101
|
Kim S, Kim S. An insertion mutation located on putative enhancer regions of the MYB26-like gene induces inhibition of anther dehiscence resulting in novel genic male sterility in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:67. [PMID: 37309318 PMCID: PMC10236041 DOI: 10.1007/s11032-021-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1, conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 24 kb after analyzing recombinants selected from 7511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive rsms1 allele. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01254-9.
Collapse
Affiliation(s)
- Seongjun Kim
- Jeollanamdo Agricultural Research and Extension Service, Naju-si, 58213 Republic of Korea
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
102
|
Xu Y, Cai W, Chen X, Chen M, Liang W. A small Rho GTPase OsRacB is required for pollen germination in rice. Dev Growth Differ 2021; 64:88-97. [PMID: 34519039 PMCID: PMC9292018 DOI: 10.1111/dgd.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 11/28/2022]
Abstract
Plant Rho small GTPases (Rop/Rac) are versatile molecular switches regulating many plant developmental processes. Particularly, their important functions in regulating pollen development have been demonstrated in Arabidopsis. A group of conserved Rop/Rac activators RopGEFs were recently reported to regulate rice (Oryza sativa) pollen tube germination, indicating that rice and Arabidopsis may have a conserved Rop/Rac mediated signaling pathway in regulating pollen tube growth. However, the Rop/Rac activated by the rice pollen specific RopGEFs remains to be identified. Here we demonstrated a Rop/Rac gene, OsRacB, co-expressed with the mature pollen expressed OsRopGEF2/3/6/8. The knockout mutants were normal in anther and pollen development but defective in the pollen grain germination, suggesting a specific and non-redundant role of OsRacB in the mature pollen. We further demonstrated that OsRacB is directly activated by the pollen specific expressing OsRopGEFs in vitro. Together with the previous study, we establish a RopGEF-Rop/Rac regulon which plays essential roles in rice pollen grain germination. Our data encourage further identification of the upstream and downstream players of RopGEF-Rop/Rac signaling in pollen germination and have agricultural implications for breeding robust seed yielding cultivars.
Collapse
Affiliation(s)
- Yangfan Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
103
|
Fang X, Sun X, Yang X, Li Q, Lin C, Xu J, Gong W, Wang Y, Liu L, Zhao L, Liu B, Qin J, Zhang M, Zhang C, Kong F, Li M. MS1 is essential for male fertility by regulating the microsporocyte cell plate expansion in soybean. SCIENCE CHINA. LIFE SCIENCES 2021; 64:1533-1545. [PMID: 34236584 DOI: 10.1007/s11427-021-1973-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Male sterility is an essential trait in hybrid seed production, especially for monoclinous and autogamous food crops. Soybean male-sterile ms1 mutant has been known for more than 50 years and could be instrumental in making hybrid seeds. However, the gene responsible for the male-sterile phenotype has remained unknown. Here, we report the map-based cloning and characterization of the MS1 gene in soybean. MS1 encodes a kinesin protein and localizes to the nucleus, where it is required for the male meiotic cytokinesis after telophase II. We further substantiated that MS1 colocalizes with microtubules and is essential for cell plate formation in soybean male gametogenesis through immunostaining. Both ms1 and CRISPR/Cas9 knockout mutants show complete male sterility but are otherwise phenotypically normal, making them perfect tools for producing hybrid seeds. The identification of MS1 has the practical potential for assembling the sterility system and speeding up hybrid soybean breeding.
Collapse
Affiliation(s)
- Xiaolong Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoyuan Sun
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xiangdong Yang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qing Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 311401, China
| | - Chunjing Lin
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Xu
- Core Facility and Technical Service Center for SLSB, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjun Gong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yifan Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lu Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Limei Zhao
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Jun Qin
- Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, China.
| | - Mengchen Zhang
- Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050031, China.
| | - Chunbao Zhang
- Soybean Research Institute, National Engineering Research Center for Soybean, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Meina Li
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
104
|
Lian JP, Yang YW, He RR, Yang L, Zhou YF, Lei MQ, Zhang Z, Huang JH, Cheng Y, Liu YW, Zhang YC, Chen YQ. Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation. THE PLANT CELL 2021; 33:2685-2700. [PMID: 34003932 PMCID: PMC8408455 DOI: 10.1093/plcell/koab138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/06/2021] [Indexed: 05/25/2023]
Abstract
MEIOSIS ARRESTED AT LEPTOTENE1 (MEL1), a rice (Oryza sativa) Argonaute (AGO) protein, has been reported to function specifically at premeiotic and meiotic stages of germ cell development and is associated with a novel class of germ cell-specific small noncoding RNAs called phased small RNAs (phasiRNAs). MEL1 accumulation is temporally and spatially regulated and is eliminated after meiosis. However, the metabolism and turnover (i.e. the homeostasis) of MEL1 during germ cell development remains unknown. Here, we show that MEL1 is ubiquitinated and subsequently degraded via the proteasome pathway in vivo during late sporogenesis. Abnormal accumulation of MEL1 after meiosis leads to a semi-sterile phenotype. We identified a monocot-specific E3 ligase, XBOS36, a CULLIN RING-box protein, that is responsible for the degradation of MEL1. Ubiquitination at four K residues at the N terminus of MEL1 by XBOS36 induces its degradation. Importantly, inhibition of MEL1 degradation either by XBOS36 knockdown or by MEL1 overexpression prevents the formation of pollen at the microspore stage. Further mechanistic analysis showed that disrupting MEL1 homeostasis in germ cells leads to off-target cleavage of phasiRNA target genes. Our findings thus provide insight into the communication between a monocot-specific E3 ligase and an AGO protein during plant reproductive development.
Collapse
Affiliation(s)
| | | | - Rui-Rui He
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Zhi Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jia-Hui Huang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Science, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | |
Collapse
|
105
|
Qu A, Xu Y, Yu X, Si Q, Xu X, Liu C, Yang L, Zheng Y, Zhang M, Zhang S, Xu J. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice. J Genet Genomics 2021; 48:695-705. [PMID: 34315684 DOI: 10.1016/j.jgg.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Coordination between the sporophytic tissue and the gametic pollen within anthers is tightly controlled to achieve the optimal pollen fitness. Glucose-6-phosphate/phosphate translocator (GPT) transports glucose-6-phosphate, a key precursor of starch and/or fatty acid biosynthesis, into plastids. Here, we report the functional characterization of OsGPT1 in the rice anther development and pollen fertility. Pollen grains from homozygous osgpt1 mutant plants fail to accumulate starch granules, resulting in pollen sterility. Genetic analyses reveal a sporophytic effect for this mutation. OsGPT1 is highly expressed in the tapetal layer of rice anther. Degeneration of the tapetum, an important process to provide cellular contents to support pollen development, is impeded in osgpt1 plants. In addition, defective intine and exine are observed in the pollen from osgpt1 plants. Expression levels of multiple genes that are important to tapetum degeneration or pollen wall formation are significantly decreased in osgpt1 anthers. Previously, we reported that AtGPT1 plays a gametic function in the accumulation of lipid bodies in Arabidopsis pollen. This report highlights a sporophytic role of OsGPT1 in the tapetum degeneration and pollen development. The divergent functions of OsGPT1 and AtGPT1 in pollen development might be a result of their independent evolution after monocots and dicots diverged.
Collapse
Affiliation(s)
- Aili Qu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinxing Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Si
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuwen Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Changhao Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Liuyi Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yueping Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mengmeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
106
|
Wu L, Rong H, Chen C, Lin X, Wang J, Xiao W, Huang C, Guo T, Wang H, Huang M. Characteristics of Fertility Transition Response to the Cumulative Effective Low Temperature in a Two-Line Male Sterile Rice Cultivar. RICE (NEW YORK, N.Y.) 2021; 14:71. [PMID: 34342723 PMCID: PMC8333178 DOI: 10.1186/s12284-021-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Photo-thermo-sensitive genic male sterile (PTGMS) rice (Oryza sativa L.) is usually considered two-line male sterile rice because of its dual-purpose in two-line hybrid rice system: under short days and low temperatures, it is fertile and used for self-propagation, but under long days and high temperatures, it is sterile and used for hybrid seed production. Therefore, photoperiod and temperature conditions are extremely important for the fertility transition of two-line male sterile rice. In recent years, there have been frequent occurrences of abnormally low-temperature (ALT) resulting in failure of two-line hybrid rice seed production. The daily average temperature (DAT) during ALT events is sometimes higher than the critical sterility-inducing temperature (CSIT) of two-line male sterile rice, of which the night temperature is lower than the CSIT. DAT has been traditionally used as the single indicator of pollen fertility transition, but it is unknown why the fertility of two-line male sterile rice in seed production restored fertility under ALT conditions. RESULTS For Hang93S (H93S), a newly released PTGMS line, we hypothesized fertility transition is determined mainly by the cumulative effective low temperature (ELT) and only a certain duration of low temperature is required every day during the fertility-sensitive period. This study simulated ALTs where the DAT was higher than the CSIT while some segments of night temperature were lower than the CSIT. The results showed H93S exhibited a fertility transition to varying degrees. Moreover, fertility was restored under simulated ALT conditions and pollen fertility increased with increasing cumulative ELT, indicating that the fertility transition was affected primarily by the cumulative ELT. Results also indicated that pollen fertility increased as the number of treatment days increased. CONCLUSIONS The fertility transition is caused mainly by the cumulative ELT. In two-line male sterile rice breeding, the effects of day length, ALT at night, and continuous response days should be considered together. The present study provides new insight into fertility transition so breeders can more effectively utilize the two-line male sterile rice, H93S, in breeding programs.
