101
|
Luo Q, Gong P, Sun M, Kou L, Ganapathy V, Jing Y, He Z, Sun J. Transporter occluded-state conformation-induced endocytosis: Amino acid transporter ATB 0,+-mediated tumor targeting of liposomes for docetaxel delivery for hepatocarcinoma therapy. J Control Release 2016; 243:370-380. [PMID: 27810556 DOI: 10.1016/j.jconrel.2016.10.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
Rapidly proliferating tumor cells upregulate specific amino acid transporters, which hold great potential for tumor-selective drug delivery. Published reports have focused primarily on blocking these transporters as a means of starving the tumor cells of amino acids, but their potential in drug delivery remains understudied. In the present study, we developed liposomes functionalized with lysine and polyoxyethylene stearate conjugate (LPS) to interact with ATB0,+, an amino acid transporter overexpressed in hepatocarcinoma and the liver cancer cell line HepG2. The LPS modified liposomes (LPS-Lips) were ~100nm in size and exhibited high drug encapsulation efficiency as 94.7%. The uptake of LPS-Lips in HepG2 cells was dependent on Na+ and Cl-. Molecular dynamic simulation showed that a sustained occluded state of the transporter upon binding to co-transported ions was formed and LPS-Lips triggered the cellular internalization of liposomes. We loaded these LPS-Lips with docetaxel and evaluated the potential of ATB0,+-mediated endocytosis of the drug-loaded LPS-Lips in HepG2 cells in vitro and in syngeneic mouse transplants in vivo. Compared with unmodified liposomes, which did not interact with ATB0,+, LPS-Lips exhibited the ability to deliver docetaxel more efficiently into tumor cells with consequent greater antitumor efficacy and less systemic toxicity. These studies provide first evidences that ATB0,+ can be used as a novel and effective target for drug delivery system in tumor cells using chemically modified liposomes for loading with chemotherapeutics and targeting them for the transporter-mediated endocytosis. As ATB0,+ is highly upregulated in several cancers, this approach holds potential for tumor-selective delivery of drugs to treat these cancer types.
Collapse
Affiliation(s)
- Qiuhua Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Ping Gong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Mengchi Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Longfa Kou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Yongkui Jing
- Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China.
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China; Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
102
|
Lee JY, Park JH, Lee JJ, Lee SY, Chung SJ, Cho HJ, Kim DD. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs. Carbohydr Polym 2016; 151:68-77. [DOI: 10.1016/j.carbpol.2016.05.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 01/02/2023]
|
103
|
Ju Y, Dai Q, Cui J, Dai Y, Suma T, Richardson JJ, Caruso F. Improving Targeting of Metal-Phenolic Capsules by the Presence of Protein Coronas. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22914-22922. [PMID: 27560314 DOI: 10.1021/acsami.6b07613] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Particles adsorb proteins when they enter a physiological environment; this results in a surface coating termed a "protein corona". A protein corona can affect both the properties and functionalities of engineered particles. Here, we prepared hyaluronic acid (HA)-based capsules through the assembly of metal-phenolic networks (MPNs) and engineered their targeting ability in the absence and presence of protein coronas by varying the HA molecular weight. The targeting ability of the capsules was HA molecular weight dependent, and a high HA molecular weight (>50 kDa) was required for efficient targeting. The specific interactions between high molecular weight HA capsules and receptor-expressing cancer cells were negligibly affected by the presence of protein coronas, whereas nonspecific capsule-cell interactions were significantly reduced in the presence of a protein corona derived from human serum. Consequently, the targeting specificity of HA-based MPN capsules was enhanced due to the formation of a protein corona. This study highlights the significant and complex roles of a protein corona in biointeractions and demonstrates how protein coronas can be used to improve the targeting specificity of engineered particles.
Collapse
Affiliation(s)
- Yi Ju
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiong Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Yunlu Dai
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
104
|
The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J Pharm Sci 2016; 12:285-291. [PMID: 32104340 PMCID: PMC7032215 DOI: 10.1016/j.ajps.2016.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/01/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
A biodegradable poly(lactic-co-glycolic acid) loading atorvastatin calcium (AC) nanoparticles (AC-PLGA-NPs) were prepared by probe ultrasonication and evaporation method aiming at improving the oral bioavailability of AC. The effects of experimental parameters, including stabilizer species, stabilizer concentration and pH of aqueous phase, on particle size were also evaluated. The resultant nanoparticles were in spherical shape with an average diameter of 174.7 nm and a narrow particle size distribution. And the drug loading and encapsulation efficiency were about 8% and 71%, respectively. The particle size and polydispersion were almost unchanged in 10 days. The release curves of AC-PLGA-NPs in vitro displaying sustained release characteristics indicated that its release mechanisms were matrix erosion and diffusion. The pharmacokinetic study in vivo revealed that the Cmax and AUC0-∞ of AC-PLGA-NPs in rats were nearly 3.7-fold and 4.7-fold higher than that of pure atorvastatin calcium suspension. Our results demonstrated that the delivery of AC-PLGA-NPs could be a promising approach for the oral delivery of AC for enhanced bioavailability.
