidence of congestion at rest. The degree of functional limitation observed in HFpEF is comparable to patients with advanced heart failure and reduced ejection fraction. Exercise intolerance in HFpEF is characterized by impairments in the physiological reserve capacity of multiple organ systems, but the relative cardiac and extracardiac deficits vary among individuals. Detailed measurements made during exercise are necessary to identify and rank-order the multiorgan system limitations in reserve capacity that culminate in exertional intolerance in a given person. We use a case-based approach to comprehensively review mechanisms of exercise intolerance and optimal approaches to evaluate exercise capacity in HFpEF. We also summarize recent and ongoing trials of novel devices, drugs, and behavioral interventions that aim to improve specific exercise measures such as peak oxygen uptake, 6-min walk distance, heart rate, and hemodynamic profiles in HFpEF. Evaluation during the clinically relevant physiological perturbation of exercise holds promise to improve the precision with which HFpEF is defined and therapeutically targeted.
Collapse
Affiliation(s)
- Matthew Nayor
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nicholas E Houstis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mayooran Namasivayam
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Rouvina
- Pulmonary Critical Care Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Charles Hardin
- Pulmonary Critical Care Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Ravi V Shah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jennifer E Ho
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory D Lewis
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Pulmonary Critical Care Unit, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
137
|
Nagueh SF. Heart failure with preserved ejection fraction: insights into diagnosis and pathophysiology. Cardiovasc Res 2020; 117:999-1014. [PMID: 32717061 DOI: 10.1093/cvr/cvaa228] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for at least half the cases of heart failure, currently diagnosed. There are several cardiac and non-cardiac manifestations of the syndrome. Structure and function abnormalities can include all four cardiac chambers. The left ventricle has abnormal systolic and diastolic functions which can be examined by invasive and non-invasive measurements. In addition, the left atrium enlarges with abnormal left atrial function, pulmonary hypertension occurs, and the right ventricle can develop hypertrophy, enlargement, and systolic dysfunction. There are a paucity of data on calcium handling in HFpEF patients. Growing literature supports the presence of abnormalities in titin and its phosphorylation, and increased interstitial fibrosis contributing to increased chamber stiffness. A systemic inflammatory state causing reduced myocardial cyclic guanosine monophosphate along with defects in the unfolded protein response have been recently reported. Diagnosis relies on signs and symptoms of heart failure, preserved ejection fraction, and detection of diastolic function abnormalities based on echocardiographic findings and abnormally elevated natriuretic peptide levels or invasive measurements of wedge pressure at rest or with exercise. There are currently two diagnostic algorithms: H2FPEF, and HFA-PEFF with limited data comparing their performance head to head in the same patient population. Despite the growing understanding of the syndrome's pathophysiology, there have been little success in developing specific treatment for patients with HFpEF.
Collapse
Affiliation(s)
- Sherif F Nagueh
- Methodist DeBakey Heart and Vascular Center, 6550 Fannin, SM-1801, Houston, TX 77030, USA
| |
Collapse
|
138
|
Baral R, Loudon B, Frenneaux MP, Vassiliou VS. Ventricular-vascular coupling in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Heart Lung 2020; 50:121-128. [PMID: 32690217 DOI: 10.1016/j.hrtlng.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a complex disease underlined by impaired ventricular-vascular coupling (VVC). OBJECTIVES To evaluate the VVC ratio in HFpEF patients at rest and during exercise and compare it to the healthy and heart failure with reduced ejection fraction (HFrEF) controls. METHODS PubMed and EMBASE databases were searched for trials that matched the inclusion criteria. Random-effects models were used to estimate the pooled mean difference with 95% confidence interval using Open Meta[Analyst] software. RESULTS A total of 13 trials met the inclusion criteria. Although VVC ratio was comparable between HFpEF and healthy controls at rest, it was significantly lower in HFrEF compared to HFpEF. During exercise, there was a significant decline in VVC ratio in HFpEF (-0.119, 95% CI (-0.183 to -0.055), p<0.001). CONCLUSION VVC ratio, although 'preserved' at rest in HFpEF patients, was overtly impaired during exercise highlighting the importance of dynamic testing.