Collapse
Affiliation(s)
- Linxuan Wu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Huazhen Rong
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Xin Lin
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Ming Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
107
|
Wang D, Li J, Sun L, Hu Y, Yu J, Wang C, Zhang F, Hou H, Liang W, Zhang D. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. THE NEW PHYTOLOGIST 2021; 231:1612-1629. [PMID: 34031889 DOI: 10.1111/nph.17512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Photoperiod-dependent male fertility is a critical enabler of modern hybrid breeding. A MYB transcription factor, CSA, is a key regulator of sugar partitioning in rice anthers, disruption of which causes photoperiod-sensitive male sterility. However, little is known about the molecular mechanisms governing plant fertility in response to photoperiod. Here, we have obtained another rice photoperiod-sensitive male sterile mutant, csa2, which exhibits semi-sterility under long-day (LD) conditions, with normal fertility under short-day (SD) conditions. CSA2 specifically expressed in anthers, and here is shown to be indispensable for sugar partitioning to anthers under LD conditions. The CSA2 protein can restore the fertility of csa mutants under SD conditions when expressed in a CSA-specific pattern, indicating that the two proteins share common downstream regulatory targets. Transcriptomic analyses also reveal discrete regulatory targets in anthers. Furthermore, the regulatory role of CSA2 in sugar transport was influenced by the photoperiod conditions during floral initiation, not simply during anther development. Collectively, we propose that rice evolved at least two MYB proteins, CSA2 and CSA, that regulate sugar transport in anthers under LD and SD conditions, respectively. This finding provides insight into the molecular mechanisms that regulate male fertility in response to photoperiod.
Collapse
Affiliation(s)
- Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yangyang Hu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canhua Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengli Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haili Hou
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
108
|
A Rapid Pipeline for Pollen- and Anther-Specific Gene Discovery Based on Transcriptome Profiling Analysis of Maize Tissues. Int J Mol Sci 2021; 22:ijms22136877. [PMID: 34206810 PMCID: PMC8267723 DOI: 10.3390/ijms22136877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.
Collapse
|
109
|
Jia XL, Xue JS, Zhang F, Yao C, Shen SY, Sui CX, Peng YJ, Xu QL, Feng YF, Hu WJ, Xu P, Yang ZN. A dye combination for the staining of pollen coat and pollen wall. PLANT REPRODUCTION 2021; 34:91-101. [PMID: 33903950 DOI: 10.1007/s00497-021-00412-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The pollen coat, which forms on the pollen surface, consists of a lipid-protein matrix. It protects pollen from desiccation and is involved in adhesion, pollen-stigma recognition, and pollen hydration during interactions with the stigma. The classical methods used for pollen coat observation are scanning and transmission electron microscopy. In this work, we screened a collection of fluorescence dyes and identified two fluorescent brighteners FB-52 and FB-184. When they were used together with the exine-specific dye, Basic fuchsin, the pollen coat and the exine structures could be clearly visualized in the pollen of Brassica napus. This co-staining method was applied successfully in staining pollen from Fraxinus chinensis, Calystegia hederacea, and Petunia hybrida. Using this method, small pollen coat-containing cavities were detected in the outer pollen wall layer of Oryza sativa and Zea mays. We further showed these dyes are compatible with fluorescent protein markers. In the Arabidopsis thaliana transgenic line of GFP-tagged pollen coat protein GRP19, GRP19-GFP was observed to form particles at the periphery of pollen coat. This simple staining method is expected to be widely used for the studies of the palynology as well as the pollen-stigma interaction.
Collapse
Affiliation(s)
- Xin-Lei Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Fang Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chi Yao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chang-Xu Sui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Jia Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Lin Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Feng Feng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wen-Jing Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
110
|
Huang Y, Zheng P, Liu X, Chen H, Tu J. OseIF3h Regulates Plant Growth and Pollen Development at Translational Level Presumably through Interaction with OsMTA2. PLANTS 2021; 10:plants10061101. [PMID: 34070794 PMCID: PMC8228589 DOI: 10.3390/plants10061101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The initiation stage of protein biosynthesis is a sophisticated process tightly regulated by numerous initiation factors and their associated components. However, the mechanism underlying translation initiation has not been completely understood in rice. Here, we showed knock-out mutation of the rice eukaryotic translation initiation factor 3 subunit h (OseIF3h) resulted in plant growth retardation and seed-setting rate reduction as compared to the wild type. Further investigation demonstrated an interaction between OseIF3h and OsMTA2 (mRNA adenosine methylase 2), a rice homolog of METTL3 (methyltransferase-like 3) in mammals, which provided new insight into how N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is engaged in the translation initiation process in monocot species. Moreover, the RIP-seq (RNA immunoprecipitation sequencing) data suggested that OseIF3h was involved in multiple biological processes, including photosynthesis, cellular metabolic process, precursor metabolites, and energy generation. Therefore, we infer that OseIF3h interacts with OsMTA2 to target a particular subset of genes at translational level, regulating plant growth and pollen development.
Collapse
|
111
|
Liu T, Jiang GQ, Yao XF, Liu CM. The leucine-rich repeat receptor-like kinase OsERL plays a critical role in anther lobe formation in rice. Biochem Biophys Res Commun 2021; 563:85-91. [PMID: 34062391 DOI: 10.1016/j.bbrc.2021.05.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
In Arabidopsis, ERECTA (ER) subfamily of leucine-rich repeat (LRR) receptor kinases (LRR-RKs) play important roles in cell division and cell elongation. However, the functions of OsER genes in rice are still very much unknown. In this study, sixty-seven TILLING and four gene-edited mutants were identified for one of the three OsERs, OsERL, and used for functional analyses. Results showed that mutations in OsERL led to striking defects in anther development. Compete male sterility and reduced numbers of anther lobes, more severe than knockout mutants, were observed in mutants with amino acid substitutions in the kinase domain. Among alleles with amino acid changes in LRRs, only one mutation in the 16th LRR showed evident phenotype, suggesting a role of the LRR in ligand sensing. OsERL is expressed in shoot apcies, internodes and anthers, and within the anther OsERL is expressed in sporophytic and tapetal cells. Cell biological analyses revealed that mutations in OsERL led to defected periclinal division in archesporial cells in anthers, suggesting a critical role of OsERL in rice anther development.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guo-Qiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
112
|
Zhang S, Wu S, Niu C, Liu D, Yan T, Tian Y, Liu S, Xie K, Li Z, Wang Y, Zhao W, Dong Z, Zhu T, Hou Q, Ma B, An X, Li J, Wan X. ZmMs25 encoding a plastid-localized fatty acyl reductase is critical for anther and pollen development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4298-4318. [PMID: 33822021 DOI: 10.1093/jxb/erab142] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Fatty acyl reductases (FARs) catalyse the reduction of fatty acyl-coenzyme A (CoA) or -acyl carrier protein (ACP) substrates to primary fatty alcohols, which play essential roles in lipid metabolism in plants. However, the mechanism by which FARs are involved in male reproduction is poorly defined. Here, we found that two maize allelic mutants, ms25-6065 and ms25-6057, displayed defective anther cuticles, abnormal Ubisch body formation, impaired pollen exine formation and complete male sterility. Based on map-based cloning and CRISPR/Cas9 mutagenesis, Zm00001d048337 was identified as ZmMs25, encoding a plastid-localized FAR with catalytic activities to multiple acyl-CoA substrates in vitro. Four conserved residues (G101, G104, Y327 and K331) of ZmMs25 were critical for its activity. ZmMs25 was predominantly expressed in anther, and was directly regulated by transcription factor ZmMYB84. Lipidomics analysis revealed that ms25 mutation had significant effects on reducing cutin monomers and internal lipids, and altering the composition of cuticular wax in anthers. Moreover, loss of function of ZmMs25 significantly affected the expression of its four paralogous genes and five cloned lipid metabolic male-sterility genes in maize. These data suggest that ZmMs25 is required for anther development and male fertility, indicating its application potential in maize and other crops.