Collapse
|
105
|
Cadete A, Alonso MJ. Targeting cancer with hyaluronic acid-based nanocarriers: recent advances and translational perspectives. Nanomedicine (Lond) 2016; 11:2341-57. [PMID: 27526874 DOI: 10.2217/nnm-2016-0117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hyaluronic acid is a natural polysaccharide that has been widely explored for the development of anticancer therapies due to its ability to target cancer cells. Moreover, advances made in the last decade have revealed the versatility of this biomaterial in the design of multifunctional carriers, intended for the delivery of a variety of bioactive molecules, including polynucleotides, immunomodulatory drugs and imaging agents. In this review, we aim to provide an overview of the major recent achievements in this field, highlighting the application of the newly developed nanostructures in combination therapies, immunomodulation and theranostics. Finally, we will discuss the main challenges and technological advances that will allow these carriers to be considered as candidates for clinical development.
Collapse
Affiliation(s)
- Ana Cadete
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| | - María José Alonso
- NanoBioFar Group, Center for Research in Molecular Medicine & Chronic Diseases, Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela (USC), Avenida Barcelona s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
106
|
Li Z, Zhang M, Liu C, Zhou S, Zhang W, Wang T, Zhou M, Liu X, Wang Y, Sun Y, Sun J. Development of Liposome containing sodium deoxycholate to enhance oral bioavailability of itraconazole. Asian J Pharm Sci 2016; 12:157-164. [PMID: 32104325 PMCID: PMC7032120 DOI: 10.1016/j.ajps.2016.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to enhance oral bioavailability of itraconazole (ITZ) by developing Liposome containing sodium deoxycholate (ITZ-Lip-NaDC). The liposome, consisting of egg yolk lecithin and sodium deoxycholate, was prepared by thin-film dispersion method. Differential Scanning Calorimetry (DSC) results indicated an amorphous state in the liposome. The physicochemical characteristics including particle size, morphology, entrapment efficiency, dissolution properties were also investigated. The performance of single-pass intestinal infusion exhibited that the transport order of intestinal segment was jejunum, duodenum, colon and ileum, and that all the segments participated in the absorption of ITZ in intestinal tract. The bioavailability study in rats showed that the AUC0-72 of the liposome was nearly 1.67-fold higher than that of commercial capsules (SPORANOX) in terms of oral administration, and the RSD of AUC0-72 of ITZ-Lip-NaDC was also decreased. Our results indicated that ITZ-Lip-NaDC liposome was facilitated to improve dissolution efficiency, augment transmembrane absorption, and then enhance the oral bioavailability of ITZ, successfully.
Collapse
Affiliation(s)
- Zhenbao Li
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meiyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Chang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Shiwei Zhou
- Suihua No. 1 hospital, Beilin Road, Heilongjiang 152000, China
| | - Wenjuan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Tianyang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mei Zhou
- School of further education, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yongjun Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yinghua Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Corresponding author. School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, China. Fax: +86 24 23986325.
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Municipal Key Laboratory of Biopharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Corresponding author. School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China. Fax: +86 24 23986325.
