101
|
Yang X, Liu R, Du Y, Mei C, Zhang G, Wang C, Yang Y, Xu Z, Li W, Liu X. circRNA_8521 promotes Senecavirus A infection by sponging miRNA-324 to regulate LC3A. Vet Res 2024; 55:43. [PMID: 38581048 PMCID: PMC10996121 DOI: 10.1186/s13567-024-01291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Senecavirus A (SVA) causes outbreaks of vesicular disease in pigs, which imposes a considerable economic burden on the pork industry. As current SVA prevention measures are ineffective, new strategies for controlling SVA are urgently needed. Circular (circ)RNA is a newly characterized class of widely expressed, endogenous regulatory RNAs, which have been implicated in viral infection; however, whether circRNAs regulate SVA infection remains unknown. To investigate the influence of circRNAs on SVA infection in porcine kidney 15 (PK-15) cells, RNA sequencing technology was used to analyze the circRNA expression profiles of SVA-infected and uninfected PK-15 cells, the interactions between circRNAs, miRNAs, and mRNAs potentially implicated in SVA infection were predicted using bioinformatics tools. The prediction accuracy was verified using quantitative real-time (qRT)-PCR, Western blotting, as well as dual-luciferase reporter and RNA pull-down assays. The results showed that 67 circRNAs were differentially expressed as a result of SVA infection. We found that circ_8521 was significantly upregulated in SVA-infected PK-15 cells and promoted SVA infection. circ_8521 interacted with miR-324. miR-324 bound to LC3A mRNA which inhibited the expression of LC3A. Knockdown of LC3A inhibited SVA infection. However, circ_8521 promoted the expression of LC3A by binding to miR-324, thereby promoting SVA infection. We demonstrated that circ_8521 functioned as an endogenous miR-324 sponge to sequester miR-324, which promoted LC3A expression and ultimately SVA infection.
Collapse
Affiliation(s)
- Xiwang Yang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Rui Liu
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Yunsha Du
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Caiqiu Mei
- Ya'an People's Hospital, Ya'an, 625000, China
| | - Guangneng Zhang
- School of Public Health, Southern Medical University, Guangzhou, 511495, China
| | - Chen Wang
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China
| | - Yijun Yang
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Zhiwen Xu
- Animal Biotechnology Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610052, China
| | - Wenting Li
- Department of Infectious and Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, China.
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Xiao Liu
- Southwest University, College of Veterinary Medicine, Chongqing, 400715, China.
- State Key Laboratory of Silkworm Genome Biology, Chongqing, 400715, China.
| |
Collapse
|
102
|
Wu X, Cao C, Li Z, Xie Y, Zhang S, Sun W, Guo J. Circular RNA CircSLC22A23 Promotes Gastric Cancer Progression by Activating HNRNPU Expression. Dig Dis Sci 2024; 69:1200-1213. [PMID: 38400886 DOI: 10.1007/s10620-024-08291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood. AIM The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence. METHODS CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays. RESULTS CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23. CONCLUSION CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.
Collapse
Affiliation(s)
- Xinxin Wu
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Chunli Cao
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- The Affiliated People's Hospital, Ningbo University, Ningbo, 315040, China
| | - Zhe Li
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Xie
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Shuangshuang Zhang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China
| | - Weiliang Sun
- The Affiliated People's Hospital, Ningbo University, Ningbo, 315040, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
- Department of Gastroenterology, The Affiliated No. 1 Hospital, Ningbo University, Ningbo, 315211, China.
- Institute of Digestive Diseases of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
103
|
Dai Z, Hu J, Luo Z, Xiao J. Downregulation of circ_0035292 Alleviates LPS-Induced WI-38 Cell Injury via Targeting miR-494-3p/TLR4 Pathway in Infantile Pneumonia. Biochem Genet 2024; 62:915-930. [PMID: 37500967 DOI: 10.1007/s10528-023-10455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Circular RNAs (circRNAs) have been confirmed to mediate infantile pneumonia development. In this, we investigated the role and new mechanism of circ_0035292 regulating infantile pneumonia progression. Lipopolysaccharide (LPS)-treated WI-38 cells were used to mimic infantile pneumonia cell injury models. Quantitative real-time PCR was used to measure circ_0035292, microRNA (miR)-494-3p and toll-like receptor 4 (TLR4). Cell proliferation and apoptosis were assessed by MTT assay, EdU assay, and flow cytometry. Protein expression was tested using western blot analysis. Inflammation and oxidative stress were evaluated by measuring IL-6, IL-1β, MDA and SOD levels using ELISA assay and corresponding kits. RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. Circ_0035292 had elevated expression in infantile pneumonia patients and LPS-induced WI-38 cells. Silenced circ_0035292 could enhance WI-38 cell proliferation, while suppress apoptosis, inflammation and oxidative stress under LPS treatment. Mechanically, circ_0035292 targeted miR-494-3p to positively regulate TLR4. The rescue experiments indicated that miR-494-3p inhibitor abolished the function of circ_0035292 knockdown, and TLR4 overexpression reversed the inhibitory effect of miR-494-3p on LPS-induced WI-38 cell injury. Circ_0035292 might be a potential target for infantile pneumonia treatment, which knockdown could relieve LPS-induced cell injury via the regulation of miR-494-3p/TLR4 axis.
Collapse
Affiliation(s)
- Zhenzhao Dai
- Department of Pediatrics, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi, China
| | - Jiansheng Hu
- Jinggangshan University, 28 Xueyuan Road, Qingyuan District, Ji'an, 343000, Jiangxi, China
| | - Zhiying Luo
- Jinggangshan University, 28 Xueyuan Road, Qingyuan District, Ji'an, 343000, Jiangxi, China
| | - Jianhua Xiao
- Jinggangshan University, 28 Xueyuan Road, Qingyuan District, Ji'an, 343000, Jiangxi, China.
| |
Collapse
|
104
|
Bhat AA, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Dureja H, Singh SK, Dua K, Gupta G. Exploring ncRNA-mediated pathways in sepsis-induced pyroptosis. Pathol Res Pract 2024; 256:155224. [PMID: 38452584 DOI: 10.1016/j.prp.2024.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 3467, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hairsh Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
105
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
106
|
Zhou J, Sui M, Ji F, Shen S, Lin Y, Jin M, Tao J. Hsa_circ_0036872 has an important promotional effect in enhancing osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. Int Immunopharmacol 2024; 130:111744. [PMID: 38412676 DOI: 10.1016/j.intimp.2024.111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs), an extremely stable group of RNAs, possess a covalent closed-loop configuration. Numerous studies have highlighted the involvement of circRNAs in physiological processes and the development of various diseases. The present study aimed to investigate how circRNA regulates the osteogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS We isolated hDPSCs from dental pulp and used next-generation sequencing analysis to determine the differentially-expressed circRNAs during osteogenic differentiation. Bioinformatics and dual-luciferase reporter assays identified the downstream targets. The role of circRNAs in osteogenic differentiation was further confirmed through the use of heterotopic bone models. RESULTS We found that hsa_circ_0036872 expression was increased during osteogenic differentiation of hDPSCs, and downregulation of hsa_circ_0036872 inhibited their osteogenic differentiation. Dual-luciferase reporter assays showed that both miR-143-3p and IGF2 were downstream targets of hsa_circ_0036872. Overexpression of IGF2 or inhibition of miR-143-3p restored the osteogenic differentiation ability of hDPSCs after silencing hsa_circ_0036872. Overexpression of IGF2 reversed the inhibitory effect of miR-143-3p on osteogenic differentiation. CONCLUSION Taken together, our results show that hsa_circ_0036872 exerts an important promotional effect in enhancing the osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis. These data suggest a novel therapeutic strategy for osteoporosis treatment and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jiaxin Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Meizhi Sui
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China; Department of Stomatology, Kashgar Prefecture Second People's Hospital, Kashgar Xinjiang 844000, China
| | - Fang Ji
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, ; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Shihui Shen
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yueting Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Pudong New Area, Shanghai 201318, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
107
|
Guo S, Huang L, Liu M. Editorial: Emerging roles of circular RNAs in the tumor: functions and potential applications-volume II. Front Cell Dev Biol 2024; 12:1339274. [PMID: 38577505 PMCID: PMC10991809 DOI: 10.3389/fcell.2024.1339274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Affiliation(s)
- Shanchun Guo
- RCMI Cancer Research Center, Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Lan Huang
- Translational Medicine Center, The First Affiliated Hospital, Zhengzhou, Henan, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
108
|
Chen Z, Zhang J, Pan Y, Hao Z, Li S. Extracellular vesicles as carriers for noncoding RNA-based regulation of macrophage/microglia polarization: an emerging candidate regulator for lung and traumatic brain injuries. Front Immunol 2024; 15:1343364. [PMID: 38558799 PMCID: PMC10978530 DOI: 10.3389/fimmu.2024.1343364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage/microglia function as immune defense and homeostatic cells that originate from bone marrow progenitor cells. Macrophage/microglia activation is historically divided into proinflammatory M1 or anti-inflammatory M2 states based on intracellular dynamics and protein production. The polarization of macrophages/microglia involves a pivotal impact in modulating the development of inflammatory disorders, namely lung and traumatic brain injuries. Recent evidence indicates shared signaling pathways in lung and traumatic brain injuries, regulated through non-coding RNAs (ncRNAs) loaded into extracellular vesicles (EVs). This packaging protects ncRNAs from degradation. These vesicles are subcellular components released through a paracellular mechanism, constituting a group of nanoparticles that involve exosomes, microvesicles, and apoptotic bodies. EVs are characterized by a double-layered membrane and are abound with proteins, nucleic acids, and other bioactive compounds. ncRNAs are RNA molecules with functional roles, despite their absence of coding capacity. They actively participate in the regulation of mRNA expression and function through various mechanisms. Recent studies pointed out that selective packaging of ncRNAs into EVs plays a role in modulating distinct facets of macrophage/microglia polarization, under conditions of lung and traumatic brain injuries. This study will explore the latest findings regarding the role of EVs in the progression of lung and traumatic brain injuries, with a specific focus on the involvement of ncRNAs within these vesicles. The conclusion of this review will emphasize the clinical opportunities presented by EV-ncRNAs, underscoring their potential functions as both biomarkers and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Jingang Zhang
- Department of Orthopedic, The Third People’s Hospital of Longgang District, Shenzhen, China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongnan Hao
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Shuang Li
- Department of Respiratory Medicine, The Third People’s Hospital of Longgang District, Shenzhen, China
| |
Collapse
|
109
|
Jin T, Wang H, Liu Y, Wang H. Circular RNAs: Regulators of endothelial cell dysfunction in atherosclerosis. J Mol Med (Berl) 2024; 102:313-335. [PMID: 38265445 DOI: 10.1007/s00109-023-02413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Endothelial cell (EC) dysfunction is associated with atherosclerosis. Circular RNAs (circRNAs) are covalently closed loops formed by back-splicing, are highly expressed in a tissue-specific or cell-specific manner, and regulate ECs mainly through miRNAs (mircoRNAs) or protein sponges. This review describes the regulatory mechanisms and physiological functions of circRNAs, as well as the differential expression of circRNAs in aberrant ECs. This review focuses on their roles in inflammation, proliferation, migration, angiogenesis, apoptosis, senescence, and autophagy in ECs from the perspective of signaling pathways, such as nuclear factor κB (NF-κB), nucleotide-binding domain, leucine-rich-repeat family, pyrin-domain-containing 3 (NLRP3)/caspase-1, Janus kinase/signal transducer and activator of transcription (JAK/STAT), and phosphoinositide-3 kinase/protein kinase B (PI3K/Akt). Finally, we address the issues and recent advances in circRNAs as well as circRNA-mediated regulation of ECs to improve our understanding of the molecular mechanisms underlying the progression of atherosclerosis and provide a reference for studies on circRNAs that regulate EC dysfunction and thus affect atherosclerosis.
