101
|
Use of a Lymphatic Drug Delivery System and Sonoporation to Target Malignant Metastatic Breast Cancer Cells Proliferating in the Marginal Sinuses. Sci Rep 2019; 9:13242. [PMID: 31519920 PMCID: PMC6744402 DOI: 10.1038/s41598-019-49386-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/23/2019] [Indexed: 01/31/2023] Open
Abstract
Lymph node (LN) metastasis through the lymphatic network is a major route for cancer dissemination. Tumor cells reach the marginal sinuses of LNs via afferent lymphatic vessels (LVs) and form metastatic lesions that lead to distant metastasis. Thus, targeting of metastatic cells in the marginal sinuses could improve cancer treatment outcomes. Here, we investigated whether lymphatic administration of a drug combined with sonoporation could be used to treat a LN containing proliferating murine FM3A breast cancer cells, which are highly invasive, in its marginal sinus. First, we used contrast-enhanced high-frequency ultrasound and histopathology to analyze the structure of LVs in MXH10/Mo-lpr/lpr mice, which exhibit systemic lymphadenopathy. We found that contrast agent injected into the subiliac LN flowed into the marginal sinus of the proper axillary LN (PALN) and reached the cortex. Next, we examined the anti-tumor effects of our proposed technique. We found that a strong anti-tumor effect was achieved by lymphatic administration of doxorubicin and sonoporation. Furthermore, our proposed method prevented tumor cells in the marginal sinus from invading the parenchyma of the PALN and resulted in tumor necrosis. We conclude that lymphatic administration of a drug combined with sonoporation could exert a curative effect in LNs containing metastatic cells in their marginal sinuses.
Collapse
|
102
|
Duan X, Yu ACH, Wan JMF. Cellular Bioeffect Investigations on Low-Intensity Pulsed Ultrasound and Sonoporation: Platform Design and Flow Cytometry Protocol. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:1422-1434. [PMID: 31217101 DOI: 10.1109/tuffc.2019.2923443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
At low-intensity levels, ultrasound can potentially generate therapeutic effects on living cells, and it can trigger sonoporation when microbubbles (MBs) are present to facilitate drug delivery. Yet, our foundational knowledge of low-intensity pulsed ultrasound (LIPUS) and sonoporation remains to be critically weak because the pertinent cellular bioeffects have not been rigorously studied. In this article, we present a population-based experimental protocol that can effectively foster investigations on the mechanistic bioeffects of LIPUS and sonoporation over a cell population. Walkthroughs of different methodological details are presented, including the fabrication of the ultrasound exposure platform and its calibration, as well as the design of a bioassay procedure that uses fluorescent tracers and flow cytometry to isolate sonicated cells with similar characteristics. An application example is also presented to illustrate how our protocol can be used to investigate the downstream cellular bioeffects of leukemia cells. We show that, with 1-MHz LIPUS exposure (with 29.1 J/cm2 delivered acoustic energy density), variations in viability and morphology would be found among different types of sonicated leukemia cells (HL-60, Molt-4) in the absence and presence of MBs. Taken altogether, this article provides a reference on how cellular bioeffect experiments on LIPUS and sonoporation can be planned meticulously to acquire strong observations that are critical to establish the biological foundations for therapeutic applications.
Collapse
|
103
|
Xia Y, Na X, Wu J, Ma G. The Horizon of the Emulsion Particulate Strategy: Engineering Hollow Particles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801159. [PMID: 30260511 DOI: 10.1002/adma.201801159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/06/2018] [Indexed: 05/13/2023]
Abstract
With their hierarchical structures and the substantial surface areas, hollow particles have gained immense research interest in biomedical applications. For scalable fabrications, emulsion-based approaches have emerged as facile and versatile strategies. Here, the recent achievements in this field are unfolded via an "emulsion particulate strategy," which addresses the inherent relationship between the process control and the bioactive structures. As such, the interior architectures are manipulated by harnessing the intermediate state during the emulsion revolution (intrinsic strategy), whereas the external structures are dictated by tailoring the building blocks and solidification procedures of the Pickering emulsion (extrinsic strategy). Through integration of the intrinsic and extrinsic emulsion particulate strategy, multifunctional hollow particles demonstrate marked momentum for label-free multiplex detections, stimuli-responsive therapies, and stem cell therapies.