| |
Collapse
|
107
|
Chen WL, Yang SD, Li F, Li JZ, Yuan ZQ, Zhu WJ, Liu Y, Zhou XF, Liu C, Zhang XN. Tumor microenvironment-responsive micelles for pinpointed intracellular release of doxorubicin and enhanced anti-cancer efficiency. Int J Pharm 2016; 511:728-40. [PMID: 27484835 DOI: 10.1016/j.ijpharm.2016.07.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/24/2016] [Accepted: 07/26/2016] [Indexed: 01/30/2023]
Abstract
Internal stimuli, such as intracellular lysosomal pH, enzyme, redox and reduction, can be applied to improve biological specificity of chemotherapeutic drugs for cancer therapy. Thus, functionalized copolymers based on their response to specific microenvironment of tumor regions have been designed as smart drug vesicles for enhanced anti-cancer efficiency and reduced side effects. Herein, we reported dually pH/reduction-responsive novel micelles based on self-assembly of carboxymethyl chitosan-cysteamine-N-acetyl histidine (CMCH-SS-NA) and doxorubicin (DOX). The tailor-made dually responsive micelles demonstrated favorable stability in normal physiological environment and triggered rapid drug release in acidic and/or reduction environment. Additionally, the nanocarriers responded to the intracellular environment in an ultra-fast manner within several minutes, which led to the pinpointed release of DOX in tumor cells effectively and ensured higher DOX concentrations within tumor areas with the aid of targeted delivery, thereby leading to enhanced tumor ablation. Thus, this approach with sharp drug release behavior represented a versatile strategy to provide a promising paradigm for cancer therapy.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Shu-di Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Fang Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Ji-Zhao Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhi-Qiang Yuan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Wen-Jing Zhu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiao-Feng Zhou
- College of Radiological Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Changshu Hospital of Traditional Chinese Medicine, Changshu 215500, People's Republic of China
| | - Chun Liu
- The Hospital of Suzhou People's Hospital Affiliated to Nanjing Medical University, Suzhou, 215000, People's Republic of China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
108
|
Xu C, Shi S, Feng L, Chen F, Graves SA, Ehlerding EB, Goel S, Sun H, England CG, Nickles RJ, Liu Z, Wang T, Cai W. Long circulating reduced graphene oxide-iron oxide nanoparticles for efficient tumor targeting and multimodality imaging. NANOSCALE 2016; 8:12683-92. [PMID: 27109431 PMCID: PMC4919229 DOI: 10.1039/c5nr09193d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polyethylene glycol (PEG) surface modification is one of the most widely used approaches to improve the solubility of inorganic nanoparticles, prevent their aggregation and prolong their in vivo blood circulation half-life. Herein, we developed double-PEGylated biocompatible reduced graphene oxide nanosheets anchored with iron oxide nanoparticles (RGO-IONP-(1st)PEG-(2nd)PEG). The nanoconjugates exhibited a prolonged blood circulation half-life (∼27.7 h) and remarkable tumor accumulation (>11 %ID g(-1)) via an enhanced permeability and retention (EPR) effect. Due to the strong near-infrared absorbance and superparamagnetism of RGO-IONP-(1st)PEG-(2nd)PEG, multimodality imaging combining positron emission tomography (PET) imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging was successfully achieved. The promising results suggest the great potential of these nanoconjugates for multi-dimensional and more accurate tumor diagnosis and therapy in the future.
Collapse
Affiliation(s)
- Cheng Xu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chenm/Biosensing and Chemometrics, Collage of Biology, Hunan University, Changsha, 410082, People’s Republic of China
- Department of Radiology, University of Wisconsin–Madison, WI 53792, United States
| | - Sixiang Shi
- Materials Science Program, University of Wisconsin–Madison, WI 53706, United States
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Feng Chen
- Department of Radiology, University of Wisconsin–Madison, WI 53792, United States
| | - Stephen A. Graves
- Department of Medical Physics, University of Wisconsin–Madison, WI 53705, United States
| | - Emily B. Ehlerding
- Department of Medical Physics, University of Wisconsin–Madison, WI 53705, United States
| | - Shreya Goel
- Materials Science Program, University of Wisconsin–Madison, WI 53706, United States
| | - Haiyan Sun
- Department of Radiology, University of Wisconsin–Madison, WI 53792, United States
| | | | - Robert J. Nickles
- Department of Medical Physics, University of Wisconsin–Madison, WI 53705, United States
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, People’s Republic of China
| | - Taihong Wang
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education and State Key Laboratory for Chenm/Biosensing and Chemometrics, Collage of Biology, Hunan University, Changsha, 410082, People’s Republic of China
- Corresponding Author: Weibo Cai, . Taihong Wang, ; Present Addresses: Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| | - Weibo Cai
- Department of Radiology, University of Wisconsin–Madison, WI 53792, United States
- Materials Science Program, University of Wisconsin–Madison, WI 53706, United States
- Department of Medical Physics, University of Wisconsin–Madison, WI 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, United States
- Corresponding Author: Weibo Cai, . Taihong Wang, ; Present Addresses: Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, United States
| |
Collapse
|
109
|