Collapse
Affiliation(s)
- Tengyu Jin
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China
| | - Haoyuan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuelin Liu
- Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Hebo Wang
- Hebei Medical University, Shijiazhuang 050011, Hebei, China.
- Hebei General Hospital, Affiliated to Hebei Medical University, Shijiazhuang 050051, Hebei, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
110
|
Su W, Ye Z, Wang G, Huang H, Fang Y. Circ_0008410 contributes to fibroblast-like synoviocytes dysfunction by regulating miR-149-5p/HIPK2 axis. Microbiol Immunol 2024; 68:100-110. [PMID: 38129937 DOI: 10.1111/1348-0421.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Circular RNAs (circRNAs) play functional roles in rheumatoid arthritis (RA) progression. Fibroblast-like synoviocytes (RASFs) are the main effectors in RA development. In this study, we explored the function and mechanism of circ_0008410 in RASFs. qRT-PCR was used to detect the expression of circ_0008410, microRNA-149-5p (miR-149-5p), and homeodomain-interacting protein kinase 2 (HIPK2). Cell counting kit-8, EdU assay, flow cytometry, and transwell assay were performed to evaluate cell proliferation, apoptosis, migration, and invasion. Western blot measured the protein levels of related markers and HIPK2. The levels of IL-1β, TNF-α, and IL-6 were tested by corresponding ELISA kits and Western blot. The combination between miR-149-5p and circ_0008410 or HIPK2 was detected by dual-luciferase reporter assay or RNA immunoprecipitation (RIP) assay. Our data showed that circ_0008410 and HIPK2 were elevated, while miR-149-5p was downregulated in RA synovial tissues and RASFs. Circ_0008410 promoted RASF proliferation, migration, invasion, and inflammation while inhibiting apoptosis. MiR-149-5p was a target of circ_0008410, and its overexpression could reverse the promoting effects of circ_0008410 on RASF dysfunction. Moreover, miR-149-5p could target HIPK2 to suppress RASF proliferation, migration, invasion, and inflammation. Collectively, circ_0008410 promoted RASF dysfunction via miR-149-5p/HIPK2, which might provide a potential target for RA therapy.
Collapse
Affiliation(s)
- Wensi Su
- Department of Geriatric Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Zhifang Ye
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, People's Republic of China
| |
Collapse
|
111
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
112
|
Yuan LX, Luo M, Liu RY, Wang HX, Ju LL, Wang F, Cao YL, Wang ZC, Chen L. Hsa_circ_0005397 promotes hepatocellular carcinoma progression through EIF4A3. BMC Cancer 2024; 24:239. [PMID: 38383334 PMCID: PMC10882807 DOI: 10.1186/s12885-024-11984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE The purpose of this study was to explore the expression and potential mechanism of hsa_circ_0005397 in hepatocellular carcinoma progression. METHODS Quantitative reverse transcription-polymerase chain reaction(qRT-PCR) was used to measure the expression level of hsa_circ_0005397 and EIF4A3 from paired HCC tissues and cell lines. Western Blot (WB) and immunohistochemistry (IHC) were used to verify the protein level of EIF4A3. The specificity of primers was confirmed by agarose gel electrophoresis. Receiver Operating Characteristic (ROC) Curve was drawn to analyze diagnostic value. Actinomycin D and nuclear and cytoplasmic extraction assays were utilized to evaluate the characteristics of hsa_circ_0005397. Cell Counting kit-8 (CCK-8) and colony formation assays were performed to detect cell proliferation. Flow cytometry analysis was used to detect the cell cycle. Transwell assay was performed to determine migration and invasion ability. RNA-binding proteins (RBPs) of hsa_circ_0005397 in HCC were explored using bioinformatics websites. The relationship between hsa_circ_0005397 and Eukaryotic Translation Initiation Factor 4A3 (EIF4A3) was verified by RNA Binding Protein Immunoprecipitation (RIP) assays, correlation and rescue experiments. RESULTS In this study, hsa_circ_0005397 was found to be significantly upregulated in HCC, and the good diagnostic sensitivity and specificity shown a potential diagnostic capability. Upregulated expression of hsa_circ_0005397 was significantly related to tumor size and stage. Hsa_circ_0005397 was circular structure which more stable than liner mRNA, and mostly distributed in the cytoplasm. Upregulation of hsa_circ_0005397 generally resulted in stronger proliferative ability, clonality, and metastatic potency of HCC cells; its downregulation yielded the opposite results. EIF4A3 is an RNA-binding protein of hsa_circ_0005397, which overexpressed in paired HCC tissues and cell lines. In addition, expression of hsa_circ_0005397 decreased equally when EIF4A3 was depleted. RIP assays and correlation assay estimated that EIF4A3 could interacted with hsa_circ_0005397. Knockdown of EIF4A3 could reverse hsa_circ_0005397 function in HCC progression. CONCLUSIONS Hsa_circ_0005397 promotes progression of hepatocellular carcinoma through EIF4A3. These research findings may provide novel clinical value for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liu-Xia Yuan
- Institute of Liver Diseases, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China
| | - Mei Luo
- Nantong Third People's Hospital, Medical School of Nantong University, 226000, Nantong, Jiangsu, China
| | - Ruo-Yu Liu
- Medical School of Nantong University, Affiliated Hospital of Nantong University, 226000, Nantong, Jiangsu, China
| | - Hui-Xuan Wang
- Institute of Liver Diseases, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China
| | - Lin-Ling Ju
- Institute of Liver Diseases, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China
| | - Feng Wang
- Medical School of Nantong University, Affiliated Hospital of Nantong University, 226000, Nantong, Jiangsu, China
| | - Ya-Li Cao
- Preventive Health Department, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China
| | - Zhong-Cheng Wang
- Hepatology Department of integrated Chinese and Western Medicine, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China.
| | - Lin Chen
- Institute of Liver Diseases, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, 226000, Nantong, Jiangsu, China.
| |
Collapse
|
113
|
Surendran A, Huang C, Liu L. Circular RNAs and their roles in idiopathic pulmonary fibrosis. Respir Res 2024; 25:77. [PMID: 38321530 PMCID: PMC10848557 DOI: 10.1186/s12931-024-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.
Collapse
Affiliation(s)
- Akshaya Surendran
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
114
|
Yang Y, Li J, Wei C, Wang L, Gao Z, Shen K, Li Y, Ren M, Zhu Y, Ding Y, Wei C, Zhang T, Zheng S, Lu N, Gu J. Circular RNA circFCHO2(hsa_circ_0002490) promotes the proliferation of melanoma by directly binding to DND1. Cell Biol Toxicol 2024; 40:9. [PMID: 38311675 PMCID: PMC10838848 DOI: 10.1007/s10565-024-09851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Circular RNAs (circRNAs) have been documented to play crucial roles in the biology of various cancers. However, their investigation in melanoma is still at an early stage, particularly as a broader mechanism beyond acting as miRNA sponges needs to be explored. We report here that circFCHO2(hsa_circ_0002490), a circRNA encompassing exons 19 and 20 of the FCHO2 gene, exhibited a consistent overexpression in melanoma tissues. Furthermore, elevated circFCHO2 levels demonstrated a positive correlation with the malignant phenotype and poor prognosis among the 158 melanoma patients studied. Besides, we observed that heightened levels of circFCHO2 promoted melanoma cell proliferation, migration, and invasion in vitro, along with contributing to tumor growth in vivo. Furthermore, we found differences in the secondary structure of circFCHO2 compared to most other circular RNA structures. It has fewer miRNA binding sites, while it has more RNA binding protein binding sites. We therefore speculate that circFCHO2 may have a function of interacting with RNA binding proteins. Mechanistically, it was confirmed by fluorescence in situ hybridization (FISH), RNA-pull down, RNA immunoprecipitation (RIP), and western blotting assays that circFCHO2 interacts with dead end protein homolog 1 (DND1) and reverses the inhibition of the PI3K/AKT signaling pathway by binding to DND1. Our findings reveal that circFCHO2 drives melanoma progression by regulating the PI3K/AKT signaling pathway through direct binding to DND1 and may serve as a potential diagnostic biomarker and therapeutic target for the treatment of melanoma.
