101
|
Jankowski MP, Rau KK, Ekmann KM, Anderson CE, Koerber HR. Comprehensive phenotyping of group III and IV muscle afferents in mouse. J Neurophysiol 2013; 109:2374-81. [PMID: 23427306 DOI: 10.1152/jn.01067.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
While much is known about the functional properties of cutaneous nociceptors, relatively little is known about the comprehensive functional properties of group III and IV muscle afferents. We have developed a mouse ex vivo forepaw muscle, median and ulnar nerve, dorsal root ganglion (DRG), spinal cord recording preparation to examine the functional response properties, neurochemical phenotypes, and spinal projections of individual muscle afferents. We found that the majority of group III and IV muscle afferents were chemosensitive (52%) while only 34% responded to mechanical stimulation and fewer (32%) responded to thermal stimuli. The chemosensitive afferents could be grouped into those that responded to a "low"-metabolite mixture containing amounts of lactate and ATP at pH 7.0 simulating levels observed in muscle during exercise (metaboreceptors) and a "high"-metabolite mixture containing lactic acid concentrations and ATP at pH 6.6 mimicking levels observed during ischemic contractions (metabo-nociceptors). While the majority of the metabo-nociceptive fibers responding to the higher concentration levels were found to contain acid-sensing ion channel 3 (ASIC3) and/or transient receptor potential vanilloid type 1 (TRPV1), metaboreceptors responding to the lower concentration levels lacked these receptors. Anatomically, group III muscle afferents were found to have projections into laminae I and IIo, and deeper laminae in the spinal cord, while all functional types of group IV muscle afferents projected primarily into both laminae I and II. These results provide novel information about the variety of sensory afferents innervating the muscle and provide insight into the types of fibers that may exhibit plasticity after injuries.
Collapse
Affiliation(s)
- Michael P Jankowski
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
102
|
Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:636848. [PMID: 23258994 PMCID: PMC3520481 DOI: 10.1155/2012/636848] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022]
Abstract
Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1) and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture-) mediated analgesia are unknown. We injected mice with carrageenan (carra) or a complete Freund's adjuvant (CFA) to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion) neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential) threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models.
Collapse
|
103
|
Abstract
Dry needling is a common treatment technique in orthopedic manual physical therapy. Although various dry needling approaches exist, the more common and best supported approach targets myofascial trigger points. This article aims to place trigger point dry needling within the context of pain sciences. From a pain science perspective, trigger points are constant sources of peripheral nociceptive input leading to peripheral and central sensitization. Dry needling cannot only reverse some aspects of central sensitization, it reduces local and referred pain, improves range of motion and muscle activation pattern, and alters the chemical environment of trigger points. Trigger point dry needling should be based on a thorough understanding of the scientific background of trigger points, the differences and similarities between active and latent trigger points, motor adaptation, and central sensitize application. Several outcome studies are included, as well as comments on dry needling and acupuncture.
Collapse
Affiliation(s)
- Jan Dommerholt
- Bethesda Physiocare, Bethesda, MD, USA ; Myopain Seminars, Bethesda, MD, USA
| |
Collapse
|
104
|
Gautam M, Benson CJ. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB J 2012; 27:793-802. [PMID: 23109675 DOI: 10.1096/fj.12-220400] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC(-/-) mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a(-/-) muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2(-/-) mice showed diminished potentiation by zinc, and currents from ASIC3(-/-) mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.
