101
|
Xie B, Zhang J, Li Y, Yuan S, Shang Y. COVID-19: Imbalanced Immune Responses and Potential Immunotherapies. Front Immunol 2021; 11:607583. [PMID: 33584679 PMCID: PMC7878382 DOI: 10.3389/fimmu.2020.607583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading and has resulted in grievous morbidity and mortality worldwide. Despite the high infectiousness of SARS-CoV-2, the majority of infected individuals are asymptomatic or have mild symptoms and could eventually recover as a result of their balanced immune function. On the contrary, immuno-compromised patients are prone to progress into severe or critical types underpinned by the entanglement of an overexuberant proinflammatory response and injured immune function. Therefore, well-coordinated innate and adaptive immune systems are pivotal to viral eradication and tissue repair. An in-depth understanding of the immunological processes underlying COVID-19 could facilitate rapidly identifying and choosing optimal immunotherapy for patients with severe SARS-CoV-2 infection. In this review, based on current immunological evidence, we describe potential immune mechanisms and discuss promising immunotherapies for COVID-19, including IL-6R blockades, convalescent plasma, intravenous gamma globulin, thymosin alpha1, corticosteroids, and type-I interferon, and recent advances in the development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwen Li
- Hayward Genetics Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
102
|
Peter AE, Sandeep BV, Rao BG, Kalpana VL. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front Pharmacol 2021; 11:583777. [PMID: 33708109 PMCID: PMC7941276 DOI: 10.3389/fphar.2020.583777] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has caused a global health crisis, with no specific antiviral to treat the infection and the absence of a suitable vaccine to prevent it. While some individuals contracting the SARS-CoV-2 infection exhibit a well coordinated immune response and recover, others display a dysfunctional immune response leading to serious complications including ARDS, sepsis, MOF; associated with morbidity and mortality. Studies revealed that in patients with a dysfunctional immune response, there is a massive cytokine and chemokine release, referred to as the 'cytokine storm'. As a result, such patients exhibit higher levels of pro-inflammatory/modulatory cytokines and chemokines like TNFα, INFγ, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-17, G-CSF, GM-CSF, MCSF, HGF and chemokines CXCL8, MCP1, IP10, MIP1α and MIP1β. Targeting this cytokine storm is a novel, promising treatment strategy to alleviate this excess influx of cytokines observed at the site of infection and their subsequent disastrous consequences. Natural immunosuppressant compounds, derived from plant sources like curcumin, luteolin, piperine, resveratrol are known to inhibit the production and release of pro-inflammatory cytokines and chemokines. This inhibitory effect is mediated by altering signal pathways like NF-κB, JAK/STAT, MAPK/ERK that are involved in the production and release of cytokines and chemokines. The use of these natural immunosuppressants as adjuvants to ameliorate the cytokine storm; in combination with antiviral agents and other treatment drugs currently in use presents a novel, synergistic approach for the treatment and effective cure of COVID-19. This review briefly describes the immunopathogenesis of the cytokine storm observed in SARS-CoV-2 infection and details some natural immunosuppressants that can be used as adjuvants in treating COVID-19 disease.
Collapse
Affiliation(s)
- Angela E. Peter
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. V. Sandeep
- Department of Biotechnology, College of Science and Technology, Andhra University, Visakhapatnam, India
| | - B. Ganga Rao
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - V. Lakshmi Kalpana
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam, India
| |
Collapse
|
103
|
Ji YL, Wu Y, Qiu Z, Ming H, Zhang Y, Zhang AN, Leng Y, Xia ZY. The Pathogenesis and Treatment of COVID-19: A System Review. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2021; 34:50-60. [PMID: 33531107 PMCID: PMC7870101 DOI: 10.3967/bes2021.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Ye Long Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Hao Ming
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Ai Ning Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| | - Zhong Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, China
| |
Collapse
|
104
|
Huang C, Fei L, Li W, Xu W, Xie X, Li Q, Chen L. Efficacy evaluation of intravenous immunoglobulin in non-severe patients with COVID-19: A retrospective cohort study based on propensity score matching. Int J Infect Dis 2021; 105:525-531. [PMID: 33434674 PMCID: PMC7833031 DOI: 10.1016/j.ijid.2021.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives At the present time, there is an absence of any proven effective antiviral therapy for patients with coronavirus disease 2019 (COVID-19). The aim of this study was to assess the efficacy of intravenous immunoglobulin (IVIG) in non-severe patients with COVID-19. Methods A retrospective study based on propensity score matching (PSM) was designed. Primary outcomes included the severity and mortality rates. Secondary outcomes included the duration of fever, virus clearance time, length of hospital stay, and use of antibiotics. Results A total of 639 non-severe patients with COVID-19 were enrolled. Forty-five patients received IVIG therapy and 594 received non-IVIG therapy. After PSM (1:2 ratio), the baseline characteristics were well balanced between the IVIG group (n = 45) and control group (n = 90). No statistically significant difference was found between the IVIG group and control group in the duration of fever (median 3 vs 3 days, p = 0.667), virus clearance time (median 11 vs 10 days, p = 0.288), length of hospital stay (median 14 vs 13 days, p = 0.469), or use of antibiotics (40% vs 38.9%, p = 0.901). Meanwhile, compared to the IVIG group, no more patients in the control group progressed to severe disease (3.3% vs 6.6%, p = 0.376) or died (0 vs 2.2%, p = 0.156). Conclusions In non-severe patients with COVID-19, no benefit was observed with IVIG therapy beyond standard therapy.
Collapse
Affiliation(s)
- Chenlu Huang
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ling Fei
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weixia Li
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xudong Xie
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Qiang Li
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Liang Chen
- Department of Liver Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
105
|
Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9:121. [PMID: 33430200 PMCID: PMC7825648 DOI: 10.3390/microorganisms9010121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Intravenous immunoglobulins (IVIG) are blood preparations pooled from the plasma of donors that have been first employed as replacement therapy in immunodeficiency. IVIG interact at multiple levels with the different components of the immune system and exert their activity against infections. Passive immunotherapy includes convalescent plasma from subjects who have recovered from infection, hyperimmune globulin formulations with a high titer of neutralizing antibodies, and monoclonal antibodies (mAbs). IVIG are used for the prevention and treatment of several infections, especially in immunocompromised patients, or in case of a poorly responsive immune system. The evolution of IVIG from a source of passive immunity to a powerful immunomodulatory/anti-inflammatory agent results in extensive applications in autoimmune diseases. IVIG composition depends on the antibodies of the donor population and the alterations of protein structure due to the processing of plasma. The anti-viral and anti-inflammatory activity of IVIG has led us to think that they may represent a useful therapeutic tool even in COVID-19. The human origin of IVIG carries specific criticalities including risks of blood products, supply, and elevated costs. IVIG can be useful in critically ill patients, as well as early empirical treatment. To date, the need for further well-designed studies stating protocols and the efficacy/tolerability profile of IVIG and convalescent plasma in selected situations are awaited.
Collapse
Affiliation(s)
- Carlo Perricone
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Paola Triggianese
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Bursi
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Giacomo Cafaro
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Elena Bartoloni
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Maria Sole Chimenti
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| | - Roberto Gerli
- Rheumatology, Department of Medicine, University of Perugia, 06129 Perugia, Italy; (C.P.); (R.B.); (G.C.); (E.B.); (R.G.)
| | - Roberto Perricone
- Rheumatology, Allergology and Clinical Immunology, Department of “Medicina dei Sistemi”, University of Rome, 00133 Rome, Italy; (M.S.C.); (R.P.)
| |
Collapse
|
106
|
Yarmohammadi A, Yarmohammadi M, Fakhri S, Khan H. Targeting pivotal inflammatory pathways in COVID-19: A mechanistic review. Eur J Pharmacol 2021; 890:173620. [PMID: 33038418 PMCID: PMC7539138 DOI: 10.1016/j.ejphar.2020.173620] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
As an emerging global health crisis, coronavirus disease 2019 (COVID-19) has been labeled a worldwide pandemic. Growing evidence is revealing further pathophysiological mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Amongst these dysregulated pathways inflammation seems to play a more critical role toward COVID-19 complications. In the present study, precise inflammatory pathways triggered by SARS-CoV-2, along with potential therapeutic candidates have been discussed. Prevailing evidence has indicated a close correlation of inflammatory cascades with severity, pathological progression, and organ damages in COVID-19 patients. From the mechanistic point of view, interleukin-6, interleukin-1β receptor, interferon-gamma, tumor necrosis factor-alpha receptor, toll-like receptor, receptor tyrosine kinases, growth factor receptor, Janus kinase/signal transducers and transcription pathway, mammalian target of rapamycin, cytokine storm and macrophage activation have shown to play critical roles in COVID-19 complications. So, there is an urgent need to provide novel mechanistic-based anti-inflammatory agents. This review highlights inflammatory signaling pathways of SARS-CoV-2. Several therapeutic targets and treatment strategies have also been provided in an attempt to tackle COVID-19 complications.
