101
|
Porte J, Jenkins G. Assessment of the effect of potential antifibrotic compounds on total and αVβ6 integrin-mediated TGF-β activation. Pharmacol Res Perspect 2014; 2:e00030. [PMID: 25505594 PMCID: PMC4186436 DOI: 10.1002/prp2.30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor‐β (TGF‐β) plays an important role in the development of tissue fibrosis, and molecules inhibiting this pathway are attractive therapeutic targets for fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). Activation of TGF‐β is the rate‐limiting step in TGF‐β bioavailability, and activation by the αVβ6 integrin is important in fibrosis of the lung, liver, and kidney. Activation of TGF‐β by αVβ6 requires direct cell–cell contact and measurable release of active TGF‐β in extracellular fluid compartments does not reflect tissue specific activation. The aim of this study was to determine the effect of antifibrotic compounds on both total, and specific αVβ6 integrin‐mediated TGF‐β activity. Using a transformed mink lung cell (TMLC) TGF‐β reporter, the effects of potential antifibrotic therapies including an activin‐like kinase (Alk5) inhibitor, Dexamethasone, Pirfenidone, N‐acetylcysteine (NAC), and BIBF1120 were assessed. Effects due to αVβ6 integrin‐mediated TGF‐β activity were measured using reporter cells cocultured with cells expressing αVβ6 integrins. These high‐throughput studies were validated using a phosphorylated Smad2 Enzyme‐Linked Immunosorbent Assay. Alk5 inhibitors are potent inhibitors of TGF‐β activity, whereas the novel antifibrotics, Pirfenidone, BIBF1120, and NAC are only moderate inhibitors, and Dexamethasone does not specifically affect TGF‐βactivity, but inhibits TGF‐β‐induced gene expression. None of the current small molecular inhibitors inhibit αVβ6‐mediated TGF‐β activity. These results demonstrate the potential of this high‐throughput assay of αVβ6‐specific TGF‐β activity and illustrate that currently available antifibrotics have limited effects on αVβ6 integrin‐mediated TGF‐β activity. e00030
Collapse
Affiliation(s)
- Joanne Porte
- Division of Respiratory Medicine, Nottingham University Hospitals Hucknall Road, Nottingham, NG5 1PB
| | - Gisli Jenkins
- Division of Respiratory Medicine, Nottingham University Hospitals Hucknall Road, Nottingham, NG5 1PB
| |
Collapse
|
102
|
Manti S, Marseglia L, D'Angelo G, Filippelli M, Cuppari C, Gitto E, Romano C, Arrigo T, Salpietro C. Portal hypertension as immune mediate disease. HEPATITIS MONTHLY 2014; 14:e18625. [PMID: 24976841 PMCID: PMC4071352 DOI: 10.5812/hepatmon.18625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/13/2014] [Indexed: 12/11/2022]
Abstract
CONTEXT Portal Hypertension (PH) is a progressive complication due to chronic liver disease. In addition to pathophysiologic changes in the micro-circulation, in PH are established fibrous tissue (periportal fibrous septal) and regenerative hyperplastic nodules (from micro- to macro-nodules) promoting hepatic architectural distortion. EVIDENCE ACQUISITION A literature search of electronic databases was undertaken for the major studies published from 1981 to today. The databases searched were: PubMed, EMBASE, Orphanet, Midline and Cochrane Library. We used the keywords: "portal hypertension, children, immune system, endocrine system, liver fibrosis". RESULTS It is believed that PH results from three "phenotype": ischemia-reperfusion, involving nervous system (NS); edema and oxidative damage, involving immune system; inflammation and angiogenesis, involving endocrine system. However, its exact cause still underdiagnosed and unknown. CONCLUSIONS PH is a dynamic and potentially reversible process. Researchers have tried to demonstrate mechanisms underlying PH and its related-complications. This review focuses on the current knowledge regarding the pathogenesis, and immune, endocrine-metabolic factors of disease. The strong positive association between immune system and development of PH could be efficient to identify non-invasive markers of disease, to modify prognosis of PH, and to development and application of specific and individual anti-inflammatory therapy.
Collapse
Affiliation(s)
- Sara Manti
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Lucia Marseglia
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Gabriella D'Angelo
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Martina Filippelli
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Caterina Cuppari
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Eloisa Gitto
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Claudio Romano
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Teresa Arrigo
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Pediatric Sciences, Genetics and Pediatric Immunology Unit, University of Messina, Messina, Italy
| |
Collapse
|
103
|
Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14:181-94. [PMID: 24566915 DOI: 10.1038/nri3623] [Citation(s) in RCA: 990] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibrosis is a highly conserved and co-ordinated protective response to tissue injury. The interaction of multiple pathways, molecules and systems determines whether fibrosis is self-limiting and homeostatic, or whether it is uncontrolled and excessive. Immune cells have been identified as key players in this fibrotic cascade, with the capacity to exert either injury-inducing or repair-promoting effects. A multi-organ approach was recently suggested to identify the core and regulatory pathways in fibrosis, with the aim of integrating the wealth of information emerging from basic fibrosis research. In this Review, we focus on recent advances in liver fibrosis research as a paradigm for wound healing in solid organs and the role of the immune system in regulating and balancing this response.
Collapse
|
104
|
Zhu X, Li J, Hong Y, Kimura RH, Ma X, Liu H, Qin C, Hu X, Hayes TR, Benny P, Gambhir SS, Cheng Z. 99mTc-labeled cystine knot peptide targeting integrin αvβ6 for tumor SPECT imaging. Mol Pharm 2014; 11:1208-17. [PMID: 24524409 PMCID: PMC3993876 DOI: 10.1021/mp400683q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Integrin
αvβ6 is overexpressed
in a variety of cancers, and its expression is often associated with
poor prognosis. Therefore, there is a need to develop affinity reagents
for noninvasive imaging of integrin αvβ6 expression since it may provide early cancer diagnosis, more
accurate prognosis, and better treatment planning. We recently engineered
and validated highly stable cystine knot peptides that selectively
bind integrin αvβ6 with no cross-reactivity
to integrins αvβ5, α5β1, or αvβ3, also
known to be overexpressed in many cancers. Here, we developed a single
photon emission computed tomography (SPECT) probe for imaging integrin
αvβ6 positive tumors. Cystine knot
peptide, S02, was first conjugated with a single amino
acid chelate (SAAC) and labeled with [99mTc(H2O)3(CO)3]+. The resulting probe, 99mTc-SAAC-S02, was then evaluated by in
vitro cell uptake studies using two αvβ6 positive cell lines (human lung adenocarcinoma cell line
HCC4006 and pancreatic cancer cell line BxPC-3) and two αvβ6 negative cell lines (human lung adenocarcinoma
cell line H838 and human embryonic kidney cell line 293T). Next, SPECT/CT
and biodistribution studies were performed in nude mice bearing HCC4006
and H838 tumor xenografts to evaluate the in vivo performance of 99mTc-SAAC-S02. Significant
differences in the uptake of 99mTc-SAAC-S02
were observed in αvβ6 positive vs
negative cells (P < 0.05). Biodistribution and
small animal SPECT/CT studies revealed that 99mTc-SAAC-S02 accumulated to moderate levels in antigen positive tumors
(∼2% ID/g at 1 and 6 h postinjection, n =
3 or 4/group). Moreover, the probe demonstrated tumor-to-background
tissue ratios of 6.81 ± 2.32 (tumor-to-muscle) and 1.63 ±
0.18 (tumor-to-blood) at 6 h postinjection in αvβ6 positive tumor xenografts. Co-incubation of the probe with
excess amount of unlabeled S02 as a blocking agent demonstrated
significantly reduced tumor uptake, which is consistent with specific
binding to the target. Renal filtration was the main route of clearance.
In conclusion, knottin peptides are excellent scaffolds for which
to develop highly stable imaging probes for a variety of oncological
targets. 99mTc-SAAC-S02 demonstrates promise
for use as a SPECT agent to image integrin αvβ6 expression in living systems.