Collapse
Affiliation(s)
- Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiangming Na
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing, 211816, P. R. China
| |
Collapse
|
104
|
Beekers I, Lattwein KR, Kouijzer JJP, Langeveld SAG, Vegter M, Beurskens R, Mastik F, Verduyn Lunel R, Verver E, van der Steen AFW, de Jong N, Kooiman K. Combined Confocal Microscope and Brandaris 128 Ultra-High-Speed Camera. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2575-2582. [PMID: 31262523 DOI: 10.1016/j.ultrasmedbio.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Controlling microbubble-mediated drug delivery requires the underlying biological and physical mechanisms to be unraveled. To image both microbubble oscillation upon ultrasound insonification and the resulting cellular response, we developed an optical imaging system that can achieve the necessary nanosecond temporal and nanometer spatial resolutions. We coupled the Brandaris 128 ultra-high-speed camera (up to 25 million frames per second) to a custom-built Nikon A1R+ confocal microscope. The unique capabilities of this combined system are demonstrated with three experiments showing microbubble oscillation leading to either endothelial drug delivery, bacterial biofilm disruption, or structural changes in the microbubble coating. In conclusion, using this state-of-the-art optical imaging system, microbubble-mediated drug delivery can be studied with high temporal resolution to resolve microbubble oscillation and high spatial resolution and detector sensitivity to discern cellular response. Combining these two imaging technologies will substantially advance our knowledge on microbubble behavior and its role in drug delivery.
Collapse
Affiliation(s)
- Inés Beekers
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands.
| | - Kirby R Lattwein
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Joop J P Kouijzer
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Simone A G Langeveld
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Merel Vegter
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Robert Beurskens
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| | | | - Emma Verver
- Nikon Netherlands, Amsterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Klazina Kooiman
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
105
|
Unga J, Kageyama S, Suzuki R, Omata D, Maruyama K. Scale-up production, characterization and toxicity of a freeze-dried lipid-stabilized microbubble formulation for ultrasound imaging and therapy. J Liposome Res 2019; 30:297-304. [DOI: 10.1080/08982104.2019.1649282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Johan Unga
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Saori Kageyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Ryo Suzuki
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Daiki Omata
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kazuo Maruyama
- Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
106
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
107
|
Escoffre JM, Bouakaz A. Minireview: Biophysical Mechanisms of Cell Membrane Sonopermeabilization. Knowns and Unknowns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10151-10165. [PMID: 30525655 DOI: 10.1021/acs.langmuir.8b03538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbubble-assisted ultrasound has emerged as a promising method for the delivery of low-molecular-weight chemotherapeutic molecules, nucleic acids, therapeutic peptides, and antibodies in vitro and in vivo. Its clinical applications are under investigation for local delivery drug in oncology and neurology. However, the biophysical mechanisms supporting the acoustically mediated membrane permeabilization are not fully established. This review describes the present state of the investigations concerning the acoustically mediated stimuli (i.e., mechanical, chemical, and thermal stimuli) as well as the molecular and cellular actors (i.e., membrane pores and endocytosis) involved in the reversible membrane permeabilization process. The different hypotheses, which were proposed to give a biophysical description of the membrane permeabilization, are critically discussed.
Collapse
Affiliation(s)
- Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm , 10 bd Tonnellé , 37032 Tours Cedex 1, France
| |
Collapse
|
108
|
Meng Y, Pople CB, Lea-Banks H, Abrahao A, Davidson B, Suppiah S, Vecchio LM, Samuel N, Mahmud F, Hynynen K, Hamani C, Lipsman N. Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J Control Release 2019; 309:25-36. [PMID: 31326464 DOI: 10.1016/j.jconrel.2019.07.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier, while fundamental in maintaining homeostasis in the central nervous system, is a bottleneck to achieving efficacy for numerous therapeutics. Improved brain penetration is also desirable for reduced dose, cost, and systemic side effects. Transient disruption of the blood-brain barrier with focused ultrasound (FUS) can facilitate drug delivery noninvasively with precise spatial and temporal specificity. FUS technology is transcranial and effective without further drug modifications, key advantages that will accelerate adoption and translation of existing therapeutic pipelines. In this review, we performed a comprehensive literature search to build a database and provide a synthesis of ultrasound parameters and drug characteristics that influence the safety and efficacy profile of FUS to enhance drug delivery.