Collapse
Affiliation(s)
- Ranu Baral
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom.
| | - Brodie Loudon
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Royal Brompton Hospital and Imperial College London, United Kingdom
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom; Royal Brompton Hospital and Imperial College London, United Kingdom; Norfolk and Norwich University Hospital, Norwich, United Kingdom
| |
Collapse
|
139
|
Pagel PS, Tawil JN, Boettcher BT, Izquierdo DA, Lazicki TJ, Crystal GJ, Freed JK. Heart Failure With Preserved Ejection Fraction: A Comprehensive Review and Update of Diagnosis, Pathophysiology, Treatment, and Perioperative Implications. J Cardiothorac Vasc Anesth 2020; 35:1839-1859. [PMID: 32747202 DOI: 10.1053/j.jvca.2020.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/15/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Almost three-quarters of all heart failure patients who are older than 65 have heart failure with preserved ejection fraction (HFpEF). The proportion and hospitalization rate of patients with HFpEF are increasing steadily relative to patients in whom heart failure occurs as result of reduced ejection fraction. The predominance of the HFpEF phenotype most likely is explained by the prevalence of medical conditions associated with an aging population. A multitude of age-related, medical, and lifestyle risk factors for HFpEF have been identified as potential causes for the sustained low-grade proinflammatory state that accelerates disease progression. Profound left ventricular (LV) systolic and diastolic stiffening, elevated LV filling pressures, reduced arterial compliance, left atrial hypertension, pulmonary venous congestion, and microvascular dysfunction characterize HFpEF, but pulmonary arterial hypertension, right ventricular dilation and dysfunction, and atrial fibrillation also frequently occur. These cardiovascular features make patients with HFpEF exquisitely sensitive to the development of hypotension in response to acute declines in LV preload or afterload that may occur during or after surgery. With the exception of symptom mitigation, lifestyle modifications, and rigorous control of comorbid conditions, few long-term treatment options exist for these unfortunate individuals. Patients with HFpEF present for surgery on a regular basis, and anesthesiologists need to be familiar with this heterogeneous and complex clinical syndrome to provide successful care. In this article, the authors review the diagnosis, pathophysiology, and treatment of HFpEF and also discuss its perioperative implications.
Collapse
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI.
| | - Justin N Tawil
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Brent T Boettcher
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - David A Izquierdo
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - Timothy J Lazicki
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| | - George J Crystal
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, IL
| | - Julie K Freed
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
140
|
Wan J, Liu S, Yang Y, Wang D, Ran F, Xia S, Ma S, Hou J, Zhou P, Sun Y, Wang P. Roles of arterial pressure volume index and arterial velocity pulse index trajectories in risk prediction in hypertensive patients with heart failure with preserved ejection fraction. Clin Exp Hypertens 2020; 42:469-478. [PMID: 31851528 DOI: 10.1080/10641963.2019.1705319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Arterial pressure volume index (API) and arterial velocity pulse index (AVI) contribute to the development of vascular damage and cardiovascular disease. However, the relationship between common API/AVI trajectories and cardiovascular outcomes in hypertensive patients with heart failure with preserved ejection fraction (HFpEF) is unknown.Methods: A total of 488 consecutive hypertensive patients with HFpEF who repeatedly underwent API/AVI measurements were prospectively examined. We then applied API/AVI measurements into actual clinical practice. Latent mixture modeling was performed to identify API/AVI trajectories. Hazards ratios (HRs) were measured using Cox proportional hazard models.Results: We identified four distinct API/AVI trajectory patterns: low (7.6%), moderate (43.8%), high (28.9%), and very high (19.7%). Compared with the low group, higher API trajectories were associated with increased risk of total cardiovascular events (high group, adjusted HR: 2.91, 95% confidence interval [CI]: 1.97-4.26; very high group, adjusted HR: 2.46, 95%CI: 1.18-3.79). Consistently, higher AVI trajectories were also associated with a higher risk of total cardiovascular events (high group, adjusted HR: 2.58, 95%CI: 1.23-5.47; very high group, adjusted HR: 3.12, 95%CI: 1.83-6.08), compared with the low trajectory group.Conclusion: High API/AVI trajectories are strong predictors of cardiovascular risk in hypertensive patients with HFpEF. Among these patients, measuring API/AVI may improve risk stratification and provide additional information to tailor treatment strategies.