Collapse
Affiliation(s)
- Xiaohua Zhu
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University , Stanford, California 94305-5344, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin αvβ6 and maintained through TGFβ signalling. Oncogene 2014; 34:704-16. [PMID: 24488011 DOI: 10.1038/onc.2013.600] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/20/2013] [Accepted: 12/13/2013] [Indexed: 12/27/2022]
Abstract
Fibroblasts in the tumour stroma (cancer-associated fibroblasts) influence tumour progression and response to therapeutics; little is known about the mechanisms through which the tumour cell co-opts a normal fibroblast. To study the activation of fibroblasts by tumour cells, a panel of non-small cell lung cancer (NSCLC) cell lines and normal human dermal fibroblasts were co-cultured. A subset of the NSCLC cells induced an activated cancer-associated fibroblast-like fibroblast phenotype defined by induction of fibroblast α-smooth muscle actin expression. Tumour cells that activated fibroblasts were associated with E-Cadherin and EpCAM expression and expression of integrin αvβ6. Co-culture of activating tumour cells with fibroblasts resulted in induction of transcripts associated with tumour cell invasion and growth, TGFβ1 and TGFBR1, SERPINE-1, BMP6, SPHK1 and MMP9. Fibroblast activation was inhibited by an αvβ6/8 integrin blocking antibody (264RAD) and a small molecule inhibitor of the TGF-beta type I receptor activin-like kinase (ALK5) (SB431542), demonstrating that transactivation of the TGFβ pathway initiates fibroblast activation. Both integrin and ALK5 antagonists inhibited initiation. Only ALK5 was effective when added after 3 days of co-culture. This suggests that although activation is αvβ6-dependent, once fibroblasts are activated alternative TGFβ pathway regulators maintain an activation loop. In co-culture activating cells had reduced sensitivity to selumetinib, AZD8931 and afatinib compared with mono-culture. In contrast, non-activating cells were insensitive to selumetinib and AZD8931 in both mono-culture and co-culture. In conclusion NSCLC cell lines, positive for E-Cadherin, EpCAM and αvβ6 expression, activate normal fibroblasts through avβ6/TGFβ signalling in vitro, and influence both gene expression and response to therapeutic agents.
Collapse
|
106
|
Abstract
Our molecular understanding of cancer biology has made substantial progress during the last two decades. During recent years it became evident that inflammation is a major driving force in tumor development since chronic virus infection and carcinogenesis are closely correlated. These insights refined our view on the decisive role of persistent virus infection and chronic inflammation in tumor onset, growth, and metastatic progression. Explanations have been delivered how tumor cells interact and correspond with neighbouring epithelia and infiltrating immune cells for shaping the so-called 'tumor-microenvironment' and establishing tumor-specific tolerance. This extended view on malignant diseases should now allow for rational design of interventions targeting inflammation and underlying pathways for prevention and therapy of inflammation-associated cancer. This chapter outlines the role of virus-mediated inflammations in tumorigenesis thereby shedding light on the mechanisms of cancer-related inflammation and on characteristic features of the tumor-microenvironment, which has been recently identified to play a key role in maintenance and progression of tumors. Finally, the chapter discusses latest aspects in prevention of inflammation-related cancer and provides a short outlook on the future prospects of cancer immunotherapy.
Collapse
Affiliation(s)
- Norman Woller
- Clinic for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | | |
Collapse
|
107
|
John AE, Luckett JC, Tatler AL, Awais RO, Desai A, Habgood A, Ludbrook S, Blanchard AD, Perkins AC, Jenkins RG, Marshall JF. Preclinical SPECT/CT Imaging of αvβ6 Integrins for Molecular Stratification of Idiopathic Pulmonary Fibrosis. J Nucl Med 2013; 54:2146-52. [DOI: 10.2967/jnumed.113.120592] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
108
|
Liedtke C, Luedde T, Sauerbruch T, Scholten D, Streetz K, Tacke F, Tolba R, Trautwein C, Trebicka J, Weiskirchen R. Experimental liver fibrosis research: update on animal models, legal issues and translational aspects. FIBROGENESIS & TISSUE REPAIR 2013; 6:19. [PMID: 24274743 PMCID: PMC3850878 DOI: 10.1186/1755-1536-6-19] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is defined as excessive extracellular matrix deposition and is based on complex interactions between matrix-producing hepatic stellate cells and an abundance of liver-resident and infiltrating cells. Investigation of these processes requires in vitro and in vivo experimental work in animals. However, the use of animals in translational research will be increasingly challenged, at least in countries of the European Union, because of the adoption of new animal welfare rules in 2013. These rules will create an urgent need for optimized standard operating procedures regarding animal experimentation and improved international communication in the liver fibrosis community. This review gives an update on current animal models, techniques and underlying pathomechanisms with the aim of fostering a critical discussion of the limitations and potential of up-to-date animal experimentation. We discuss potential complications in experimental liver fibrosis and provide examples of how the findings of studies in which these models are used can be translated to human disease and therapy. In this review, we want to motivate the international community to design more standardized animal models which might help to address the legally requested replacement, refinement and reduction of animals in fibrosis research.
Collapse
Affiliation(s)
- Christian Liedtke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Tilman Sauerbruch
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - David Scholten
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, RWTH University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH University Hospital Aachen, Aachen, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
| | - Ralf Weiskirchen
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH University Hospital Aachen, Aachen D-52074, Germany
| |
Collapse
|
109
|
Iordanskaia T, Hubal MJ, Koeck E, Rossi C, Schwarz K, Nadler EP. Dysregulation of upstream and downstream transforming growth factor-β transcripts in livers of children with biliary atresia and fibrogenic gene signatures. J Pediatr Surg 2013; 48:2047-53. [PMID: 24094956 PMCID: PMC3792400 DOI: 10.1016/j.jpedsurg.2013.03.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Our previous work demonstrated that the transforming-growth factor (TGF) β pathway plays a central role in the liver fibrosis associated with experimental biliary atresia (BA). To confirm these findings in humans, we performed an in silico analysis of publicly available microarray data from liver specimens from children with BA, with the hypothesis that the TGF-β pathway would be dysregulated. METHODS We analyzed publicly available liver gene expression microarray data from 47 infants with BA. We re-analyzed the microarray image files and clinical data to compare gene expression differences between the fibrogenic and inflammatory cohorts identified in the initial study. Targets from the microarray analysis were confirmed using the animal model of BA. RESULTS Analysis of variance (ANOVA) detected 6903 transcripts (2822 distinct genes) differentially regulated between groups (p < 0.01; fold change >1.2). We used a targeted approach to identified a subgroup of 24 TGF-β-related transcripts. Expressions for procollagen transcripts were increased in the fibrogenic group (1.2-fold to 1.4-fold); expression of matrix metalloproteinase (MMP)-7 was similarly increased 2-fold, while MMP-9 and plasminogen activator inhibitor-1 were decreased 2-fold and 3-fold respectively. Integrins β5 (1.18-fold) and β8 (1.84-fold) also demonstrated increased expression in the fibrogenic group. Increased expression of β5 (3-fold) and β8 (5-fold) as well as Smad-3 (4-fold) and Smad interacting protein (SIP)-1 (3.5-fold) mRNA was confirmed in experimental BA. Phosphorylated Smad-3 protein in the experimental group was also nearly twice that of the control group, further implicating the TGF-β pathway. CONCLUSION Gene transcripts for known upstream and downstream TGF-β mediators are differentially expressed in liver specimens from children with BA and a fibrogenic gene signature. The same integrins that were dysregulated in the human specimens were also found to be up-regulated in our animal BA model, as were other intermediaries in the TGF-β pathway. Further investigation into whether these mediators may be attractive targets for future therapy in children with BA is warranted.