Collapse
Affiliation(s)
- Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Mostafa Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
107
|
Tavasolian F, Hatam GR, Mosawi SH, Saadi MI, Abdollahi E, Jamialahmadi T, Sathyapalan T, Sahebkar A. The Immune Response and Effectiveness of COVID-19 Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:115-126. [PMID: 33656718 DOI: 10.1007/978-3-030-59261-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly pathogenic with relatively high mortality and morbidity. In addition to pneumonia, acute respiratory distress syndrome, and microembolic disorder, a high proportion of patients with SARS-CoV-2 develop lymphopenia and cytokine storm disorder. This review explores the underlying mechanisms behind the pathogenesis of SARS-CoV-2, especially the immune mechanisms, which could be potentially used as therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdiyar Iravani Saadi
- Hematology Research Center, Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
108
|
Eslamian F, Taleschian-Tabrizi N, Izadseresht B, Shakouri SK, Gholian S, Rahbar M. Electrophysiologic findings in patients with COVID-19 and quadriparesia in the northwest of Iran, A case series study and literature review. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 12:S451-S459. [PMID: 34760104 PMCID: PMC8559640 DOI: 10.22088/cjim.12.0.451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND As a global health pandemic, the novel severe acute respiratory syndrome-coronavirus 2 (SARS- CoV2) outbreak began in December 2019 which rapidly spread to more than 200 countries. Respiratory complications and fever are the most obvious symptoms. Sometimes the neurological features are superimposed on the main disease and complicate patient's status. CASE PRESENTATION We describe 6 patients with COVID-19 and concomitant quadriparesia who underwent electrodiagnosis using EMG/NCS and results indicated 3 axonal variants of Guillain-Barré syndrome (GBS), including; 2 cases AMAN (acute motor axonal neuropathy), 1 case AMSAN (acute motor and sensory axonal neuropathy), three myopathies, including one combination of CIN/CIM (critical illness neuropathy/critical illness myopathy), one CIM and one acute polymyositis in these cases. CONCLUSION Early diagnosis of the neuromuscular disorders of coronavirus could help for correct planning in the treatment of COVID-19 patients. Since GBS and inflammatory myopathies have an autoimmune basis, the immunotherapies such as IVIG, steroids, plasma exchange and other novel treatments as hemoperfusion can promise better and faster recovery in respiratory function and neuromuscular activity among COVID-19 patients who have musculature paralysis concomitantly. However, all these treatments are challenging and further clinical trials should be done to confirm the efficacy and safety of mentioned therapies.
Collapse
Affiliation(s)
- Fariba Eslamian
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Taleschian-Tabrizi
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Izadseresht
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shakiba Gholian
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahbar
- Physical Medicine and Rehabilitation Research Center, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
109
|
Lim ZV, Lim YL. Impact of COVID-19 on Clinical Operations and Management of Patients in a Singapore Immunodermatology Unit during the 'Circuit-Breaker' Period and Beyond. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2021. [PMID: 33381789 DOI: 10.47102/annals-acadmedsg.2020311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Ziying V Lim
- Immunodermatology unit, National Skin Centre, Singapore
| | | |
Collapse
|
110
|
Ahn TS, Han B, Krogstad P, Bun C, Kohn LA, Garcia-Lloret MI, Damoiseaux R, Butte MJ. Commercial immunoglobulin products contain cross-reactive but not neutralizing antibodies against SARS-CoV-2. J Allergy Clin Immunol 2020; 147:876-877. [PMID: 33358557 PMCID: PMC7833834 DOI: 10.1016/j.jaci.2020.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Terrie S Ahn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Brandon Han
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; California NanoSystems Institute, University of California Los Angeles, Los Angeles, Calif
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; Division of Infectious Diseases, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Chantana Bun
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Lisa A Kohn
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Maria I Garcia-Lloret
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, Calif; California NanoSystems Institute, University of California Los Angeles, Los Angeles, Calif; Department of Bioengineering, Samueli School of Engineering, University of California Los Angeles, Los Angeles, Calif
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, Calif; Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, Calif.
| |
Collapse
|
111
|
Xiao Y, Xu H, Guo W, Zhao Y, Luo Y, Wang M, He Z, Ding Z, Liu J, Deng L, Sha F, Ma X. Update on treatment and preventive interventions against COVID-19: an overview of potential pharmacological agents and vaccines. MOLECULAR BIOMEDICINE 2020; 1:16. [PMID: 34765999 PMCID: PMC7711057 DOI: 10.1186/s43556-020-00017-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) triggered by the new member of the coronaviridae family, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has created an unprecedented challenge for global health. In addition to mild to moderate clinical manifestations such as fever, cough, and fatigue, severe cases often developed lethal complications including acute respiratory distress syndrome (ARDS) and acute lung injury. Given the alarming rate of infection and increasing trend of mortality, the development of underlying therapeutic and preventive treatment, as well as the verification of its effectiveness, are the top priorities. Current research mainly referred to and evaluated the application of the empirical treatment based on two precedents, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), including antiviral drugs targeting different stages of virus replication, immunotherapy modulating the overactivated inflammation response, and other therapies such as herbal medicine and mesenchymal stem cells. Besides, the ongoing development of inventing prophylactic interventions such as various vaccines by companies and institutions worldwide is crucial to decline morbidity and mortality. This review mainly focused on promising candidates for the treatment of COVID-19 and collected recently updated evidence relevant to its feasibility in clinical practice in the near future.
Collapse
Affiliation(s)
- Yinan Xiao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Hanyue Xu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Wen Guo
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yunuo Zhao
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yuling Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Ming Wang
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041 China
| | - Zhenyu Ding
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Jiyan Liu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Lei Deng
- Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, 10465 USA
| | - Fushen Sha
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, 11203 USA
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041 China
- West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
112
|
Actualización de la Declaración de consenso en medicina critica para la atención multidisciplinaria del paciente con sospecha o confirmación diagnóstica de COVID-19. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2020; 20:1-112. [PMCID: PMC7538086 DOI: 10.1016/j.acci.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Antecedentes y objetivos La enfermedad por coronavirus de 2019 (COVID-19) es una enfermedad ocasionada por el nuevo coronavirus del síndrome respiratorio agudo grave (SARS-CoV-2). Se identificó por primera vez en diciembre de 2019 en la ciudad de Wuhan, en los meses siguientes se expandió rápidamente a todos los continentes y la Organización Mundial de la Salud (OMS) la reconoció como una pandemia global el 11 de marzo de 2020. La mayoría de los individuos son asintomáticos pero una baja proporción ingresan a cuidados intensivos con una alta morbimortalidad. Este consenso tiene como objetivo actualizar la declaratoria inicial emitida por la Asociación Colombiana de Medicina Crítica (AMCI) para el manejo del paciente críticamente enfermo con COVID-19, dentro de las áreas críticas de las instituciones de salud. Métodos Este estudio utilizó dos técnicas de consenso formal para construir las recomendaciones finales: Delphi modificada y grupos nominales. Se construyeron preguntas por la estrategia PICO. 10 grupos nominales desarrollaron recomendaciones para cada unidad temática. El producto del consenso fue evaluado y calificado en una ronda Delphi y se discutió de forma virtual por los relatores de cada núcleo y los representantes de sociedades médicas científicas afines al manejo del paciente con COVID-19. Resultados 80 expertos nacionales participaron en la actualización del consenso AMCI, especialistas en Medicina Critica y Cuidados Intensivos, Nefrología, Neurología, Neumología, bioeticistas, Medicina interna, Anestesia, Cirugía General, Cirugía de cabeza y cuello, Cuidados Paliativos, Enfermeras Especialistas en Medicina crítica, Terapeutas respiratorias especialistas en medicina crítica y Fisioterapia, con experiencia clínica en la atención del paciente críticamente enfermo. La declaratoria emite recomendaciones en los ámbitos más relevantes para la atención en salud de los casos de COVID-19, al interior de las unidades de cuidados intensivos, en el contexto nacional de Colombia. Conclusiones Un grupo significativo multidisciplinario de profesionales expertos en medicina crítica emiten, mediante técnicas de consenso formal, recomendaciones sobre la mejor práctica para la atención del paciente críticamente enfermo con COVID-19. Las recomendaciones deben ser adaptadas a las condiciones específicas, administrativas y estructurales de las distintas unidades de cuidados intensivos del país.
Collapse
|
113
|
Díez JM, Romero C, Vergara-Alert J, Belló-Perez M, Rodon J, Honrubia JM, Segalés J, Sola I, Enjuanes L, Gajardo R. Cross-neutralization activity against SARS-CoV-2 is present in currently available intravenous immunoglobulins. Immunotherapy 2020; 12:1247-1255. [PMID: 32900263 PMCID: PMC7480323 DOI: 10.2217/imt-2020-0220] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Cross-reactivity against human coronaviruses with Flebogamma® DIF and Gamunex®-C, two available intravenous immunoglobulins (IVIG), has been reported. In this study, these IVIG were tested for neutralization activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Materials & methods: Neutralization capacity of lots of IVIG manufactured prior to COVID-19 pandemic was assessed against these viruses in cell culture. Infectivity neutralization was quantified by percent reduction in plaque-forming units and/or cytopathic/cytotoxic methods. Results: All IVIG preparations showed neutralization of SARS-CoV-2 isolates. All IVIG lots produced neutralization of SARS-CoV. No IVIG preparation showed significant neutralizing activity against MERS-CoV. Conclusion: The tested IVIG contain antibodies with significant in vitro cross-neutralization capacity against SARS-CoV-2 and SARS-CoV, but not MERS-CoV. These preparations are currently under evaluation as potential therapies for COVID-19.
Collapse
Affiliation(s)
- José María Díez
- Bioscience Research & Development, Grifols, Barcelona, Spain
| | - Carolina Romero
- Bioscience Research & Development, Grifols, Barcelona, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Melissa Belló-Perez
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - José Manuel Honrubia
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Isabel Sola
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Luis Enjuanes
- Laboratorio Coronavirus. Departamento de Biología Molecular y Celular, CNB-CSIC, Madrid, Spain
| | - Rodrigo Gajardo
- Bioscience Research & Development, Grifols, Barcelona, Spain
| |
Collapse
|
114
|
Heinrich MA, Martina B, Prakash J. Nanomedicine strategies to target coronavirus. NANO TODAY 2020; 35:100961. [PMID: 32904707 PMCID: PMC7457919 DOI: 10.1016/j.nantod.2020.100961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 05/05/2023]
Abstract
With the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome CoV (MERS-CoV) in 2012 and the recently discovered SARS-CoV-2 in December 2019, the 21st first century has so far faced the outbreak of three major coronaviruses (CoVs). In particular, SARS-CoV-2 spread rapidly over the globe affecting nearly 25.000.000 people up to date. Recent evidences pointing towards mutations within the viral spike proteins of SARS-CoV-2 that are considered the cause for this rapid spread and currently around 300 clinical trials are running to find a treatment for SARS-CoV-2 infections. Nanomedicine, the application of nanocarriers to deliver drugs specifically to a target sites, has been applied for different diseases, such as cancer but also in viral infections. Nanocarriers can be designed to encapsulate vaccines and deliver them towards antigen presenting cells or function as antigen-presenting carriers themselves. Furthermore, drugs can be encapsulated into such carriers to directly target them to infected cells. In particular, virus-mimicking nanoparticles (NPs) such as self-assembled viral proteins, virus-like particles or liposomes, are able to replicate the infection mechanism and can not only be used as delivery system but also to study viral infections and related mechanisms. This review will provide a detailed description of the composition and replication strategy of CoVs, an overview of the therapeutics currently evaluated in clinical trials against SARS-CoV-2 and will discuss the potential of NP-based vaccines, targeted delivery of therapeutics using nanocarriers as well as using NPs to further investigate underlying biological processes in greater detail.