Collapse
Affiliation(s)
- Ying Meng
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Christopher B Pople
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Harriet Lea-Banks
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Suganth Suppiah
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Laura M Vecchio
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Faiza Mahmud
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Kullervo Hynynen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada; Hurvitz Brain Sciences Research Program, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada.
| |
Collapse
|
109
|
Intracellular Signaling in Key Pathways Is Induced by Treatment with Ultrasound and Microbubbles in a Leukemia Cell Line, but Not in Healthy Peripheral Blood Mononuclear Cells. Pharmaceutics 2019; 11:pharmaceutics11070319. [PMID: 31284599 PMCID: PMC6680714 DOI: 10.3390/pharmaceutics11070319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Treatment with ultrasound and microbubbles (sonoporation) to enhance therapeutic efficacy in cancer therapy is rapidly expanding, but there is still very little consensus as to why it works. Despite the original assumption that pore formation in the cell membrane is responsible for increased uptake of drugs, the molecular mechanisms behind this phenomenon are largely unknown. We treated cancer cells (MOLM-13) and healthy peripheral blood mononuclear cells (PBMCs) with ultrasound at three acoustic intensities (74, 501, 2079 mW/cm2) ± microbubbles. We subsequently monitored the intracellular response of a number of key signaling pathways using flow cytometry or western blotting 5 min, 30 min and 2 h post-treatment. This was complemented by studies on uptake of a cell impermeable dye (calcein) and investigations of cell viability (cell count, Hoechst staining and colony forming assay). Ultrasound + microbubbles resulted in both early changes (p38 (Arcsinh ratio at high ultrasound + microbubbles: +0.5), ERK1/2 (+0.7), CREB (+1.3), STAT3 (+0.7) and AKT (+0.5)) and late changes (ribosomal protein S6 (Arcsinh ratio at low ultrasound: +0.6) and eIF2α in protein phosphorylation). Observed changes in protein phosphorylation corresponded to changes in sonoporation efficiency and in viability, predominantly in cancer cells. Sonoporation induced protein phosphorylation in healthy cells was pronounced (p38 (+0.03), ERK1/2 (−0.03), CREB (+0.0), STAT3 (−0.1) and AKT (+0.04) and S6 (+0.2)). This supports the hypothesis that sonoporation may enhance therapeutic efficacy of cancer treatment, without causing damage to healthy cells.
Collapse
|
110
|
Cao Z, Zhang T, Sun X, Liu M, Shen Z, Li B, Zhao X, Jin H, Zhang Z, Tian Y. Membrane-permeabilized sonodynamic therapy enhances drug delivery into macrophages. PLoS One 2019; 14:e0217511. [PMID: 31181129 PMCID: PMC6557485 DOI: 10.1371/journal.pone.0217511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages play a pivotal role in the formation and development of atherosclerosis as a predominant inflammatory cell type present within atherosclerotic plaque. Promoting anti-atherosclerotic drug delivery into macrophages may provide a therapeutic potential on atherosclerotic plaque. In this study, we investigated whether membrane-permeabilized sonodynamic therapy (MP-SDT) enhances drug delivery into THP-1 macrophages. Images of confocal microscopy confirmed that the optimal plasma distribution of the sonosensitizer protoporphyrin IX (PpIX) was at 1 hour incubation. The non-lethal parameter of MP-SDT was determined by cell viability as measured by a CCK-8 assay. Bright field microscopy demonstrated plasma membrane deformation in response to MP-SDT. Using SYTOX Green, a model drug for cellular uptake, we found that MP-SDT significantly induced membrane permeabilization dependent on ultrasound intensity and exposure time. Using Fluo-3 AM, intracellular calcium elevation during MP-SDT was confirmed as a result of membrane permeabilization. Membrane perforation of MP-SDT-treated cells was observed by scanning electron microscopy and transmission electron microscopy. Moreover, MP-SDT-induced membrane permeabilization and perforation were remarkably prevented by scavenging reactive oxygen species (ROS) during MP-SDT. Furthermore, we assessed the therapeutic effect of MP-SDT in combination with anti-atherosclerotic drug atorvastatin. Our results showed that MP-SDT increased the therapeutic effect of atorvastatin on lipid-laden THP-1-derived foam cells, including decreasing lipid droplets, increasing the cholesterol efflux and the expression of PPARγ and ABCG1. In conclusion, MP-SDT might become a promising approach to facilitating the delivery of anti-atherosclerotic drugs into macrophages via membrane permeabilization.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Tianyi Zhang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Xin Sun
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Mingyu Liu
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Zhaoqian Shen
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Bicheng Li