Collapse
Affiliation(s)
- Yang Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Jianrui Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Kangjie Shen
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yinlam Li
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Ming Ren
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yu Zhu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Yiteng Ding
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Chenlu Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Nanhang Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, No. 180 Feng Lin Road, Shanghai, 200032, China.
| |
Collapse
|
115
|
Xiang T, Chen L, Wang H, Yu T, Li T, Li J, Yu W. The Circular RNA circFOXK2 Enhances the Tumorigenesis of Non-Small Cell Lung Cancer Through the miR-149-3p/IL-6 Axis. Biochem Genet 2024; 62:95-111. [PMID: 37256441 DOI: 10.1007/s10528-023-10394-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
Circular RNAs (circRNAs) are the non-coding types of RNAs and are thoughts to be linked with human cancer progression. circFOXK2 is believed to be associated with cancers, however, the molecular mechanisms of circFOXK2 in non-small cell lung cancer (NSCLC) are still unclear. Here we firstly reported that circFOXK2 enhances the tumorigenesis of NSCLC through the miR-149-3p/IL-6 axis. The expression of circFOXK2, microRNA-149-3p (miR-149-3p) and IL-6 were assessed by qRT-PCR and western blot. Transwell, colony formation, wound healing, and CCK-8 assays were used to elucidate NSCLC cells' proliferation, migration, and invasion. MiR-149-3p interaction with circFOXK2 was confirmed by dual-luciferase reporter gene assay (DLRGA). Furthermore, the biological effect of circFOXK2 on NSCLC progression was detected by tumor xenograft assay. CircFOXK2 were upregulated in NSCLC tissues and cells, miR-149-3p were downregulated in NSCLC tissues and cells. In addition, circFOXK2 stimulated NSCLC cell proliferation, migration and invasion in vitro. Mechanical analysis indicated that circFOXK2 modulated IL-6 via miR-149-3p sponging. Furthermore, circFOXK2 overexpression promoted tumor growth in vivo. Overall, this research verified that circFOXK2 enhances the tumorigenesis of NSCLC through the miR-149-3p/IL-6 axis.
Collapse
Affiliation(s)
- Tongwei Xiang
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Liping Chen
- Department of Central Laboratory, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Huaying Wang
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Tao Yu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Tang Li
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China
| | - Jipeng Li
- Department of Central Laboratory, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| | - Wanjun Yu
- Department of Respiratory and Critical Care Medicine, Yinzhou People's Hospital, The Affiliated People's Hospital of Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
116
|
Xie C, Hao X, Yuan H, Wang C, Sharif R, Yu H. Crosstalk Between circRNA and Tumor Microenvironment of Hepatocellular Carcinoma: Mechanism, Function and Applications. Onco Targets Ther 2024; 17:7-26. [PMID: 38283733 PMCID: PMC10812140 DOI: 10.2147/ott.s437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common aggressive tumors in the world. Despite the availability of various treatments, its prognosis remains poor due to the lack of specific diagnostic indicators and the high heterogeneity of HCC cases. CircRNAs are noncoding RNAs with stable and highly specific expression. Extensive research evidence suggests that circRNAs mediate the pathogenesis and progression of HCC through acting as miRNA sponges, protein modulators, and translation templates. Tumor microenvironment (TME) has become a hotspot of immune-related research in recent years due to its effects on metabolism, secretion and immunity of HCC. Accordingly, understanding the role played by circRNAs in TME is important for the study of HCC. This review will discuss the crosstalk between circRNAs and TME in HCC. In addition, we will discuss the current deficiencies and controversies in research on circRNAs and predict future research directions.
Collapse
Affiliation(s)
- Chenxi Xie
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Xiaopei Hao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People’s Republic of China
| | - Hao Yuan
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Chongyu Wang
- The First Clinical Medical College of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, 50300, Malaysia
- Biocompatibility Laboratory, Centre for Research and Instrumentation, University Kebangsaan Malaysia, UKM, Bangi, Selangor Darul Ehsan, 43600, Malaysia
| | - Haibo Yu
- Hepatobiliary Center, Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
117
|
Zhou YC, Lao WJ, Xu YL, Huang X, Li C, Wang ZQ, Wang QJ, Sun YW. Upregulation of circRNA_0023685 promotes gastric cancer progression via a circRNA-miRNA-mRNA interaction network. Am J Cancer Res 2024; 14:130-144. [PMID: 38323291 PMCID: PMC10839325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
Circular RNAs (circRNAs) have been extensively studied for their critical roles as noncoding RNAs (ncRNAs) in gastric cancer (GC). In this study, we focused on the expression, function and molecular mechanism of circRNA_0023685 in gastric cancer (GC) to provide new ways for the diagnosis and treatment of GC. Firstly, a novel differentially expressed circRNA, circRNA_0023685, was identified, and its differential expression in GC plasma, tissue, and cell lines was further verified by RT-qPCR. Next, circRNA_0023685 was verified to promote the proliferation, migration and apoptosis of GC cells in vitro. CircRNA_0023685 was also proved to enhance the growth of GC tumors in xenograft models. Finally, for excavating the mechanism to promote GC, downstream microRNAs (miRNAs) and mRNAs were screened by bioinformatics analyses. After intersecting the target genes and genes enriched in GO analysis, a circRNA competing endogenous RNAs (ceRNAs) network was built. A protein-protein interaction (PPI) network was then constructed to find the candidate gene, APP. Our study confirmed that the highly expressed circRNA_0023685 could promote GC, which provided a new clinical diagnostic biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- You-Ci Zhou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Wen-Ji Lao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yi-Lu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Xi Huang
- Department of Intensive Care Medicine, Renji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Chen Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Zhen-Qiang Wang
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Qi-Jun Wang
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Yun-Wei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, China
| |
Collapse
|
118
|
Jones CH, Androsavich JR, So N, Jenkins MP, MacCormack D, Prigodich A, Welch V, True JM, Dolsten M. Breaking the mold with RNA-a "RNAissance" of life science. NPJ Genom Med 2024; 9:2. [PMID: 38195675 PMCID: PMC10776758 DOI: 10.1038/s41525-023-00387-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
In the past decade, RNA therapeutics have gone from being a promising concept to one of the most exciting frontiers in healthcare and pharmaceuticals. The field is now entering what many call a renaissance or "RNAissance" which is being fueled by advances in genetic engineering and delivery systems to take on more ambitious development efforts. However, this renaissance is occurring at an unprecedented pace, which will require a different way of thinking if the field is to live up to its full potential. Recognizing this need, this article will provide a forward-looking perspective on the field of RNA medical products and the potential long-term innovations and policy shifts enabled by this revolutionary and game-changing technological platform.
Collapse
Affiliation(s)
| | | | - Nina So
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA
| | | | | | | | - Verna Welch
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA
| | - Jane M True
- Pfizer, 66 Hudson Boulevard, New York, NY, 10018, USA.
| | | |
Collapse
|
119
|
Jiang S, Xing X, Hong M, Zhang X, Xu F, Zhang GH. Hsa_circ_0081065 exacerbates IH-induced EndMT via regulating miR-665/HIF-1α signal axis and HIF-1α nuclear translocation. Sci Rep 2024; 14:904. [PMID: 38195914 PMCID: PMC10776741 DOI: 10.1038/s41598-024-51471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024] Open
Abstract
CircRNAs play an important role in various physiological and pathological biological processes. Despite their widespread involvement, the function of circRNAs in intermittent hypoxia (IH) remain incompletely understood. This study aims to clarify the molecular mechanism of it in IH. Differentially expressed circRNAs were identified by transcriptome sequencing analysis in intermittent hypoxia (IH) model. GO and KEGG enrichment analys were performed on the identified differentially expressed circRNAs. The circular characteristics of hsa_circ_0081065 in human umbilical vein endothelial cells (HUVECs) were detected by RT-qPCR. The sublocalization of hsa_circ_0081065 was examined by FISH. The effect of hsa_circ_0081065 on endothelial to mesenchymal transition (EndMT) was estimated by detecting the expression of EndMT related markers. Various techniques, including RNA-pull down, RIP, EMSA, dual-luciferase reporter assay and immunofluorescence staining were used to investigate the relationship among hsa_circ_0081065, miR-665 and HIF-1α. A total of 13,304 circRNAs were identified in HUVECs treatment with IH, among which 73 were differentially expressed, including 24 upregulated circRNAs and 49 downregulated circRNAs. Notably, hsa_circ_0081065 demonstrated a significantly upregulation. Hsa_circ_0081065 exhibited the circular characteristics of circRNA and was predominantly localized in the cytoplasm. Knockdown of hsa_circ_0081065 inhibited EndMT. Mechanically, we demonstrated that hsa_circ_0081065 acts as a sponge for miR-665 to up-regulate HIF-1α and exacerbate HIF-1α nuclear translocation in HUVECs. We have demonstrated that hsa_circ_0081065 is significantly upregulated in HUVECs treated with IH. Our findings indicate that hsa_circ_0081065 exacerbates IH-induced EndMT through the regulation of the miR-665/HIF-1α signal axis and facilitating HIF-1α nuclear translocation. These results provide a theoretical basis for considering of EndMT as a potential therapeutic target for OSAHS intervention.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Emergency, The Second Hospital of Shandong University, Shandong, China
| | - Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Shandong, China
| | - Ming Hong
- Department of Cardiology, The Second Hospital of Shandong University, Shandong, China
| | - Xingqian Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Shandong, China
| | - Fei Xu
- Department of Cardiology, The Second Hospital of Shandong University, Shandong, China
| | - Guang-Hao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Shandong, China.
| |
Collapse
|
120
|
Su Z, Li W, Lei Z, Hu L, Wang S, Guo L. Regulation of Angiogenesis by Non-Coding RNAs in Cancer. Biomolecules 2024; 14:60. [PMID: 38254660 PMCID: PMC10813527 DOI: 10.3390/biom14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.