Collapse
Affiliation(s)
- Tatiana Iordanskaia
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Monica J. Hubal
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Emily Koeck
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| | - Christopher Rossi
- Department of Pathology, Children’s National Medical Center, Washington DC 20010
| | - Kathleen Schwarz
- Division of Pediatric Gastroenterology and Nutrition, Johns Hopkins School of Medicine, Baltimore, MD 21287
| | - Evan P. Nadler
- Sheihk Zayed Institute for Pediatric Surgical Innovation, Washington DC 20010
| |
Collapse
|
110
|
Henderson NC, Sheppard D. Integrin-mediated regulation of TGFβ in fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:891-6. [PMID: 23046811 PMCID: PMC3573259 DOI: 10.1016/j.bbadis.2012.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 12/26/2022]
Abstract
Fibrosis is a major cause of morbidity and mortality worldwide. Currently, therapeutic options for tissue fibrosis are severely limited, and organ transplantation is the only effective treatment for end-stage fibrotic disease. However, demand for donor organs greatly outstrips supply, and so effective anti-fibrotic treatments are urgently required. In recent years, the integrin family of cell adhesion receptors has gained prominence as key regulators of chronic inflammation and fibrosis. Fibrosis models in multiple organs have demonstrated that integrins have profound effects on the fibrotic process. There is now abundant in vivo data demonstrating critical regulatory roles for integrins expressed on different cell types during tissue fibrogenesis. In this review, we will examine the ways in which integrins regulate these processes and discuss how the manipulation of integrins using function blocking antibodies and small molecule inhibitors may have clinical utility in the treatment of patients with a broad range of fibrotic diseases. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Neil C Henderson
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
111
|
Sakai N, Tager AM. Fibrosis of two: Epithelial cell-fibroblast interactions in pulmonary fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:911-21. [PMID: 23499992 PMCID: PMC4041487 DOI: 10.1016/j.bbadis.2013.03.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the "pas de deux" (steps of two), or perhaps more appropriate to IPF pathogenesis, the "folie à deux" (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their "fibrosis of two", including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Norihiko Sakai
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| | - Andrew M. Tager
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114
| |
Collapse
|
112
|
Chen G, Zhang L, Chen L, Wang H, Zhang Y, Bie P. Role of integrin αvβ6 in the pathogenesis of ischemia-related biliary fibrosis after liver transplantation. Transplantation 2013; 95:1092-1099. [PMID: 23422496 DOI: 10.1097/tp.0b013e3182884866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Biliary fibrosis has been referred to as the "final common pathway" of acute and chronic bile duct injury after orthotopic liver transplantation (OLT). We studied the role of integrin αvβ6 in the pathogenesis of ischemia-related biliary fibrosis after OLT. METHODS The mouse nonarterialized OLT model with prolonged cold ischemia time was used in this study. A total of 54 FVB/N mice were divided into three groups: sham-operated group (sham, n=18), OLT group that was given the blocking antibody to integrin αvβ6 (OLT+antibody, n=18), and OLT group that was given the isotype control immunoglobulin G (OLT+vehicle, n=18). The expression of αvβ6 and major fibrosis-related genes were studied by real-time polymerase chain reaction and immunohistochemistry. Serum and bile were collected and analyzed biochemically. The histopathologic evaluation was performed to determine the severity of biliary fibrosis and bile duct injury. RESULTS Integrin αvβ6 was highly expressed on newly formed bile ducts because of cholangiocyte proliferation and was gradually upregulated with the progression of biliary fibrosis after liver transplantation. αvβ6 transcripts closely correlated with fibrosis stages but not bile duct injury severity. Inhibition of αvβ6 attenuated peribiliary collagen deposition remarkably, induced significant downregulation of fibrogenic genes, and improved hepatic function. CONCLUSIONS Integrin αvβ6 is strongly induced de novo in newly formed bile ducts because of cholangiocyte proliferation during ischemia-related biliary fibrogenesis after liver transplantation. Inhibition of αvβ6 could retard the progression of biliary fibrosis of liver allograft significantly, suggesting that αvβ6 is a potential target for the treatment of ischemic biliary complications.
Collapse
Affiliation(s)
- Geng Chen
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
113
|
Kuramitsu K, Sverdlov DY, Liu SB, Csizmadia E, Burkly L, Schuppan D, Hanto DW, Otterbein LE, Popov Y. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:182-94. [PMID: 23680654 DOI: 10.1016/j.ajpath.2013.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 01/18/2023]
Abstract
Failure of fibrotic liver to regenerate after resection limits therapeutic options and increases demand for liver transplantation, representing a significant clinical problem. The mechanism underlying regenerative failure in fibrosis is poorly understood. Seventy percent partial hepatectomy (PHx) was performed in C57Bl/6 mice with or without carbon tetrachloride (CCl4)-induced liver fibrosis. Liver function and regeneration was monitored at 1 to 14 days thereafter by assessing liver mass, alanine aminotransferase (ALT), mRNA expression, and histology. Progenitor (oval) cell mitogen tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and TWEAK-neutralizing antibody were used to manipulate progenitor cell proliferation in vivo. In fibrotic liver, hepatocytes failed to replicate efficiently after PHx. Fibrotic livers showed late (day 5) peak of serum ALT (3542 ± 355 IU/L compared to 93 ± 65 IU/L in nonfibrotic livers), which coincided with progenitor cell expansion, increase in profibrogenic gene expression and de novo collagen deposition. In fibrotic mice, inhibition of progenitor activation using TWEAK-neutralizing antibody after PHx resulted in strongly down-regulated profibrogenic mRNA, reduced serum ALT levels and improved regeneration. Failure of hepatocyte-mediated regeneration in fibrotic liver triggers activation of the progenitor (oval) cell compartment and a severe fibrogenic response. Inhibition of progenitor cell proliferation using anti-TWEAK antibody prevents fibrogenic response and augments fibrotic liver regeneration. Targeting the fibrogenic progenitor response represents a promising strategy to improve hepatectomy outcomes in patients with liver fibrosis.
Collapse
Affiliation(s)
- Kaori Kuramitsu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Abstract
Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cirrhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enormous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have a sound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study endpoints, optimal study design, and developments in fibrosis imaging and biomarkers.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Molecular and Translational Medicine and Department of Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany.
| | | |
Collapse
|
115
|
Friedman SL, Sheppard D, Duffield JS, Violette S. Therapy for Fibrotic Diseases: Nearing the Starting Line. Sci Transl Med 2013; 5:167sr1. [DOI: 10.1126/scitranslmed.3004700] [Citation(s) in RCA: 480] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
116
|
Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res 2012; 53:2698-2707. [PMID: 23034213 PMCID: PMC3494264 DOI: 10.1194/jlr.m031773] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dong Wook Kang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathleen C. Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Hans Luecke
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lalage M. Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
117
|
A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene 2012; 32:4406-16. [PMID: 23108397 DOI: 10.1038/onc.2012.460] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/06/2012] [Accepted: 08/16/2012] [Indexed: 12/16/2022]
Abstract
αvβ6 integrin expression is upregulated on a wide range of epithelial tumours, and is thought to play a role in modulating tumour growth. Here we describe a human therapeutic antibody 264RAD, which binds and inhibits αvβ6 integrin function. 264RAD cross-reacts with human, mouse and cynomolgus monkey αvβ6, and inhibits binding to all ligands including the latency-associated peptide of TGF-β. Screening across a range of integrins revealed that 264RAD also binds and inhibits the related integrin αvβ8, but not the integrins α5β1, αvβ3, αvβ5 and α4β1. In vitro 264RAD inhibited invasion of VB6 and Detroit 562 cells in a Matrigel invasion assay and αvβ6 mediated production of matrix metalloproteinase-9 in Calu-3 cells. It inhibited TGF-β-mediated activation of dermal skin fibroblasts by preventing local activation of TGF-β by NCI-H358 tumour cells in a tumour cell-fibroblast co-culture assay. In vivo 264RAD showed dose-dependent inhibition of Detroit 562 tumour growth, regressing established tumours when dosed at 20 mg/kg once weekly. The reduction in growth associated with 264RAD was related to a dose-dependent inhibition of Ki67 and phospho-ERK and a reduction of αvβ6 expression in the tumour cells, coupled to a reduction in fibronectin and alpha smooth muscle actin expression in stromal fibroblasts. 264RAD also reduced the growth and metastasis of orthotopic 4T1 tumours. At 20 mg/kg growth of both the primary tumour and the number of metastatic deposits in lung were reduced. The data support the conclusion that 264RAD is a potent inhibitor of αvβ6 integrin, with some activity against αvβ8 integrin, that reduces both tumour growth and metastasis.