Feng Q, Zhang Y, Zhang W, Shan X, Yuan Y, Zhang H, Hou L, Zhang Z. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater 2016; 38:129-42. [PMID: 27090593 DOI: 10.1016/j.actbio.2016.04.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED In this work, a tumor-targeted and multi-stimuli responsive drug delivery system has been developed for combining photoacoustic tomography imaging with chemo-phototherapy. We utilized a kind of near infrared (NIR) resonant material-hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) to encapsulate doxorubicin (DOX). After that, the outer surface of HMCuS NPs was capped with multifunctional hyaluronic acid (HA) simultaneously as smart gatekeeper as well as tumor targeting moiety. Herein, HMCuS-HA could serve as a powerful contrast agent for photoacoustic tomography (PAT) to guide chemo-phototherapy by providing the identification of cancerous lesions. In vitro and in vivo studies, the nanoplatform (DOX/HMCuS-HA) pinpointed MCF-7 cells via CD44 receptor-mediated endocytosis pathway. Subsequently, intracellular enzyme-responsive controlled drug release would take place in lysosome after the HA degradation by hyaluronidase. Under near infrared (NIR) light irradiation, HMCuS NPs could not only effectively convert NIR light into heat for photothermal therapy, but also generate high levels of reactive oxygen species (ROS) for photodynamic therapy. In addition, NIR light and low pH environment could facilitate intracellular tunable drug release with spatial/temporal resolution, and thus synergistic combination of chemo-phototherapy should be simultaneously driven by an 808nm laser irradiation, which brought out an outstanding therapeutic effect. In vivo optical imaging demonstrated that HMCuS-HA significantly enhanced targeting and accumulation capacity in tumor site. Furthermore, tumor-bearing mice treated with DOX/HMCuS-HA under NIR irradiation (808nm, 2W/cm(2), 0.5min) in vivo displayed the highest inhibition ratio of about 88.9%. Taken together, our present study of the tumor-targeted and multi-stimuli responsive drug delivery system provides new insights into multimodality theranostic applications in cancer treatment. STATEMENT OF SIGNIFICANCE Until now, chemotherapy is still the major therapeutic approach applied in oncology. Despite their pharmacologically efficacy in cancer treatments, most chemotherapeutic agents without tumor-specific targeting ability have brought out serious toxicities to normal tissues. This study provides a promising near infrared (NIR) resonant material-hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) with capping of multifunctional hyaluronic acid (HA) simultaneously as smart gatekeeper as well as tumor targeting moiety to address the above problem. After the nanoplatform (DOX/HMCuS-HA) pinpointed breast cancer cells via CD44 receptor-mediated endocytosis pathway, intracellular multi-stimuli responsive controlled drug release would take place with remarkable spatial/temporal resolution. Then photoacoustic tomography (PAT) and synergistic combination of chemo-phototherapy would be simultaneously driven by the same NIR irradiation in a coordinated way, which brought out an outstanding theranostic effect. This work can arouse broad interests among researchers in the fields of nanomedicine, nanotechnology, and drug delivery system.
Collapse
Affiliation(s)
- Qianhua Feng
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Yuanyuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Wanxia Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Xiaoning Shan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Yujie Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, China.
| |
Collapse
|
110
|
Ju Y, Cui J, Sun H, Müllner M, Dai Y, Guo J, Bertleff-Zieschang N, Suma T, Richardson JJ, Caruso F. Engineered Metal-Phenolic Capsules Show Tunable Targeted Delivery to Cancer Cells. Biomacromolecules 2016; 17:2268-76. [DOI: 10.1021/acs.biomac.6b00537] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yi Ju
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Huanli Sun
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Markus Müllner
- Key
Centre for Polymers and Colloids, School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yunlu Dai
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Junling Guo
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nadja Bertleff-Zieschang
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Tomoya Suma
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
and the Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
111
|
Han X, Wei W, Zhong L, Luo C, Wu C, Jiang Q, Sun J. Determination of Doxorubicin in Stealth Hyalurionic Acid-Based Nanoparticles in Rat Plasma by the Liquid-Liquid Nanoparticles-Breaking Extraction Method: Application to a Pharmacokinetic Study. J Chromatogr Sci 2016; 54:1460-5. [PMID: 27240566 DOI: 10.1093/chromsci/bmw074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 01/28/2023]
Abstract
An efficient extraction of doxorubicin (Dox) from homemade stealth hyalurionic acid (HA)-based nanoparticles (NPs) in rat plasma could not be performed by previously published methods. Therefore, we attempted to establish the novel NPs-breaking and UPLC-MS-MS method for evaluating the pharmacokinetic profiles of the homemade stealth HA NPs in rats. The pretreatment method of plasma samples used the liquid-liquid extraction method with isopropyl alcohol as NPs-breaking and protein-precipitating solvents, and the NPs-breaking efficiency of isopropyl alcohol was as high as 97.2%. The analyte and gliclazide (internal standard) were extracted from plasma samples with isopropyl alcohol and were separated on UPLC BEH C18 with a mobile phase consisting of methanol and water (containing 0.1% formic acid). The method demonstrated good linearity at the concentrations ranging from 5 to 5,000 ng/mL. The intra- and interday relative standard deviations were >10%. Finally, the method was successfully applied to a pharmacokinetic study of homemade stealth HA-based NPs in rats following intravenous administration.