Collapse
Affiliation(s)
- Zhiyue Su
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenshu Li
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Department of Basic Medicine, Kangda College, Nanjing Medical University, Lianyungang 222000, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
121
|
Tang G, Liu J, Gao X, Tang W, Chen J, Wu M, Lv Z, Zhang Y, Cai Y, Qi L. circWSB1 promotes tumor progression in ccRCC via circWSB1/miR-182-5p/WSB1 axis. Int J Biol Macromol 2024; 256:128338. [PMID: 38007007 DOI: 10.1016/j.ijbiomac.2023.128338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/22/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent urological carcinomas with a low overall 5-year survival rate, and its prognosis remains dismal. circular RNAs (circRNAs) has been discovered to be important regulators in ccRCC. However, the specific regulatory mechanisms of circRNAs and their impact on phenotypes require further in-depth research. circRNA microarray sequencing analysis was used in this study to explore the expression pattern of circRNAs in ccRCC. circWSB1 was discovered, and we evaluated its derivation, potential diagnostic efficacy, and prognostic significance in ccRCC tissues. We discovered that circWSB1 is highly expressed in ccRCC. We identified that circWSB1 interacts with miR-182-5p and upregulates the expression of its host gene, WSB1. Through models in vivo and in vitro models, we found that circWSB1 increases WSB1 expression via the circWSB1/miR-182-5p/WSB1 axis, which promotes ccRCC cell proliferation and migration. The high expression of circWSB1 and WSB1 is correlated with poorer clinical prognosis and pathological grading. circWSB1 diminishes the inhibitory impact of miR-182-5p on WSB1 and increases WSB1 expression, thereafter promoting ccRCC development. Our findings provide a promising predictive biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Guyu Tang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Jing Liu
- Department of Oncology, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Xiaomei Gao
- Department of Pathology, Xiangya Hospital of Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Wei Tang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Jiaxian Chen
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Menghai Wu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China
| | - Zhengtong Lv
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing City, PR China
| | - Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China.
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha City 410008, Hunan Province, PR China.
| |
Collapse
|
122
|
Zhang S, Hu W, Lv C, Song X. Biogenesis and Function of circRNAs in Pulmonary Fibrosis. Curr Gene Ther 2024; 24:395-409. [PMID: 39005062 DOI: 10.2174/0115665232284076240207073542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis is a class of fibrosing interstitial lung diseases caused by many pathogenic factors inside and outside the lung, with unknown mechanisms and without effective treatment. Therefore, a comprehensive understanding of the molecular mechanism implicated in pulmonary fibrosis pathogenesis is urgently needed to develop new and effective measures. Although circRNAs have been widely acknowledged as new contributors to the occurrence and development of diseases, only a small number of circRNAs have been functionally characterized in pulmonary fibrosis. Here, we systematically review the biogenesis and functions of circRNAs and focus on how circRNAs participate in pulmonary fibrogenesis by influencing various cell fates. Meanwhile, we analyze the current exploration of circRNAs as a diagnostic biomarker, vaccine, and therapeutic target in pulmonary fibrosis and objectively discuss the challenges of circRNA- based therapy for pulmonary fibrosis. We hope that the review of the implication of circRNAs will provide new insights into the development circRNA-based approaches to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Songzi Zhang
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Wenjie Hu
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Changjun Lv
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, Binzhou Medical University, Yantai, 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
123
|
Li P, Huang D, Gu X. Exploring the dual role of circRNA and PI3K/AKT pathway in tumors of the digestive system. Biomed Pharmacother 2023; 168:115694. [PMID: 37832407 DOI: 10.1016/j.biopha.2023.115694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023] Open
Abstract
The interactions among circRNAs, the PI3K/AKT pathway, and their downstream effectors are intricately linked to their functional roles in tumorigenesis. Furthermore, the circRNAs/PI3K/AKT axis has been significantly implicated in the context of digestive system tumors. This axis is frequently abnormally activated in digestive cancers, including gastric cancer, colorectal cancer, pancreatic cancer, and others. Moreover, the overactivation of the circRNAs/PI3K/AKT axis promotes tumor cell proliferation, suppresses apoptosis, enhances invasive and metastatic capabilities, and contributes to drug resistance. In this regard, gaining crucial insights into the complex interaction between circRNAs and the PI3K/AKT pathway holds great potential for elucidating disease mechanisms, identifying diagnostic biomarkers, and designing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Penghui Li
- Department of General Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
124
|
Fu P, Cai Z, Zhang Z, Meng X, Peng Y. An updated database of virus circular RNAs provides new insights into the biogenesis mechanism of the molecule. Emerg Microbes Infect 2023; 12:2261558. [PMID: 37725485 PMCID: PMC10557547 DOI: 10.1080/22221751.2023.2261558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023]
Abstract
Virus circular RNAs (circRNA) have been reported to be extensively expressed and play important roles in viral infections. Previously we build the first database of virus circRNAs named VirusCircBase which has been widely used in the field. This study significantly improved the database on both the data quantity and database functionality: the number of virus circRNAs, virus species, host organisms was increased from 46440, 23, 9 to 60859, 43, 22, respectively, and 1902 full-length virus circRNAs were newly added; new functions were added such as visualization of the expression level of virus circRNAs and visualization of virus circRNAs in the Genome Browser. Analysis of the expression of virus circRNAs showed that they had low expression levels in most cells or tissues and showed strong expression heterogeneity. Analysis of the splicing of virus circRNAs showed that they used a much higher proportion of non-canonical back-splicing signals compared to those in animals and plants, and mainly used the A5SS (alternative 5' splice site) in alternative-splicing. Most virus circRNAs have no more than two isoforms. Finally, human genes associated with the virus circRNA production were investigated and more than 1000 human genes exhibited moderate correlations with the expression of virus circRNAs. Most of them showed negative correlations including 42 genes encoding RNA-binding proteins. They were significantly enriched in biological processes related to cell cycle and RNA processing. Overall, the study provides a valuable resource for further studies of virus circRNAs and also provides new insights into the biogenesis mechanisms of virus circRNAs.
Collapse
Affiliation(s)
- Ping Fu
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zena Cai
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Zhiyuan Zhang
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Xiangxian Meng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Yousong Peng
- Bioinformatics Center, College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
125
|
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S, Zou Y. Circular RNA: A promising new star of vaccine. J Transl Int Med 2023; 11:372-381. [PMID: 38130633 PMCID: PMC10732498 DOI: 10.2478/jtim-2023-0122] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with covalently closed structures. Owing to their not having 3' or 5' ends, circRNAs are highly durable and insusceptible to exonuclease-mediated degradation. Moreover, some circRNAs with certain structures are translatable, making them novel vaccines. Vaccines are efficient tools for immunotherapy, such as for the prevention of infectious diseases and cancer treatment. The immune system is activated during immunotherapy to fight against abnormal allies or invaders. CircRNA vaccines represent a potential new avenue in the vaccine era. Recently, several circRNA vaccines have been synthesized and tested in vitro and in vivo. Our review briefly introduces the current understanding of the biology and function of translatable circRNAs, molecular biology, synthetic methods, delivery of circRNA, and current circRNA vaccines. We also discussed the challenges and future directions in the field by summarizing the developments in circRNA vaccines in the past few years.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Fengxi Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, Guangdong Province, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Xufeng Huang
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jinsong Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Shaoquan Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| |
Collapse
|
126
|
Zhu F, Ma S, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel circular mRNA vaccine of six protein combinations against Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:10525-10545. [PMID: 36533395 DOI: 10.1080/07391102.2022.2154846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is an extraordinarily versatile pathogen, which is currently the most common cause of nosocomial and community infections. Considering that increased antibiotic resistance may hasten the spread of S. aureus, developing an effective vaccine can possibly aid in its control. The RNA vaccine coding immunodominance epitopes from bacteria provide a potential method to induce T and B cell immune responses by translating them into cells. Furthermore, using bioinformatics to create circular RNA vaccines can ensure that the translation of the vaccine is potent and durable. In this study, 7 cytotoxic T lymphocyte (CTL) epitopes, 4 helper T lymphocyte (HTL) epitopes, and 15 B cell epitopes from 6 proteins that are closely associated with the S. aureus virulence and invasion and critical to natural immune responses were mapped. To verify their interactions, all epitopes were docked with the corresponding MHC alleles. The final vaccine was composed of 26 epitopes and the adjuvant β-defencin, and a disulfide bond was also introduced to improve its stability. After the prediction of structure and characteristics, the developed vaccine was docked with TLR2 and TLR4, which induce immunological responses in S. aureus infection. According to the molecular dynamic simulation, the vaccine might interact strongly with TLRs. Meanwhile, it performed well in immunological simulation and population coverage prediction. Finally, the vaccine was converted into a circular RNA using a series of helper sequences to aid in vaccine circulation translation. Hopefully, this proposed structure will be proven to serve a viable vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
127
|
Shu H, Zhang Z, Liu J, Chen P, Yang C, Wu Y, Wu D, Cao Y, Chu Y, Li L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed Pharmacother 2023; 168:115818. [PMID: 37939612 DOI: 10.1016/j.biopha.2023.115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent chronic microvascular complication associated with diabetes mellitus and represents a major cause of chronic kidney disease and renal failure. Current treatment strategies for DN primarily focus on symptom alleviation, lacking effective approaches to halt or reverse DN progression. Circular RNA (circRNA), characterized by a closed-loop structure, has emerged as a novel non-coding RNA regulator of gene expression, attributed to its conservation, stability, specificity, and multifunctionality. Dysregulation of circRNA expression is closely associated with DN progression, whereby circRNA impacts kidney cell injury by modulating cell cycle, differentiation, cell death, as well as influencing the release of inflammatory factors and stromal fibronectin expression. Consequently, circRNA is considered a predictive biomarker and a potential therapeutic target for DN. This review provides an overview of the latest research progress in the classification, functions, monitoring methods, and databases related to circRNA. The paper focuses on elucidating the impact and underlying mechanisms of circRNA on kidney cells under diabetic conditions, aiming to offer novel insights into the prevention, diagnosis, and treatment of DN.