Collapse
Affiliation(s)
- Marcel Alexander Heinrich
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| | - Byron Martina
- Artemis One Health Research Institute, 2629JD, Delft, the Netherlands
| | - Jai Prakash
- Department of Biomaterials Science and Technology, Section Targeted Therapeutics, Technical Medical Centre, University of Twente, 7500AE, Enschede, the Netherlands
| |
Collapse
|
115
|
Mousavi SZ, Rahmanian M, Sami A. A connectivity map-based drug repurposing study and integrative analysis of transcriptomic profiling of SARS-CoV-2 infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 86:104610. [PMID: 33130005 PMCID: PMC7598903 DOI: 10.1016/j.meegid.2020.104610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/29/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022]
Abstract
AIMS The recent outbreak of COVID-19 has become a global health concern. There are currently no effective treatment strategies and vaccines for the treatment or prevention of this fatal disease. The current study aims to determine promising treatment options for the COVID-19 through a computational drug repurposing approach. MATERIALS AND METHODS In this study, we focus on differentially expressed genes (DEGs), detected in SARS-CoV-2 infected cell lines including "the primary human lung epithelial cell line NHBE" and "the transformed lung alveolar cell line A549". Next, the identified DEGs are used in the connectivity map (CMap) analysis to identify similarly acting therapeutic candidates. Furthermore, to interpret lists of DEGs, pathway enrichment and protein network analysis are performed. Genes are categorized into easily interpretable pathways based on their biological functions, and overrepresentation of each pathway is tested in comparison to what is expected randomly. KEY FINDINGS The results suggest the effectiveness of lansoprazole, folic acid, sulfamonomethoxine, tolnaftate, diclofenamide, halcinonide, saquinavir, metronidazole, ebselen, lidocaine and benzocaine, histone deacetylase (HDAC) inhibitors, heat shock protein 90 (HSP90) inhibitors, and many other clinically approved drugs as potent drugs against COVID-19 outbreak. SIGNIFICANCE Making new drugs remain a lengthy process, so the drug repurposing approach provides an insight into the therapeutics that might be helpful in this pandemic. In this study, pathway enrichment and protein network analysis are also performed, and the effectiveness of some drugs obtained from the CMap analysis has been investigated according to previous researches.
Collapse
|
116
|
Husain-Syed F, Vadász I, Wilhelm J, Walmrath HD, Seeger W, Birk HW, Jennert B, Dietrich H, Herold S, Trauth J, Tello K, Sander M, Morty RE, Slanina H, Schüttler CG, Ziebuhr J, Kassoumeh S, Ronco C, Ferrari F, Warnatz K, Stahl K, Seeliger B, Hoeper MM, Welte T, David S. Immunoglobulin deficiency as an indicator of disease severity in patients with COVID-19. Am J Physiol Lung Cell Mol Physiol 2020; 320:L590-L599. [PMID: 33237794 PMCID: PMC8057306 DOI: 10.1152/ajplung.00359.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.
Collapse
Affiliation(s)
- Faeq Husain-Syed
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,International Renal Research Institute of Vicenza, San Bortolo Hospital, Vicenza, Italy
| | - István Vadász
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany
| | - Hans-Dieter Walmrath
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Infectious Diseases, Department of Internal Medicine II, Department of Internal Medicine, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Werner Seeger
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Infectious Diseases, Department of Internal Medicine II, Department of Internal Medicine, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Institute for Lung Health, Justus Liebig University Giessen, Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Horst-Walter Birk
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Birgit Jennert
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Hartmut Dietrich
- Divison of Nephrology, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Susanne Herold
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Division of Infectious Diseases, Department of Internal Medicine II, Department of Internal Medicine, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Janina Trauth
- Division of Infectious Diseases, Department of Internal Medicine II, Department of Internal Medicine, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Khodr Tello
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany
| | - Michael Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany
| | - Rory E Morty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine II, University Hospital Giessen and Marburg, Justus Liebig University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center, Justus Liebig University Giessen, German Center for Lung Research, Giessen, Germany.,The Cardio-Pulmonary Institute, Giessen, Germany.,Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Heiko Slanina
- Institute of Medical Virology, Justus Liebig University Giessen, The German Center for Infection Research, Giessen, Germany
| | - Christian G Schüttler
- Institute of Medical Virology, Justus Liebig University Giessen, The German Center for Infection Research, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, The German Center for Infection Research, Giessen, Germany
| | - Shadi Kassoumeh
- Justus Liebig Medical University Medical School, Giessen, Germany
| | - Claudio Ronco
- International Renal Research Institute of Vicenza, San Bortolo Hospital, Vicenza, Italy.,Department of Medicine (DIMED), Università di Padova, Padua, Italy
| | - Fiorenza Ferrari
- Intensive Care Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, Pavia, Italy
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency at Center for Translational Research, Medical Center University of Freiburg, Freiburg, Germany
| | - Klaus Stahl
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Institute for Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
117
|
Kaleda MI, Nikishina IP, Fedorov ES, Nasonov EL. Coronavirus Desease 2019 (COVID-19) in Children: Lessons from Pediatric Rheumatology. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.47360/1995-4484-2020-469-479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical presentation and outcomes of infection with the novel coronavirus (COVID-19) are characterized by exceptional variability in manifestations, which depend on many factors, one of which is the patient’s age. One of the severe life-threatening manifestations in adults is severe acute respiratory syndrome (SARS-CoV-2), in some cases accompanied by the development of multiple organ failure. During the first two to three months of the COVID-19 pandemic, the global medical community was of the opinion that this disease in children is usually mild and not fatal. However, with the accumulation of new information, it became clear that there is a growing recognition of the existence of multisystem inflammatory syndrome in children, chronologically associated with SARS-CoV-2, which can lead to serious consequences. The article presents the main epidemiological, clinical and laboratory characteristics of the syndrome, as well as discusses the issues of its pathogenesis, differential diagnosis with a number of other acute conditions associated with an dysbalance of cytokines.
Collapse
Affiliation(s)
- M. I. Kaleda
- V.A. Nasonova Research Institute of Rheumatology
| | | | | | - E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University) of the Ministry of Health of Russia
| |
Collapse
|
118
|
Hwang ST, Ballout AA, Mirza U, Sonti AN, Husain A, Kirsch C, Kuzniecky R, Najjar S. Acute Seizures Occurring in Association With SARS-CoV-2. Front Neurol 2020; 11:576329. [PMID: 33224090 PMCID: PMC7674622 DOI: 10.3389/fneur.2020.576329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Seizures are an infrequent and serious neurological complication of SARS-CoV-2 infection, with limited data describing the etiology and the clinical context in which these occur or the associated electrographic and imaging findings. This series details four cases of seizures occurring in patients with COVID-19 with distinct time points, underlying pathology, and proposed physiological mechanisms. An enhanced understanding of seizure manifestations in COVID-19 and their clinical course may allow for earlier detection and improved patient management.
Collapse
Affiliation(s)
- Sean T Hwang
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Ahmad A Ballout
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Usman Mirza
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Anup N Sonti
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Arif Husain
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Claudia Kirsch
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Ruben Kuzniecky
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| | - Souhel Najjar
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, United States
| |
Collapse
|
119
|
Alsaleem M. Intravenous Immune Globulin Uses in the Fetus and Neonate: A Review. Antibodies (Basel) 2020; 9:E60. [PMID: 33158209 PMCID: PMC7709108 DOI: 10.3390/antib9040060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Intravenous immune globulin (IVIG) is made after processing plasma from healthy donors. It is composed mainly of pooled immunoglobulin and has clinical evidence-based applications in adult and pediatric populations. Recently, several clinical applications have been proposed for managing conditions in the neonatal population, such as hemolytic disease of the newborn, treatment, and prophylaxis for sepsis in high-risk neonates, enterovirus parvovirus and COVID-19 related neonatal infections, fetal and neonatal immune-induced thrombocytopenia, neonatal hemochromatosis, neonatal Kawasaki disease, and some types of immunodeficiency. The dosing, mechanism of action, effectiveness, side effects, and adverse reactions of IVIG have been relatively well studied in adults but are not well described in the neonatal population. This review aims to provide the most recent evidence and consensus guidelines about the use of IVIG in the fetus and neonate.
Collapse
Affiliation(s)
- Mahdi Alsaleem
- Pediatrics Department, Neonatology, Children’s Mercy Hospital, Kansas City, MO 64108, USA;
- Pediatrics Department, University of Kansas, Wichita, KS 67208, USA
| |
Collapse
|
120
|
Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 2020; 225:152008. [PMID: 33130519 PMCID: PMC7434692 DOI: 10.1016/j.imbio.2020.152008] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.