Collapse
|
118
|
Martin CR, Zaman MM, Ketwaroo GA, Bhutta AQ, Coronel E, Popov Y, Schuppan D, Freedman SD. CFTR dysfunction predisposes to fibrotic liver disease in a murine model. Am J Physiol Gastrointest Liver Physiol 2012; 303:G474-81. [PMID: 22679000 PMCID: PMC3423138 DOI: 10.1152/ajpgi.00055.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cystic fibrosis liver disease (CFLD) is a rapidly progressive biliary fibrosis, resembling primary sclerosing cholangitis that develops in 5-10% of patients with cystic fibrosis. Further research and evaluation of therapies are hampered by the lack of a mouse model for CFLD. Although primary sclerosing cholangitis is linked to both ulcerative colitis and loss of cystic fibrosis transmembrane conductance regulator (CFTR) ion channel function, induction of colitis with dextran sodium sulfate (DSS) in cftr(-/-) mice causes bile duct injury but no fibrosis. Since profibrogenic modifier genes are linked to CFLD, we examined whether subthreshhold doses of the profibrogenic xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), along with DSS-induced colitis, lead to bile duct injury and liver fibrosis in mice that harbor loss of CFTR function. Exon 10 heterozygous (cftr(+/-)) and homozygous (cftr(-/-)) mice treated with DDC demonstrated extensive mononuclear cell inflammation, bile duct proliferation, and periductular fibrosis. In contrast, wild-type (cftr(+/+)) littermates did not develop bile duct injury or fibrosis. Histological changes corresponded to increased levels of alkaline phosphatase, hydroxyproline, and expression of profibrogenic transcripts for transforming growth factor-β(1), transforming growth factor-β(2), procollagen α(1)(I), and tissue inhibitor of matrix metaloproteinase-1. Immunohistochemistry demonstrated fibrosis and activation of periductal fibrogenic cells based on positive staining for lysyl oxidase-like-2, α-smooth muscle actin, and collagen I. These data demonstrate that subthreshold doses of DDC, in conjunction with DSS-induced colitis, results in bile duct injury and periductal fibrosis in mice with partial or complete loss of CFTR function and may represent a useful model to study the pathogenic mechanisms by which CFTR dysfunction predisposes to fibrotic liver disease and potential therapies.
Collapse
Affiliation(s)
- Camilia R. Martin
- 1Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; ,3Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Munir M. Zaman
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Gyanprakash A. Ketwaroo
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Abdul Q. Bhutta
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Emmanuel Coronel
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Yury Popov
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Detlef Schuppan
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - Steven D. Freedman
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and ,3Division of Translational Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
119
|
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release 2012; 161:188-97. [PMID: 22370583 DOI: 10.1016/j.jconrel.2012.02.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 02/07/2023]
|
120
|
Park SM. The crucial role of cholangiocytes in cholangiopathies. Gut Liver 2012; 6:295-304. [PMID: 22844556 PMCID: PMC3404165 DOI: 10.5009/gnl.2012.6.3.295] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/11/2011] [Accepted: 09/10/2011] [Indexed: 12/13/2022] Open
Abstract
Cholangiopathies are diseases involving the intrahepatic biliary tree. They appear to involve, chronic inflammation of the bile ducts, which can lead to the development of bile duct cholestasis, proliferation/ductopenia, biliary fibrosis, and malignant transformation. Sustained stimulatory insults to biliary epithelial cells can induce a ductular reaction, which has a key role in the initiation and progression of cholangiopathies. The epithelial-mesenchymal interaction between reactive cholangiocytes and mesenchymal cells with the inflammatory infiltrates plays a major role in this pathogenesis. Cytokines, chemokines, growth factors and morphogens mediate these interactions in an autocrine or paracrine manner. The main hepatic myofibroblasts (MFs) in cholangiopathies originate from portal fibroblasts. Hepatic stellate cells and fibrocytes also transform into MFs. Whether cholangiocytes or hepatocytes are a source of MFs via the epithelial-mesenchymal transition (EMT) remains a matter of controversy. Although there have been numerous indirect findings supporting the theory of a cholangiocyte EMT in human tissues, recent studies using lineage tracing methods have demonstrated strong evidence against the EMT. Understanding the pathogenic mechanisms involved in cholangiopathies can allow for better-targeted anti-fibrotic therapies in animal models. Before anti-fibrotic therapies can translate into clinical trials, improved monitoring of the fibrotic progression of cholangiopathies and an accurate assessment regarding the effectiveness of the proposed treatments must be achieved.
Collapse
Affiliation(s)
- Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Korea
| |
Collapse
|
121
|
Kim YO, Schuppan D. When GLP-1 hits the liver: a novel approach for insulin resistance and NASH. Am J Physiol Gastrointest Liver Physiol 2012; 302:G759-61. [PMID: 22383493 DOI: 10.1152/ajpgi.00078.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yong Ook Kim
- Molecular and Translational Medicine, Dept. of Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Detlef Schuppan
- Molecular and Translational Medicine, Dept. of Medicine I, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
122
|
Kassel KM, Sullivan BP, Luyendyk JP. Lipopolysaccharide enhances transforming growth factor β1-induced platelet-derived growth factor-B expression in bile duct epithelial cells. J Gastroenterol Hepatol 2012; 27:714-21. [PMID: 22004089 PMCID: PMC3262076 DOI: 10.1111/j.1440-1746.2011.06941.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIM Platelet-derived growth factor (PDGF)-B is a potent profibrogenic mediator expressed by bile duct epithelial cells (BDECs) that contributes to liver fibrosis after bile duct ligation. However, the mechanism of PDGF-B induction in BDECs during cholestasis is not known. Transforming growth factor β (TGFβ) and lipopolysaccharide (LPS) also contribute to the profibrogenic response after bile duct ligation. We tested the hypothesis that LPS and TGFβ1 synergistically induce PDGF-B expression in BDECs. METHODS Transformed human BDECs (MMNK-1 cells) and primary rat BDECs were stimulated with LPS and/or TGFβ1, and signaling pathways through which LPS potentiates TGFβ1-induced PDGF-B mRNA expression were investigated. RESULTS Stimulation of MMNK-1 cells with LPS alone did not significantly induce PDGF-B mRNA expression. However, LPS co-treatment enhanced TGFβ1 induction of PDGF-B mRNA in MMNK-1 cells and also in primary rat BDECs. Importantly, co-treatment of MMNK-1 cells with LPS and TGFβ1 also significantly increased PDGF-BB protein expression. Interestingly, LPS did not affect TGFβ1 activation of a SMAD-dependent reporter construct. Rather, stimulation of MMNK-1 cells with LPS, but not TGFβ1, increased JNK1/2 phosphorylation. Expression of dominant negative JNK2, but not dominant negative JNK1, inhibited the LPS potentiation of TGFβ1-induced PDGF-B mRNA expression in MMNK-1 cells. In addition, LPS treatment caused IκBα degradation and activation of a nuclear factor κB (NFκB)-dependent reporter construct. Expression of an IκBα super repressor inhibited activation of NFκB and attenuated LPS potentiation of TGFβ1-induced PDGF-B mRNA. CONCLUSIONS The results indicate that LPS activation of NFκB and JNK2 enhances TGFβ1-induced PDGF-B expression in BDECs.
Collapse
Affiliation(s)
- Karen M Kassel
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
123
|
Silva GF, Grotto RMT, Verdichio-Moraes CF, Corvino SM, Ferrasi AC, Silveira LVDA, Pardini MIDMC. Human platelet antigen genotype is associated with progression of fibrosis in chronic hepatitis C. J Med Virol 2012; 84:56-60. [PMID: 22095535 DOI: 10.1002/jmv.22191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Although progression of fibrosis in the chronic hepatitis C depends on environmental, viral, and host factors, genetic polymorphisms have been associated recently with this progression, including the expression of integrins, adhesion proteins. Some integrins expressed on the platelet membrane show polymorphic antigenic determinants called human platelet antigens (HPA), where the major ones are HPA-1, -3, -5. The association between HCV infection and HPA-5b has been demonstrated. Similarly, the HPA profile could determine if HPA is related to progression of fibrosis. The goal of this study was to evaluate the association between the frequencies of HPA-1, -3, and -5 and degree of fibrosis in HCV-infected patients. Genomic DNA from 143 HCV-infected patients was used as the source for HPA genotyping by PCR-SSP or PCR-RFLP. Progression of fibrosis was evaluated using the METAVIR scoring system, and the patients were grouped according to degree of fibrosis into G1 (n = 81, with F1, portal fibrosis without septa or F2, few septa) and G2 (n = 62, with F3, numerous septa, or F4, cirrhosis). Statistical analysis was performed using the proportional odds model. The genotypic frequency of HPA-1a/1b was significantly higher in the patients in G2. To evaluate the influence of the time of infection to the development of fibrosis and its effect on the genetic factor HPA-1, 96 patients from 143 studied were evaluated considering the time of HCV infection, and these results suggest that the HPA-1a/1b genotype promotes the development of fibrosis in HCV infection with time.