Collapse
Affiliation(s)
- Jindong Wan
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Sen Liu
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Yi Yang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Fei Ran
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Siwei Xia
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Shuangtao Ma
- Division of Nanomedicine and Molecular Intervention, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Jixin Hou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Peng Zhou
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| | - Yun Sun
- Department of Party Secretary, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China
| | - Peijian Wang
- Department of Cardiology, The First Affiliated Hospital, Chengdu Medical College, Chengdu, Sichuan, PR China.,Department of Cardiology, Key Laboratory of Aging and Vascular Homeostasis of Sichuan Higher Education Institutes, Chengdu, Sichuan, PR China
| |
Collapse
|
141
|
Abstract
PURPOSE OF REVIEW This review summarizes the evidence for the established vascular/hypoperfusion model and explores the new hypothesis that configures the heart/brain axis as an organ system where similar pathogenic mechanisms exploit physiological and pathological changes. RECENT FINDINGS Although associated by common risk factors, similar epidemiological stratification and common triggers (including inflammation, oxidative stress, and hypoxia), heart failure and Alzheimer's disease have been, for long time, viewed as pathogenically separate illnesses. The silos began to be broken down with the awareness that vascular dysfunction, and loss of cardiac perfusion pump power, trigger biochemical changes, contributing to the typical hallmark of Alzheimer's disease (AD)-the accumulation of Aβ plaques and hyperphosphorylated Tau tangles. Compromised blood flow to the brain becomes the paradigm for the "heart-to-head" connection. Compelling evidence of common genetic variants, biochemical characteristics, and the accumulation of Aβ outside the brain suggests a common pathogenesis for heart failure (HF) and AD. These new findings represent just the beginning of the understanding the complex connection between AD and HF requiring further studies and interdisciplinary approaches. Altogether, the current evidence briefly summarized in this review, highlight a closer and complex relationship between heart failure and Alzheimer's that goes beyond the vascular/perfusion hypothesis. Genetic and biochemical evidence begin to suggest common pathogenic mechanisms between the two diseases involving a systemic defect in the folding of protein or a seeding at distance of the misfolded proteins from one organ to the other.
Collapse
|
142
|
Egbe AC, Miranda WR, Connolly HM. Increased prevalence of left ventricular diastolic dysfunction in adults with repaired coarctation of aorta. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2020; 28:100530. [PMID: 32462075 PMCID: PMC7240224 DOI: 10.1016/j.ijcha.2020.100530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/28/2023]
Abstract
Background Left ventricular (LV) pressure overload and coronary artery disease are common in patients with coarctation of aorta (COA), and they are risk factors for LV diastolic dysfunction. Patients with COA may have aortic vasculopathy that can result in LV pressure overload even in the absence of hemodynamically significant COA. We therefore hypothesized that patients with mild COA (without hemodynamically significant COA) will have more LV diastolic dysfunction compared to controls. Methods Adult patients with mild COA (Doppler peak velocity < 2.5 m/s) were matched 1:1 to patients without structural heart disease using propensity score method based on age, sex, body mass index, hypertension and blood pressure. The objective was to compare LV diastolic dysfunction (defined as E/e′ > 2 standard deviations above age-specific normative values) between adults with repaired COA and controls. Results Of 204 COA and 204 control patients (age 35 ± 12 years), patients with COA had higher septal and lateral E/e′ ratio (12 ± 4 vs 9 ± 4, p = 0.009) and (10 ± 3 vs 7 ± 3, p < 0.001), respectively. Compared to controls, the prevalence of LV diastolic dysfunction was higher in patients with COA for every age group: <40 years (63% vs 13%, p < 0.001); 41–60 years (87% vs 33%, p < 0.001); age > 60 years (82% vs 56%, p = 0.076). Left ventricular mass index (LVMI) was the strongest determinant of E/e′ (β = 2.71 per 10 g/m2, standard error = 1.25, p < 0.001). Conclusion LV diastolic dysfunction was common in patients with COA, and the association with LVMI suggests that patients with COA may have ongoing LV pressure overload in the absence of hemodynamically significant re-coarctation.