Collapse
Affiliation(s)
- Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China; College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China.
| |
Collapse
|
128
|
Liu R, Zhou Y, Cao Y. CircRNA and ferroptosis in human disease: Insights for new treatments. Animal Model Exp Med 2023; 6:508-517. [PMID: 38093404 PMCID: PMC10757220 DOI: 10.1002/ame2.12365] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/19/2023] [Indexed: 12/31/2023] Open
Abstract
Circular RNA (circRNA), classified as a type of non-coding RNA, has gained significant attention in the field of biology due to its distinctive ring structure and functional properties. Recent research has provided evidence that specific circRNAs have the ability to modulate disease progression through diverse mechanisms, one of which is by regulating cellular ferroptosis. Ferroptosis is a form of regulated cell death that is driven by iron dependency and lipid peroxidation, and extensive investigations have revealed a relationship between ferroptosis and disease development. In addition to evidence that both circRNAs and ferroptosis exert critical roles in disease progression, circRNAs have also been shown to actively mediate the process of ferroptosis. The relationship between circRNAs and ferroptosis therefore influences disease progression and offers novel targets for disease treatment. By directly or indirectly modulating the expression of circRNAs that regulate the expression of ferroptosis-related proteins, it may be possible to impact disease progression by promoting or inhibiting ferroptosis. Current research indicates such approaches may hold significant value in a wide variety of common diseases across physiological systems. This review comprehensively summarizes the findings of recent studies investigating the roles of circRNAs in the regulation of ferroptosis in various diseases.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical LaboratoryChina‐Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yun Zhou
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| | - Yongtong Cao
- Department of Clinical LaboratoryChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
129
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
130
|
Zhang X, Guo G, Liu R, Wu T, Wang Z, Zhang Z. CircLDLRAD3 inhibits Oral squamous cell carcinoma progression by regulating miR-558/Smad4/TGF-β. J Cell Mol Med 2023; 27:3271-3285. [PMID: 37563869 PMCID: PMC10623532 DOI: 10.1111/jcmm.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a malignant neoplasm with high mortality and morbidity. The role of circRNA and its molecular mechanism in OSCC remains largely unknown. The study aims to explore the role of a novel circular RNA (circLDLRAD3) in OSCC and its underlying mechanism. PCR and fluorescence in situ hybridization were used to explore the expression features of circLDLRAD3 in OSCC. The effects of circLDLRAD3 on the behaviour of OSCC were investigated using CCK-8, colony formation assay, transwell and animal experiments. Bioinformatics analysis along with dual luciferase reporter assay and RIP assay were used to reveal the interaction between circLDLRAD3, miR-558 and Smad4. It was revealed that circLDLRAD3 exhibited low expression status in OSCC. CircLDLRAD3 inhibits proliferation, migration, and invasion of OSCC cells both in vitro and in vivo. Mechanistically, circLDLRAD3 could bind with miR-558 to positively regulate its target gene Smad4 expression. Rescue experiments further confirmed both miR-558 overexpression and Smad4 knockdown could reverse the influence of circLDLRAD3 on OSCC phenotypes. Moreover, circLDLRAD3 regulate the TGF-β signalling pathways to influence EMT through miR-558/Smad4 axis. Our study found that circLDLRAD3 is downregulated in OSCC and verified its tumour suppressor function and mechanism in OSCC through sponging miR-558 to regulate miR-558/Smad4/TGF-β axis. The characterization of such regulating network uncovers an important mechanism underlying OSCC progression, which could provide promising targets targeted therapy strategies for OSCC in the future.
Collapse
Affiliation(s)
- Xue Zhang
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Guang‐Yu Guo
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Ru‐Yue Liu
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Ting Wu
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumours (China Medical University)ShenyangChina
| | - Zhen‐Hua Wang
- Department of Physiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Zhong‐Ti Zhang
- The VIP DepartmentSchool and Hospital of Stomatology, China Medical UniversityShenyangChina
| |
Collapse
|
131
|
Ma T, Guo J, Han J, Li L, Ren Y, Huang J, Diao G, Zheng X, Zheng Y. Circ_0001589/miR-1248/HMGB1 axis enhances EMT-mediated metastasis and cisplatin resistance in cervical cancer. Mol Carcinog 2023; 62:1645-1658. [PMID: 37431919 DOI: 10.1002/mc.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 07/12/2023]
Abstract
Cervical cancer is the fourth most common malignant tumors in female worldwide. Cirular RNAs (circRNA) represent a new class of regulatory RNA and play a pivotal role in the carcinogenesis and development of tumors. However, their functions have not been fully elucidated in cervical cancer. In this study, we identified an upregulated circRNA, circ_0001589, both in fresh clinical samples and tissue microarray of cervical cancer. Transwell assay and cell apoptosis assay by flow cytometry demonstrated circ_0001589 promotes epithelial-mesenchymal transition (EMT)-mediated cell migration and invasion, and enhanced cisplatin resistance in vitro. In addition, in nude mice model, circ_0001589 increased the number of lung metastases and recovered xenograft growth from cisplatin treatment in vivo. Mechanistically, RNA pull-down assay, RNA immunoprecipitation, and dual-luciferase reporter assay disclosed that circ_0001589 function as an competing endogenous RNA to sponge miR-1248, which directly target the 3' untranslated region of high mobility group box-B1 (HMGB1). Thereby, circ_0001589 upregulated HMGB1 protein expression and accelerate cervical cancer progression. The rescue experiments also revealed that miR-1248 overexpression or HMGB1 knockdown partially reversed the regulatory functions of circ_0001589 on cell migration, invasion, and cisplatin resistance. In summary, our findings suggest the upregulation of circ_0001589 promoted EMT-mediated cell migration and invasion, and enhanced cisplatin resistance via regulating miR-1248/HMGB1 axis in cervical cancer. These results provided new evidence for understanding the carcinogenesis mechanism and finding new therapeutic target for cervical cancer.
Collapse
Affiliation(s)
- Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianxin Guo
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Han
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lanfang Li
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Huang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ge Diao
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiuhui Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
132
|
Chen Z, Kang F, Xie C, Liao C, Li G, Wu Y, Lin H, Zhu S, Hu J, Lin C, Huang Y, Tian Y, Huang L, Wang Z, Chen S. A Novel Trojan Horse Nanotherapy Strategy Targeting the cPKM-STMN1/TGFB1 Axis for Effective Treatment of Intrahepatic Cholangiocarcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303814. [PMID: 37789644 PMCID: PMC10646249 DOI: 10.1002/advs.202303814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/21/2023] [Indexed: 10/05/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is characterized by its dense fibrotic microenvironment and highly malignant nature, which are associated with chemotherapy resistance and very poor prognosis. Although circRNAs have emerged as important regulators in cancer biology, their role in ICC remains largely unclear. Herein, a circular RNA, cPKM is identified, which is upregulated in ICC and associated with poor prognosis. Silencing cPKM in ICC cells reduces TGFB1 release and stromal fibrosis, inhibits STMN1 expression, and suppresses ICC growth and metastasis, moreover, it also leads to overcoming paclitaxel resistance. This is regulated by the interactions of cPKM with miR-199a-5p or IGF2BP2 and by the ability of cPKM to stabilize STMN1/TGFB1 mRNA. Based on these findings, a Trojan horse nanotherapy strategy with co-loading of siRNA against cPKM (si-cPKM) and paclitaxel (PTX) is developed. The siRNA/PTX co-loaded nanosystem (Trojan horse) efficiently penetrates tumor tissues, releases si-cPKM and paclitaxel (soldiers), promotes paclitaxel sensitization, and suppresses ICC proliferation and metastasis in vivo. Furthermore, it alleviates the fibrosis of ICC tumor stroma and reopens collapsed tumor vessels (opening the gates), thus enhancing the efficacy of the standard chemotherapy regimen (main force). This novel nanotherapy provides a promising new strategy for ICC treatment.