Collapse
Affiliation(s)
- Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Manu Vatish
- Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Oxford University Hospital, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR - National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom.
| |
Collapse
|
121
|
Najafi A, Ghanei M, Janbabaei G, Velayati AA, Saadat SH, Jamaati H, Tabarsi P, Dastan F, Ram M, Darabi E, Fathi S, Gholami Fesharaki M, Ghazale AH, Saloo S. Real Clinical Practice and Therapeutic Management Following COVID-19 Crisis in two Hospitals in Iran: A Statistical and Conceptual View. TANAFFOS 2020; 19:112-121. [PMID: 33262798 PMCID: PMC7680514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Coronavirus disease 2019 (COVID-19) outbreak quickly has spread and became a pandemic. However, no approved therapeutics or effective treatment is available for the treatment of these patients. The present study was done to retrospectively assess the treatment strategies (e.g., pharmaceutical care services) for COVID-19 patients in selected hospitals and highlight the importance of such services in the management of a pandemic. MATERIALS AND METHODS Data from a series of COVID-19 patients (978 patients; 658 males [66.9%] and 324 females [33.1%]) admitted to the selected hospitals in Tehran from 20 February to 19 March 2020 were retrieved retrospectively from the Health Information System (HIS) of the hospitals. The statistical tests were used for analyzing the effect and correlation of the variables (drugs) with the average length of stay (ALOS) in the hospital. RESULTS Diverse medication classes and old drugs with or without strong evidence of therapeutic effects against the novel coronavirus, some previously tried as a treatment for SARS-CoV and MERS-CoV, were mostly used for the treatment of patients in the hospitals. Many medications (broad-spectrum antibiotics and antivirals) or combination therapies are used without evidence of their therapeutic effects during pandemics. CONCLUSION Therefore, guidelines should be provided for the off-label use of these drugs by policymakers and stakeholders during a pandemic emergency due to high demands. Also, monitoring of the HIS data can play an important role in improving public health response to emerging diseases.
Collapse
Affiliation(s)
- Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,,Correspondence to: Ghanei M, Address: Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, Email address:
| | - Ghasem Janbabaei
- Department of Hematology Oncology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Behavioral Sciences Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Dastan
- Chronic Respiratory Diseases Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Ram
- Department of Biostatistics, Ferdows Paramedical School, Birjand University of Medical Sciences, Birjand, Iran
| | - Enayat Darabi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fathi
- Postdoctoral Fellow, University of Tehran, Tehran, Iran
| | | | - Amir Hosein Ghazale
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahrzad Saloo
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
122
|
Sakoulas G, Geriak M, Kullar R, Greenwood KL, Habib M, Vyas A, Ghafourian M, Dintyala VNK, Haddad F. Intravenous Immunoglobulin Plus Methylprednisolone Mitigate Respiratory Morbidity in Coronavirus Disease 2019. Crit Care Explor 2020; 2:e0280. [PMID: 33225306 PMCID: PMC7671875 DOI: 10.1097/cce.0000000000000280] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dysregulated neutrophil and platelet interactions mediate immunothrombosis and cause lung injury in coronavirus disease 2019. IV immunoglobulin modulates neutrophil activation through FcγRIII binding. We hypothesized that early therapy with IV immunoglobulin would abrogate immunothrombosis and improve oxygenation and reduce progression to mechanical ventilation in coronavirus disease 2019 pneumonia. DESIGN Prospective randomized open label. SETTING Inpatient hospital. PATIENTS AND INTERVENTION Hypoxic subjects with coronavirus disease 2019 pneumonia were randomized 1:1 to receive standard of care plus IV immunoglobulin 0.5 g/kg/d with methylprednisolone 40 mg 30 minutes before infusion for 3 days versus standard of care alone. MAIN RESULTS Sixteen subjects received IV immunoglobulin and 17 standard of care. Median ages were 51 and 58 years for standard of care and IV immunoglobulin, respectively. Acute Physiology and Chronic Health Evaluation II and Charlson comorbidity scores were similar for IV immunoglobulin and standard of care. Seven standard of care versus two IV immunoglobulin subjects required mechanical ventilation (p = 0.12, Fisher exact test). Among subjects with A-a gradient of greater than 200 mm Hg at enrollment, the IV immunoglobulin group showed: 1) a lower rate of progression to requiring mechanical ventilation (2/14 vs 7/12, p = 0.038 Fisher exact test), 2) shorter median hospital length of stay (11 vs 19 d, p = 0.01 Mann Whitney U test), 3) shorter median ICU stay (2.5 vs 12.5 d, p = 0.006 Mann Whitey U test), and 4) greater improvement in Pao2/Fio2 at 7 days (median [range] change from time of enrollment +131 [+35 to +330] vs +44·5 [-115 to +157], p = 0.01, Mann Whitney U test) than standard of care. Pao2/Fio2 improvement at day 7 was significantly less for the standard of care patients who received glucocorticoid therapy than those in the IV immunoglobulin arm (p = 0.0057, Mann Whiney U test). CONCLUSIONS This pilot study showed that IV immunoglobulin significantly improved hypoxia and reduced hospital length of stay and progression to mechanical ventilation in coronavirus disease 2019 patients with A-a gradient greater than 200 mm Hg. A phase 3 multicenter randomized double-blinded clinical trial is under way to validate these findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Anuja Vyas
- Sharp Memorial Hospital, San Diego, CA
- Sharp Rees-Stealy Medical Group, San Diego, CA
| | | | | | | |
Collapse
|
123
|
Giesen N, Sprute R, Rüthrich M, Khodamoradi Y, Mellinghoff SC, Beutel G, Lueck C, Koldehoff M, Hentrich M, Sandherr M, von Bergwelt-Baildon M, Wolf HH, Hirsch HH, Wörmann B, Cornely OA, Köhler P, Schalk E, von Lilienfeld-Toal M. Evidence-based management of COVID-19 in cancer patients: Guideline by the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Eur J Cancer 2020; 140:86-104. [PMID: 33068941 PMCID: PMC7505554 DOI: 10.1016/j.ejca.2020.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Since its first detection in China in late 2019 the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated infectious disease COVID-19 continue to have a major impact on global healthcare and clinical practice. Cancer patients, in particular those with haematological malignancies, seem to be at an increased risk for a severe course of infection. Deliberations to avoid or defer potentially immunosuppressive therapies in these patients need to be balanced against the overarching goal of providing optimal antineoplastic treatment. This poses a unique challenge to treating physicians. This guideline provides evidence-based recommendations regarding prevention, diagnostics and treatment of SARS-CoV-2 infection and COVID-19 as well as strategies towards safe antineoplastic care during the COVID-19 pandemic. It was prepared by the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO) by critically reviewing the currently available data on SARS-CoV-2 and COVID-19 in cancer patients applying evidence-based medicine criteria.
Collapse
Affiliation(s)
- Nicola Giesen
- Department of Haematology and Oncology, Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany.
| | - Rosanne Sprute
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Center for Integrated Oncology (CIO ABCD), German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Maria Rüthrich
- Department of Haematology and Medical Oncology, Clinic for Internal Medicine II, University Hospital Jena, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Yascha Khodamoradi
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - Sibylle C Mellinghoff
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Center for Integrated Oncology (CIO ABCD), German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Gernot Beutel
- Department for Haematology, Haemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; Working Party Intensive Care in Haematologic and Oncologic Patients (iCHOP) of the German Society of Haematology and Medical Oncology (DGHO)
| | - Catherina Lueck
- Department for Haematology, Haemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany; Working Party Intensive Care in Haematologic and Oncologic Patients (iCHOP) of the German Society of Haematology and Medical Oncology (DGHO)
| | - Michael Koldehoff
- Working Party Intensive Care in Haematologic and Oncologic Patients (iCHOP) of the German Society of Haematology and Medical Oncology (DGHO); Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcus Hentrich
- Department of Medicine III - Haematology/Oncology, Red Cross Hospital, Munich, Germany
| | - Michael Sandherr
- Specialist Clinic for Haematology and Oncology, Medical Care Center Penzberg, Penzberg, Germany
| | - Michael von Bergwelt-Baildon
- Working Party Intensive Care in Haematologic and Oncologic Patients (iCHOP) of the German Society of Haematology and Medical Oncology (DGHO); Department of Internal Medicine III, LMU University Hospital, DKTK Partner Site Munich, BZKF Partner Site Munich, CCC-Munich, Munich, Germany
| | - Hans-Heinrich Wolf
- Department of Haematology, Oncology and Haemostaseology, Internal Medicine III, Südharzklinikum, Nordhausen, Germany
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine (Haus Petersplatz), University of Basel, Basel, Switzerland; Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Bernhard Wörmann
- Division of Haematology, Oncology and Tumor Immunology, Department of Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Center for Integrated Oncology (CIO ABCD), German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Philipp Köhler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Center for Integrated Oncology (CIO ABCD), German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Enrico Schalk
- Working Party Intensive Care in Haematologic and Oncologic Patients (iCHOP) of the German Society of Haematology and Medical Oncology (DGHO); Department of Haematology and Oncology, Medical Center, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marie von Lilienfeld-Toal
- Department of Haematology and Medical Oncology, Clinic for Internal Medicine II, University Hospital Jena, Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| |
Collapse
|
124
|
Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother 2020; 131:110698. [PMID: 32920514 PMCID: PMC7455113 DOI: 10.1016/j.biopha.2020.110698] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokine storm syndrome (CSS) is a severe complication of inflammatory immune diseases or treatment of malignancies; it may also appear during the progression of COVID-19. CSS is caused by dysregulation of the synthesis of cytokines, including pro-inflammatory, regulatory, and anti-inflammatory cytokines and chemokines, leading to pathologic activation of innate and adaptive (Th1 and Th17 mediated) immunity. Interleukin-6 (IL-6) plays an important role in the pathogenesis of CSS. The significant role of IL-6 in pathogenesis of COVID-19 was confirmed in a range of studies, which showed that the plasma concentration of IL-6 was increased in patients with severe COVID-19. Currently, IL-6 inhibitor therapeutics are not yet approved for the treatment of COVID-19; however, these medicines, including tocilizumab (TCZ) are used off-label for the treatment of patients with severe COVID-19, including life-threatening conditions. The role of IL-6 in the pathogenesis of CSS during COVID-19 is important however, a number of related issues are not yet clear. These issues include the indications for treatment with IL-6 inhibitors, as well as the estimation of risk associated with the disease, outcomes, treatment options, and adverse drug reactions. The development of personalized immunomodulatory therapy, with respect to the role of cytokines in pathogenesis, requires the studies that aimed to find other relevant therapeutic targets for the treatment of CSS in patients with COVID-19. These therapeutic targets include inhibition of IL-1, IL-6, TNFα, GM-CSF, IFNγ, IL-17, IL-18, and also activation of the complement system. The challenge of CSS in patients with COVID-19 is identifying the correct scientific targets and developing clinical trials aimed to evaluate the pathogenesis and treat immune-mediated inflammatory diseases (IMIDs). Hopefully, the significant efforts of scientists and physicians across the globe will improve the prognosis in COVID-19 patients and provide useful information on IMIDs required to support the struggle for treating potential viral outbreaks, and treatment of well-known IMIDs.