Collapse
Affiliation(s)
- Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wei Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Lu Zhong
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chunnuan Wu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
112
|
Large amino acid transporter 1 mediated glutamate modified docetaxel-loaded liposomes for glioma targeting. Colloids Surf B Biointerfaces 2016; 141:260-267. [DOI: 10.1016/j.colsurfb.2016.01.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/10/2016] [Accepted: 01/21/2016] [Indexed: 12/25/2022]
|
113
|
Lin CW, Lu KY, Wang SY, Sung HW, Mi FL. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomater 2016; 35:280-92. [PMID: 26853764 DOI: 10.1016/j.actbio.2016.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/10/2016] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
CD44-specific and redox-responsive nanoparticles were prepared by coating a bioreducible chitosan-based nanoparticles with hyaluronic acid for intracellular glutathione-triggered reactive oxygen species (ROS) production and doxorubicin (DOX) release. Chitosan (CS) was conjugated with a copper chelator, D-penicillamine (D-pen), to obtain a CS-SS-D-pen conjugate through the formation of a disulfide bond. D-pen release from the conjugate was triggered by intracellular glutathione (GSH) via reducing biologically reversible disulfide bonds. Self-assembled CS-SS-D-pen nanoparticles were prepared through ionotropic gelation with tripolyphosphate and subsequently coated with hyaluronic acid (HA). The HA-coated CS-SS-D-pen NPs were reduced by GSH to release free D-pen and trigger ROS production via a series of reactions involving Cu(II)-catalyzed D-pen oxidation and H2O2 generation. DOX was loaded into the HA-coated CS-SS-D-pen NPs by a method involving the complexation of DOX with Cu(II) ions. The Cu(II)-DOX complex-loaded NPs exhibited redox-responsive release properties which accelerated DOX release at a higher glutathione level (10mM). Confocal fluorescence microscopy demonstrated that the Cu(II)-DOX-loaded NPs effectively delivered DOX to human colon adenocarcinoma cells (HT-29) by active targeting via HA-CD44 interactions. Intracellular ROS generated from the HA-coated CS-SS-D-pen NPs sensitized cancer cells to DOX-induced cytotoxicity. In vitro cytotoxicity assays revealed that Cu(II)-DOX-loaded NPs sensitized cells to DOX-induced cytotoxicity in CD44-overexpressing HT-29 cells compared to CD44 low-expressing HCT-15 cells. STATEMENT OF SIGNIFICANCE In this manuscript, we develop a CD44-targetable loaded with nanoparticles Cu(II)-DOX complex. The nanoparticles exhibited redox-responsive properties, which triggered reactive oxygen species (ROS) production and accelerated DOX release. The Cu(II)-DOX-loaded nanoparticle sensitized cells to DOX-induced cytotoxicity in CD44-overexpressing HT-29 cells. To our knowledge, this is the first report showing the combination of CD44-targeting and redox-responsive property for triggering ROS production and subsequent drug release. We believe our findings would appeal to the readership of Acta Biomaterialia because the study bring new and interesting ideals in the development of specific and stimuli-responsive nanoparticles as drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Cheng-Wei Lin
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Ying Lu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sin-Yu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
114
|
Li N, Huang C, Luan Y, Song A, Song Y, Garg S. Active targeting co-delivery system based on pH-sensitive methoxy-poly(ethylene glycol)2K-poly(ε-caprolactone)4K-poly(glutamic acid)1K for enhanced cancer therapy. J Colloid Interface Sci 2016; 472:90-8. [PMID: 27016914 DOI: 10.1016/j.jcis.2016.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/31/2022]
Abstract
In this paper, we successfully synthesized folate-modified pH-sensitive copolymer methoxy-poly(ethylene glycol)2K-poly(ε-caprolactone)4K-poly(glutamic acid)1K (mPEG2K-PCL4K-PGA1K-FA), which could form the polymeric assembly in an aqueous solution, for co-delivering hydrophilic drugs doxorubicin hydrochloride (DOX) and verapamil hydrochloride (VER) (FA-poly(DOX+VER)). Since VER was an effective P-glycoprotein inhibitor, the combination of DOX and VER could reverse the multidrug resistance efficiently and enhance the therapeutic effect. Therefore, the inhibition ratios of MCF-7/ADR resistant cancer cell treated by FA-poly (DOX+VER) were almost more than 30% higher than those of FA-polyDOX after 48h and 72h. Furthermore, the conjugation of FA could lead the co-delivery systems actively targeting into the FA receptor over-expressing cancer cells in addition to the passive accumulation of the assembly in tumor tissues. Importantly, the prepared mPEG2K-PCL4K-PGA1K-FA assembly showed high pH-sensitive property, which made the drugs mostly released in tumor tissue (acid environment) than in physiological environment (neutral environment). In summary, the as-prepared co-delivery system FA-poly(DOX+VER) demonstrated a high efficiency in reversing the multidrug resistance and targeting FA receptor to improve the anticancer effect of DOX in MCF-7/ADR resistant cells.