Collapse
Affiliation(s)
- Zhi‐Wen Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Feng‐Ping Kang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Ke Xie
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cheng‐Yu Liao
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary SurgeryFujian Medical University Union HospitalFuzhou350001China
| | - Yong‐Ding Wu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Hong‐Yi Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Shun‐Cang Zhu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Jian‐Fei Hu
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
| | - Cai‐Feng Lin
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatobiliary SurgeryJinshan Branch of Fujian Provincial HospitalFuzhou350001China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Center for Experimental Research in Clinical MedicineFujian Provincial HospitalFuzhou350001China
| | - Yi‐Feng Tian
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Zu‐Wei Wang
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhou350001China
- Department of Hepatopancreatobiliary SurgeryFujian Provincial HospitalFuzhou350001China
| |
Collapse
|
133
|
Mashima R, Takada S, Miyamoto Y. RNA-Based Therapeutic Technology. Int J Mol Sci 2023; 24:15230. [PMID: 37894911 PMCID: PMC10607345 DOI: 10.3390/ijms242015230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
RNA-based therapy has been an expanding area of clinical research since the COVID-19 outbreak. Often, its comparison has been made to DNA-based gene therapy, such as adeno-associated virus- and lentivirus-mediated therapy. These DNA-based therapies show persistent expression, with maximized therapeutic efficacy. However, accumulating data indicate that proper control of gene expression is occasionally required. For example, in cancer immunotherapy, cytokine response syndrome is detrimental for host animals, while excess activation of the immune system induces supraphysiological cytokines. RNA-based therapy seems to be a rather mild therapy, and it has room to fit unmet medical needs, whereas current DNA-based therapy has unclear issues. This review focused on RNA-based therapy for cancer immunotherapy, hematopoietic disorders, and inherited disorders, which have received attention for possible clinical applications.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yoshitaka Miyamoto
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
134
|
Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA Therapeutics: Current Landscape and Challenges in Manufacturing. Biomolecules 2023; 13:1497. [PMID: 37892179 PMCID: PMC10604719 DOI: 10.3390/biom13101497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostimulatory byproducts can pose a barrier for chronic treatments and different production scales may need to be considered for these applications. Moreover, long-term storage of mRNA products is notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA therapeutics, including sequence design, DNA template preparation, mRNA production and formulation, while identifying the challenges remaining in the dose requirements, long-term storage and immunotolerance of the product.
Collapse
Affiliation(s)
| | | | | | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (M.Y.); (C.H.); (J.P.C.F.)
| |
Collapse
|
135
|
Ma S, Feng G, Li L, Li Z, Zhou X, Zhou Y, Zhang R. Downregulation of circETS1 disrupts Th17/Treg homeostasis by inhibiting FOXP3 transcription: A new potential biomarker in systemic lupus erythematosus. Lupus 2023; 32:1430-1439. [PMID: 37852297 DOI: 10.1177/09612033231207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an imbalance of T helper 17 (Th17) to regulatory T cells (Tregs). However, the underlying mechanism remains unclear. Increasing evidence suggests that circular RNAs play a crucial role in SLE. Although circETS1 was discovered 30 years ago, detailed exploration of its functions remains limited. In this study, we measured the expression levels of circETS1 in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells of patients with SLE by quantitative polymerase chain reaction. The impact of circETS1 expression on the Th17/Treg balance and underlying mechanism were evaluated using double-luciferase reporter, gain-/loss-of-function, and rescue assays. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic value of circETS1. Both circETS1 and FOXP3 expression were downregulated in the PBMCs and CD4+ T cells of patients with SLE (n = 28) compared with those in the cells of healthy controls (n = 20). Mechanistically, we found that circETS1 can bind directly to the microRNA miR-1205, acting as a sponge to upregulate the transcription of FOXP3, thereby maintaining the Th17/Treg balance. Notably, ROC analysis showed that the expression level of circETS1 in PBMCs had an area under the curve of 0.873 (95% confidence interval: 0.771-0.976; p < .001) for diagnosing SLE, with a sensitivity of 80.00% and a specificity of 89.29%. Finally, we found negative correlations between the level of circETS1 in PBMCs and disease severity (according to the Systemic Lupus Erythematosus Disease Activity Index) in patients with SLE (r = -0.7712, 95% CI: -0.8910 to -0.5509; p < .001). The imbalance in Th17/Treg cells in SLE may be attributed, in part, to the circETS1/miR-1205/FOXP3 pathway. CircETS1 has potential to serve as a valuable biomarker for the diagnosis and evaluation of SLE.
Collapse
Affiliation(s)
- Sha Ma
- Department of Rheumatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guofu Feng
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Li
- School of Public Health, Dali University, Dali, China
| | - Zi Li
- Quality Management Department, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Xiaoyu Zhou
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yan Zhou
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruixian Zhang
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
136
|
Liu J, Jiang J, Deng C, Huang X, Huang S, Liu Z, Yang J, Mo J, Chen HJ, Wang J, Xie X. Nanochannel Electro-Injection as a Versatile Platform for Efficient RNA/DNA Programming on Dendritic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303088. [PMID: 37381646 DOI: 10.1002/smll.202303088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/03/2023] [Indexed: 06/30/2023]
Abstract
The utilization of dendritic cell (DC) vaccines is a promising approach in cancer immunotherapy, and the modification of DCs for the expression of tumor-associated antigens is critical for successful cancer immunotherapy. A safe and efficient method for delivering DNA/RNA into DCs without inducing maturation is beneficial to achieve successful DC transformation for cell vaccine applications, yet remains challenging. This work presents a nanochannel electro-injection (NEI) system for the safe and efficient delivery of a variety of nucleic acid molecules into DCs. The device is based on track-etched nanochannel membrane as key components, where the nano-sized channels localize the electric field on the cell membrane, enabling lower voltage (<30 V) for cell electroporation. The pulse conditions of NEI are examined so that the transfection efficiency (>70%) and biosafety (viability >85%) on delivering fluorescent dyes, plasmid DNA, messenger RNA, and circular RNA (circRNA) into DC2.4 are optimized. Primary mouse bone marrow DC can also be transfected with circRNA with 68.3% efficiency, but without remarkably affecting cellular viability or inducing DC maturation. These results suggest that NEI can be a safe and efficient transfection platform for in vitro transformation of DCs and possesses a promising potential for developing DC vaccines against cancer.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Juan Jiang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Caiguanxi Deng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Jingshan Mo
- School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang, 524088, P. R. China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ji Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
| | - Xi Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
137
|
Wang C, Zhang M, Liu Y, Cui D, Gao L, Jiang Y. CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs. J Exp Clin Cancer Res 2023; 42:242. [PMID: 37723588 PMCID: PMC10507871 DOI: 10.1186/s13046-023-02816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Glioma exhibit heterogeneous susceptibility for targeted ferroptosis. How circRNAs alterations in glioma promote iron metabolism and ferroptosis defense remains unclarified. METHODS The highly enriched circRNAs in glioblastoma (GBM) were obtained through analysis of sequencing datasets. Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circRNF10 in glioma and normal brain tissue. Both gain-of-function and loss-of-function studies were used to assess the effects of circRNF10 on ferroptosis using in vitro and in vivo assays. The hypothesis that ZBTB48 promotes ferroptosis defense was established using bioinformatics analysis and functional assays. RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to examine the interaction between circRNF10 and target proteins including ZBTB48, MKRN3 and IGF2BP3. The posttranslational modification mechanism of ZBTB48 was verified using coimmunoprecipitation (co-IP) and ubiquitination assays. The transcription activation of HSPB1 and IGF2BP3 by ZBTB48 was confirmed through luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays. The stabilizing effect of IGF2BP3 on circRNF10 was explored by actinomycin D assay. Finally, a series of in vivo experiments were performed to explore the influences of circRNF10 on the glioma progression. RESULTS A novel circular RNA, hsa_circ_0028912 (named circRNF10), which is significantly upregulated in glioblastoma tissues and correlated with patients' poor prognosis. Through integrated analysis of the circRNA-proteins interaction datasets and sequencing results, we reveal ZBTB48 as a transcriptional factor binding with circRNF10, notably promoting upregulation of HSPB1 and IGF2BP3 expression to remodel iron metabolism and facilitates the launch of a circRNF10/ZBTB48/IGF2BP3 positive feedback loop in GSCs. Additionally, circRNF10 can competitively bind to MKRN3 and block E3 ubiquitin ligase activity to enhance ZBTB48 expression. Consequently, circRNF10-overexpressed glioma stem cells (GSCs) display lower Fe2+ accumulation, selectively priming tumors for ferroptosis evading. CONCLUSION Our research presents abnormal circRNAs expression causing a molecular and metabolic change of glioma, which we leverage to discover a therapeutically exploitable vulnerability to target ferroptosis.
Collapse
Affiliation(s)
- Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Minjie Zhang
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yingliang Liu
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Yang Jiang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
138
|
Miklavčič R, Megušar P, Kodermac ŠM, Bakalar B, Dolenc D, Sekirnik R, Štrancar A, Černigoj U. High Recovery Chromatographic Purification of mRNA at Room Temperature and Neutral pH. Int J Mol Sci 2023; 24:14267. [PMID: 37762568 PMCID: PMC10532270 DOI: 10.3390/ijms241814267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Messenger RNA (mRNA) is becoming an increasingly important therapeutic modality due to its potential for fast development and platform production. New emerging RNA modalities, such as circular RNA, drive the need for the development of non-affinity purification approaches. Recently, the highly efficient chromatographic purification of mRNA was demonstrated with multimodal monolithic chromatography media (CIM® PrimaS), where efficient mRNA elution was achieved with an ascending pH gradient approach at pH 10.5. Here, we report that a newly developed chromatographic material enables the elution of mRNA at neutral pH and room temperature. This material demonstrates weak anion-exchanging properties and an isoelectric point of 5.3. It enables the baseline separation of mRNA (at least up to 10,000 nucleotides (nt) in size) from parental plasmid DNA (regardless of isoform composition) with both a NaCl gradient and ascending pH gradient approach, while mRNA elution is achieved in a pH range of 5-7. In addition, the basic structure of the novel material is a chromatographic monolith, enabling convection-assisted mass transfer of large RNA molecules to and from the active surface. This facilitates the elution of mRNA in 3-7 column volumes with more than 80% elution recovery and uncompromised integrity. This is demonstrated by the purification of a model mRNA (size 995 nt) from an in vitro transcription reaction mixture. The purified mRNA is stable for at least 34 days, stored in purified H2O at room temperature.