Collapse
Affiliation(s)
- Simiao Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Dongcheng Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Tingwei Yan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Shuangshuang Liu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yanbo Wang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
113
|
Wei C, Zhang R, Yue Z, Yan X, Cheng D, Li J, Li H, Zhang Y, Ma J, Yang J, Zhang X. The impaired biosynthetic networks in defective tapetum lead to male sterility in watermelon. J Proteomics 2021; 243:104241. [PMID: 33905954 DOI: 10.1016/j.jprot.2021.104241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/18/2021] [Accepted: 04/18/2021] [Indexed: 12/25/2022]
Abstract
Heterosis has been widely applied in watermelon breeding, because of the higher resistance and yield of hybrid. As the basis of heterosis utilization, genic male sterility (GMS) is an important tool for facilitating hybrid seed production, while the detailed mechanism in watermelon is still largely unknown. Here, we report a spontaneous mutant Se18 exhibited complete male sterility due to the uniquely multilayered tapetum and the un-meiotic pollen mother cells during pollen development. Using TMT based quantitative proteomic analyses, a total of 348 differentially abundant proteins (DAPs) were detected with the overwhelming majority down-regulated in mutant Se18. By analyzing the putative orthologs/homologs of Arabidopsis GMS related genes, the biosynthesis and transport of sporopollenin and tryphine precursors were predictably altered in mutant compared to its sibling wild type. Moreover, the general phenylpropanoid pathway as well as its related metabolisms was also expectably impaired in mutant, coincident with the pale yellow petals. Notably, some key transcriptional factors regulating tapetum development, together with their down-regulated targets, offered potentially valuable candidates regarding of male sterility. Collectively, the disrupted regulatory networks underlying male sterility of watermelon was proposed, which provide novel insights into genetic mechanism of male reproductive process and rich gene resources for future research. SIGNIFICANCE: Watermelon is an importantly economical cucurbit crop worldwide, with high nutritional value. Although several male sterile mutants have been identified in watermelon, the underlying molecular mechanism is poorly elucidated. Comparative cytological analysis revealed that the defective development of tapetum was responsible for male sterility in mutant Se18. Combined with the morphological comparison, male floral buds at 2.0-2.5 mm in diameter were confirmed with no obvious phenotypic differences but distinct cytological defects, which were in turn sampled for TMT based proteomic analyses. Referring to functionally characterized GMS related genes, the genetic pathway DYT1-TDF1-AMS-MS188-MS1 regulating tapetum development, together with some downstream targets, were considerably altered in mutant Se18. Moreover, enrichment analyses illustrated the general phenylpropanoid related metabolisms, as well as the biosynthesis and transport of sporopollenin and tryphine precursors, were significantly disrupted in defective anther development. Collectively, the proposed regulatory networks in watermelon not only contribute to a better understanding of molecular mechanisms underlying male sterility, but also provide valuable GMS related candidates for future researches.
Collapse
Affiliation(s)
- Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ruimin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhen Yue
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Denghu Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianxiang Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianqiang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China.
| |
Collapse
|
114
|
Khlaimongkhon S, Chakhonkaen S, Tongmark K, Sangarwut N, Panyawut N, Wasinanon T, Sikaewtung K, Wanchana S, Mongkolsiriwatana C, Chunwonges J, Muangprom A. RNA Sequencing Reveals Rice Genes Involved in Male Reproductive Development under Temperature Alteration. PLANTS 2021; 10:plants10040663. [PMID: 33808467 PMCID: PMC8066911 DOI: 10.3390/plants10040663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important food crops, providing food for nearly half of the world population. Rice grain yields are affected by temperature changes. Temperature stresses, both low and high, affect male reproductive development, resulting in yield reduction. Thermosensitive genic male sterility (TGMS) rice is sterile at high temperature and fertile at low temperature conditions, facilitating hybrid production, and is a good model to study effects of temperatures on male development. Semithin sections of the anthers of a TGMS rice line under low (fertile) and high (sterile) temperature conditions showed differences starting from the dyad stage, suggesting that genes involved in male development play a role during postmeiotic microspore development. Using RNA sequencing (RNA-Seq), transcriptional profiling of TGMS rice panicles at the dyad stage revealed 232 genes showing differential expression (DEGs) in a sterile, compared to a fertile, condition. Using qRT-PCR to study expression of 20 selected DEGs using panicles of TGMS and wild type rice plants grown under low and high temperature conditions, revealed that six out of the 20 selected genes may be unique to TGMS, while the other 14 genes showed common responses to temperatures in both TGMS and wild-type rice plants. The results presented here would be useful for further investigation into molecular mechanisms controlling TGMS and rice responses to temperature alteration.
Collapse
Affiliation(s)
- Sudthana Khlaimongkhon
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Sriprapai Chakhonkaen
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Keasinee Tongmark
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Numphet Sangarwut
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Natjaree Panyawut
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Thiwawan Wasinanon
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Kannika Sikaewtung
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
| | - Chareerat Mongkolsiriwatana
- Division of Genetics, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Julapark Chunwonges
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- Department of Horticulture, Faculty of Agriculture, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Amorntip Muangprom
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand; (S.K.); (J.C.)
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.C.); (K.T.); (N.S.); (N.P.); (T.W.); (K.S.); (S.W.)
- Correspondence: ; Tel.: +66-25646700 (ext. 3348)
| |
Collapse
|
115
|
He Z, Zou T, Xiao Q, Yuan G, Liu M, Tao Y, Zhou D, Zhang X, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Yu X, Wang A, Liu H, Wang L, Li P, Li S. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development 2021; 148:dev.196378. [PMID: 33658224 DOI: 10.1242/dev.196378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/22/2021] [Indexed: 01/27/2023]
Abstract
Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we have isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity, likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
116
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:629314. [PMID: 33763090 PMCID: PMC7982899 DOI: 10.3389/fpls.2021.629314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Northern Center of China National Rice Research Institute, Shuangyashan, China
| |
Collapse
|
117
|
Ramadan M, Alariqi M, Ma Y, Li Y, Liu Z, Zhang R, Jin S, Min L, Zhang X. Efficient CRISPR/Cas9 mediated Pooled-sgRNAs assembly accelerates targeting multiple genes related to male sterility in cotton. PLANT METHODS 2021; 17:16. [PMID: 33557889 PMCID: PMC7869495 DOI: 10.1186/s13007-021-00712-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Upland cotton (Gossypium hirsutum), harboring a complex allotetraploid genome, consists of A and D sub-genomes. Every gene has multiple copies with high sequence similarity that makes genetic, genomic and functional analyses extremely challenging. The recent accessibility of CRISPR/Cas9 tool provides the ability to modify targeted locus efficiently in various complicated plant genomes. However, current cotton transformation method targeting one gene requires a complicated, long and laborious regeneration process. Hence, optimizing strategy that targeting multiple genes is of great value in cotton functional genomics and genetic engineering. RESULTS To target multiple genes in a single experiment, 112 plant development-related genes were knocked out via optimized CRISPR/Cas9 system. We optimized the key steps of pooled sgRNAs assembly method by which 116 sgRNAs pooled together into 4 groups (each group consisted of 29 sgRNAs). Each group of sgRNAs was compiled in one PCR reaction which subsequently went through one round of vector construction, transformation, sgRNAs identification and also one round of genetic transformation. Through the genetic transformation mediated Agrobacterium, we successfully generated more than 800 plants. For mutants identification, Next Generation Sequencing technology has been used and results showed that all generated plants were positive and all targeted genes were covered. Interestingly, among all the transgenic plants, 85% harbored a single sgRNA insertion, 9% two insertions, 3% three different sgRNAs insertions, 2.5% mutated sgRNAs. These plants with different targeted sgRNAs exhibited numerous combinations of phenotypes in plant flowering tissues. CONCLUSION All targeted genes were successfully edited with high specificity. Our pooled sgRNAs assembly offers a simple, fast and efficient method/strategy to target multiple genes in one time and surely accelerated the study of genes function in cotton.
Collapse
Affiliation(s)
- Mohamed Ramadan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Department of Plant Genetic Resources, Division of Ecology and Dry Land Agriculture, Desert Research Center, Cairo, Egypt
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yizan Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanlong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ling Min
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
118
|
Xiang XJ, Sun LP, Yu P, Yang ZF, Zhang PP, Zhang YX, Wu WX, Chen DB, Zhan XD, Khan RM, Abbas A, Cheng SH, Cao LY. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:453-471. [PMID: 33089345 DOI: 10.1007/s00122-020-03706-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Key message Rice male fertility gene Baymax1, isolated through map-based cloning, encodes a MYB transcription factor and is essential for rice tapetum and microspore development.Abstract The mining and characterization of male fertility gene will provide theoretical and material basis for future rice production. In Arabidopsis, the development of male organ (namely anther), usually involves the coordination between MYB (v-myb avian myeloblastosis viral oncogene homolog) and bHLH (basic helix-loop-helix) members. However, the role of MYB proteins in rice anther development remains poorly understood. In this study, we isolated and characterized a male sterile mutant (with normal vegetative growth) of Baymax1 (BM1), which encodes a MYB protein. The bm1 mutant exhibited slightly lagging meiosis, aborted transition of the tapetum to a secretory type, premature tapetal degeneration, and abnormal pollen exine formation, leading to ultimately lacks of visible pollens in the mature white anthers. Map-based cloning, complementation and targeted mutagenesis using CRISPR/Cas9 technology demonstrated that the mutated LOC_Os04g39470 is the causal gene in bm1. BM1 is preferentially expressed in rice anthers from stage 5 to stage 10. Phylogenetic analysis indicated that rice BM1 and its homologs in millet, maize, rape, cabbage, and pigeonpea are evolutionarily conserved. BM1 can physically interacts with bHLH protein TIP2, EAT1, and PHD (plant homeodomain)-finger member TIP3, respectively. Moreover, BM1 affects the expression of several known genes related to tapetum and microspore development. Collectively, our results suggest that BM1 is one of key regulators for rice male fertility and may serve as a potential target for rice male-sterile line breeding and hybrid seed production.