Collapse
Affiliation(s)
- Nuannuan Li
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, PR China
| | - Chunzhi Huang
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, PR China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province 250012, PR China.
| | - Aixin Song
- Key Lab of Colloid & Interface Chemistry, Shandong University, Ministry of Education, 250100, PR China
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
115
|
Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release 2016; 229:10-22. [PMID: 26968799 DOI: 10.1016/j.jconrel.2016.03.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022]
Abstract
Breast cancer is the leading cause of cancer death in women. Chemotherapy is regarded as the most essential strategy in inhibiting the proliferation of tumor cells. Paclitaxel is a widely used taxane; however, the side effects of available Cremophor-based formulations and also the limitations of passive targeting uncovered an essential need to develop tumor-specific targeted nanocarriers. A hyaluronic acid targeted liposomal formulation of paclitaxel was prepared in which, hyaluronic acid was electrostatistically attracted to the surface of liposomes. Liposomes, had a particle size of 106.4±3.2nm, a weakly negative zeta potential of -9.7±0.8mV and an acceptable encapsulation efficiency of 92.1±1.7%. The release profile of liposomes in buffer showed that 95% of PTX was released during 40h. Confocal laser scanning microscopy and flow cytometry analysis showed the greater cellular internalization of coumarin-loaded liposomes compared to free coumarin. MTT assay on 4T1 and T47D cells demonstrated the stronger cytotoxic activity of liposomes in comparison to free paclitaxel. Cell cycle analysis showed that cells were mainly blocked at G2/M phases after 48h treatment with liposomes. In vivo real time imaging on 4T1 tumor-bearing mice revealed that the liposomal formulation mainly accumulated in the tumor area. Liposomes also had better antitumor efficacy against Cremophor-based formulation. In conclusion, hyaluronic acid targeted paclitaxel liposome can serve as a promising targeted formulation of paclitaxel for future cancer chemotherapy.
Collapse
|
116
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
117
|
Zhu Y, Liang G, Sun B, Tian T, Hu F, Xiao Z. A novel type of self-assembled nanoparticles as targeted gene carriers: an application for plasmid DNA and antimicroRNA oligonucleotide delivery. Int J Nanomedicine 2016; 11:399-410. [PMID: 26869785 PMCID: PMC4734819 DOI: 10.2147/ijn.s84927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a new type of amphiphilic cetylated polyethyleneimine (PEI) was synthesized, and then polylactic-co-glycolic acid (PLGA)/cetylated PEI/hyaluronic acid nanoparticles (PCPH NPs) were developed by self-assembly as a novel type of gene-delivering vehicle. The PCPH NPs showed good DNA-condensation ability by forming polyplexes with small particle size and positive zeta potential. The transfection efficiency and cytotoxicity of PCPH NPs were evaluated as plasmid DNA vectors to transfect HepG2 in vitro. PCPH NPs exhibited much lower cytotoxicity and higher gene-transfection efficiency than PEI (25,000) and commercial transfection reagents. Furthermore, PCPH NPs were used as an anti-miR-221 vector for transfecting HepG2 cells, and anti-miR-221 was effectively transfected into cells and produced a greater inhibitory effect on cancer-cell growth by PCPH NPs. These results demonstrate that PCPH NPs can be a promising nonviral vector for gene-delivery systems.
Collapse
Affiliation(s)
- Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Gaofeng Liang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feihu Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
118
|
Qiu L, Zhu M, Huang Y, Gong K, Chen J. Mechanisms of cellular uptake with hyaluronic acid—octadecylamine micelles as drug delivery nanocarriers. RSC Adv 2016. [DOI: 10.1039/c5ra27532f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DOX/HM23, based on appropriate DS and proper particle size, presented enhanced anticancer activity and efficient internalization to achieve the highest intracellular drug concentration.