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Xuezhu Zhao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
| | - Hong Jin
- Karolinska Institute, Department of Medicine, Stockholm, Sweden
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, China
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Heilongjiang Academy of Medical Sciences, Harbin, China
- * E-mail:
| |
Collapse
|
111
|
Cheng M, Li F, Han T, Yu ACH, Qin P. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions. ULTRASONICS SONOCHEMISTRY 2019; 52:512-521. [PMID: 30642801 DOI: 10.1016/j.ultsonch.2018.12.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Acoustic cavitation from ultrasound-driven microbubbles can induce diverse bioeffects that are useful in clinical therapy. However, lack of control over the cavitation activity of flowing microbubbles results in unwanted treatment regions in the targeted tissue, which influences the therapeutic efficacy and bio-safety. The aim of this study is to understand the relationship between the ultrasound pulse parameters and cavitation properties of flowing microbubbles, including the type (and transition between types), threshold, intensity and temporal distribution of cavitation. An in vitro physiological-flow phantom was fabricated, in which the microbubbles had a constant velocity, and were sonicated to a 1-MHz focused transducer at a wide range of peak negative pressures (PNPs) (0.10-1.28 MPa), pulse repetition frequencies (PRFs) (1-200 Hz) and pulse lengths (PLs) (10-400 μs). The signals from the flowing bubbles were passively detected by another 7.5-MHz plane transducer. From detailed time- and frequency-domain analysis, we found 1). The occurrence of stable cavitation (SC) and inertial cavitation (IC) depended on PNP and PL when the PRF was below a critical value (PRF threshold) that related to the fluid velocity and PNP full width at half maximum diameter of the transducer. 2) Below the PRF threshold, the PL had no influence on the temporal distribution of SC intensity; however, above the PRF threshold, the SC properties depended on the PL because of acoustically-driven diffusion. Specifically, at shorter PLs, the SC intensity had a uniform temporal distribution and was independent of the PRF; at longer PLs, the SC intensity correlated negatively with the PRF. 3) Below the PRF threshold, the IC properties were independent of the PRF. Increasing the PRF above the PRF threshold caused the IC intensity to decrease with a non-uniform temporal distribution. These results indicate that the fluid velocity and a pulsed acoustic field influence the number and properties of the replenished bubbles into the targeted region, resulting in the change of cavitation properties. In future therapeutic applications, the physiological fluid conditions must be taken into consideration to design reasonable pulse parameters and achieve desirable cavitation properties.
Collapse
Affiliation(s)
- Mouwen Cheng
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Han
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Alfred C H Yu
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Peng Qin
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
112
|
Gao J, Yu B, Li C, Wang W, Xu M, Cao Z, Xie X, Liu J. Photothermal-Enhanced Phase-Transition Nanodroplets for Ultrasound-Mediated Diagnosis and Gene Transfection. ACS Biomater Sci Eng 2019; 5:1366-1377. [PMID: 33405612 DOI: 10.1021/acsbiomaterials.8b01611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene therapy is one of the promising solutions in cancer therapeutics. Ultrasound-mediated gene delivery showed great potential as a noninvasive strategy for gene therapy. However, the efficiency of gene transfection and incorporation of multiple functions remain key challenges in the development of gene delivery systems. In this study, we developed perfluoropentane (PFP) and gold nanorods (AuNRs) loading nanodroplets for photothermal-enhanced ultrasound-mediated imaging and gene transfection. The nanodroplet theranostic system was formulated with fluorinated cationic poly(aspartamide) based polymer that encapsulated PFP, AuNRs, and plasmid DNA and was stabilized with a negatively charged poly(glutamic acid)-g-MeO-poly(ethylene glycol) (PGA-g-mPEG) coating. The nanodroplets presented good stability, biocompatibility, and DNA binding stability. Upon treatment with both near-infrared and ultrasound energy, the photothermal and ultrasound-responsive system exerted a synergistic effect, in which strong adsorption of light induced hyperthermia that promoted the phase transition of PFP and the following ultrasound irradiation, generating strong acoustic cavitation and sonoporation, thus leading to enhanced ultrasound contrast imaging and gene transfection efficiency both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinbiao Gao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Baiqing Yu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chao Li
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ming Xu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zhong Cao
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- Department of Biomedical Engineering, School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