Collapse
Affiliation(s)
- Mamta Gautam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University ofIowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
105
|
He QL, Chen Y, Qin J, Mo SL, Wei M, Zhang JJ, Li MN, Zou XN, Zhou SF, Chen XW, Sun LB. Osthole, a herbal compound, alleviates nucleus pulposus-evoked nociceptive responses through the suppression of overexpression of acid-sensing ion channel 3 (ASIC3) in rat dorsal root ganglion. Med Sci Monit 2012; 18:BR229-36. [PMID: 22648244 PMCID: PMC3560735 DOI: 10.12659/msm.882899] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Osthole (Ost), a natural coumarin derivative, has been shown to inhibit many pro-inflammatory mediators and block voltage-gated Na+ channels. During inflammation, acidosis is an important pain inducer which activates nociceptors by gating depolarizing cationic channels, such as acid-sensing ion channel 3 (ASIC3). The aim of this study was to examine the effects of Ost on nucleus pulposus-evoked nociceptive responses and ASIC3 over-expression in the rat dorsal root ganglion, and to investigate the possible mechanism. MATERIAL/METHODS Radicular pain was generated with application of nucleus pulposus (NP) to nerve root. Mechanical allodynia was evaluated using von Frey filaments with logarithmically incremental rigidity to calculate the 50% probability thresholds for mechanical paw withdrawal. ASIC3 protein expression in dorsal root ganglions (DRGs) was assessed with Western blot and immunohistochemistry. Membrane potential (MP) shift of DRG neurons induced by ASIC3-sensitive acid (pH6.5) was determined by DiBAC(4) (3) fluorescence intensity (F.I.). RESULTS The NP-evoked mechanical hyperalgesia model showed allodynia for 3 weeks, and ASIC3 expression was up-regulated in DRG neurons, reaching peak on Day 7. Epidural administration of Ost induced a remarkable and prolonged antinociceptive effect, accompanied by an inhibition of over-expressed ASIC3 protein and of abnormal shift of MP. Amiloride (Ami), an antagonist of ASIC3, strengthened the antinociceptive effect of Ost. CONCLUSIONS Up-regulation of ASIC3 expression may be associated with NP-evoked mechanical hyperalgesia. A single epidural injection of Ost decreased ASIC3 expression in DGR neurons and the pain in the NP-evoked mechanical hyperalgesia model. Osthole may be of great benefit for preventing chronic pain status often seen in lumbar disc herniation (LDH).
Collapse
Affiliation(s)
- Qiu-Lan He
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Liu YQ, Qiu F, Qiu CY, Cai Q, Zou P, Wu H, Hu WP. Cannabinoids inhibit acid-sensing ion channel currents in rat dorsal root ganglion neurons. PLoS One 2012; 7:e45531. [PMID: 23029075 PMCID: PMC3446897 DOI: 10.1371/journal.pone.0045531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/21/2012] [Indexed: 12/26/2022] Open
Abstract
Local acidosis has been found in various pain-generating conditions such as inflammation and tissue injury. Cannabinoids exert a powerful inhibitory control over pain initiation via peripheral cognate receptors. However, the peripheral molecular targets responsible for the antinociceptive effects of cannabinoids are still poorly understood. Here, we have found that WIN55,212-2, a cannabinoid receptor agonist, inhibits the activity of native acid-sensing ion channels (ASICs) in rat dorsal root ganglion (DRG) neurons. WIN55,212-2 dose-dependently inhibited proton-gated currents mediated by ASICs. WIN55,212-2 shifted the proton concentration–response curve downwards, with an decrease of 48.6±3.7% in the maximum current response but with no significant change in the EC50 value. The inhibition of proton-gated current induced by WIN55,212-2 was almost completely blocked by the selective CB1 receptor antagonist AM 281, but not by the CB2 receptor antagonist AM630. Pretreatment of forskolin, an AC activator, and the addition of cAMP also reversed the inhibition of WIN55,212-2. Moreover, WIN55,212-2 altered acid-evoked excitability of rat DRG neurons and decreased the number of action potentials induced by acid stimuli. Finally, WIN55,212-2 attenuated nociceptive responses to injection of acetic acid in rats. These results suggest that WIN55,212-2 inhibits the activity of ASICs via CB1 receptor and cAMP dependent pathway in rat primary sensory neurons. Thus, cannabinoids can exert their analgesic action by interaction with ASICs in the primary afferent neurons, which was novel analgesic mechanism of cannabinoids.