Collapse
Affiliation(s)
- Lipeng Qiu
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- PR China
| | - Mengqin Zhu
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- PR China
| | - Yan Huang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- PR China
| | - Kai Gong
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- PR China
| | - Jinghua Chen
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- PR China
| |
Collapse
|
119
|
Palma M, Hardy JG, Tadayyon G, Farsari M, Wind SJ, Biggs MJ. Advances in Functional Assemblies for Regenerative Medicine. Adv Healthc Mater 2015; 4:2500-19. [PMID: 26767738 DOI: 10.1002/adhm.201500412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/16/2015] [Indexed: 12/17/2022]
Abstract
The ability to synthesise bioresponsive systems and selectively active biochemistries using polymer-based materials with supramolecular features has led to a surge in research interest directed towards their development as next generation biomaterials for drug delivery, medical device design and tissue engineering.
Collapse
Affiliation(s)
- Matteo Palma
- Department of Chemistry & Biochemistry School of Biological and Chemical Sciences; Queen Mary University of London; London E1 4NS UK
| | - John G. Hardy
- Department of Chemistry; Materials Science Institute; Lancaster University; Lancaster LA1 4YB UK
| | - Ghazal Tadayyon
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| | - Maria Farsari
- Institute of Electronic Structure and Laser; Crete Greece
| | | | - Manus J. Biggs
- Centre for Research in Medical Devices (CURAM); National University of Ireland Galway; Newcastle Road Dangan Ireland
| |
Collapse
|
120
|
Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 2015; 220:275-286. [PMID: 26518722 DOI: 10.1016/j.jconrel.2015.10.044] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/03/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
Abstract
Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Carcinoma/drug therapy
- Carcinoma/immunology
- Carcinoma/metabolism
- Carcinoma/pathology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Compounding
- Female
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Immunoconjugates/administration & dosage
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Mice
- Mice, Inbred BALB C
- NIH 3T3 Cells
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacokinetics
- Polyethylene Glycols/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Leila Arabi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
121
|
Lei M, Ma M, Pang X, Tan F, Li N. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods. NANOSCALE 2015; 7:15999-16011. [PMID: 26370706 DOI: 10.1039/c5nr04353k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Mingzhu Lei
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, PR China.
| | | | | | | | | |
Collapse
|
122
|
Xu Y, Meng H, Du F, Lu W, Liu S, Huang J, Yu J. Preparation of intravenous injection nanoformulation of VESylated gemcitabine by co-assembly with TPGS and its anti-tumor activity in pancreatic tumor-bearing mice. Int J Pharm 2015; 495:792-7. [PMID: 26410754 DOI: 10.1016/j.ijpharm.2015.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
Our recent publication showed that VES-dFdC nanocapsules in pure water could be obtained via the self-assembling of VES-dFdC prodrug synthesized by coupling gemcitabine (dFdC) with vitamin E succinate (VES). To prepare the intravenous injection nanoformulation, we present here a novel strategy to improve the stability and drug concentration of VES-dFdC nanoformulation in PBS or isotonic solution. Particularly, D-α-tocopheryl polyethylene glycol succinate (TPGS), usually used as drug solubilizer and coincidentally contains the same VES moiety as VES-dFdC prodrug and PEG chain, is selected to co-assemble with VES-dFdC prodrug. The zeta potentials of all the TPGS/VES-dFdC co-assemblies were close to 0 mV, and their particle size measured by dynamic light scattering (DLS) decreased from 113 to 36 nm with increasing TPGS/VES-dFdC molar ratios from 0.15 to 1.5. Stable colloidal suspensions were obtained without aggregates in PBS at 4 °C in one month or isotonic solution at 37 °C in one week, and the weight concentration of VES-dFdC prodrug increased from 7 to 17 mg/mL when the molar ratios of TPGS/VES-dFdC ranged from 0.5/1 to 1.5/1. The concentration of VES-dFdC prodrug was high enough to be used as intravenous injection nanoformulation in nude mice. Interestingly, along with the increase of TPGS/VES-dFdC molar ratios from 0.3/1 to 1.5/1, the morphology of TPGS/VES-dFdC co-assemblies changed from loose nanocapsule to compact micelle revealed by transmission electron microscope (TEM). Finally, the co-assembly of TPGS/VES-dFdC (TPGS/VES-dFdC: 1/1) was selected as intravenous injection nanoformulation to evaluate the antitumor activity. Compared with native dFdC, TPGS/VES-dFdC nanoformulation with 0.2mmol/kg of dosage showed similar low toxicity in vivo, but 4.7 times high of tumor inhibition rate in nude mice with pre-established BxPC-3 tumors.