113
|
Keller S, Bruce M, Averkiou MA. Ultrasound Imaging of Microbubble Activity during Sonoporation Pulse Sequences. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:833-845. [PMID: 30638695 PMCID: PMC6690385 DOI: 10.1016/j.ultrasmedbio.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 05/28/2023]
Abstract
Ultrasound-mediated drug delivery using the mechanical action of oscillating and/or collapsing microbubbles has been studied on many different experimental platforms, both in vitro and in vivo; however, the mechanisms remain to be elucidated. Many groups use sterile, enclosed chambers, such as Opticells and Clinicells, to optimize acoustic parameters in vitro needed for effective drug delivery in vivo, as well as for mechanistic investigation of sonoporation or the use of sound to permeate cell membranes. In these containers, cell monolayers are seeded on one side, and the remainder of the volume is filled with a solution containing microbubbles and a model drug. Ultrasound is then applied to study the effect of different parameters on model drug uptake in cell monolayers. Despite the simplicity of this system, the field has been unable to appropriately address what parameters and microbubble concentrations are most effective at enhancing drug uptake and minimizing cellular toxicity. In this work, a common in vitro sonoporation experimental setup was characterized through quantitative analysis of microbubble-dependent acoustic attenuation in combination with high-frame-rate and high-resolution imaging of bubble activity during sonoporation pulse sequences. The goal was to visualize the effect that ultrasound parameters have on microbubble activity. It was observed that under literature-derived sonoporation conditions (0.1-1 MPa, 20-1000 cycles and 10,000 to 10,000,000 microbubbles/mL), there is strong and non-linear acoustic attenuation, as well as bubble destruction, gas diffusion and bubble motion resulting in spatiotemporal pressure and concentration gradients. Ultimately, it was found that the acoustic conditions in common in vitro sonoporation setups are much more complex and confounding than often assumed.
Collapse
Affiliation(s)
- Sara Keller
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Matthew Bruce
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
114
|
Liu J, Chen Y, Wang G, Jin Q, Sun Z, Lv Q, Wang J, Yang Y, Zhang L, Xie M. Improving acute cardiac transplantation rejection therapy using ultrasound-targeted FK506-loaded microbubbles in rats. Biomater Sci 2019; 7:3729-3740. [DOI: 10.1039/c9bm00301k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
FK506-MBs combined with the UTMD technique increased drug concentrations in transplanted hearts and enhanced the therapeutic effect.
Collapse
|
115
|
Abstract
The transdermal transport of pharmaceuticals possesses various advantageous properties over conventional drug administration techniques such as oral delivery and hypodermic injections. However, the stratum corneum persists as the main barrier, which impedes percutaneous transport. The ultrasound-based transdermal delivery of therapeutics is one of the techniques that are being investigated to overcome this obstacle. This review outlines the background information pertaining to sonophoresis and then discusses the individual sections of sonophoretic research. These areas include the sonophoretic application of various drugs, dual-frequency sonophoresis, synergistic combinations of transdermal drug delivery techniques, and the use of nanosized carriers in ultrasound-based transdermal delivery. The various challenges associated with sonophoretic drug delivery and trends of future research are also highlighted.
Collapse
Affiliation(s)
| | - Boon Mian Teo
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia,
| |
Collapse
|
116
|
Tu J, Zhang H, Yu J, Liufu C, Chen Z. Ultrasound-mediated microbubble destruction: a new method in cancer immunotherapy. Onco Targets Ther 2018; 11:5763-5775. [PMID: 30254469 PMCID: PMC6140758 DOI: 10.2147/ott.s171019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy provides a new treatment option for cancer. However, it may be therapeutically insufficient if only using the self-immune system alone to attack the tumor without any aiding methods. To overcome this drawback and improve the efficiency of therapy, new treatment methods are emerging. In recent years, ultrasound-mediated microbubble destruction (UMMD) has shown great potential in cancer immunotherapy. Using the combination of ultrasound and targeted microbubbles, molecules such as antigens or genes encoding antigens can be efficiently and specifically delivered into the tumor tissue. This review focuses on the recent progress in the application of UMMD in cancer immunotherapy.
Collapse
Affiliation(s)
- Jiawei Tu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Hui Zhang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Jinsui Yu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Chun Liufu
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, People's Republic of China,
| |
Collapse
|