Collapse
Affiliation(s)
- E Nasonov
- V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, MOH, Moscow, Russia; Kashirskoye roadway, 34А, 1115522, Moscow, Russia; Trubetskaya str, 8, bdg. 2, 2119991, Moscow, Russia.
| | - M Samsonov
- RPharm JSC, Leninsky prospect 111, 11942, Moscow, Russia.
| |
Collapse
|
125
|
Razmi M, Hashemi F, Gheytanchi E, Dehghan Manshadi M, Ghods R, Madjd Z. Immunomodulatory-based therapy as a potential promising treatment strategy against severe COVID-19 patients: A systematic review. Int Immunopharmacol 2020; 88:106942. [PMID: 32896750 PMCID: PMC7456184 DOI: 10.1016/j.intimp.2020.106942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023]
Abstract
The global panic of the novel coronavirus disease 2019 (COVID-19) triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an urgent requirement for effective therapy. COVID-19 infection, especially in severely ill patients, is likely to be associated with immune dysregulation, prompting the development of novel treatment approaches. Therefore, this systematic review was designed to assess the available data regarding the efficacy of the immunomodulatory drugs used to manage COVID-19. A systematic literature search was carried out up to May 27, 2020, in four databases (PubMed, Scopus, Web of Science, and Embase) and also Clinicaltrials.gov. Sixty-six publications and 111 clinical trials were recognized as eligible, reporting the efficacy of the immunomodulatory agents, including corticosteroids, hydroxychloroquine, passive and cytokine-targeted therapies, mesenchymal stem cells, and blood-purification therapy, in COVID-19 patients. The data were found to be heterogeneous, and the clinical trials were yet to post any findings. Medicines were found to regulate the immune system by boosting the innate responses or suppressing the inflammatory reactions. Passive and cytokine-targeted therapies and mesenchymal stem cells were mostly safe and could regulate the disease much better. These studies underscored the significance of severity profiling in COVID-19 patients, along with appropriate timing, duration, and dosage of the therapies. Therefore, this review indicates that immunomodulatory therapies are potentially effective for COVID-19 and provides comprehensive information for clinicians to fight this outbreak. However, there is no consensus on the optimal therapy for COVID-19, reflecting that the immunomodulatory therapies still warrant further investigations.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farideh Hashemi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Dehghan Manshadi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
126
|
Kooshkaki O, Derakhshani A, Conradie AM, Hemmat N, Barreto SG, Baghbanzadeh A, Singh PK, Safarpour H, Asadzadeh Z, Najafi S, Brunetti O, Racanelli V, Silvestris N, Baradaran B. Coronavirus Disease 2019: A Brief Review of the Clinical Manifestations and Pathogenesis to the Novel Management Approaches and Treatments. Front Oncol 2020; 10:572329. [PMID: 33194671 PMCID: PMC7658542 DOI: 10.3389/fonc.2020.572329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Savio George Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Adelaide, SA, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pankaj Kumar Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Hossein Safarpour
- Cellularand Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari “AldoMoro”, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, University of Bari “AldoMoro”, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
127
|
Kubota-Koketsu R, Terada Y, Yunoki M, Sasaki T, Nakayama EE, Kamitani W, Shioda T. Neutralizing and binding activities against SARS-CoV-1/2, MERS-CoV, and human coronaviruses 229E and OC43 by normal human intravenous immunoglobulin derived from healthy donors in Japan. Transfusion 2020; 61:356-360. [PMID: 33104267 DOI: 10.1111/trf.16161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/06/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND There are several types of coronaviruses that infect humans and cause disease. The latest is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an emerging global threat with no current effective treatment. Normal intravenous immunoglobulin (N-IVIG) has been administered to coronavirus disease 2019 (COVID-19) patients to control severe inflammation and the cellular immune response. However, the neutralizing activity of N-IVIG against SARS-CoV-2 has not yet been fully evaluated. The aim of this study was to determine whether N-IVIG manufactured before the start of the COVID-19 pandemic contained IgG antibodies against the circulating human coronaviruses (HCoVs) that cross-react with the highly pathogenic coronaviruses SARS-CoV-1, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. No cases of SARS-CoV-1 or MERS-CoV have been reported in Japan. STUDY DESIGN AND METHODS The neutralizing and binding activities of N-IVIG against SARS-CoV-1, MERS-CoV, SARS-CoV-2, HCoV 229E, and HCoV OC43 were evaluated. Nine N-IVIG lots manufactured between 2000 and 2018, derived from donors in Japan, were tested. Binding activity was evaluated by indirect immunofluorescence assay. RESULTS None of the N-IVIG lots tested displayed neutralizing or binding activity against SARS-CoV-1, MERS-CoV, or SARS-CoV-2. However, they displayed substantial neutralizing and binding activity against HCoV OC43 and weak neutralizing and substantial binding activity against HCoV 229E. CONCLUSION N-IVIG derived from healthy donors in Japan before the start of the COVID-19 pandemic had no direct effect against SARS-CoV-2. Further studies are warranted to determine the effects of N-IVIG manufactured after the start of the COVID-19 pandemic against SARS-CoV-2.
Collapse
Affiliation(s)
- Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yutaka Terada
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Mikihiro Yunoki
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Wataru Kamitani
- Laboratory of Clinical Research on Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
128
|
Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis 2020; 20:786. [PMID: 33087047 PMCID: PMC7576972 DOI: 10.1186/s12879-020-05507-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has infected people in many countries worldwide. Discovering an effective treatment for this disease, particularly in severe cases, has become the subject of intense scientific investigation. Therefore, the objective of this study was to evaluate the efficacy of intravenous immunoglobulin (IVIg) in patients with severe COVID-19 infection. METHODS This study was conducted as a randomized placebo-controlled double-blind clinical trial. Fifty-nine patients with severe COVID-19 infection who did not respond to initial treatments were randomly assigned into two groups. One group received IVIg (human)-four vials daily for 3 days (in addition to initial treatment), while the other group received a placebo. Patients' demographic, clinical, and select laboratory test results, as well as the occurrence of in-hospital mortality, were recorded. RESULTS Among total study subjects, 30 patients received IVIg and 29 patients received a placebo. Demographics, clinical characteristics, and laboratory tests were not statistically different (P > 0.05) between the two groups. The in-hospital mortality rate was significantly lower in the IVIg group compared to the control group (6 [20.0%] vs. 14 [48.3%], respectively; P = 0.022). Multivariate regression analysis demonstrated that administration of IVIg did indeed have a significant impact on mortality rate (aOR = 0.003 [95% CI: 0.001-0.815]; P = 0.042). CONCLUSIONS Our study demonstrated that the administration of IVIg in patients with severe COVID-19 infection who did not respond to initial treatment could improve their clinical outcome and significantly reduce mortality rate. Further multicenter studies with larger sample sizes are nonetheless required to confirm the appropriateness of this medication as a standard treatment. TRIAL REGISTRATION A study protocol was registered at the Iranian Registry of Clinical Trials ( www.IRCT.ir ), number IRCT20200501047259N1 . It was registered retrospectively on May 17th, 2020.