Collapse
Affiliation(s)
- Xiao-Jiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Ping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Zheng-Fu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pei-Pei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Ying-Xin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wei-Xun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Dai-Bo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Xiao-Deng Zhan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Riaz-Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Shi-Hua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| | - Li-Yong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
119
|
Cai Y, Ma Z, Ogutu CO, Zhao L, Liao L, Zheng B, Zhang R, Wang L, Han Y. Potential Association of Reactive Oxygen Species With Male Sterility in Peach. FRONTIERS IN PLANT SCIENCE 2021; 12:653256. [PMID: 33936139 PMCID: PMC8079786 DOI: 10.3389/fpls.2021.653256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 05/11/2023]
Abstract
Male sterility is an important agronomic trait for hybrid vigor utilization and hybrid seed production, but its underlying mechanisms remain to be uncovered. Here, we investigated the mechanisms of male sterility in peach using a combined cytology, physiology, and molecular approach. Cytological features of male sterility include deformed microspores and tapetum cells along with absence of pollen grains. Microspores had smaller nucleus at the mononuclear stage and were compressed into belts and subsequently disappeared in the anther cavity, whereas tapetum cells were swollen and vacuolated, with a delayed degradation to flowering time. Male sterile anthers had an ROS burst and lower levels of major antioxidants, which may cause abnormal development of microspores and tapetum, leading to male sterility in peach. In addition, the male sterility appears to be cytoplasmic in peach, which could be due to sequence variation in the mitochondrial genome. Our results are helpful for further investigation of the genetic mechanisms underlying male sterility in peach.
Collapse
Affiliation(s)
- Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Zhishen Ma
- Shijiazhuang Pomology Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Ruoxi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Yuepeng Han,
| |
Collapse
|
120
|
Sun S, Wang D, Li J, Lei Y, Li G, Cai W, Zhao X, Liang W, Zhang D. Transcriptome Analysis Reveals Photoperiod-Associated Genes Expressed in Rice Anthers. FRONTIERS IN PLANT SCIENCE 2021; 12:621561. [PMID: 33719293 PMCID: PMC7953911 DOI: 10.3389/fpls.2021.621561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 05/12/2023]
Abstract
Environmental conditions, such as photoperiod and temperature, can affect male fertility in plants. While this feature is heavily exploited in rice to generate male-sterile lines for hybrid breeding, the underlying molecular mechanisms remain largely unknown. In this study, we use a transcriptomics approach to identify key genes and regulatory networks affecting pollen maturation in rice anthers in response to different day lengths. A total of 11,726 differentially expressed genes (DEGs) were revealed, of which 177 were differentially expressed at six time points over a 24-h period. GO enrichment analysis revealed that genes at all time points were enriched in transport, carbohydrate, and lipid metabolic processes, and signaling pathways, particularly phytohormone signaling. In addition, co-expression network analysis revealed four modules strongly correlated with photoperiod. Within these four modules, 496 hub genes were identified with a high degree of connectivity to other photoperiod-sensitive DEGs, including two previously reported photoperiod- and temperature-sensitive genes affecting male fertility, Carbon Starved Anther and UDP-glucose pyrophosphorylase, respectively. This work provides a new understanding on photoperiod-sensitive pollen development in rice, and our gene expression data will provide a new, comprehensive resource to identify new environmentally sensitive genes regulating male fertility for use in crop improvement.
Collapse
Affiliation(s)
- Shiyu Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Lei
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - WenGuo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
- *Correspondence: Dabing Zhang,
| |
Collapse
|
121
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
122
|
Bélanger S, Pokhrel S, Czymmek K, Meyers BC. Premeiotic, 24-Nucleotide Reproductive PhasiRNAs Are Abundant in Anthers of Wheat and Barley But Not Rice and Maize. PLANT PHYSIOLOGY 2020. [PMID: 32917771 DOI: 10.1101/2020.06.18.160440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Two classes of premeiotic (21-nucleotides [nt]) and meiotic (24-nt) phased small interfering RNAs (phasiRNAs) and their patterns of accumulation have been described in maize (Zea mays) and rice (Oryza sativa) anthers. Their precise function remains unclear, but studies have shown that they support male fertility. The important role of phasiRNAs in anthers underpins our present study to characterize these small RNAs in wheat (Triticum aestivum) and barley (Hordeum vulgare) anthers. We staged anthers at every 0.2 mm of development for one wheat and two barley varieties. We isolated premeiotic (0.2, 0.4, and 0.6 mm), meiotic (0.8, 1.0, and 1.4 mm), and postmeiotic (1.8 mm) anthers, for which we then investigated accumulation patterns of RNAs, including reproductive phasiRNAs. We annotated a total of 12,821 and 2,897 PHAS loci in the wheat and barley genomes, respectively. By comparing the total number of PHAS loci in genomes of maize, rice, barley, and wheat, we identified an expansion of reproductive PHAS loci in the genomes of Poaceae subfamilies from Panicoideae to Oryzoideae and to Poideae. In addition to the two classes of premeiotic (21-nt) and meiotic (24-nt) phasiRNAs, previously described in maize and rice anthers, we characterized a group of 24-nt phasiRNAs that accumulate in premeiotic anthers. The absence of premeiotic 24-nt phasiRNAs in maize and rice suggests a divergence in grass species of the Poideae subfamily. Additionally, we performed a gene coexpression analysis describing the regulation of phasiRNA biogenesis in wheat and barley anthers. We highlight Argonaute 9 (AGO9) and Argonaute 6 (AGO6) as candidate binding partners of premeiotic and meiotic 24-nt phasiRNAs, respectively.
Collapse
Affiliation(s)
| | - Suresh Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Kirk Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
123
|
Zheng X, He L, Liu Y, Mao Y, Wang C, Zhao B, Li Y, He H, Guo S, Zhang L, Schneider H, Tadege M, Chang F, Chen J. A study of male fertility control in Medicago truncatula uncovers an evolutionarily conserved recruitment of two tapetal bHLH subfamilies in plant sexual reproduction. THE NEW PHYTOLOGIST 2020; 228:1115-1133. [PMID: 32594537 DOI: 10.1111/nph.16770] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Male sterility is an important tool for plant breeding and hybrid seed production. Male-sterile mutants are largely due to an abnormal development of either the sporophytic or gametophytic anther tissues. Tapetum, a key sporophytic tissue, provides nutrients for pollen development, and its delayed degeneration induces pollen abortion. Numerous bHLH proteins have been documented to participate in the degeneration of the tapetum in angiosperms, but relatively little attention has been given to the evolution of the involved developmental pathways across the phylogeny of land plants. A combination of cellular, molecular, biochemical and evolutionary analyses was used to investigate the male fertility control in Medicago truncatula. We characterized the male-sterile mutant empty anther1 (ean1) and identified EAN1 as a tapetum-specific bHLH transcription factor necessary for tapetum degeneration. Our study uncovered an evolutionarily conserved recruitment of bHLH subfamily II and III(a + c)1 in the regulation of tapetum degeneration. EAN1 belongs to the subfamily II and specifically forms heterodimers with the subfamily III(a + c)1 members, which suggests a heterodimerization mechanism conserved in angiosperms. Our work suggested that the pathway of two tapetal-bHLH subfamilies is conserved in all land plants, and likely was established before the divergence of the spore-producing land plants.
Collapse
Affiliation(s)
- Xiaoling Zheng
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoqun Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Youhan Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hua He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shiqi Guo
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Harald Schneider
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
124
|
Zhang H, Wang M, Li Y, Yan W, Chang Z, Ni H, Chen Z, Wu J, Xu C, Deng XW, Tang X. GDSL esterase/lipases OsGELP34 and OsGELP110/OsGELP115 are essential for rice pollen development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1574-1593. [PMID: 32068333 DOI: 10.1111/jipb.12919] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 05/27/2023]
Abstract
Pollen exine contains complex biopolymers of aliphatic lipids and phenolics. Abnormal development of pollen exine often leads to plant sterility. Molecular mechanisms regulating exine formation have been studied extensively but remain ambiguous. Here we report the analyses of three GDSL esterase/lipase protein genes, OsGELP34, OsGELP110, and OsGELP115, for rice exine formation. OsGELP34 was identified by cloning of a male sterile mutant gene. OsGELP34 encodes an endoplasmic reticulum protein and was mainly expressed in anthers during pollen exine formation. osgelp34 mutant displayed abnormal exine and altered expression of a number of key genes required for pollen development. OsGELP110 was previously identified as a gene differentially expressed in meiotic anthers. OsGELP110 was most homologous to OsGELP115, and the two genes showed similar gene expression patterns. Both OsGELP110 and OsGELP115 proteins were localized in peroxisomes. Individual knockout of OsGELP110 and OsGELP115 did not affect the plant fertility, but double knockout of both genes altered the exine structure and rendered the plant male sterile. OsGELP34 is distant from OsGELP110 and OsGELP115 in sequence, and osgelp34 and osgelp110/osgelp115 mutants were different in anther morphology despite both were male sterile. These results suggested that OsGELP34 and OsGELP110/OsGELP115 catalyze different compounds for pollen exine development.