Collapse
Affiliation(s)
- Alexander C Egbe
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - William R Miranda
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Heidi M Connolly
- The Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
143
|
Jain CC, Borlaug BA. Performance and Interpretation of Invasive Hemodynamic Exercise Testing. Chest 2020; 158:2119-2129. [PMID: 32473950 DOI: 10.1016/j.chest.2020.05.552] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 01/06/2023] Open
Abstract
Exertional dyspnea is a common complaint for patients seen in pulmonary, cardiac, and general medicine clinics, and elucidating the cause is often challenging, particularly when physical examination, echocardiography, radiography, and pulmonary function test results are inconclusive. Invasive cardiopulmonary exercise testing has emerged as the gold standard test to define causes of dyspnea and exertional limitation in this population. In this review, we describe the methods for performing and interpreting invasive cardiopulmonary exercise testing, with particular attention to the hemodynamic and blood sampling data as they apply to patients being evaluated for heart failure and pulmonary hypertension.
Collapse
|
144
|
Reddy YNV, Borlaug BA. New insights into the role of left atrial function during exercise in heart failure. Eur J Heart Fail 2020; 22:1199-1201. [PMID: 32459014 DOI: 10.1002/ejhf.1903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yogesh N V Reddy
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
145
|
Bashline MJ, Bachman TN, Helbling NL, Nouraie M, Gladwin MT, Simon MA. The Effects of Inhaled Sodium Nitrite on Pulmonary Vascular Impedance in Patients With Pulmonary Hypertension Associated with Heart Failure With Preserved Ejection Fraction. J Card Fail 2020; 26:654-661. [PMID: 32446946 DOI: 10.1016/j.cardfail.2020.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The severity of pulmonary hypertension (PH) is monitored by measuring pulmonary vascular resistance, which is a steady-state measurement and ignores the pulsatile load encountered by the right ventricle (RV). Pulmonary vascular impedance (PVZ) can depict both steady-state and pulsatile forces, and thus may better predict clinical outcomes. We sought to calculate PVZ in patients with PH associated with heart failure with preserved ejection fraction who were administered inhaled sodium nitrite to better understand the acute effects on afterload. METHODS AND RESULTS Fourteen patients with PH associated with heart failure with preserved ejection fraction underwent right heart catherization and were administered inhaled sodium nitrite. A Fourier transform was used to calculate PVZ for both before and after nitrite for comparison. Inhaled sodium nitrite decreased characteristic impedance (inversely related to proximal pulmonary artery compliance) and total work performed by the RV. RV efficiency improved, defined by a reduction in the total work divided by cardiac output. There was a mild decrease in pulmonary steady-state resistance after the administration of inhaled sodium nitrite, but this effect was not significant. CONCLUSIONS PVZ analysis showed administration of inhaled sodium nitrite was associated with an improvement in pulmonary vascular compliance via a decrease in characteristic impedance, more so than pulmonary steady-state resistance. This effect was associated with improved RV efficiency and total work.
Collapse
Affiliation(s)
| | | | | | - Mehdi Nouraie
- Vascular Medicine Institute; Division of Pulmonary, Allergy and Critical Care Medicine
| | - Mark T Gladwin
- Vascular Medicine Institute; Division of Pulmonary, Allergy and Critical Care Medicine; Division of Cardiology and Heart and Vascular Institute
| | - Marc A Simon
- Department of Bioengineering; Vascular Medicine Institute; Division of Pulmonary, Allergy and Critical Care Medicine; Division of Cardiology and Heart and Vascular Institute.