Collapse
Affiliation(s)
- Giovanni Faria Silva
- Gastroenterology Division, Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Botucatu-SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
124
|
Sullivan BP, Cui W, Copple BL, Luyendyk JP. Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxicol Sci 2012; 126:267-74. [PMID: 22094456 PMCID: PMC3289494 DOI: 10.1093/toxsci/kfr311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 01/24/2023] Open
Abstract
Hepatic expression of the transcription factor early growth response-1 (Egr-1) is increased in livers of patients with cholestatic liver disease. Bile acid induction of inflammatory genes in hepatocytes is Egr-1 dependent, and Egr-1 expression is increased in livers of mice after bile duct ligation. Of importance, Egr-1 deficiency reduces liver inflammation and injury in that model. However, it is not known whether Egr-1 promotes inflammation in other models of cholestasis. We tested the hypothesis that Egr-1 contributes to liver inflammation in mice exposed chronically to the bile duct epithelial cell (BDEC) toxicant alpha-naphthylisothiocyanate (ANIT). Egr-1-knockout (Egr-1(-/-)) mice and wild-type mice were fed a diet containing 0.025% ANIT for 2 weeks. Expression of Egr-1 mRNA and protein was significantly increased in livers of mice fed ANIT diet. Egr-1 deficiency did not significantly affect ANIT diet-induced hepatocellular injury, inflammatory gene induction, BDEC hyperplasia, or hepatic neutrophil accumulation. In contrast, the deposition of Type 1 collagen was significantly increased in livers of Egr-1(-/-) mice fed ANIT diet compared with wild-type mice fed ANIT diet. Interestingly, this increase in liver fibrosis occurred in association with elevated expression of the β6 integrin (Itgb6) gene, suggesting the potential for increased local activation of transforming growth factor beta. Taken together, the results indicate that Egr-1 does not contribute to liver injury or inflammation in mice fed a diet containing ANIT. Rather, these studies indicate that Egr-1 deficiency worsens liver fibrosis in conjunction with enhanced expression of the profibrogenic Itgb6 gene.
Collapse
Affiliation(s)
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | | | | |
Collapse
|
125
|
Hayashi H, Sakai T. Biological Significance of Local TGF-β Activation in Liver Diseases. Front Physiol 2012; 3:12. [PMID: 22363291 PMCID: PMC3277268 DOI: 10.3389/fphys.2012.00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 12/20/2022] Open
Abstract
The cytokine transforming growth factor-β (TGF-β) plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM) synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent) form associated in a non-covalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master profibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of tissue inhibitor of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.
Collapse
Affiliation(s)
- Hiromitsu Hayashi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA
| | - Takao Sakai
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland ClinicCleveland, OH, USA
- Orthopaedic and Rheumatologic Research Center, Cleveland ClinicCleveland, OH, USA
- Department of Anatomical Pathology, Pathology and Laboratory Medicine Institute, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
126
|
Blanco-Mezquita JT, Hutcheon AEK, Stepp MA, Zieske JD. αVβ6 integrin promotes corneal wound healing. Invest Ophthalmol Vis Sci 2011; 52:8505-13. [PMID: 21960555 DOI: 10.1167/iovs.11-8194] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To appreciate the role of the integrin αvβ6 in corneal wound repair, corneal debridement and keratectomy in β6 knockout (β6(-/-)) mice were examined. METHODS Either a 2-mm debridement or keratectomy was made in 129SVE wild type mice (WT) and β6(-/-) mice and allowed to heal for up to 4 months. The pattern of corneal restoration was studied "in vivo" by slit lamp and in tissue sections by means of both light and electron microscopy. In addition, αvβ6, α6β4, laminin, and fibronectin were evaluated by indirect immunofluorescence microscopy and/or Western blot analysis. RESULTS αvβ6 expression was upregulated in migrating corneal epithelium after a keratectomy. Healing rates were unaffected in debridement wounds, but were significantly slowed in keratectomy wounds. Most dramatically, mice lacking αvβ6 had a severe defect in basement membrane zone (BMZ) regeneration. Levels of laminin were greatly reduced and no BMZ reformation was observed in transmission electron microscopy (TEM). In addition, hemidesmosome reformation was also impaired in the β6(-/-) mice. Analysis of the hemidesmosome component α6β4 indicated that normal amounts of this integrin were synthesized, suggesting that the defect was in reassembly of the hemidesmosomes. Finally, fibronectin persisted in the BMZ for as long as 4 months after keratectomy in the β6(-/-) mice. CONCLUSIONS It is hypothesized that the lack of αvβ6 leads to reduced laminin production during wound repair. This lack of laminin prevents reassembly of the BMZ and mature hemidesmosomes after keratectomy in β6(-/-) mice.
Collapse
|
127
|
Abstract
Integrins and other cell adhesion molecules regulate numerous physiological and pathological mechanisms by mediating the interaction between cells and their extracellular environment. Although the significance of integrins in the evolution and progression of certain cancers is well recognized, their involvement in nonmalignant processes, such as organ fibrosis or inflammation, is only beginning to emerge. However, accumulating evidence points to an instrumental role of integrin-mediated signaling in a variety of chronic and acute noncancerous diseases, particularly of the liver.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Switzerland.
| | | |
Collapse
|
128
|
Patsenker E, Schneider V, Ledermann M, Saegesser H, Dorn C, Hellerbrand C, Stickel F. Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. J Hepatol 2011; 55:388-98. [PMID: 21168455 DOI: 10.1016/j.jhep.2010.10.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/06/2010] [Accepted: 10/25/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Recurrence of chronic hepatitis C and progressive fibrosis in liver transplants is frequent and impairs both graft and patient survival. Whether or not the choice of immunosuppression affects progression of fibrosis remains unclear. The aim of the present study was to compare the potential of the commonly used immunosuppressants to halt experimental liver fibrosis progression. METHODS To induce liver fibrosis, rats underwent bile duct ligation and treatment with sirolimus (2mg/kg), everolimus (3mg/kg), tacrolimus (1mg/kg), and cyclosporin A (10mg/kg) daily for 5 weeks. Fibrosis, inflammation, and portal pressure were evaluated by histology, hydroxyproline levels, morphometry, hemodynamics, and hepatic gene expression. RESULTS Sirolimus and everolimus decreased fibrosis up to 70%, improved portal pressure, reduced ascites, and showed potent down-regulation of pro-fibrogenic genes, paralleled by a strong increase in matrix degradation (collagenase) activity; in contrast, tacrolimus and cyclosporine A had no or even aggravating effects on liver fibrosis in rats. CONCLUSIONS mTOR inhibition by sirolimus and everolimus in experimental liver fibrosis associates with significantly less fibrosis progression and portal hypertension than treatment with calcineurin inhibitors tacrolimus and cyclosporine A. These data suggest that the selection of the immunosuppressant could impact the recurrence of fibrosis in liver allografts.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
129
|
Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, Lee J, Dieterich W, Melino G, Schuppan D. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology 2011; 140:1642-52. [PMID: 21277850 PMCID: PMC3374132 DOI: 10.1053/j.gastro.2011.01.040] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 12/05/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The ubiquitous cross-linking enzyme tissue transglutaminase (TG2) has been implicated in irreversible collagen stabilization in liver fibrosis, although functional evidence is lacking. We studied the contribution of TG2 to hepatic fibrotic matrix stability, as well as liver fibrosis progression and regression in TG2-deficient mice. METHODS Advanced liver fibrosis was induced by carbon tetrachloride or thioacetamide in TG2(-/-) mice and their wild-type littermates to study fibrosis progression and its spontaneous regression for up to 36 weeks. Pattern and extent of fibrosis were analyzed by histology and hepatic hydroxyproline quantification. Dynamic changes in hepatic matrix cross-linking were assessed by stepwise collagen extraction. Expression of 7 TGs and fibrosis-related genes was determined by quantitative reverse-transcription polymerase chain reaction. RESULTS Transglutaminase activity was increased in fibrosis, and the level of TG2 messenger RNA correlated with the expression of fibrosis-related genes. Biochemical analysis revealed progressive collagen stabilization, with an up to 6-fold increase in the highly cross-linked, pepsin-insoluble fraction (26%). In TG2(-/-) mice, hepatic TG activity was significantly decreased, but chronic administration of carbon tetrachloride or thioacetamide led to a comparable extent and pattern of liver fibrosis, as in wild-type mice. In TG2(-/-) mice, the composition of hepatic collagen fractions and levels of fibrosis-related transcripts were unchanged, and fibrosis reversal was not facilitated. CONCLUSIONS TG2 and TG activity are up-regulated during hepatic fibrosis progression, but do not contribute to fibrogenesis or stabilization of the collagen matrix. TG2 deletion does not promote regression of liver fibrosis. TG2-independent collagen cross-linking is a remarkable feature of progressing hepatic fibrosis and represents an important therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | - Deanna Y. Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Anisha K. Sharma
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - K. Ramakrishnan Bhaskar
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Shaoyong Li
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tobias L. Freitag
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - James Lee
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
,Address correspondence to Division of Gastroenterology and Hepatology Beth Israel Deaconess Medical Center, Harvard Medical School Dana 501, 330 Brookline Ave Boston, MA 02215 phone: 617-6678377, 617-9755041 fax: 617-6672767 or to: Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School Dana 501, 330 Brookline Ave Boston, MA 02215 phone: 617-6671269; fax: 617-6672767
| |
Collapse
|
130
|
Abstract
Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.