Collapse
Affiliation(s)
- Huihui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
125
|
Zhu L, Chen Z, Li H, Sun Y, Wang L, Zeng H, He Y. Lipid metabolism is involved in male fertility regulation of the photoperiod- and thermo sensitive genic male sterile rice line Peiai 64S. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110581. [PMID: 32900435 DOI: 10.1016/j.plantsci.2020.110581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 05/28/2023]
Abstract
Peiai 64S (PA64S) is a photoperiod- and thermo sensitive genic male sterile (PTGMS) rice line that has been widely applied in two-line hybrid rice breeding. The male fertility mechanism of PTGMS has always been the research focus. We obtained fertile PA64S (F) and sterile fertile PA64S (S) plants at 21℃ and 28℃, respectively. Here, we analyzed the development of anthers and pollen grains of PA64S (S) and found that the degradation of tapetum and sporopollenin accumulation of pollen exine was abnormal. The content of lipid components in PA64S (F) and PA64S (S) were different by LC-MS, among which sterols, (O-acyl) ω-hydroxy fatty acids, ceramide, and other lipid components were upregulated in PA64S (F). The results of transcriptome showed that many significantly different genes were enriched in the lipid metabolism pathways. Additionally, lipid synthesis and transport genes were downregulated in PA64S (S). In summary, the differences of the PA64S fertility under different temperatures were analyzed through multi-levels comparison. These results suggest that lipid synthesis and transport during PA64S anther development affects the lipid accumulation of pollen exine, and ultimately affected fertility. The differences in lipids content may also be a factor affecting PA64S pollen fertility.
Collapse
Affiliation(s)
- Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Zhen Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Haixia Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Yujun Sun
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Lei Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Hanlai Zeng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| | - Ying He
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.
| |
Collapse
|
126
|
Xiao S, Zang J, Pei Y, Liu J, Liu J, Song W, Shi Z, Su A, Zhao J, Chen H. Activation of Mitochondrial orf355 Gene Expression by a Nuclear-Encoded DREB Transcription Factor Causes Cytoplasmic Male Sterility in Maize. MOLECULAR PLANT 2020; 13:1270-1283. [PMID: 32629120 DOI: 10.1016/j.molp.2020.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 05/25/2023]
Abstract
Coordination between mitochondria and the nucleus is crucial for fertility determination in plants with cytoplasmic male sterility (CMS). Using yeast one-hybrid screening, we identified a transcription factor, ZmDREB1.7, that is highly expressed in sterile microspores at the large vacuole stage and activates the expression of mitochondria-encoded CMS gene orf355. Δpro, a weak allele of ZmDREB1.7 with the loss of a key unfolded protein response (UPR) motif in the promoter, partially restores male fertility of CMS-S maize. ZmDREB1.7 expression increases rapidly in response to antimycin A treatment, but this response is attenuated in the Δpro allele. Furthermore, we found that expression of orf355 in mitochondria activates mitochondrial retrograde signaling, which in turn induces ZmDREB1.7 expression. Taken together, these findings demonstrate that positive-feedback transcriptional regulation between a nuclear regulator and a mitochondrial CMS gene determines male sterility in maize, providing new insights into nucleus-mitochondria communication in plants.
Collapse
Affiliation(s)
- Senlin Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Yuanrong Pei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100864, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zi Shi
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Aiguo Su
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
127
|
Jiao Z, Xu W, Zeng X, Xu X, Zhang M, Xia K. Obtusifoliol 14α-demethylase OsCYP51G1 is involved in phytosterol synthesis and affects pollen and seed development. Biochem Biophys Res Commun 2020; 529:91-96. [PMID: 32560825 DOI: 10.1016/j.bbrc.2020.05.216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
As structural components of biological membranes, phytosterols are essential not only for a variety of cellular functions but are also precursors for brassinosteroid (BR) biosynthesis. Plant CYP51 is the oldest and most conserved obtusifoliol 14α-demethylase in eukaryotes and is an essential component of the sterol biosynthesis pathway. However, little is known about rice (Oryza sativa L.) CYP51G1. In this study, we showed that rice OsCYP51G1 shared high homology with obtusifoliol 14α-demethylase and OsCYP51G1 was strongly expressed in most of rice organs. Subcellular localization analysis indicated that OsCYP51G1 was localized to the endoplasmic reticulum. Knockdown and knockout of OsCYP51G1 resulted in delayed flowering, impaired membrane integrity, abnormal pollen, and reduced grain yield, whereas OsCYP51G1 overexpression led to increased grain yield. Knockdown of OsCYP51G1 also reduced the levels of end-products (sitosterol and stigmasterol) and increased those of upstream intermediates (24-methylene-cycloartenol and cycloeucalenol) of the OsCYP51G1-mediated sterol biosynthesis step. In contrast, overexpression of OsCYP51G1 increased the sitosterol and stigmasterol content and reduced that of cycloeucalenol. However, knockdown of OsCYP51G1 by RNAi did not elicit these BR deficiency-related phenotypes, such as dwarfism, erect leaves and small seeds, nor was the leaf lamina angle sensitive to brassinolide treatment. These results revealed that rice OsCYP15G1 encodes an obtusifoliol 14α-demethylase for the phytosterols biosynthesis and possible without affecting the biosynthesis of downstream BRs, which was different from its homolog, OsCYP51G3.
Collapse
Affiliation(s)
- Zhengli Jiao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Weijuan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Xinlan Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mingyong Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
128
|
Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng XW, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1227-1245. [PMID: 31833176 DOI: 10.1111/jipb.12897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/29/2023]
Abstract
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.
Collapse
Affiliation(s)
- Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
129
|
Wu H, Xie D, Tang Z, Shi D, Yang W. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1778-1795. [PMID: 31950589 PMCID: PMC7336374 DOI: 10.1111/pbi.13340] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 05/12/2023]
Abstract
In rice (Oryza sativa L.), floral organ development is an important trait. Although a role for PINOID in regulating floral organ development was reported recently, the underlying molecular mechanism remains unclear. Here, we isolated and characterized an abnormal floral organ mutant and mapped the causative gene through an improved MutMap method. Molecular study revealed that the observed phenotype is caused by a point mutation in OsPINOID (OsPID) gene; therefore, we named the mutation as ospid-4. Our data demonstrate that OsPID interacts with OsPIN1a and OsPIN1b to regulate polar auxin transport as shown previously. Additionally, OsPID also interacts with OsMADS16 to regulate transcription during floral organ development in rice. Together, we propose a model that OsPID regulates floral organ development by modulating auxin polar transport and interaction with OsMADS16 and/or LAX1 in rice. These results provide a novel insight into the role of OsPID in regulating floral organ development of rice, especially in stigma development, which would be useful for genetic improvement of high-yield breeding of rice.
Collapse
Affiliation(s)
- Hua‐Mao Wu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Jiang Xie
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zuo‐Shun Tang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dong‐Qiao Shi
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Wei‐Cai Yang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- College of Advanced Agricultural SciencesUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
130
|
Wang M, Yan W, Peng X, Chen Z, Xu C, Wu J, Deng XW, Tang X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1246-1263. [PMID: 31965735 DOI: 10.1111/jipb.12912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
Large-scale production of male sterile seeds can be achieved by introducing a fertility-restoration gene linked with a pollen-killer gene into a recessive male sterile mutant. We attempted to construct this system in rice by using a late-stage pollen-specific (LSP) promoter driving the expression of maize α-amylase gene ZM-AA1. To obtain such promoters in rice, we conducted comparative RNA-seq analysis of mature pollen with meiosis anther, and compared this with the transcriptomic data of various tissues in the Rice Expression Database, resulting in 269 candidate LSP genes. Initial test of nine LSP genes showed that only the most active OsLSP3 promoter could drive ZM-AA1 to disrupt pollen. We then analyzed an additional 22 LSP genes and found 12 genes stronger than OsLSP3 in late-stage anthers. The promoters of OsLSP5 and OsLSP6 showing higher expression than OsLSP3 at stages 11 and 12 could drive ZM-AA1 to inactivate pollen, while the promoter of OsLSP4 showing higher expression at stage 12 only could not drive ZM-AA1 to disrupt pollen, suggesting that strong promoter activity at stage 11 was critical for pollen inactivation. The strong pollen-specific promoters identified in this study provided valuable tools for genetic engineering of rice male sterile system for hybrid rice production.