Collapse
Affiliation(s)
- Naser Gharebaghi
- Department of Infectious Diseases, Urmia University of Medical Sciences, Urmia, Iran
| | - Rahim Nejadrahim
- Department of Infectious Diseases, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Jalil Mousavi
- Department of Infectious Diseases, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Reza Hajizadeh
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
129
|
Galeotti C, Kaveri SV, Bayry J. Intravenous immunoglobulin immunotherapy for coronavirus disease-19 (COVID-19). Clin Transl Immunology 2020; 9:e1198. [PMID: 33088506 PMCID: PMC7565103 DOI: 10.1002/cti2.1198] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Caroline Galeotti
- Service de Rhumatologie Pédiatrique Centre de Référence des Maladies Auto-Inflammatoires Rares et des Amyloses CHU de Bicêtre le Kremlin Bicêtre France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Centre de Recherche des Cordeliers Sorbonne Université Université de Paris Paris France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Centre de Recherche des Cordeliers Sorbonne Université Université de Paris Paris France
| |
Collapse
|
130
|
Chai KL, Valk SJ, Piechotta V, Kimber C, Monsef I, Doree C, Wood EM, Lamikanra AA, Roberts DJ, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2020; 10:CD013600. [PMID: 33044747 DOI: 10.1002/14651858.cd013600.pub3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Convalescent plasma and hyperimmune immunoglobulin may reduce mortality in patients with viral respiratory diseases, and are currently being investigated in trials as potential therapy for coronavirus disease 2019 (COVID-19). A thorough understanding of the current body of evidence regarding the benefits and risks is required. OBJECTIVES: To continually assess, as more evidence becomes available, whether convalescent plasma or hyperimmune immunoglobulin transfusion is effective and safe in treatment of people with COVID-19. SEARCH METHODS We searched the World Health Organization (WHO) COVID-19 Global Research Database, MEDLINE, Embase, Cochrane COVID-19 Study Register, Centers for Disease Control and Prevention COVID-19 Research Article Database and trial registries to identify completed and ongoing studies on 19 August 2020. SELECTION CRITERIA We followed standard Cochrane methodology. We included studies evaluating convalescent plasma or hyperimmune immunoglobulin for people with COVID-19, irrespective of study design, disease severity, age, gender or ethnicity. We excluded studies including populations with other coronavirus diseases (severe acute respiratory syndrome (SARS) or Middle East respiratory syndrome (MERS)) and studies evaluating standard immunoglobulin. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane 'Risk of bias' 2.0 tool for randomised controlled trials (RCTs), the Risk of Bias in Non-randomised Studies - of Interventions (ROBINS-I) tool for controlled non-randomised studies of interventions (NRSIs), and the assessment criteria for observational studies, provided by Cochrane Childhood Cancer for non-controlled NRSIs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality at hospital discharge, mortality (time to event), improvement of clinical symptoms (7, 15, and 30 days after transfusion), grade 3 and 4 adverse events (AEs), and serious adverse events (SAEs). MAIN RESULTS This is the second living update of our review. We included 19 studies (2 RCTs, 8 controlled NRSIs, 9 non-controlled NRSIs) with 38,160 participants, of whom 36,081 received convalescent plasma. Two completed RCTs are awaiting assessment (published after 19 August 2020). We identified a further 138 ongoing studies evaluating convalescent plasma or hyperimmune immunoglobulin, of which 73 are randomised (3 reported in a study registry as already being completed, but without results). We did not identify any completed studies evaluating hyperimmune immunoglobulin. We did not include data from controlled NRSIs in data synthesis because of critical risk of bias. The overall certainty of evidence was low to very low, due to study limitations and results including both potential benefits and harms. Effectiveness of convalescent plasma for people with COVID-19 We included results from two RCTs (both stopped early) with 189 participants, of whom 95 received convalescent plasma. Control groups received standard care at time of treatment without convalescent plasma. We are uncertain whether convalescent plasma decreases all-cause mortality at hospital discharge (risk ratio (RR) 0.55, 95% confidence interval (CI) 0.22 to 1.34; 1 RCT, 86 participants; low-certainty evidence). We are uncertain whether convalescent plasma decreases mortality (time to event) (hazard ratio (HR) 0.64, 95% CI 0.33 to 1.25; 2 RCTs, 189 participants; low-certainty evidence). Convalescent plasma may result in little to no difference in improvement of clinical symptoms (i.e. need for respiratory support) at seven days (RR 0.98, 95% CI 0.30 to 3.19; 1 RCT, 103 participants; low-certainty evidence). Convalescent plasma may increase improvement of clinical symptoms at up to 15 days (RR 1.34, 95% CI 0.85 to 2.11; 2 RCTs, 189 participants; low-certainty evidence), and at up to 30 days (RR 1.13, 95% CI 0.88 to 1.43; 2 studies, 188 participants; low-certainty evidence). No studies reported on quality of life. Safety of convalescent plasma for people with COVID-19 We included results from two RCTs, eight controlled NRSIs and nine non-controlled NRSIs assessing safety of convalescent plasma. Reporting of safety data and duration of follow-up was variable. The controlled studies reported on AEs and SAEs only in participants receiving convalescent plasma. Some, but not all, studies included death as a SAE. The studies did not report the grade of AEs. Fourteen studies (566 participants) reported on AEs of possible grade 3 or 4 severity. The majority of these AEs were allergic or respiratory events. We are very uncertain whether convalescent plasma therapy affects the risk of moderate to severe AEs (very low-certainty evidence). 17 studies (35,944 participants) assessed SAEs for 20,622 of its participants. The majority of participants were from one non-controlled NRSI (20,000 participants), which reported on SAEs within the first four hours and within an additional seven days after transfusion. There were 63 deaths, 12 were possibly and one was probably related to transfusion. There were 146 SAEs within four hours and 1136 SAEs within seven days post-transfusion. These were predominantly allergic or respiratory, thrombotic or thromboembolic and cardiac events. We are uncertain whether convalescent plasma therapy results in a clinically relevant increased risk of SAEs (low-certainty evidence). AUTHORS' CONCLUSIONS We are uncertain whether convalescent plasma is beneficial for people admitted to hospital with COVID-19. There was limited information regarding grade 3 and 4 AEs to determine the effect of convalescent plasma therapy on clinically relevant SAEs. In the absence of a control group, we are unable to assess the relative safety of convalescent plasma therapy. While major efforts to conduct research on COVID-19 are being made, recruiting the anticipated number of participants into these studies is problematic. The early termination of the first two RCTs investigating convalescent plasma, and the lack of data from 20 studies that have completed or were due to complete at the time of this update illustrate these challenges. Well-designed studies should be prioritised. Moreover, studies should report outcomes in the same way, and should consider the importance of maintaining comparability in terms of co-interventions administered in all study arms. There are 138 ongoing studies evaluating convalescent plasma and hyperimmune immunoglobulin, of which 73 are RCTs (three already completed). This is the second living update of the review, and we will continue to update this review periodically. Future updates may show different results to those reported here.
Collapse
Affiliation(s)
- Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Catherine Kimber
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carolyn Doree
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Cynthia So-Osman
- Sanquin Blood Bank, Amsterdam, Netherlands
- Erasmus Medical Centre, Rotterdam, Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
131
|
Stradner MH, Dejaco C, Zwerina J, Fritsch-Stork RD. Rheumatic Musculoskeletal Diseases and COVID-19 A Review of the First 6 Months of the Pandemic. Front Med (Lausanne) 2020; 7:562142. [PMID: 33154972 PMCID: PMC7586311 DOI: 10.3389/fmed.2020.562142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
In December 2019, a cluster of severe pneumonia was observed in China, with the subsequent discovery of a new beta-coronavirus (SARS-CoV-2) as the causative agent. The elicited disease COVID-19 is characterized by fever, dry cough, myalgia, or fatigue and has a favorable outcome in the majority of cases. However, in some patients COVID-19 leads to severe pneumonia and sepsis with subsequent respiratory failure and gastrointestinal, hematological, neurological, and cardiovascular complications. A higher risk of infection is intrinsic to active rheumatic and musculoskeletal diseases (RMD) and the use of biological disease modifying anti-rheumatic drugs (DMARDs). With an increasing number of reports on COVID-19 in RMD patients, we are beginning to appraise their risks. In this review, we summarize the published cases of COVID-19 infections in RMD patients, including patients with inflammatory arthritis and connective tissue diseases as well as anti-phospholipid syndrome and Kawasaki syndrome. Overall, patients with inflammatory arthritis do not seem to be at a higher risk for infection or a severe course of COVID-19. Risk for critical COVID-19 in patients with systemic inflammatory diseases such as SLE or vasculitis might be increased, but this needs further confirmation. Furthermore, we summarize the data on DMARDs used to fight SARS-CoV-2 infection and hyperinflammation.
Collapse
Affiliation(s)
- Martin H. Stradner
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Christian Dejaco
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
- Department of Rheumatology, Hospital of Brunico (SABES-ASDAA), Brunico, Italy
| | - Jochen Zwerina
- Trauma Centre Meidling, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Oesterreichische Gesundheitskassa and Allgemeine Unfallversicherungsanstalt, First Medical Department Hanusch Hospital, Vienna, Austria
| | - Ruth D. Fritsch-Stork
- Trauma Centre Meidling, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of Oesterreichische Gesundheitskassa and Allgemeine Unfallversicherungsanstalt, First Medical Department Hanusch Hospital, Vienna, Austria
- Medical Faculty, Sigmund Freud Private University, Vienna, Austria
| |
Collapse
|
132
|
Pashaei M, Rezaei N. Immunotherapy for SARS-CoV-2: potential opportunities. Expert Opin Biol Ther 2020; 20:1111-1116. [PMID: 32762581 PMCID: PMC7441764 DOI: 10.1080/14712598.2020.1807933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Mehrnoosh Pashaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
133
|
Jiang S, Du L. Effect of Low-Pathogenic Human Coronavirus-Specific Antibodies on SARS-CoV-2. Trends Immunol 2020; 41:853-854. [PMID: 32863133 PMCID: PMC7418642 DOI: 10.1016/j.it.2020.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|
134
|
Mansourabadi AH, Sadeghalvad M, Mohammadi-Motlagh HR, Rezaei N. The immune system as a target for therapy of SARS-CoV-2: A systematic review of the current immunotherapies for COVID-19. Life Sci 2020; 258:118185. [PMID: 32750438 PMCID: PMC7395832 DOI: 10.1016/j.lfs.2020.118185] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022]
Abstract
AIMS The immune response is essential for the control and resolution of viral infections. Following the outbreak of novel coronavirus disease (COVID-19), several immunotherapies were applied to modulate the immune responses of the affected patients. In this review, we aimed to describe the role of the immune system in response to COVID-19. We also provide a systematic review to collate and describe all published reports of the using immunotherapies, including convalescent plasma therapy, monoclonal antibodies, cytokine therapy, mesenchymal stem cell therapy, and intravenous immunoglobulin and their important outcomes in COVID-19 patients. MATERIAL AND METHODS A thorough search strategy was applied to identify published research trials in PubMed, Scopus, Medline, and EMBASE from Dec 1, 2019, to May 4, 2020, for studies reporting clinical outcomes of COVID-19 patients treated with immunotherapies along with other standard cares. KEY FINDINGS From an initial screen of 80 identified studies, 24 studies provided clinical outcome data on the use of immunotherapies for the treatment of COVID-19 patients, including convalescent plasma therapy (33 patients), monoclonal antibodies (55 patients), interferon (31 patients), mesenchymal stem cell therapy (8 patient), and immunoglobulin (63 patients). Except for nine severe patients who died after treatment, most patients were recovered from COVID-19 with improved clinical symptoms and laboratory assessment. SIGNIFICANCE Based on the available evidence, it seems that treatment with immunotherapy along with other standard cares could be an effective and safe approach to modulate the immune system and improvement of clinical outcomes.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mona Sadeghalvad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
135
|
Miller AC, Venkatachalam S. What's new in critical illness and injury science? Intravenous immunoglobulin for COVID-19 with severe or critical illness. Int J Crit Illn Inj Sci 2020; 10:159-162. [PMID: 33850822 PMCID: PMC8033207 DOI: 10.4103/ijciis.ijciis_192_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andrew C. Miller
- Department of Emergency Medicine, Nazareth Hospital, Philadelphia, PA, USA
| | | |
Collapse
|
136
|
Saha M, D'Cruz A, Paul N, Healy R, Collins D, Charles DA, Sahu S, Fonia A. Toxic epidermal necrolysis and co-existent SARS-CoV-2 (COVID-19) treated with intravenous immunoglobulin: 'Killing 2 birds with one stone'. J Eur Acad Dermatol Venereol 2020; 35:e97-e98. [PMID: 32805059 PMCID: PMC7461446 DOI: 10.1111/jdv.16887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 01/10/2023]
Affiliation(s)
- M Saha
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - A D'Cruz
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - N Paul
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - R Healy
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - D Collins
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - D-A Charles
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - S Sahu
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| | - A Fonia
- Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
| |
Collapse
|
137
|
Martincic Z, Skopec B, Rener K, Mavric M, Vovko T, Jereb M, Lukic M. Severe immune thrombocytopenia in a critically ill COVID-19 patient. Int J Infect Dis 2020; 99:269-271. [PMID: 32771636 PMCID: PMC7409801 DOI: 10.1016/j.ijid.2020.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
The novel coronavirus SARS-CoV-2 can cause a severe and even fatal respiratory illness named COVID-19. Apart from respiratory failure, COVID-19 may be associated with various autoimmune complications. We present a case of a critically ill patient with COVID-19 who developed severe immune thrombocytopenia that was successfully treated with a concomitant use of corticosteroids and intravenous immunoglobulins.