Collapse
Affiliation(s)
- Rok Miklavčič
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Polona Megušar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | | | - Blaž Bakalar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Darko Dolenc
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Rok Sekirnik
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Aleš Štrancar
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| | - Urh Černigoj
- Sartorius BIA Separations d.o.o., Mirce 21, 5270 Ajdovščina, Slovenia
| |
Collapse
|
139
|
Yang G, Chen F, Zhang C, Gu C. Circ_0005736 promotes tenogenic differentiation of tendon-derived stem cells through the miR-636/MAPK1 axis. J Orthop Surg Res 2023; 18:660. [PMID: 37670347 PMCID: PMC10481470 DOI: 10.1186/s13018-023-04115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Tendon-derived stem cells (TDSCs) are one of stem cells characterized by greater clonogenicity, tenogenesis, and proliferation capacity. Circ_0005736 has been shown to be decreased in Rotator cuff tendinopathy. Here, we investigated the function and relationship of circ_0005736 in TDSC tenogenic differentiation. METHODS Transforming growth factor β1 (TGF-β1) was used to induce the tenogenic differentiation in TDSC. Cell proliferation, invasion and migration were evaluated by Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine, transwell, and wound healing assays, respectively. The detection of the levels of genes and proteins was performed by qRT-PCR and Western blot. The binding between miR-636 and circ_0005736 or MAPK1 (Mitogen-Activated Protein Kinase 1) was verified using dual-luciferase reporter assay and RIP assays. RESULTS TGF-β1 induced tenogenic differentiation by enhancing the production of tendon-specific markers and TDSC proliferation, invasion and migration. TGF-β1 treatment promoted circ_0005736 expression, knockdown of circ_0005736 abolished TGF-β1-induced tenogenic differentiation in TDSCs. Mechanistically, circ_0005736 acted as a sponge for miR-636 to up-regulate the expression of MAPK1, which was confirmed to be a target of miR-636 in TDSCs. Further rescue assays showed that inhibition of miR-636 could rescue circ_0005736 knockdown-induced suppression on TGF-β1-caused tenogenic differentiation in TDSCs. Moreover, forced expression of miR-636 abolished TGF-β1-caused tenogenic differentiation in TDSCs, which was rescued by MAPK1 up-regulation. CONCLUSION Circ_0005736 enhanced TGF-β1-induced tenogenic differentiation in TDSCs via increasing the production of tendon-specific markers and TDSC proliferation, invasion and migration through miR-636/MAPK1 axis.
Collapse
Affiliation(s)
- Guangzhao Yang
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China.
| | - Fei Chen
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China
| | - Chunyan Zhang
- Department of Sports, Communication University of China, Nanjing, No.26, Pengshan Road, Jiangning District, Nanjing, 211172, China
| | - Chenlin Gu
- Faculty of Cultural Management, Communication University of China, Nanjing, Nanjing, China
| |
Collapse
|
140
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
141
|
Zhou Y, Wu J, Yao S, Xu Y, Zhao W, Tong Y, Zhou Z. DeepCIP: A multimodal deep learning method for the prediction of internal ribosome entry sites of circRNAs. Comput Biol Med 2023; 164:107288. [PMID: 37542919 DOI: 10.1016/j.compbiomed.2023.107288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Circular RNAs (circRNAs) have been found to have the ability to encode proteins through internal ribosome entry sites (IRESs), which are essential RNA regulatory elements for cap-independent translation. Identification of IRES elements in circRNA is crucial for understanding its function. Previous studies have presented IRES predictors based on machine learning techniques, but they were mainly designed for linear RNA IRES. In this study, we proposed DeepCIP (Deep learning method for CircRNA IRES Prediction), a multimodal deep learning approach that employs both sequence and structural information for circRNA IRES prediction. Our results demonstrate the effectiveness of the sequence and structure models used by DeepCIP in feature extraction and suggest that integrating sequence and structural information efficiently improves the accuracy of prediction. The comparison studies indicate that DeepCIP outperforms other comparative methods on the test set and real circRNA IRES dataset. Furthermore, through the integration of an interpretable analysis mechanism, we elucidate the sequence patterns learned by our model, which align with the previous discovery of motifs that facilitate circRNA translation. Thus, DeepCIP has the potential to enhance the study of the coding potential of circRNAs and contribute to the design of circRNA-based drugs. DeepCIP as a standalone program is freely available at https://github.org/zjupgx/DeepCIP.
Collapse
Affiliation(s)
- Yuxuan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China
| | - Jingcheng Wu
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihao Yao
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China; China Jiliang University - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China
| | - Yulian Xu
- College of Life Sciences, China Jiliang University, Hangzhou, 310018, China; China Jiliang University - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China
| | - Wenbin Zhao
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China
| | - Yunguang Tong
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences, China Jiliang University, Hangzhou, 310018, China; Aoming (Hangzhou) Biomedical Co., Ltd., Hangzhou, 310018, China; Zhejiang University Innovation Institute for Artificial Intelligence in Medicine - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China; China Jiliang University - Aoming (Hangzhou) Biomedical Co., Ltd. Joint Laboratory, Hangzhou, 310018, China.
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
142
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
143
|
Cao F, Wang X, Ye Q, Yan F, Lu W, Xie J, Bi B, Wang X. Identifying circRNA-miRNA-mRNA Regulatory Networks in Chemotherapy-Induced Peripheral Neuropathy. Curr Issues Mol Biol 2023; 45:6804-6822. [PMID: 37623249 PMCID: PMC10453290 DOI: 10.3390/cimb45080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a frequent and severe side effect of first-line chemotherapeutic agents. The association between circular RNAs (circRNAs) and CIPN remains unclear. In this study, CIPN models were constructed with Taxol, while 134 differentially expressed circRNAs, 353 differentially expressed long non-coding RNAs, and 86 differentially expressed messenger RNAs (mRNAs) were identified utilizing RNA sequencing. CircRNA-targeted microRNAs (miRNAs) were predicted using miRanda, and miRNA-targeted mRNAs were predicted using TargetScan and miRDB. The intersection of sequencing and mRNA prediction results was selected to establish the circRNA-miRNA-mRNA networks, which include 15 circRNAs, 18 miRNAs, and 11 mRNAs. Functional enrichment pathway analyses and immune infiltration analyses revealed that differentially expressed mRNAs were enriched in the immune system, especially in T cells, monocytes, and macrophages. Cdh1, Satb2, Fas, P2ry2, and Zfhx2 were further identified as hub genes and validated by RT-qPCR, correlating with macrophages, plasmacytoid dendritic cells, and central memory CD4 T cells in CIPN. Additionally, we predicted the associated diseases, 36 potential transcription factors (TFs), and 30 putative drugs for hub genes using the DisGeNET, TRRUST, and DGIdb databases, respectively. Our results indicated the crucial role of circRNAs, and the immune microenvironment played in CIPN, providing novel insights for further research.
Collapse
Affiliation(s)
- Fei Cao
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Xintong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Qingqing Ye
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Fang Yan
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| | - Bingtian Bi
- Department of Clinical Trial Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xudong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (F.C.); (X.W.); (Q.Y.); (F.Y.); (W.L.); (J.X.)
| |
Collapse
|
144
|
Aggeletopoulou I, Kalafateli M, Tsounis EP, Triantos C. Epigenetic Regulation in Lean Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:12864. [PMID: 37629043 PMCID: PMC10454848 DOI: 10.3390/ijms241612864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most prominent cause of chronic liver disease worldwide, is a rapidly growing epidemic. It consists of a wide range of liver diseases, from steatosis to nonalcoholic steatohepatitis, and predisposes patients to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. NAFLD is strongly correlated with obesity; however, it has been extensively reported among lean/nonobese individuals in recent years. Although lean patients demonstrate a lower prevalence of diabetes mellitus, central obesity, dyslipidemia, hypertension, and metabolic syndrome, a percentage of these patients may develop steatohepatitis, advanced liver fibrosis, and cardiovascular disease, and have increased all-cause mortality. The pathophysiological mechanisms of lean NAFLD remain vague. Studies have reported that lean NAFLD demonstrates a close association with environmental factors, genetic predisposition, and epigenetic modifications. In this review, we aim to discuss and summarize the epigenetic mechanisms involved in lean NAFLD and to introduce the interaction between epigenetic patterns and genetic or non genetic factors. Several epigenetic mechanisms have been implicated in the regulation of lean NAFLD. These include DNA methylation, histone modifications, and noncoding-RNA-mediated gene regulation. Epigenetics is an area of special interest in the setting of lean NAFLD as it could provide new insights into the therapeutic options and noninvasive biomarkers that target this under-recognized and challenging disorder.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece;
| | - Efthymios P. Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece; (I.A.); (E.P.T.)