Collapse
Affiliation(s)
- Yu-Qiang Liu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, P R China
| | - Fang Qiu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, P R China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, P R China
| | - Qi Cai
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, P R China
| | - Pengcheng Zou
- Hubei Furen Pharmaceutical Corporation Ltd, Shinanqiao, Tongcheng, Hubei, P R China
| | - Heming Wu
- Hubei Furen Pharmaceutical Corporation Ltd, Shinanqiao, Tongcheng, Hubei, P R China
| | - Wang-Ping Hu
- Department of Pharmacology, Hubei University of Science and Technology, Xianning, Hubei, P R China
- * E-mail:
| |
Collapse
|
107
|
Jiang Q, Zha XM, Chu XP. Inhibition of human acid-sensing ion channel 1b by zinc. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2012; 4:84-93. [PMID: 22837807 PMCID: PMC3403561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/08/2012] [Indexed: 06/01/2023]
Abstract
Acid-sensing ion channel 1b (ASIC1b) is expressed in peripheral sensory neurons and has been implicated in nociception. Understanding the modulation of ASIC1b will provide important insight into how ASIC1b contributes to pain sensation. In our previous study, we showed that zinc, an important modulator of pain sensation, reduces rat ASIC1b current. However, rat ASIC1b shows several important differences from its recently identified human homolog. Most noticeably, human ASIC1b (hASIC1b) has a sustained component, which may play a role in persistent pain. Therefore, we tested here the hypothesis that zinc modulates the current properties of hASIC1b. Bath application of zinc suppressed the peak amplitude of hASIC1b currents, with a half-maximum inhibitory concentration of 37 μM. However, zinc did not affect the sustained component of hASIC1b currents. The effect of zinc was independent of pH-dependent activation, steady-state desensitization, and extracellular Ca(2+), suggesting noncompetitive mechanisms. Further, we found that extracellular site(s) of the hASIC1b subunit is important for the effect of zinc. Mutating cysteine 196, but not cysteine 309, in the extracellular domain of the hASIC1b abolished the zinc inhibition. These results suggest that, through modulating cysteine196, zinc may have a modulatory role in acute pain.
Collapse
Affiliation(s)
- Qian Jiang
- Department of Basic Medical Science, University of Missouri-Kansas City School of MedicineKansas City, MO 64108, USA
| | - Xiang-Ming Zha
- Department of Cell Biology and Neuroscience, University of South Alabama College of MedicineMobile, AL 36688, USA
| | - Xiang-Ping Chu
- Department of Basic Medical Science, University of Missouri-Kansas City School of MedicineKansas City, MO 64108, USA
| |
Collapse
|
108
|
Qiu CY, Liu YQ, Qiu F, Wu J, Zhou QY, Hu WP. Prokineticin 2 potentiates acid-sensing ion channel activity in rat dorsal root ganglion neurons. J Neuroinflammation 2012; 9:108. [PMID: 22642848 PMCID: PMC3413530 DOI: 10.1186/1742-2094-9-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/29/2012] [Indexed: 12/16/2022] Open
Abstract
Background Prokineticin 2 (PK2) is a secreted protein and causes potent hyperalgesia in vivo, and is therefore considered to be a new pronociceptive mediator. However, the molecular targets responsible for the pronociceptive effects of PK2 are still poorly understood. Here, we have found that PK2 potentiates the activity of acid-sensing ion channels in the primary sensory neurons. Methods In the present study, experiments were performed on neurons freshly isolated from rat dorsal root ganglion by using whole-cell patch clamp and voltage-clamp recording techniques. Results PK2 dose-dependently enhanced proton-gated currents with an EC50 of 0.22 ± 0.06 nM. PK2 shifted the proton concentration-response curve upwards, with a 1.81 ± 0.11 fold increase of the maximal current response. PK2 enhancing effect on proton-gated currents was completely blocked by PK2 receptor antagonist. The potentiation was also abolished by intracellular dialysis of GF109203X, a protein kinase C inhibitor, or FSC-231, a protein interacting with C-kinase 1 inhibitor. Moreover, PK2 enhanced the acid-evoked membrane excitability of rat dorsal root ganglion neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, PK2 exacerbated nociceptive responses to the injection of acetic acid in rats. Conclusion These results suggest that PK2 increases the activity of acid-sensing ion channels via the PK2 receptor and protein kinase C-dependent signal pathways in rat primary sensory neurons. Our findings support that PK2 is a proalgesic factor and its signaling likely contributes to acidosis-evoked pain by sensitizing acid-sensing ion channels.