Collapse
Affiliation(s)
- Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
131
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
132
|
Sun Y, Jain A, Xue Y, Wang X, Zhao G, Liu L, Hu Z, Hu S, Shen X, Liu X, Ai H, Xu G, Sun S. OsSQD1 at the crossroads of phosphate and sulfur metabolism affects plant morphology and lipid composition in response to phosphate deprivation. PLANT, CELL & ENVIRONMENT 2020; 43:1669-1690. [PMID: 32266981 DOI: 10.1111/pce.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
In phosphate (Pi)-deprived Arabidopsis (Arabidopsis thaliana), phosphatidylglycerol (PG) is substituted by sulfolipid for maintaining Pi homeostasis. Sulfoquinovosyl diacylglycerol1 (AtSQD1) encodes a protein, which catalyzes uridine diphosphate glucose (UDPG) and sulfite (SO32- ) to UDP-sulfoquinovose, which is a key component in the sulfolipid biosynthetic pathway. In this study, a reverse genetics approach was employed to decipher the function of the AtSQD1 homolog OsSQD1 in rice. Differential expressions of OsSQD1 in different tissue and response to -P and -S also detected, respectively. The in vitro protein assay and analysis suggests that OsSQD1 is a UDP-sulfoquinovose synthase. Transient expression analysis showed that OsSQD1 is located in the chloroplast. The analyses of the knockout (ossqd1) and knockdown (Ri1 and Ri2) mutants demonstrated reductions in Pi and total P concentrations, 32 Pi uptake rate, expression levels of Pi transporters and altered developmental responses of root traits, which were accentuated during Pi deficiency. The inhibitory effects of the OsSQD1 mutation were also evident in the development of reproductive tissue. Furthermore, OsSQD1 differently affects lipid composition under different Pi regime affects sulfur (S) homeostasis. Together, the study revealed that OsSQD1 affects Pi and S homeostasis, and lipid composition in response to Pi deprivation.
Collapse
Affiliation(s)
- Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Yong Xue
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaowen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Gengmao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
133
|
Cao Y, Cai W, Chen X, Chen M, Chu J, Liang W, Persson S, Liu Z, Zhang D. Bright Fluorescent Vacuolar Marker Lines Allow Vacuolar Tracing Across Multiple Tissues and Stress Conditions in Rice. Int J Mol Sci 2020; 21:E4203. [PMID: 32545623 PMCID: PMC7352260 DOI: 10.3390/ijms21124203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
The vacuole is indispensable for cells to maintain their water potential and to respond to environmental changes. Nevertheless, investigations of vacuole morphology and its functions have been limited to Arabidopsis thaliana with few studies in the model crop rice (Oryza sativa). Here, we report the establishment of bright rice vacuole fluorescent reporter systems using OsTIP1;1, a tonoplast water channel protein, fused to either an enhanced green fluorescent protein or an mCherry red fluorescent protein. We used the corresponding transgenic rice lines to trace the vacuole morphology in roots, leaves, anthers, and pollen grains. Notably, we observed dynamic changes in vacuole morphologies in pollen and root epidermis that corresponded to their developmental states as well as vacuole shape alterations in response to abiotic stresses. Our results indicate that the application of our vacuole markers may aid in understanding rice vacuole function and structure across different tissues and environmental conditions in rice.
Collapse
Affiliation(s)
- Yiran Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- Flow Station of Post-doctoral Scientific Research, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Jianjun Chu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- School of Biosciences, University of Melbourne, Parkville Victoria 3010, Melbourne, Australia
| | - Zengyu Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
134
|
Identification and characterization of the stunted sterile (ss) mutant in rice. Genes Genomics 2020; 42:869-882. [PMID: 32506267 DOI: 10.1007/s13258-020-00954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Proper organ development is pivotal for normal rice growth and production. Many genes are involved in this process, and these genes provide a basis for rice breeding. OBJECTIVE To identify a novel mutation causing developmental defects in rice. METHODS The phenotype of a rice mutant, stunted sterile (ss), identified from the japonica rice cultivar Samkwang treated with N-methyl-N-nitrosourea, was characterized, including anatomical and pollen activity analyses. A genetic analysis and fine mapping were performed to identify a candidate locus, followed by a sequence analysis to determine the causal mutation for the phenotype. RESULTS Compared with wild-type plants, the mutant exhibited a 34% reduction in height, 46% reduction in flag leaf width, and complete panicle sterility. Cell proliferation in the leaf and pollen viability were significantly inhibited in the mutant. The mutant phenotypes were controlled by a single recessive gene that was fine-mapped to an 84 kb region between two SNP markers on the short arm of chromosome 5. A candidate gene analysis determined that the mutant carries an 11 bp insertion in the coding region of LOC_Os05g03550, which encodes a protein containing two SANT domains, resulting in a premature termination codon before the conserved domain. CONCLUSIONS We identified a novel rice gene, Stunted sterile, involved in the regulation of various developmental processes. Our findings improve our understanding of the role of chromatin remodeling in organ development and have implications for breeding owing to the broad effects of the gene on plant growth.
Collapse
|
135
|
Luo T, Zou T, Yuan G, He Z, Li W, Tao Y, Liu M, Zhou D, Zhao H, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Liu H, Wang L, Li P, Li S. Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
136
|
Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu YG, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2551-2560. [PMID: 31989154 PMCID: PMC7210758 DOI: 10.1093/jxb/eraa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Although several genes involved in tapetum development have been identified, the molecular basis of tapetum degeneration regulation remains poorly understood. In this study, we identified and characterized the nucleus-encoded, conserved mitochondrial aldehyde dehydrogenase OsALDH2b as a key regulator of tapetum degeneration in rice (Oryza sativa). OsALDH2b was highly expressed in anthers from meiosis to the early microspore stage. Mutation of OsALDH2b resulted in excess malonaldehyde accumulation and earlier programmed cell death in the tapetum, leading to premature tapetum degeneration and abnormal microspore development. These results demonstrate that OsALDH2b negatively regulates tapetal programmed cell death and is required for male reproductive development, providing insights into the regulation of tapetum development in plants.
Collapse
Affiliation(s)
- Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Heying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xingliang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
- Correspondence:
| |
Collapse
|
137
|
Pan X, Yan W, Chang Z, Xu Y, Luo M, Xu C, Chen Z, Wu J, Tang X. OsMYB80 Regulates Anther Development and Pollen Fertility by Targeting Multiple Biological Pathways. PLANT & CELL PHYSIOLOGY 2020; 61:988-1004. [PMID: 32142141 PMCID: PMC7217667 DOI: 10.1093/pcp/pcaa025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/01/2020] [Indexed: 05/13/2023]
Abstract
Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.
Collapse
Affiliation(s)
- Xiaoying Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| |
Collapse
|
138
|
Xu Y, Wang R, Wang Y, Zhang L, Yao S. A point mutation in LTT1 enhances cold tolerance at the booting stage in rice. PLANT, CELL & ENVIRONMENT 2020; 43:992-1007. [PMID: 31922260 PMCID: PMC7154693 DOI: 10.1111/pce.13717] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 05/31/2023]
Abstract
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.
Collapse
Affiliation(s)
- Yufang Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Genome Biology CenterUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruci Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Yueming Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| | - Li Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
- Genome Biology CenterUniversity of Chinese Academy of SciencesBeijingChina
| | - Shanguo Yao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
139
|
Zhang X, Zhao G, Tan Q, Yuan H, Betts N, Zhu L, Zhang D, Liang W. Rice pollen aperture formation is regulated by the interplay between OsINP1 and OsDAF1. NATURE PLANTS 2020; 6:394-403. [PMID: 32284546 DOI: 10.1038/s41477-020-0630-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/28/2020] [Indexed: 05/06/2023]
Abstract
The aperture on the pollen surface provides an exit for the emerging pollen tube. Apertures exhibit huge morphological variation across plant species-grasses, including rice, possess a complex aperture consisting of an annulus and an operculum-but little is known about how this species-specific cell-surface pattern forms. Here, we report a lectin receptor-like kinase in Oryza sativa, OsDAF1, which is essential for annulus formation and thus for fertility. OsDAF1 is evenly distributed in early microsporocytes but localizes to the distal pre-aperture site at the tetrad stage. We further reveal that the rice orthologue of a key aperture factor in Arabidopsis, OsINP1, has conserved and diversified roles in rice aperture formation. Disruption of OsINP1 prevents formation of the aperture, precluding pollen-tube germination. Furthermore, our results demonstrate that OsINP1 is required for polarization of OsDAF1 via direct protein interaction, suggesting that OsINP1 has an additional role in the formation of annulus that is absent in Arabidopsis. Our study reveals the importance of the aperture for rice grain yield and reveals mechanisms controlling pollen aperture development in cereal species.