Collapse
Affiliation(s)
- Ziga Martincic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1000 Ljubljana, Slovenia.
| | - Barbara Skopec
- Department of Hematology, University Medical Centre Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Karla Rener
- Department of Hematology, University Medical Centre Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | - Matej Mavric
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1000 Ljubljana, Slovenia
| | - Tomaz Vovko
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1000 Ljubljana, Slovenia
| | - Matjaz Jereb
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Milica Lukic
- Department of Infectious Diseases, University Medical Centre Ljubljana, Japljeva 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
138
|
Chen T, Yang Q, Duan H. A severe coronavirus disease 2019 patient with high-risk predisposing factors died from massive gastrointestinal bleeding: a case report. BMC Gastroenterol 2020; 20:318. [PMID: 32993509 PMCID: PMC7522923 DOI: 10.1186/s12876-020-01458-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background SARS-CoV-2 is highly infectious and has been a significant public health threat. Despite typical manifestations of illness are dominated by respiratory symptom, some patients have concurrent gastrointestinal manifestations, including nausea, diarrhea, and vomiting. Massive gastrointestinal bleeding, however, has rarely been reported. Case presentation We herein described a case of severe SARS-CoV-2 infected patient with several risk factors for poor prognosis, including male, hypertension, old age, mixed bacterial infection and multilobular infiltration on radiological imaging. After improvement of respiratory status, the onset of gastrointestinal bleeding occurred, probably resulting from direct viral invasion as evidenced by the positive findings for SARS-CoV-2 in the repeat stool specimens. Although aggressive resuscitation was administered, hematochezia was uncontrolled. The patient rapidly deteriorated, suffered from cardiac arrest, and expired. Conclusions Digestive symptoms could be severe in SARS-CoV-2 infected patients, especially for the high-risk individuals with predisposing conditions. A more thorough protocol for preventing cross-infection through faecal-oral transmission should be implemented in the process of patient care and infection control.
Collapse
Affiliation(s)
- Taojiang Chen
- Department of Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Chengdu, Sichuan, China. .,Department of Pediatric Cardiovascular Disease, West China Second University Hospital, Sichuan University, No. 20, Section 3, RenminNanLu Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
139
|
Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs 2020; 80:1267-1292. [PMID: 32696108 PMCID: PMC7372203 DOI: 10.1007/s40265-020-01367-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 associated coronavirus disease 2019 (COVID-19) illness is a syndrome of viral replication in concert with a host inflammatory response. The cytokine storm and viral evasion of cellular immune responses may play an equally important role in the pathogenesis, clinical manifestation, and outcomes of COVID-19. Systemic proinflammatory cytokines and biomarkers are elevated as the disease progresses towards its advanced stages, and correlate with worse chances of survival. Immune modulators have the potential to inhibit cytokines and treat the cytokine storm. A literature search using PubMed, Google Scholar, and ClinicalTrials.gov was conducted through 8 July 2020 using the search terms ‘coronavirus’, ‘immunology’, ‘cytokine storm’, ‘immunomodulators’, ‘pharmacology’, ‘severe acute respiratory syndrome 2’, ‘SARS-CoV-2’, and ‘COVID-19’. Specific immune modulators include anti-cytokines such as interleukin (IL)-1 and IL-6 receptor antagonists (e.g. anakinra, tocilizumab, sarilumab, siltuximab), Janus kinase (JAK) inhibitors (e.g. baricitinib, ruxolitinib), anti-tumor necrosis factor-α (e.g. adalimumab, infliximab), granulocyte–macrophage colony-stimulating factors (e.g. gimsilumab, lenzilumab, namilumab), and convalescent plasma, with promising to negative trials and other data. Non-specific immune modulators include human immunoglobulin, corticosteroids such as dexamethasone, interferons, statins, angiotensin pathway modulators, macrolides (e.g. azithromycin, clarithromycin), hydroxychloroquine and chloroquine, colchicine, and prostaglandin D2 modulators such as ramatroban. Dexamethasone 6 mg once daily (either by mouth or by intravenous injection) for 10 days may result in a reduction in mortality in COVID-19 patients by one-third for patients on ventilators, and by one-fifth for those receiving oxygen. Research efforts should focus not only on the most relevant immunomodulatory strategies but also on the optimal timing of such interventions to maximize therapeutic outcomes. In this review, we discuss the potential role and safety of these agents in the management of severe COVID-19, and their impact on survival and clinical symptoms.
Collapse
Affiliation(s)
- John G Rizk
- Edson College, Arizona State University, Phoenix, AZ, USA.
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Epidemiology, University of California, Los Angeles, UCLA Fielding School of Public Health, Los Angeles, CA, USA.,Tibor Rubin VA Long Beach Healthcare System, Long Beach, CA, USA
| | - Mandeep R Mehra
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Youssef Rizk
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, Irvine, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, Irvine, CA, USA
| |
Collapse
|
140
|
Hartmann J, Klein HG. Supply and demand for plasma-derived medicinal products - A critical reassessment amid the COVID-19 pandemic. Transfusion 2020; 60:2748-2752. [PMID: 32856742 PMCID: PMC7460929 DOI: 10.1111/trf.16078] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Jan Hartmann
- Department of Medical Affairs and Clinical Development, Haemonetics Corporation, Boston, Massachusetts, USA
| | - Harvey G Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
141
|
Talotta R, Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J Clin Cases 2020; 8:3621-3644. [PMID: 32953841 PMCID: PMC7479552 DOI: 10.12998/wjcc.v8.i17.3621] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can give rise to different clinical manifestations that are directly related to viral tissue damage or indirectly induced by the antiviral immune response. Hyper-activation of the immune system in an attempt to eradicate the infection may trigger autoimmunity. Several immune-mediated disorders have been described in SARS-CoV-2-infected individuals. These include cutaneous rashes and vasculitis, autoimmune cytopenia, anti-phospholipid syndrome, central or peripheral neuropathy, myositis and myocarditis. On the other hand, rheumatic patients were reported to have similar coronavirus disease 2019 (COVID-19) incidence, morbidity and mortality rates compared to general population. This opinion review will summarize the crucial immunologic steps which occur during SARS-CoV-2-infection that may link autoimmunity to COVID-19 and provides an opportunity for further discussion regarding this association.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, Messina 98100, Italy
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, United States
| |
Collapse
|
142
|
El-Zein RS, Cardinali S, Murphy C, Keeling T. COVID-19-associated meningoencephalitis treated with intravenous immunoglobulin. BMJ Case Rep 2020; 13:e237364. [PMID: 32895254 PMCID: PMC10577790 DOI: 10.1136/bcr-2020-237364] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
A 40-year-old man presented with altered mental status after a recenthospitalisation for COVID-19 pneumonia. Cerebrospinal fluid (CSF) analysis showed lymphocytosis concerning for viral infection. The CSF PCR for SARS-CoV-2 was negative, yet this could not exclude COVID-19 meningoencephalitis. During hospitalisation, the patient's mentation deteriorated further requiring admission to the intensive care unit (ICU). Brain imaging and electroencephalogram (EEG) were unremarkable. He was, thus, treated with intravenous immunoglobulin (IVIg) for 5 days with clinical improvement back to baseline. This case illustrates the importance of considering COVID-19's impact on the central nervous system (CNS). Haematogenous, retrograde axonal transport, and the effects of cytokine storm are the main implicated mechanisms of CNS entry of SARS-CoV-2. While guidelines remain unclear, IVIg may be of potential benefit in the treatment of COVID-19-associated meningoencephalitis.