| |
Collapse
|
145
|
Wu Q, Deng Z, Zhang W, Pan X, Choi KS, Zuo Y, Shen HB, Yu DJ. MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering. Bioinformatics 2023; 39:btad499. [PMID: 37561093 PMCID: PMC10457666 DOI: 10.1093/bioinformatics/btad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
MOTIVATION CircRNAs play a critical regulatory role in physiological processes, and the abnormal expression of circRNAs can mediate the processes of diseases. Therefore, exploring circRNAs-disease associations is gradually becoming an important area of research. Due to the high cost of validating circRNA-disease associations using traditional wet-lab experiments, novel computational methods based on machine learning are gaining more and more attention in this field. However, current computational methods suffer to insufficient consideration of latent features in circRNA-disease interactions. RESULTS In this study, a multilayer attention neural graph-based collaborative filtering (MLNGCF) is proposed. MLNGCF first enhances multiple biological information with autoencoder as the initial features of circRNAs and diseases. Then, by constructing a central network of different diseases and circRNAs, a multilayer cooperative attention-based message propagation is performed on the central network to obtain the high-order features of circRNAs and diseases. A neural network-based collaborative filtering is constructed to predict the unknown circRNA-disease associations and update the model parameters. Experiments on the benchmark datasets demonstrate that MLNGCF outperforms state-of-the-art methods, and the prediction results are supported by the literature in the case studies. AVAILABILITY AND IMPLEMENTATION The source codes and benchmark datasets of MLNGCF are available at https://github.com/ABard0/MLNGCF.
Collapse
Affiliation(s)
- Qunzhuo Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Wei Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China
| | - Kup-Sze Choi
- The Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong
| | - Yun Zuo
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
146
|
Kang DD, Li H, Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv Drug Deliv Rev 2023; 199:114961. [PMID: 37321375 PMCID: PMC10264168 DOI: 10.1016/j.addr.2023.114961] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The accelerated progress and approval of two mRNA-based vaccines to address the SARS-CoV-2 virus were unprecedented. This record-setting feat was made possible through the solid foundation of research on in vitro transcribed mRNA (IVT mRNA) which could be utilized as a therapeutic modality. Through decades of thorough research to overcome barriers to implementation, mRNA-based vaccines or therapeutics offer many advantages to rapidly address a broad range of applications including infectious diseases, cancers, and gene editing. Here, we describe the advances that have supported the adoption of IVT mRNA in the clinics, including optimization of the IVT mRNA structural components, synthesis, and lastly concluding with different classes of IVT RNA. Continuing interest in driving IVT mRNA technology will enable a safer and more efficacious therapeutic modality to address emerging and existing diseases.
Collapse
Affiliation(s)
- Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Haoyuan Li
- Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States; Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute, Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, United States; Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
147
|
Han Y, Shin SH, Lim CG, Heo YH, Choi IY, Kim HH. Synthetic RNA Therapeutics in Cancer. J Pharmacol Exp Ther 2023; 386:212-223. [PMID: 37188531 DOI: 10.1124/jpet.123.001587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
Recent advances in the RNA delivery system have facilitated the development of a separate field of RNA therapeutics, with modalities including mRNA, microRNA (miRNA), antisense oligonucleotide (ASO), small interfering RNA, and circular (circRNA) that have been incorporated into oncology research. The main advantages of the RNA-based modalities are high flexibility in designing RNA and rapid production for clinical screening. It is challenging to eliminate tumors by tackling a single target in cancer. In the era of precision medicine, RNA-based therapeutic approaches potentially constitute suitable platforms for targeting heterogeneous tumors that possess multiple sub-clonal cancer cell populations. In this review, we discussed how synthetic coding and non-coding RNAs, such as mRNA, miRNA, ASO, and circRNA, can be applied in the development of therapeutics. SIGNIFICANCE STATEMENT: With development of vaccines against coronavirus, RNA-based therapeutics have received attention. Here, the authors discuss different types of RNA-based therapeutics potentially effective against tumor that are highly heterogeneous giving rise to resistance and relapses to the conventional therapeutics. Moreover, this study summarized recent findings suggesting combination approaches of RNA therapeutics and cancer immunotherapy.
Collapse
Affiliation(s)
- Youngjin Han
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Seung-Hyun Shin
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Chang Gyu Lim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Yong Ho Heo
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - In Young Choi
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| | - Ha Hyung Kim
- Hanmi Research Center, Hanmi Pharmaceutical Co. Ltd., Gyeonggi-do, Republic of Korea (Y.H., S.-H.S., C.G.L., Y.H.H., I.Y.C.); and Biotherapeutics and Glycomics Laboratory, College of Pharmacy (Y.H.H., H.H.K.) and Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Chung-Ang University, Seoul, Republic of Korea (H.H.K.)
| |
Collapse
|
148
|
Molaei P, Savari M, Mahdavinezhad A, Najafi R, Afshar S, Esfandiari N, Khorrami R, Hashemi M. Highlighting functions of apoptosis and circular RNAs in colorectal cancer. Pathol Res Pract 2023; 248:154592. [PMID: 37295258 DOI: 10.1016/j.prp.2023.154592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is known as one of the global problems that endangers the lives of thousands of people every year. Various treatments have been used to deal with this disease, but in some cases, they are not effective. Circular RNAs, as a novel class of noncoding RNAs, have different expression levels and various functions in cancer cells, such as gene regulation through microRNA sponging. They play an important role in various cellular processes, including differentiation, proliferation, invasion, and apoptosis. Changes in the process of apoptosis are closely related to the progression or inhibition of various malignancies. Induction of apoptosis in cancer cells is a promising target for tumor therapy. In this study, circRNAs were investigated as being central to the induction or inhibition of apoptosis in CRC. It is hoped that through targeted changes in the function of these biomolecules, better outcomes will be achieved in cancer treatment. Perhaps better outcomes for cancer treatment can be achieved by using new methods and modifying the expression of these nucleic acids. However, using this method may come with challenges and limitations.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Savari
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
149
|
Long F, Li L, Xie C, Ma M, Wu Z, Lu Z, Liu B, Yang M, Zhang F, Ning Z, Zhong C, Yu B, Liu S, Wan L, Tian B, Yang K, Guo Y, Chen M, Chou J, Li X, Hu G, Lin C, Zhang Y. Intergenic CircRNA Circ_0007379 Inhibits Colorectal Cancer Progression by Modulating miR-320a Biogenesis in a KSRP-Dependent Manner. Int J Biol Sci 2023; 19:3781-3803. [PMID: 37564198 PMCID: PMC10411474 DOI: 10.7150/ijbs.85063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/08/2023] [Indexed: 08/12/2023] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNA structures that play multiple roles in tumorigenesis and progression. Compared with exon‒intron circRNAs, the biological functions and implications of intergenic circRNAs in human cancer are still poorly understood. Here, we performed circRNA microarray analysis and identified an intergenic circRNA, circ_0007379, that was significantly downregulated in patients with colorectal cancer (CRC). The biogenesis of circ_0007379 was mediated by reverse complementary matches (RCMs) and was negatively regulated by the RNA helicase DHX9. Functionally, circ_0007379 suppressed CRC cell growth and metastasis in cell culture as well as in patient-derived organoid and xenograft models. Mechanistically, circ_0007379 acted as a scaffold to facilitate the processing of both pri-miR-320a and pre-miR-320a in a KSRP-dependent manner, leading to miR-320a maturation and subsequent repression of transcription factor RUNX1 expression. Thus, our findings establish a previously unrecognized function of circRNA in inhibiting CRC progression.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Canbin Xie
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhixing Lu
- Department of Gastrointestinal, Hernia and Enterofistula Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, China
| | - Baiying Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Ming Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhengping Ning
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Chonglei Zhong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Bowen Yu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shiyi Liu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Longyu Wan
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Buning Tian
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Kaiyan Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yihang Guo
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Chou
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yi Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
150
|
Yang X, Kang J, Xing Z, Sun Y, Liu Z, Li N, Niu J. Bibliometric analysis of RNA vaccines for cancer. Hum Vaccin Immunother 2023:2231333. [PMID: 37464256 PMCID: PMC10361146 DOI: 10.1080/21645515.2023.2231333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer represents a challenging medical problem worldwide. Several exploratory studies have been conducted to overcome these limitations. RNA vaccines play an important role in cancer prevention and treatment. Recent studies have shown that RNA vaccines play an important role in cancer prevention. However, there are currently no relevant bibliometric studies. This study aimed to apply bibliometrics to summarize the knowledge structure and research hotspots regarding the role of RNA vaccines in cancer. Publications related to RNA vaccines in cancer were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace and R package "bibliometrix" were used to conduct this bibliometric analysis. A total of 1399 articles were included, comprising 803 original articles and 596 reviews. The number of studies on RNA vaccines against cancer has been increasing annually. China and the United States were the principal countries of origin of publications. Johannes Gutenberg University Mainz, NCI, and Duke University were the main organizations. Frontiers in Immunology is the leading journal in the field. Hot keywords included tumor antigens, lipid nanoparticles, emerging roles, and dendritic cells. This is the bibliometric study to summarize the research trends and development of RNA vaccines for cancer. This information will provide a reference for researchers studying RNA vaccines against cancer.
Collapse
Affiliation(s)
- Xue Yang
- Blood Sample Collection, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Kang
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Zhaohui Xing
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Yongtao Sun
- Department of CT, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Zhipeng Liu
- Department of CT, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Nannan Li
- Department of Plastic Surgery, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
| | - Jirui Niu
- Department of Urology, Heilongjiang Provincial Hospital, Harbin Institute of Technology, Harbin, China
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Bio-Bank of Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|