Collapse
Affiliation(s)
- Xu Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qian Tan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
140
|
A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing. Int J Mol Sci 2020; 21:ijms21062018. [PMID: 32188023 PMCID: PMC7139555 DOI: 10.3390/ijms21062018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.
Collapse
|
141
|
Chen H, Zhang Z, Ni E, Lin J, Peng G, Huang J, Zhu L, Deng L, Yang F, Luo Q, Sun W, Liu Z, Zhuang C, Liu YG, Zhou H. HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). THE NEW PHYTOLOGIST 2020; 225:2077-2093. [PMID: 31663135 DOI: 10.1111/nph.16288] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/18/2019] [Indexed: 05/26/2023]
Abstract
Environment-sensitive genic male sterility (EGMS) lines are used widely in two-line hybrid breeding in rice (Oryza sativa). At present, photoperiod-sensitive genic male sterility (PGMS) lines and thermo-sensitive genic male sterility (TGMS) lines are predominantly used in two-line hybrid rice, with humidity-sensitive genic male sterility (HGMS) lines rarely being reported. Here, it is shown that HUMIDITY-SENSITIVE GENIC MALE STERILITY 1 (HMS1), encoding a β-ketoacyl-CoA synthase, plays key roles in the biosynthesis of very-long-chain fatty acids (VLCFAs) and HGMS in rice. The hms1 mutant displayed decreased seed setting under low humidity, but normal seed setting under high humidity. HMS1 catalyzed the biosynthesis of the C26 and C28 VLCFAs, contributing to the formation of bacula and tryphine in the pollen wall, which protect the pollen from dehydration. Under low-humidity conditions, hms1 pollen showed poor adhesion and reduced germination on the stigmas, which could be rescued by increasing humidity. HMS1-INTERACTING PROTEIN (HMS1I) interacted with HMS1 to coregulate HGMS. Furthermore, both japonica and indica rice varieties with defective HMS1 exhibited HGMS, suggesting that hms1 potentially could be used in hybrid breeding. The results herein reveal the novel mechanism of VLCFA-mediated pollen wall formation, which protects pollen from low-humidity stress in rice, and has a potential use in hybrid crop breeding.
Collapse
Affiliation(s)
- Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiguo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jianwen Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fanfan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Luo
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Wei Sun
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Instrumental Analysis and Research Center, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
142
|
Chaban IA, Kononenko NV, Gulevich AA, Bogoutdinova LR, Khaliluev MR, Baranova EN. Morphological Features of the Anther Development in Tomato Plants with Non-Specific Male Sterility. BIOLOGY 2020; 9:biology9020032. [PMID: 32079211 PMCID: PMC7168212 DOI: 10.3390/biology9020032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/04/2022]
Abstract
The study was devoted to morphological and cytoembryological analysis of disorders in the anther and pollen development of transgenic tomato plants with a normal and abnormal phenotype, which is characterized by the impaired development of generative organs. Various abnormalities in the structural organization of anthers and microspores were revealed. Such abnormalities in microspores lead to the blocking of asymmetric cell division and, accordingly, the male gametophyte formation. Some of the non-degenerated microspores accumulate a large number of storage inclusions, forming sterile mononuclear pseudo-pollen, which is similar in size and appearance to fertile pollen grain (looks like pollen grain). It was discussed that the growth of tapetal cells in abnormal anthers by increasing the size and ploidy level of nuclei contributes to this process. It has been shown that in transgenic plants with a normal phenotype, individual disturbances are also observed in the development of both male and female gametophytes. The reason for the developmental arrest of some ovules was the death of endosperm at different stages of the globular embryo. At the same time, noticeable hypertrophy of endothelial cells performing a secretory function was observed. In the ovules of transgenic plants with abnormalities, the endothelium forms a pseudo-embryo instead of the embryo sac, stimulating the development of parthenocarpic fruits. The data obtained in this study can be useful for a better understanding of the genetic and molecular mechanisms of cytoplasmic male sterility and parthenocarpic fruit development in tomatoes.
Collapse
Affiliation(s)
- Inna A. Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Liliya R. Bogoutdinova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
| | - Marat R. Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
- Moscow Timiryazev Agricultural Academy, Agronomy and Biotechnology Faculty, Russian State Agrarian University, Timiryazevskaya 49, 127550 Moscow, Russia
- Correspondence: (M.R.K.); (E.N.B.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (I.A.C.); (N.V.K.); (A.A.G.); (L.R.B.)
- Correspondence: (M.R.K.); (E.N.B.)
| |
Collapse
|
143
|
Mondol PC, Xu D, Duan L, Shi J, Wang C, Chen X, Chen M, Hu J, Liang W, Zhang D. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. THE NEW PHYTOLOGIST 2020; 225:807-822. [PMID: 31486533 DOI: 10.1111/nph.16161] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/22/2019] [Indexed: 05/22/2023]
Abstract
In flowering plants, pollen wall is a specialized extracellular cell-wall matrix surrounding male gametophytes and acts as a natural protector of pollen grains against various environmental and biological stresses. The formation of pollen wall is a complex but well-regulated process, which involves the action of many different genes. However, the genetic and molecular mechanisms underlying this process remain largely unknown. In this study, we isolated and characterized a novel rice male sterile mutant, defective pollen wall3 (dpw3), which displays smaller and paler anthers with aborted pollen grains. DPW3 encodes a novel membrane-associated alpha integrin-like protein conserved in land plants. DPW3 is ubiquitously expressed in anther developmental stages and its protein is localized to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Anthers of dpw3 plants exhibited unbalanced anther cuticular profile, abnormal Ubisch bodies, disrupted callose deposition, defective pollen wall formation such as abnormal microspore plasma membrane undulation and defective primexine formation, resulting in pollen abortion and complete male sterility. Our findings revealed a novel and vital role of alpha integrin-like proteins in plant male reproduction.
Collapse
Affiliation(s)
- Palash Chandra Mondol
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dawei Xu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Duan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Canhua Wang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianping Hu
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Biology Department, Michigan State University, East Lansing, MI, 48824, USA
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University - University of Adelaide Joint Centre for Agriculture and Health, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
- Systems Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| |
Collapse
|
144
|
Zhang C, Feng X, Hu M, Zhang Z. How to Study the Proteomes and Phosphoproteomes of Anther and Pollen. Methods Mol Biol 2020; 2061:259-265. [PMID: 31583665 DOI: 10.1007/978-1-4939-9818-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proteomics analysis was a powerful technology for characterizing proteins and protein posttranslational modification (PTMs). Recently, many anther and pollen-related proteomic analyses have been reported, which have expanded our understanding of anther and pollen development and regulation. In this chapter, we describe a detailed, optimized protocol for the separation, digestion, tagging, and subsequent mass spectrometry-based identification and quantification of proteins and phosphoproteins from anther and pollen.
Collapse
Affiliation(s)
- Chi Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Xiaobing Feng
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Menghui Hu
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China.
| |
Collapse
|
145
|
Zhao Z, Zhang Z, Ding Z, Meng H, Shen R, Tang H, Liu YG, Chen L. Public-transcriptome-database-assisted selection and validation of reliable reference genes for qRT-PCR in rice. SCIENCE CHINA. LIFE SCIENCES 2020; 63:92-101. [PMID: 31709495 DOI: 10.1007/s11427-019-1553-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023]
Abstract
Accurate quantitative reverse transcription PCR (qRT-PCR) requires reliable reference genes whose expression does not vary in different tissues and developmental stages. However, few reliable reference genes are available for qRT-PCR in rice (Oryza sativa). Here, we established an effective strategy for identifying novel reference genes (NRGs) for reliable normalization of qRT-PCR data in various rice organs and developmental stages. We selected candidate NRGs using the Information Commons for Rice Database and confirmed their expression in Rice Expression Profile Database (RiceXPro) data. Genes with low variation (<2.5 cycle quantification) across tissues and developmental stages, and little fluctuation in expression in heatmaps from RiceXPro data were considered stable NRGs. To validate this strategy, we selected 11 candidate NRGs and calculated their expression stability in different spatio-temporal conditions using five programs, and compared these genes with five established reference genes (ERGs). Only one of the ERGs (UBQ5) was reliable and 10 of the candidate NRGs were more stable than the four remaining ERGs. Therefore, public transcriptomic databases are useful for identifying NRGs. We selected two NRGs, UFC1 (Homolog of UFM1-Conjugating Enzyme 1) and FhaB (Homolog of Adhesin FhaB) for qRT-PCR analysis in rice; their homologs might be suitable for other monocot plants.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhi Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hengjun Meng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huiwu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China.
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, 510642, China.