Collapse
|
131
|
Inamine T, Nakamura M, Kawauchi A, Shirakawa Y, Hashiguchi H, Aiba Y, Taketomi A, Shirabe K, Nakamuta M, Hayashi S, Saoshiro T, Komori A, Yatsuhashi H, Kondo S, Omagari K, Maehara Y, Ishibashi H, Tsukamoto K. A polymorphism in the integrin αV subunit gene affects the progression of primary biliary cirrhosis in Japanese patients. J Gastroenterol 2011; 46:676-86. [PMID: 21116829 DOI: 10.1007/s00535-010-0351-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 11/02/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Accumulating evidence indicates that multiple genetic factors are involved in the pathogenesis of primary biliary cirrhosis (PBC). The aim of this study was to investigate whether polymorphisms of the integrin αV subunit gene (ITGAV), a component of integrin αVβ6, which plays an important role in the process of fibrosis, are associated with susceptibility to the onset and/or progression of PBC. METHODS In the primary study, eight tag single nucleotide polymorphisms (SNPs) in ITGAV were analyzed by polymerase chain reaction (PCR)-restriction fragment length polymorphism, direct DNA sequencing, or high-resolution melting curve analysis in 309 Japanese patients with PBC who were registered in the National Hospital Organization Study Group for Liver Disease in Japan (PBC cohort I) and 293 gender-matched healthy Japanese volunteers (control subjects). For the replication study, 35 PBC patients who progressed to end-stage hepatic failure and underwent liver transplantation (PBC cohort II) were also analyzed. RESULTS Three tag SNPs (rs3911238, rs10174098, and rs1448427) in ITGAV were significantly associated with the severe progression of PBC, but not with susceptibility to the onset of PBC, in the primary study (PBC cohort I). Among these SNPs, rs1448427 was also significantly associated with the severe progression to end-stage hepatic failure in the replication study of PBC patients who underwent liver transplantation (PBC cohort II). CONCLUSIONS ITGAV is a genetic determinant for the severe progression of PBC in Japanese patients. Genetic polymorphisms of ITGAV may be useful for identifying high-risk Japanese PBC patients, including those who will require liver transplantation, at the time of initial diagnosis.
Collapse
Affiliation(s)
- Tatsuo Inamine
- Department of Pharmacotherapeutics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Sullivan BP, Kassel KM, Manley S, Baker AK, Luyendyk JP. Regulation of transforming growth factor-β1-dependent integrin β6 expression by p38 mitogen-activated protein kinase in bile duct epithelial cells. J Pharmacol Exp Ther 2011; 337:471-8. [PMID: 21303922 PMCID: PMC3083106 DOI: 10.1124/jpet.110.177337] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/07/2011] [Indexed: 12/19/2022] Open
Abstract
Bile duct epithelial cells (BDECs) contribute to liver fibrosis by expressing αVβ6 integrin, a critical activator of latent transforming growth factor β (TGF-β). β6 integrin (Itgβ6) mRNA induction and αVβ6 integrin expression in BDECs are partially TGF-β-dependent. However, the signaling pathways required for TGF-β-dependent Itgβ6 mRNA induction in BDECs are not known. We tested the hypothesis that the p38 mitogen-activated protein kinase (MAPK) signaling pathway contributes to TGF-β1 induction of Itgβ6 mRNA by activating SMAD and activator protein 1 (AP-1) transcription factors. Pretreatment of transformed human BDECs (MMNK-1 cells) with two different p38 MAPK inhibitors, but not a control compound, inhibited TGF-β1 induction of Itgβ6 mRNA. Inhibition of p38 also reduced TGF-β1 activation of a SMAD-dependent reporter construct. Expression of a dominant-negative SMAD3 (SMAD3ΔC) significantly reduced TGF-β1-induced Itgβ6 mRNA expression. Expression of JunB mRNA, but not other AP-1 proteins, increased in TGF-β1-treated MMNK-1 cells, and induction of JunB expression was p38-dependent. Consistent with a requirement for de novo induction of JunB protein, cycloheximide pretreatment inhibited TGF-β1 induction of Itgβ6 mRNA. Expression of a dominant-negative AP-1 mutant (TAM67) also inhibited TGF-β1 induction of Itgβ6 mRNA. Overall, the results suggest that p38 contributes to TGF-β1-induced Itgβ6 mRNA expression in MMNK-1 cells by regulating activation of both SMAD and AP-1 transcription factors.
Collapse
Affiliation(s)
- Bradley P Sullivan
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS-1018, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
133
|
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:425-56. [PMID: 21073339 DOI: 10.1146/annurev-pathol-011110-130246] [Citation(s) in RCA: 1331] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic viral hepatitis and, more recently, from fatty liver disease associated with obesity. Hepatic stellate cell activation represents a critical event in fibrosis because these cells become the primary source of extracellular matrix in liver upon injury. Use of cell-culture and animal models has expanded our understanding of the mechanisms underlying stellate cell activation and has shed new light on genetic regulation, the contribution of immune signaling, and the potential reversibility of the disease. As pathways of fibrogenesis are increasingly clarified, the key challenge will be translating new advances into the development of antifibrotic therapies for patients with chronic liver disease.
Collapse
|
134
|
Abstract
In most cholangiopathies, liver diseases of different etiologies in which the biliary epithelium is the primary target in the pathogenic sequence, the central mechanism involves inflammation. Inflammation, characterized by pleomorphic peribiliary infiltrate containing fibroblasts, macrophages, lymphocytes, as well as endothelial cells and pericytes, is associated to the emergence of "reactive cholangiocytes." These biliary cells do not possess bile secretory functions, are in contiguity with terminal cholangioles, and are of a less-differentiated phenotype. They have acquired several mesenchymal properties, including motility and ability to secrete a vast number of proinflammatory chemo/cytokines and growth factors along with de novo expression of a rich receptor machinery. These functional properties enable reactive cholangiocytes to establish intimate contacts and to mutually exchange a variety of paracrine signals with the different mesenchymal cell types populating the portal infiltrate. The extensive crosstalk between the epithelial and mesenchymal compartments is the driver of liver repair mechanisms in cholangiopathies, ultimately evolving toward portal fibrosis. Herein, the authors first review the properties of the different cell types involved in their interaction, and then analyze the underlying molecular mechanisms as they relate to liver repair in cholangiopathies.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Surgical and Gastroenterological Sciences, University of Padua, Padova, Italy,Center for Liver Research (CeLiveR), Bergamo, Italy
| | - Mario Strazzabosco
- Center for Liver Research (CeLiveR), Bergamo, Italy,Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut,Department of Clinical Medicine, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
135
|
|
136
|
Abstract
Continued elucidation of the mechanisms of hepatic fibrosis has yielded a comprehensive and nuanced portrait of fibrosis progression and regression. The paradigm of hepatic stellate cell (HSC) activation remains the foundation for defining events in hepatic fibrosis and has been complemented by progress in a number of new areas. Cellular sources of extracellular matrix beyond HSCs have been identified. In addition, the role of chemokine, adipokine, neuroendocrine, angiogenic and NAPDH oxidase signaling in the pathogenesis of hepatic fibrosis has been uncovered, as has the contribution of extracellular matrix stiffness to fibrogenesis. There is also increased awareness of the contribution of innate immunity and greater understanding of the complexity of gene regulation in HSCs and myofibroblasts. Finally, both apoptosis and senescence have been recognized as orchestrated programs that eliminate fibrogenic cells during resolution of liver fibrosis. Ironically, the progress that has been made has highlighted the growing disparity between advances in the experimental setting and their translation into new diagnostic tools and treatments. As a result, focus is shifting towards overcoming key translational challenges in order to accelerate the development of new therapies for patients with chronic liver disease.