| |
Collapse
|
146
|
Gui Y, Chen J, Hu J, Ouyang M, Deng L, Liu L, Sun K, Tang Y, Xiang Q, Xu J, Zhu L, Peng Z, Zou P, Li B, Zheng Z, Xu D. Efficacy and Safety of Inorganic Nitrate Versus Placebo Treatment in Heart Failure with Preserved Ejection Fraction. Cardiovasc Drugs Ther 2020; 34:503-513. [DOI: 10.1007/s10557-020-06980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
147
|
Mannozzi J, Kaur J, Spranger MD, Al-Hassan MH, Lessanework B, Alvarez A, Chung CS, O'Leary DS. Muscle metaboreflex-induced increases in effective arterial elastance: effect of heart failure. Am J Physiol Regul Integr Comp Physiol 2020; 319:R1-R10. [PMID: 32348680 DOI: 10.1152/ajpregu.00040.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamic exercise elicits robust increases in sympathetic activity in part due to muscle metaboreflex activation (MMA), a pressor response triggered by activation of skeletal muscle afferents. MMA during dynamic exercise increases arterial pressure by increasing cardiac output via increases in heart rate, ventricular contractility, and central blood volume mobilization. In heart failure, ventricular function is compromised, and MMA elicits peripheral vasoconstriction. Ventricular-vascular coupling reflects the efficiency of energy transfer from the left ventricle to the systemic circulation and is calculated as the ratio of effective arterial elastance (Ea) to left ventricular maximal elastance (Emax). The effect of MMA on Ea in normal subjects is unknown. Furthermore, whether muscle metaboreflex control of Ea is altered in heart failure has not been investigated. We utilized two previously published methods of evaluating Ea [end-systolic pressure/stroke volume (EaPV)] and [heart rate × vascular resistance (EaZ)] during rest, mild treadmill exercise, and MMA (induced via partial reductions in hindlimb blood flow imposed during exercise) in chronically instrumented conscious canines before and after induction of heart failure via rapid ventricular pacing. In healthy animals, MMA elicits significant increases in effective arterial elastance and stroke work that likely maintains ventricular-vascular coupling. In heart failure, Ea is high, and MMA-induced increases are exaggerated, which further exacerbates the already uncoupled ventricular-vascular relationship, which likely contributes to the impaired ability to raise stroke work and cardiac output during exercise in heart failure.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasdeep Kaur
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Marty D Spranger
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Charles S Chung
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
148
|
Zaky AF, Berkowitz DE. Mythical metrics and methods: Needed paradigm shift in disease recognition and therapy. Med Hypotheses 2020; 141:109734. [PMID: 32298922 DOI: 10.1016/j.mehy.2020.109734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 04/08/2020] [Indexed: 11/26/2022]
Abstract
Current medicine is practiced in an organ-based, function-appraised manner with less attention paid to the tissue characteristics of the appraised organs. The fundamentals of this paradigm have been the product of an oversimplified and often layman-based perceptions of the studied organ over the years. These perceptions drove the current definitions of normality and abnormality, parameters used in the diagnosis of the disease, goals of treatment and studied outcomes. Despite the explosive advancement in technology that could have potentially changed our 'upstream' thinking, practitioners remain captives of these old beliefs and have streamlined current technology in a 'downstream' fashion; in the form of goal-directed protocols, and engineering systems that would study their implementations. As a result, diseases continue to evolve, become more resistant to therapy, late to diagnose, and with a persistent worsening of outcomes. With a primarily focus on the heart and from an anesthesiologist prospective, we challenge the fundamentals of the current paradigm from an 'upstream' prospective. We challenge the current 'territorial' definitions of the organs studied, the current terminology of some diseases, the parameters used in their diagnosis, the diagnostic modalities used and their goals of treatment. We illustrate some examples when the current collective 'myth' meets the 'reality' in an acute care setting, further clarifying the limitations of the current paradigm. We also, provide a theoretical hypothesis of what we believe to be a potential substitute of the current paradigm. Our theory redefines disease from an organ-based functional phenomenon to a structural-based tissue phenomenon, calling for an integrative and holistic approach of tissue assessment rather than a discrete approach that may potentially obscure the interaction of non-appraised organs. We also believe in redirecting technology in an upstream direction to better redefine and early detect diseases rather than submitting to generationally inherited beliefs. Whereas we have started some of our research on our proposed paradigm, our theoretical framework remains to be thought-provoking, and hypothesis-generating at the present time.
Collapse
Affiliation(s)
- Ahmed F Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, United States.