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
146
|
Chang Z, Xu C, Huang X, Yan W, Qiu S, Yuan S, Ni H, Chen S, Xie G, Chen Z, Wu J, Tang X. The plant-specific ABERRANT GAMETOGENESIS 1 gene is essential for meiosis in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:204-218. [PMID: 31587067 DOI: 10.1093/jxb/erz441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Meiotic recombination plays a central role in maintaining genome stability and increasing genetic diversity. Although meiotic progression and core components are widely conserved across kingdoms, significant differences remain among species. Here we identify a rice gene ABERRANT GAMETOGENESIS 1 (AGG1) that controls both male and female gametogenesis. Cytological and immunostaining analysis showed that in the osagg1 mutant the early recombination processes and synapsis occurred normally, but the chiasma number was dramatically reduced. Moreover, OsAGG1 was found to interact with ZMM proteins OsHEI10, OsZIP4, and OsMSH5. These results suggested that OsAGG1 plays an important role in crossover formation. Phylogenetic analysis showed that OsAGG1 is a plant-specific protein with a highly conserved N-terminal region. Further genetic and protein interaction analyses revealed that the conserved N-terminus was essential for the function of the OsAGG1 protein. Overall, our work demonstrates that OsAGG1 is a novel and critical component in rice meiotic crossover formation, expanding our understanding of meiotic progression. This study identified a plant-specific gene ABERRANT GAMETOGENESIS 1 that is required for meiotic crossover formation in rice. The conserved N-terminus of the AGG1 protein was found to be essential for its function.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haoling Ni
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shujing Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
| |
Collapse
|
147
|
Hanamata S, Sawada J, Ono S, Ogawa K, Fukunaga T, Nonomura K, Kimura S, Kurusu T, Kuchitsu K. Impact of Autophagy on Gene Expression and Tapetal Programmed Cell Death During Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:172. [PMID: 32210988 PMCID: PMC7068715 DOI: 10.3389/fpls.2020.00172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/05/2020] [Indexed: 05/21/2023]
Abstract
Autophagy has recently been shown to be required for tapetal programmed cell death (PCD) and pollen maturation in rice. A transcriptional regulatory network is also known to play a key role in the progression of tapetal PCD. However, the relationship between the gene regulatory network and autophagy in rice anther development is mostly unknown. Here, we comprehensively analyzed the effect of autophagy disruption on gene expression profile during the tapetal PCD in rice anther development using high-throughput RNA sequencing. Expression of thousands of genes, including specific transcription factors and several proteases required for tapetal degradation, fluctuated synchronously at specific stages during tapetal PCD progression in the wild-type anthers, while this fluctuation showed significant delay in the autophagy-deficient mutant Osatg7-1. Moreover, gene ontology enrichment analysis in combination with self-organizing map clustering as well as pathway analysis revealed that the expression patterns of a variety of organelle-related genes as well as genes involved in carbohydrate/lipid metabolism were affected in the Osatg7-1 mutant during pollen maturation. These results suggest that autophagy is required for proper regulation of gene expression and quality control of organelles and timely progression of tapetal PCD during rice pollen development.
Collapse
Affiliation(s)
- Shigeru Hanamata
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Jumpei Sawada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Kazunori Ogawa
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Togo Fukunaga
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Ken–Ichi Nonomura
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Seisuke Kimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Ecological Evolutionary Developmental Biology, Kyoto Sangyo University, Kyoto, Japan
| | - Takamitsu Kurusu
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
- Department of Mechanical and Electrical Engineering, Suwa University of Science, Chino, Japan
- *Correspondence: Takamitsu Kurusu, ; Kazuyuki Kuchitsu,
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Imaging Frontier Center, Tokyo University of Science, Noda, Japan
- *Correspondence: Takamitsu Kurusu, ; Kazuyuki Kuchitsu,
| |
Collapse
|
148
|
González-Schain N, Roig-Villanova I, Kater MM. Early cold stress responses in post-meiotic anthers from tolerant and sensitive rice cultivars. RICE (NEW YORK, N.Y.) 2019; 12:94. [PMID: 31853825 PMCID: PMC6920279 DOI: 10.1186/s12284-019-0350-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice grain production is susceptible to a changing environment that imposes both biotic and abiotic stress conditions. Cold episodes are becoming more frequent in the last years and directly affect rice yield in areas with a temperate climate. Rice is particularly susceptible to cold stress during the reproductive phase, especially in anthers during post-meiotic stages which, in turn, affect pollen production. However, a number of rice cultivars with a certain degree of tolerance to cold have been described, which may represent a good breeding resource for improvement of susceptible commercial varieties. Plants experiencing cold stress activate a molecular response in order to reprogram many metabolic pathways to face these hostile conditions. RESULTS Here we performed RNA-seq analysis using cold-stressed post-meiotic anther samples from a cold-tolerant, Erythroceros Hokkaido (ERY), and a cold-susceptible commercial cultivar Sant'Andrea (S.AND). Both cultivars displayed an early common molecular response to cold, although the changes in expression levels are much more drastic in the tolerant one. Comparing our datasets, obtained after one-night cold stress, with other similar genome-wide studies showed very few common deregulated genes, suggesting that molecular responses in cold-stressed anthers strongly depend on conditions and the duration of the cold treatments. Cold-tolerant ERY exhibits specific molecular responses related to ethylene metabolism, which appears to be activated after cold stress. On the other hand, S.AND cold-treated plants showed a general downregulation of photosystem I and II genes, supporting a role of photosynthesis and chloroplasts in cold responses in anthers, which has remained elusive. CONCLUSIONS Our study revealed that a number of ethylene-related transcription factors, as putative master regulators of cold responses, were upregulated in ERY providing promising candidates to confer tolerance to susceptible cultivars. Our results also suggest that the photosynthesis machinery might be a good target to improve cold tolerance in anthers. In summary, our study provides valuable candidates for further analysis and molecular breeding for cold-tolerant rice cultivars.
Collapse
Affiliation(s)
- Nahuel González-Schain
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Irma Roig-Villanova
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
- Present address: Department of Agri-Food Engineering and Biotechnology, Barcelona School of Agricultural Engineering, UPC, Esteve Terrades 8, Building 4, 08860, Castelldefels, Spain
| | - Martin M Kater
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
149
|
Yu B, Liu L, Wang T. Deficiency of very long chain alkanes biosynthesis causes humidity-sensitive male sterility via affecting pollen adhesion and hydration in rice. PLANT, CELL & ENVIRONMENT 2019; 42:3340-3354. [PMID: 31380565 DOI: 10.1111/pce.13637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Pollen adhesion and hydration are the earliest events of the pollen-stigma interactions, which allow compatible pollen to fertilize egg cells, but the underlying mechanisms are still poorly understood. Rice pollen are wind dispersed, and its pollen coat contains less abundant lipids than that of insect-pollinated plants. Here, we characterized the role of OsGL1-4, a rice member of the Glossy family, in pollen adhesion and hydration. OsGL1-4 is preferentially expressed in pollen and tapetal cells and is required for the synthesis of very long chain alkanes. osgl1-4 mutant generated apparently normal pollen but displayed excessively fast dehydration at anthesis and defective adhesion and hydration under normal condition, but the defective adhesion and hydration were rescued by high humidity. Gas chromatography-mass spectrometry analysis suggested that the humidity-sensitive male sterility of osgl1-4 was probably due to a significant reduction in C25 and C27 alkanes. These results indicate that very long chain alkanes are components of rice pollen coat and control male fertility via affecting pollen adhesion and hydration in response to environmental humidity. Moreover, we proposed that a critical point of water content in mature pollen is required for the initiation of pollen adhesion.
Collapse
Affiliation(s)
- Bo Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
150
|
Sutthinon P, Samuels L, Meesawat U. Pollen development in male sterile mangosteen (Garcinia mangostana L.) and male fertile seashore mangosteen (Garcinia celebica L.). PROTOPLASMA 2019; 256:1545-1556. [PMID: 31201531 DOI: 10.1007/s00709-019-01397-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Mangosteen (Garcinia mangostana L.) is an economically important tropical fruit, yet the reproductive biology of this dioecious plant is complex. Male trees are not known, and female trees have sterile anthers leading to apomixis. We hypothesized that pollen abortion in mangosteen is due to altered tapetum activity during microgametogenesis. Developmental events at the cellular and sub-cellular levels during pollen development in G. mangostana were therefore examined and compared with seashore mangosteen (G. celebica L.), a closely related species with fertile anthers. In G. mangostana, the microspore mother cell had disorganized cytoplasm, including lack of Golgi apparatus and its vesicles, as well as abnormal callose wall accumulation. Globular droplets, which resembled orbicules or Ubisch bodies, were abundant in the locule, including pre-Ubisch bodies found along the tapetal plasma membrane. The tapetum of G. mangostana underwent cell death earlier than the fertile G. celebica, and during the premature death, the mitochondria had dramatically altered shapes. Low accumulation of starch in collapsed microspore mother cells and tetrad cell remnants also suggested that altered cell metabolism is related to pollen abortion in mangosteen. The present results demonstrate the importance of coordinated development between the tapetum and microspores in pollen development and provide new insights into male sterility in mangosteen (G. mangostana).
Collapse
Affiliation(s)
- Pornsawan Sutthinon
- Department of Biology, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Upatham Meesawat
- Department of Biology, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand.
| |
Collapse
|