Collapse
|
137
|
Schuppan D, Gorrell MD, Klein T, Mark M, Afdhal NH. The challenge of developing novel pharmacological therapies for non-alcoholic steatohepatitis. Liver Int 2010; 30:795-808. [PMID: 20624207 DOI: 10.1111/j.1478-3231.2010.02264.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an umbrella term for a series of hepatic pathologies that begin with relatively benign steatosis and can, with appropriate triggers, lead to the serious entity of non-alcoholic steatohepatitis (NASH). This sets the stage for liver fibrosis and finally the development of cirrhosis in up to 20% of patients with NASH. NAFLD, already among the most common diseases in industrialized countries, is increasing in prevalence and roughly affects 30% of US adults and 10% of US children alone. NAFLD is strongly associated with insulin resistance (IR) and represents the hepatic manifestation of the metabolic syndrome. Indeed, treatments aimed at reducing IR are the current mainstay of therapeutic approaches to NAFLD. While lifestyle interventions may produce limited degrees of success, there remains an urgent need for improved pharmacological therapies. Emerging diagnostic and therapeutic opportunities as well as future developments in NAFLD, NASH and liver fibrosis were discussed by a panel of experts and are presented herein. Promising novel therapeutic targets include inhibitors of dipeptidyl peptidase 4 and the renin-angiotensin system. However, improved non-invasive technologies to diagnose and stage NAFLD are needed. Combined with a better understanding of the pathophysiological processes that underlie the mechanisms of hepatic fibrogenesis in NASH, rapid clinical validation of novel therapies is expected.
Collapse
Affiliation(s)
- Detlef Schuppan
- Beth Israel Deaconess Medical Center, Division of Gastroenterology, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | |
Collapse
|
138
|
de Meijer VE, Sverdlov DY, Popov Y, Le HD, Meisel JA, Nosé V, Schuppan D, Puder M. Broad-spectrum matrix metalloproteinase inhibition curbs inflammation and liver injury but aggravates experimental liver fibrosis in mice. PLoS One 2010; 5:e11256. [PMID: 20593020 PMCID: PMC2892485 DOI: 10.1371/journal.pone.0011256] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 06/02/2010] [Indexed: 01/06/2023] Open
Abstract
Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury. Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4 was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway. Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4 administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases.
Collapse
Affiliation(s)
- Vincent E. de Meijer
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Surgery, Erasmus Medical Center (MC), University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Deanna Y. Sverdlov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hau D. Le
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan A. Meisel
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vânia Nosé
- Department of Anatomic Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Detlef Schuppan
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark Puder
- Department of Surgery and Vascular Biology Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
139
|
Popov Y, Sverdlov DY, Bhaskar KR, Sharma AK, Millonig G, Patsenker E, Krahenbuhl S, Krahenbuhl L, Schuppan D. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G323-34. [PMID: 20056896 PMCID: PMC2838516 DOI: 10.1152/ajpgi.00394.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies have suggested the reversibility of liver fibrosis, but the mechanisms of fibrosis reversal are poorly understood. We investigated the possible functional link between apoptosis, macrophages, and matrix turnover in rat liver during reversal of fibrosis secondary to bile duct ligation (BDL). Biliary fibrosis was induced by BDL for 4 wk. After Roux-en-Y (RY)-bilio-jejunal-anastomosis, resolution of fibrosis was monitored for up to 12 wk by hepatic collagen content, matrix metalloproteinase (MMP) expression and activities, and fibrosis-related gene expression. MMP expression and activities were studied in macrophages after engulfment of apoptotic cholangiocytes in vitro. Hepatic collagen decreased to near normal at 12 wk after RY-anastomosis. During reversal, profibrogenic mRNA declined, whereas expression of several profibrolytic MMPs increased. Fibrotic septa showed fragmentation at week 4 and disappeared at week 12. Peak histological remodeling at week 4 was characterized by massive apoptosis of cytokeratin 19+ cholangiocytes, >90% in colocalization with CD68+ macrophages, and a 2- to 7.5-fold increase in matrix-degrading activities. In vitro, phagocytosis of apoptotic cholangiocytes induced matrix-degrading activities and MMP-3, -8, and -9 in rat peritoneal macrophages. We concluded that reconstruction of bile flow after BDL leads to an orchestrated fibrolytic program that results in near complete reversal of advanced fibrosis. The peak of connective tissue remodeling and fibrolytic activity is associated with massive apoptosis of cholangiocytes and their phagocytic clearance by macrophages in vivo. Macrophages upregulate MMPs and become fibrolytic effector cells upon apoptotic cholangiocyte engulfment in vitro, suggesting that phagocytosis-associated MMP induction in macrophages significantly contributes to biliary fibrosis reversal.
Collapse
Affiliation(s)
- Yury Popov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; ,2Department of Medicine I, University of Erlangen-Nuremberg, Germany;
| | - Deanna Y. Sverdlov
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - K. Ramakrishnan Bhaskar
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Anisha K. Sharma
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Gunda Millonig
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| | - Eleonora Patsenker
- 2Department of Medicine I, University of Erlangen-Nuremberg, Germany; ,3Institute of Clinical Pharmacology, University of Bern;
| | - Stephan Krahenbuhl
- 4Department of Clinical Pharmacology & Toxicology and Research, University Hospital Basel;
| | | | - Detlef Schuppan
- 1Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
140
|
Patsenker E, Wilkens L, Banz V, Osterreicher CH, Weimann R, Eisele S, Keogh A, Stroka D, Zimmermann A, Stickel F. The alphavbeta6 integrin is a highly specific immunohistochemical marker for cholangiocarcinoma. J Hepatol 2010; 52:362-9. [PMID: 20137822 DOI: 10.1016/j.jhep.2009.12.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/21/2009] [Accepted: 09/17/2009] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are common primary hepatic malignancies. Their immunohistological differentiation using specific markers is pivotal for treatment and prognosis. We found alphavbeta6 integrin strongly upregulated in biliary fibrosis, but its expression in primary and secondary liver tumours is unknown. Here, we aimed to evaluate the diagnostic applicability of alphavbeta6 integrin in differentiating primary liver cancers. METHODS Expression of alphavbeta6 integrin was evaluated in liver tissues from patients with CC, HCC, fibrolamellar HCC, combined CC/HCC, hepatic metastases of colorectal and pancreatic carcinomas, primary sclerosing cholangitis (PSC), and in human primary and tumour-derived liver cell lines by immunohisto- and cytochemistry, and by TaqMan PCR. Diagnostic performance of the beta6 subunit was compared with CK7, CK20, and HepPar 1. RESULTS In CC cells beta6 mRNA levels were induced 125-fold compared to primary cholangiocytes, while it was completely absent in hepatoma cells. In human tissues, beta6 transcripts were more than 100-fold upregulated in CC compared to normal liver. By immunohistochemistry, 88% of CC, 50% of PSC, 13% of colorectal carcinoma metastases, and 80% of pancreatic carcinoma metastases presented alphavbeta6, whereas all HCC, combined CC/HCC and fibrolamellar HCC stained negative. Specificity of beta6 immunohistochemistry for CC (100%) surpassed all other tested markers and sensitivity was equal to CK7 (86% vs. 90%). CONCLUSION The alphavbeta6 integrin is strongly expressed in human CC but not in HCC and therefore can be considered as a specific immunohistochemical marker in the differential diagnosis of primary liver tumours.
Collapse
Affiliation(s)
- E Patsenker
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Murtenstrasse 35, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Popov Y, Schuppan D. Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies. Hepatology 2009; 50:1294-306. [PMID: 19711424 DOI: 10.1002/hep.23123] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have made striking progress in our understanding of the biochemistry and cell biology that underlies liver fibrosis and cirrhosis, including the development of strategies and agents to prevent and reverse fibrosis. However, translation of this knowledge into clinical practice has been hampered by (1) the limitation of many in vitro and in vivo models to confirm mechanisms and to test antifibrotic agents, and (2) the lack of sensitive methodologies to quantify the degree of liver fibrosis and the dynamics of fibrosis progression or reversal in patients. Furthermore, whereas cirrhosis and subsequent decompensation are accepted hard clinical endpoints, fibrosis and fibrosis progression alone are merely plausible surrogates for future clinical deterioration. In this review we focus on an optimized strategy for preclinical antifibrotic drug development and highlight the current and future techniques that permit noninvasive assessment and quantification of liver fibrosis and fibrogenesis. The availability of such noninvasive methodologies will serve as the pacemaker for the clinical development and validation of potent antifibrotic agents.