Collapse
Affiliation(s)
- Rayan S El-Zein
- Department of Internal Medicine, OhioHealth Doctors Hospital, Columbus, OH, USA
| | - Serge Cardinali
- Department of Internal Medicine, OhioHealth Doctors Hospital, Columbus, OH, USA
| | - Christie Murphy
- Department of Internal Medicine, OhioHealth Doctors Hospital, Columbus, OH, USA
| | - Thomas Keeling
- Department of Infectious Disease, OhioHealth Doctors Hospital, Columbus, OH, USA
| |
Collapse
|
143
|
Nasonov EL, Beketova TV, Reshetnyak TM, Lila AM, Ananieva LP, Lisitsyna TA, Soloviev SK. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.47360/1995-4484-2020-353-367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation and coagulation are key basic mechanism of protection against all potentially pathogenic mechanical and biological factors targeting human organism from inner and outer environment. On the other hand, uncontrolled inflammation results in hypercoagulation, inhibition of anticoagulation and alteration of mechanisms responsible for resolution of inflammation, while production of “procoagulant” mediators (thrombin, tissue factor and others), activation of platelets and of vascular endothelial cells maintains inflammation. All factors taken together serve as the basis for a pathological process called thromboinflammation or immunothrombosis. Currently thromboinflammation is considered in the broad sense as a universal pathogenetic mechanism of numerous widespread acute and chronic conditions, including immune-mediated (autoimmune) inflammatory rheumatic diseases, oftentimes complicated by severe irreversible damage to vital organs. Thromboinflammation gained specific attention during СОVID-19 (coronavirus disease 2019) pandemic, caused by SARS-Cov-2 (severe acute respiratory syndrome Coronavirus-2). COVID-19 is considered currently as systemic thromboinflammation syndrome, manifesting via generalized thrombosis of arterial and venous macro- and microvasculature, termed as COVID-19-coagulopathy. The paper discusses common pathogenetic coagulopathy mechanisms in COVID-19 and immune-mediated (autoimmune) inflammatory rheumatic diseases (IMRDs), associated with overproduction of antiphospholipid antibodies, activation of the complement system, and dis-regulated synthesis of proinflammatory cytokines, etc. Delineating the autoimmune subtype of thromboinflammation, identification of genetic (i.e., genes encoding the complement system and others) and molecular-biologic biomarkers associated with higher occurrence of COVID-19-coagulopathy are the most relevant undertakings for the current practice. Gaining insights into mechanisms of thromboinflammation and converting them into potential pharmacotherapies of IMDs would facilitate and accelerate the drafting of effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- VA Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University, MOH (Sechenov University)
| | | | - T. M. Reshetnyak
- VA Nasonova Research Institute of Rheumatology;
Russian Medical Academy of Continuing Prefessional Education, Ministry of Health of Russia
| | - A. M. Lila
- VA Nasonova Research Institute of Rheumatology
| | | | | | | |
Collapse
|
144
|
Attri B, Goyal A, Gupta Y, Tandon N. Basal-Bolus Insulin Regimen for Hospitalised Patients with COVID-19 and Diabetes Mellitus: A Practical Approach. Diabetes Ther 2020; 11:2177-2194. [PMID: 32683660 PMCID: PMC7368619 DOI: 10.1007/s13300-020-00873-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM The coronavirus disease 2019 (COVID-19) outbreak has rapidly crossed international boundaries and placed increasing demands on healthcare facilities worldwide. Patients with diabetes and uncontrolled blood glucose levels are at increased risk for poor clinical outcomes and in-hospital mortality related to COVID-19. Therefore, achieving good glycaemic control is of paramount importance among hospitalised patients with COVID-19. Basal-bolus insulin therapy is a safe and effective intervention for the management of hyperglycaemia in hospitalised patients. The aim of this article is to provide a practical guidance for the use of the basal-bolus insulin regimen in hospitalised patients with COVID-19 and diabetes mellitus. METHODS This guidance document was formulated based on the review of available literature and the combined personal experiences of the authors. We provide a comprehensive review on the use of the basal-bolus insulin regimen, including its principles, rationale, indications, prerequisites, initiation, and dose titration, and also suggest targets for blood glucose control and different levels of capillary blood glucose monitoring. Various case scenarios are used to illustrate how optimal glucose control can be achieved, such as through adjustments in doses of prandial and basal insulin, the use of correctional insulin dosing and changes in the timing and content of major and minor meals. CONCLUSION The practical guidance for the use of the basal-bolus insulin regimen in hospitalised patients with COVID-19 and diabetes mellitus presented here can be used for patients admitted to hospital for indications other than COVID-19 and for those in ambulatory care.
Collapse
Affiliation(s)
- Bhawna Attri
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Alpesh Goyal
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Yashdeep Gupta
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India.
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
145
|
Tanner T, Wahezi DM. Hyperinflammation and the utility of immunomodulatory medications in children with COVID-19. Paediatr Respir Rev 2020; 35:81-87. [PMID: 32792288 PMCID: PMC7387280 DOI: 10.1016/j.prrv.2020.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
The rapid spread of SARS-CoV-2 infection globally coupled with the relatively high case-fatality rate has led to immediate need for therapeutic intervention to prevent and treat COVID-19 disease. There is accumulating evidence that morbidity and mortality in COVID-19 may be exacerbated by a dysregulated host immune response resulting in significant hyperinflammation and cytokine release. The aim of this review is to describe the basis for the immune dysregulation caused by SARS-CoV-2 infection and to examine current investigations into immunomodulatory therapies aimed at targeting the excessive host immune response.
Collapse
Affiliation(s)
- Tamara Tanner
- Division of Pediatric Rheumatology, Children's Hospital at Montefiore, 3415 Bainbridge Ave, Bronx, NY, 10467, United States.
| | - Dawn M Wahezi
- Division of Pediatric Rheumatology, Children's Hospital at Montefiore, 3415 Bainbridge Ave, Bronx, NY, 10467, United States.
| |
Collapse
|
146
|
Mohtadi N, Ghaysouri A, Shirazi S, Sara Ansari, Shafiee E, Bastani E, Kokhazadeh T, Tavan H. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: A case series. Virology 2020; 548:1-5. [PMID: 32530808 PMCID: PMC7247490 DOI: 10.1016/j.virol.2020.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION During the recent months, COVID-19 has turned to a global crisis claiming high mortality and morbidity among populations. Despite the high prevalence of the disease, it has currently no definitive treatment. We here reported the effects of intravenous immunoglobulin (IVIG) administration in severely ill COVID-19 patients diagnosed based on PCR and radiology tests. CASE PRESENTATION Five severely ill COVID-19 patients in whom standard treatments failed were administrated with IVIG which prevented the deterioration of clinical symptoms. All the patients were treated with high-dose IVIG (0.3-0.5 g/kg) for 5 consecutive days so that no patient would receive lower than 25 g of the drug. All the patients showed a desirable therapeutic response and were discharged from the hospital with a stable clinical condition after being recovered. CONCLUSION Treatment with IVIG at the therapeutic dose of 0.3-0.5 g/kg can improve the clinical condition and O2 saturation and prevent the progression of pulmonary lesions in COVID-19 patients with severe symptoms in whom standard treatments have failed.
Collapse
Affiliation(s)
- Negar Mohtadi
- School of Medicine, Shahid Mostafa Khomaeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Abas Ghaysouri
- Department of Internal Medicine, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Samira Shirazi
- Department of Cardiology, School of Medicine, Shahid Mostafa Khomaeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Sara Ansari
- Department of Radiology, School of Medicine, Shahid Mostafa Khomaeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Shafiee
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Elham Bastani
- Department of Internal Medicine, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Taleb Kokhazadeh
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamed Tavan
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran.
| |
Collapse
|
147
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
148
|
Abstract
Alors qu’au début de l’année 2020, l’épidémie de Covid-19 se propageait à toute vitesse, de très nombreuses équipes scientifiques se sont mises au travail à travers le monde. La prise en charge des infections au severe acute respiratory syndrome coronavirus 2 repose sur des traitements non spécifiques (symptomatiques) ou spécifiques (curatifs) expérimentaux. Le vaccin sera la clé d’une immunisation sur le long terme.
Collapse
|
149
|
Hamdy SM, Abdel-Naseer M, Shehata HS, Shalaby NM, Hassan A, Elmazny A, Shaker E, Nada MAF, Ahmed SM, Hegazy MI, Mourad HS, Abdelalim A, Magdy R, Othman AS, Mekkawy DA, Kishk NA. Management Strategies of Patients with Neuromyelitis Optica Spectrum Disorder During the COVID-19 Pandemic Era. Ther Clin Risk Manag 2020; 16:759-767. [PMID: 32884277 PMCID: PMC7443007 DOI: 10.2147/tcrm.s261753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022] Open
Abstract
The ongoing coronavirus (COVID-19) pandemic is a global health emergency of international concern and has affected management plans of many autoimmune disorders. Immunosuppressive and immunomodulatory therapies are pivotal in the management of neuromyelitis optica spectrum disorder (NMOSD), potentially placing patients at an increased risk of contracting infections such as COVID-19. The optimal management strategy of NMOSD during the COVID-19 era remains unclear. Here, however, we examined the evidence of NMOSD disease-modifying therapies (DMTs) use during the present period and highlighted different scenarios including treatment of relapses as well as initiation and maintenance of DMTs in order to optimize care of NMOSD patients in the COVID-19 era.
Collapse
Affiliation(s)
- Sherif M Hamdy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maged Abdel-Naseer
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hatem S Shehata
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nevin M Shalaby
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amr Hassan
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alaa Elmazny
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ehab Shaker
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona A F Nada
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sandra M Ahmed
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed I Hegazy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Husam S Mourad
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Abdelalim
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rehab Magdy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Alshimaa S Othman
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa A Mekkawy
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nirmeen A Kishk
- Neurology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
150
|
Ma Z, Li P, Ikram A, Pan Q. Does Cross-neutralization of SARS-CoV-2 Only Relate to High Pathogenic Coronaviruses? Trends Immunol 2020; 41:851-853. [PMID: 32863136 PMCID: PMC7414423 DOI: 10.1016/j.it.2020.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Zhongren Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Pengfei Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Aqsa Ikram
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Qiuwei Pan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|