| | - Dan E Berkowitz
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, United States
| |
Collapse
|
149
|
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari B. Research Priorities for Heart Failure With Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020; 141:1001-1026. [PMID: 32202936 PMCID: PMC7101072 DOI: 10.1161/circulationaha.119.041886] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a major public health problem that is rising in prevalence, is associated with high morbidity and mortality and is considered to be the greatest unmet need in cardiovascular medicine today because of a general lack of effective treatments. To address this challenging syndrome, the National Heart, Lung, and Blood Institute convened a working group made up of experts in HFpEF and novel research methodologies to discuss research gaps and to prioritize research directions over the next decade. Here, we summarize the discussion of the working group, followed by key recommendations for future research priorities. There was uniform recognition that HFpEF is a highly integrated, multiorgan, systemic disorder requiring a multipronged investigative approach in both humans and animal models to improve understanding of mechanisms and treatment of HFpEF. It was recognized that advances in the understanding of basic mechanisms and the roles of inflammation, macrovascular and microvascular dysfunction, fibrosis, and tissue remodeling are needed and ideally would be obtained from (1) improved animal models, including large animal models, which incorporate the effects of aging and associated comorbid conditions; (2) repositories of deeply phenotyped physiological data and human tissue, made accessible to researchers to enhance collaboration and research advances; and (3) novel research methods that take advantage of computational advances and multiscale modeling for the analysis of complex, high-density data across multiple domains. The working group emphasized the need for interactions among basic, translational, clinical, and epidemiological scientists and across organ systems and cell types, leveraging different areas or research focus, and between research centers. A network of collaborative centers to accelerate basic, translational, and clinical research of pathobiological mechanisms and treatment strategies in HFpEF was discussed as an example of a strategy to advance research progress. This resource would facilitate comprehensive, deep phenotyping of a multicenter HFpEF patient cohort with standardized protocols and a robust biorepository. The research priorities outlined in this document are meant to stimulate scientific advances in HFpEF by providing a road map for future collaborative investigations among a diverse group of scientists across multiple domains.
Collapse
Affiliation(s)
- Sanjiv J. Shah
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | | | | | | | | | | - Scott L. Hummel
- University of Michigan and the Ann Arbor Veterans Affairs Health System, Ann Arbor, MI
| | | | | | - Flora Sam
- Boston University School of Medicine, Boston, MA
| | | | | | - Bishow Adhikari
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MD
| |
Collapse
|
150
|
Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 2020; 22:391-412. [PMID: 32133741 DOI: 10.1002/ejhf.1741] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/30/2018] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the 'HFA-PEFF diagnostic algorithm'. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for heart failure symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular (LV) ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e'), LV filling pressure estimated using E/e', left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2-4 points) implies diagnostic uncertainty, in which case Step 3 (F1 : Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2 : Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.
Collapse
Affiliation(s)
- Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Department of Internal Medicine and Cardiology, German Heart Institute, Berlin, Germany.,Berlin Institute of Health (BIH), Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany
| | - Rudolf A de Boer
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | | | - Stefan D Anker
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany.,Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charite, Berlin, Germany.,Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), Germany
| | - Erwan Donal
- Cardiology and CIC, IT1414, CHU de Rennes LTSI, Université Rennes-1, INSERM 1099, Rennes, France
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum.,German Center for Cardiovascular Research (DZHK), Berlin, Partner Site, Germany
| | - Michael Fu
- Section of Cardiology, Department of Medicine, Sahlgrenska University Hosptal/Ostra, Göteborg, Sweden
| | - Marco Guazzi
- Department of Biomedical Sciences for Health, University of Milan, IRCCS, Milan, Italy.,Department of Cardiology, IRCCS Policlinico, San Donato Milanese, Milan, Italy
| | - Carolyn S P Lam
- National Heart Centre, Singapore & Duke-National University of Singapore.,University Medical Centre Groningen, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, Heart Valve Clinic, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU Sart Tilman, Liège, Belgium
| | - Vojtech Melenovsky
- Institute for Clinical and Experimental Medicine - IKEM, Prague, Czech Republic
| | - Daniel A Morris
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt.,German Centre for Cardiovascular Research (DZHK), Partner Site Frankfurt, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum
| | | | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- Section of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Frans H Rutten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adriaan A Voors
- University Medical Centre Groningen, University of Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Frank Ruschitzka
- University Heart Centre, University Hospital Zurich, Switzerland
| | - Walter J Paulus
- Department of Physiology and Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, The Netherlands
| | - Petar Seferovic
- University of Belgrade School of Medicine, Belgrade University Medical Center, Serbia
| | - Gerasimos Filippatos
- Department of Cardiology, National and Kapodistrian University of Athens Medical School; University Hospital "Attikon", Athens, Greece.,University of Cyprus, School of Medicine, Nicosia, Cyprus
| |
Collapse
|