Collapse
Affiliation(s)
- Yury Popov
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
142
|
Abstract
We have made striking progress in our understanding of the biochemistry and cell biology that underlies liver fibrosis and cirrhosis, including the development of strategies and agents to prevent and reverse fibrosis and incipient cirrhosis. However, translation of this knowledge into clinical practice has been hampered by the limitation of many in vitro and in vivo models to confirm mechanisms and to test antifibrotic agents, as well as the lack of sensitive methodologies to quantify the degree of liver fibrosis and the dynamics of fibrosis progression or reversal. Furthermore, while cirrhosis and subsequent decompensation are accepted hard clinical end-points, fibrosis and fibrosis progression alone are merely plausible surrogates for future clinical deterioration. This review focuses on basic mechanisms that underlay liver fibrosis progression and reversal and optimized strategies for preclinical antifibrotic drug development and validation. Therapies include several drugs that are of proven safety for other indications, agents that interfere with major fibrogenic or fibrolytic mechanisms, targeted drug delivery to the fibrogenic liver cells, and their potential combinations with hepatocyte or stem cell replenishment.
Collapse
|
143
|
Abstract
Cholangiocyte proliferation is triggered during extrahepatic bile duct obstruction induced by bile duct ligation, which is a common in vivo model used for the study of cholangiocyte proliferation and liver fibrosis. The proliferative response of cholangiocytes during cholestasis is regulated by the complex interaction of several factors, including gastrointestinal hormones, neuroendocrine hormones and autocrine or paracrine signalling mechanisms. Activation of biliary proliferation (ductular reaction) is thought to have a key role in the initiation and progression of liver fibrosis. The first part of this review provides an overview of the primary functions of cholangiocytes in terms of secretin-stimulated bicarbonate secretion--a functional index of cholangiocyte growth. In the second section, we explore the important regulators, both inhibitory and stimulatory, that regulate the cholangiocyte proliferative response during cholestasis. We discuss the role of proliferating cholangiocytes in the induction of fibrosis either directly via epithelial mesenchymal transition or indirectly via the activation of other liver cell types. The possibility of targeting cholangiocyte proliferation as potential therapy for reducing and/or preventing liver fibrosis, and future avenues for research into how cholangiocytes participate in the process of liver fibrogenesis are described.
Collapse
|
144
|
Hartner A, Cordasic N, Rascher W, Hilgers KF. Deletion of the alpha8 integrin gene does not protect mice from myocardial fibrosis in DOCA hypertension. Am J Hypertens 2009; 22:92-9. [PMID: 19008864 DOI: 10.1038/ajh.2008.309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND In the heart, the alpha8 integrin chain is expressed in fibroblasts and vascular smooth-muscle cells but its functional role in the myocardium is unknown. Integrins can contribute to tissue fibrosis in several organs. We tested the hypothesis that alpha8 integrin-mediated cell-matrix interactions add to cardiac fibrotic alterations during hypertension. METHODS Desoxycorticosterone-acetate (DOCA)-salt hypertension was induced in mice homozygous for a deletion of the alpha8 integrin chain and wild-type mice. Histological and immunohistochemical evaluations were performed in heart tissue. RESULTS Blood pressure was slightly higher in DOCA-treated alpha8 integrin-deficient mice compared to DOCA-treated wild types. Expression of alpha8 integrin and its ligands fibronectin and osteopontin was increased in the hearts of DOCA-treated wild types compared to salt-loaded controls. However, relative left ventricular weights did not differ between DOCA-treated wild types and alpha8 integrin-deficient mice. Moreover, expansion of collagen I immunoreactivity and cell proliferation was similar in both groups. The number of osteopontin-positive cells was not different in DOCA-treated alpha8 integrin-deficient and DOCA-treated wild-type mice. Despite of a comparable degree of fibrosis in both groups, alpha-smooth-muscle actin and discoidin domain receptor 2 (DDR2)-positive myofibroblasts were only detected in wild-type DOCA-treated mice, not in DOCA-treated alpha8 integrin-deficient mice. CONCLUSIONS The results show that lack of alpha8 integrin does not reduce fibrotic changes in the hearts of DOCA-salt hypertensive mice. Our findings do not argue for a profibrotic effect of an increased alpha8 integrin expression in the myocardium in hypertension.
Collapse
|
145
|
Jiang JX, Mikami K, Shah VH, Torok NJ. Leptin induces phagocytosis of apoptotic bodies by hepatic stellate cells via a Rho guanosine triphosphatase-dependent mechanism. Hepatology 2008; 48:1497-505. [PMID: 18925608 PMCID: PMC2596754 DOI: 10.1002/hep.22515] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Leptin, a profibrogenic cytokine, plays an important role in the development of non-alcoholic steatohepatitis. Leptin also regulates immune responses, including macrophage phagocytic activity. Stellate cells are key elements in liver fibrogenesis, and previously we have demonstrated that phagocytosis of apoptotic bodies by stellate cells is profibrogenic. To study the effects of leptin on the phagocytic activity of hepatic stellate cells, we exposed both LX-2 cells and primary stellate cells to leptin, and we have observed increased phagocytic activity. In stellate cells isolated from Zucker (fa/fa) rats, the rate of phagocytosis was significantly decreased. To investigate the mechanism by which leptin induces phagocytosis, we focused on the role of Rho-guanosine triphosphate (GTP)-ases. We found that leptin induced the PI3K-dependent activation of Rac1, and that nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase activation was also implicated in this process. Leptin also induced RhoA activation and translocation to the phagosomes. Expression of the constitutive active Rac1 and RhoA both increased the phagocytic rate, whereas inhibition of the Rho-dependent kinase decreased the phagocytic activity. CONCLUSION We describe a novel role of leptin in the fibrogenic process, the induction of phagocytosis of apoptotic bodies by hepatic stellate cells. The data provide strong evidence of a Rho-GTPase-mediated regulation of the cytoskeleton during stellate cell phagocytosis. Leptin-mediated phagocytic activity of stellate cells therefore could be an important mechanism responsible for progression of fibrosis in non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joy X. Jiang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA
| | - Kenichiro Mikami
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA
| | - Vijay H. Shah
- Department of Gastroenterology and Hepatology, Mayo College of Medicine
| | - Natalie J Torok
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA
| |
Collapse
|
146
|
Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppan D. Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology 2008; 135:660-70. [PMID: 18538673 PMCID: PMC3505071 DOI: 10.1053/j.gastro.2008.04.009] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 03/26/2008] [Accepted: 04/10/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Integrin alphavbeta6 is highly expressed on certain activated epithelia, where it mediates attachment to fibronectin and serves as coreceptor for the activation of latent transforming growth factor (TGF)-beta1. Because its role in liver fibrosis is unknown, we studied alphavbeta6 function in vitro and explored the antifibrotic potential of the specific alphavbeta6 antagonist EMD527040. METHODS Experimental liver fibrosis was studied in rats after bile duct ligation (BDL) and in Mdr2(abcb4)(-/-) mice. Different doses of EMD527040 were given to rats from week 2 to 6 after BDL and to Mdr2(-/-) mice from week 4 to 8. Liver collagen was quantified, and expression of alphavbeta6 and fibrosis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. alphavbeta6-expressing cells, bile duct proliferation, and apoptosis were assessed histologically. The effect of EMD527040 on cholangiocyte adhesion, proliferation, apoptosis, and TGF-beta1 activation was studied in vitro. RESULTS alphavbeta6 was highly expressed on proliferating bile duct epithelia in fibrosis, with 100-fold increased transcript levels in advanced fibrosis. EMD527040 attenuated bile ductular proliferation and peribiliary collagen deposition by 40%-50%, induced down-regulation of fibrogenic and up-regulation of fibrolytic genes, and improved liver architecture and function. In vitro alphavbeta6 inhibition reduced activated cholangiocyte proliferation, their adhesion to fibronectin, and endogenous activation of TGF-beta1 by 50% but did not affect bile duct apoptosis. CONCLUSIONS Integrin alphavbeta6 is strongly up-regulated in proliferating bile duct epithelia and drives fibrogenesis via adhesion to fibronectin and auto/paracrine TGF-beta1 activation. Pharmacologic inhibition of alphavbeta6 potently inhibits the progression of primary and secondary biliary fibrosis.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Institute of Clinical Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|