Collapse
Affiliation(s)
- Yanyun Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Haijing Meng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Fang Du
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China; Institute of Chemistry and Biochemistry, Free University Berlin, Berlin, Takustr. 3 14195, Germany
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Shiyuan Liu
- Department of Diagnostic Imaging, ChangZheng Hospital, Shanghai 200003, PR China
| | - Jin Huang
- College of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
123
|
Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 2015; 69:1-11. [PMID: 26275857 DOI: 10.1016/j.biomaterials.2015.07.048] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) (PEG) is usually used to protect nanoparticles from rapid clearance in blood. The effects are highly dependent on the surface PEG density of nanoparticles. However, there lacks a detailed and informative study in PEG density and in vivo drug delivery due to the critical techniques to precisely control the surface PEG density when maintaining other nano-properties. Here, we regulated the polymeric nanoparticles' size and surface PEG density by incorporating poly(ε-caprolactone) (PCL) homopolymer into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) and adjusting the mass ratio of PCL to PEG-PCL during the nanoparticles preparation. We further developed a library of polymeric nanoparticles with different but controllable sizes and surface PEG densities by changing the molecular weight of the PCL block in PEG-PCL and tuning the molar ratio of repeating units of PCL (CL) to that of PEG (EG). We thus obtained a group of nanoparticles with variable surface PEG densities but with other nano-properties identical, and investigated the effects of surface PEG densities on the biological behaviors of nanoparticles in mice. We found that, high surface PEG density made the nanoparticles resistant to absorption of serum protein and uptake by macrophages, leading to a greater accumulation of nanoparticles in tumor tissue, which recuperated the defects of decreased internalization by tumor cells, resulting in superior antitumor efficacy when carrying docetaxel.
Collapse
|
124
|
Fu J, Wang D, Mei D, Zhang H, Wang Z, He B, Dai W, Zhang H, Wang X, Zhang Q. Macrophage mediated biomimetic delivery system for the treatment of lung metastasis of breast cancer. J Control Release 2015; 204:11-9. [PMID: 25646783 DOI: 10.1016/j.jconrel.2015.01.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/14/2023]
Abstract
The biomimetic delivery system (BDS) based on special types of endogenous cells like macrophages and T cells, has been emerging as a novel strategy for cancer therapy, due to its tumor homing property and biocompatibility. However, its development is impeded by complicated construction, low drug loading or negative effect on the cell bioactivity. The present report constructed a BDS by loading doxorubicin (DOX) into a mouse macrophage-like cell line (RAW264.7). It was found that therapeutically meaningful amount of DOX could be loaded into the RAW264.7 cells by simply incubation, without significantly affecting the viability of the cells. Drug could release from the BDS and maintain its activity. RAW264.7 cells exhibited obvious tumor-tropic capacity towards 4T1 mouse breast cancer cells both in vitro and in vivo, and drug loading did not alter this tendency. Importantly, the DOX loaded macrophage system showed promising anti-cancer efficacy in terms of tumor suppression, life span prolongation and metastasis inhibition, with reduced toxicity. In conclusion, it is demonstrated that the BDS developed here seems to overcome some of the main issues related to a BDS. The DOX loaded macrophages might be a potential BDS for targeted cancer therapy.
Collapse
Affiliation(s)
- Jijun Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dong Mei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haoran Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhaoyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
125
|
Xu L, Zhang W, Cai H, Liu F, Wang Y, Gao Y, Zhang W. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J Mater Chem B 2015; 3:7417-7426. [DOI: 10.1039/c5tb01363a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-controlled porphyrinic photosensitizer release system was developed based on host–guest TPP–Azo/PEG–β-CD supramolecular amphiphiles, which could significantly enhance the efficiency of photodynamic therapy.
Collapse
Affiliation(s)
- Lei Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Wenyan Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Haibo Cai
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Feng Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemistry and Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|
126
|
Jiang W, Wang J, Yang L, Jiang X, Bai Z, Wang Z, He Y, Wang D. Nanostructured lipid carriers modified with PEGylated carboxymethylcellulose polymers for effective delivery of docetaxel. RSC Adv 2015. [DOI: 10.1039/c5ra13642c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An amphiphilic carboxymethylcellulose-graft-histidine/methoxypolyethylene glycol (CMP) copolymer was firstly synthesized to modify nanostructured lipid carriers (NLCs) for effective delivery of docetaxel.
Collapse
Affiliation(s)
- Weihua Jiang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Ju Wang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Lei Yang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Xuewei Jiang
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Zhaoshi Bai
- Department of Pharmacology
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Zheran Wang
- Department of Biology
- University of the Cumberlands
- Williamsburg
- USA
| | - Yunpeng He
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| | - Dongkai Wang
- Department of Pharmaceutics
- Shenyang Pharmaceutical University
- Shenyang
- P.R. China
| |
Collapse
|