Collapse
Affiliation(s)
- Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
109
|
Xiong QJ, Hu ZL, Wu PF, Ni L, Deng ZF, Wu WN, Chen JG, Wang F. Acid-sensing ion channels contribute to the increase in vesicular release from SH-SY5Y cells stimulated by extracellular protons. Am J Physiol Cell Physiol 2012; 303:C376-84. [PMID: 22592406 DOI: 10.1152/ajpcell.00067.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acid-sensing ion channels (ASICs) have been reported to play a role in the neuronal dopamine pathway, but the exact role in neurotransmitter release remains elusive. Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line, which can release monoamine neurotransmitters. In this study, the expression of ASICs was identified in SH-SY5Y cells to further explore the role of ASICs in vesicular release stimulated by acid. We gathered evidence that ASICs could be detected in SH-SY5Y cells. In whole cell patch-clamp recording, a rapid decrease in extracellular pH evoked inward currents, which were reversibly inhibited by 100 μM amiloride. The currents were pH dependent, with a pH of half-maximal activation (pH(0.5)) of 6.01 ± 0.04. Furthermore, in calcium imaging and FM 1-43 dye labeling, it was shown that extracellular protons increased intracellular calcium levels and vesicular release in SH-SY5Y cells, which was attenuated by PcTx1 and amiloride. Interestingly, N-type calcium channel blockers inhibited the vesicular release induced by acidification. In conclusion, ASICs are functionally expressed in SH-SY5Y cells and involved in vesicular release stimulated by acidification. N-type calcium channels may be involved in the increase in vesicular release induced by acid. Our results provide a preliminary study on ASICs in SH-SY5Y cells and neurotransmitter release, which helps to further investigate the relationship between ASICs and dopaminergic neurons.
Collapse
Affiliation(s)
- Qiu-Ju Xiong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Oliveira LR, de Melo VU, Macedo FN, Barreto AS, Badaue-Passos D, Viana dos Santos MR, Dias DPM, Sluka KA, DeSantana JM, Santana-Filho VJ. Induction of chronic non-inflammatory widespread pain increases cardiac sympathetic modulation in rats. Auton Neurosci 2012; 167:45-9. [PMID: 22266357 DOI: 10.1016/j.autneu.2011.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 12/13/2022]
Abstract
Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n=8) five days apart into the left gastrocnemius muscle. Control animals were injected twice with normal saline (pH 7.2, n=6). One day after the second injection of acidic saline or normal saline, the animals had pulse interval (PI) and systolic arterial pressure (SAP) variability, and spontaneous baroreflex sensitivity (BRS) evaluated. After induction of CWP, there was an increase of power in the low frequency (LF) band of PI spectrum (12.75 ± 1.04 nu), a decrease in the high frequency (HF) band (87.25 ± 1.04 nu) and an increase of LF/HF ratio (0.16 ± 0.01), when compared to control animals (7.83 ± 1.13 nu LF; 92.16 ± 1.13 nu HF; 0.08 ± 0.01 LF/HF). In addition, there was an increase of power in the LF band of SAP spectrum (7.93 ± 1.39 mmHg(2)) when compared to control animals (2.97 ± 0.61 mmHg(2)). BRS was lower in acidic saline injected rats (0.59 ± 0.06 ms/mmHg) when compared to control animals (0.71 ± 0.03 ms/mmHg). Our results showed that induction of CWP in rats shifts cardiac sympathovagal balance towards sympathetic predominance and decreases BRS. These data corroborate findings in humans with FM.
Collapse
|
111
|
Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls. Psychosom Med 2012; 74:46-54. [PMID: 22210239 PMCID: PMC3256093 DOI: 10.1097/psy.0b013e31824152ed] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Chronic fatigue syndrome (CFS) and multiple sclerosis (MS) are characterized by debilitating fatigue, yet evaluation of this symptom is subjective. We examined metabolite-detecting, adrenergic, and immune gene expression (messenger ribonucleic acid [mRNA]) in patients with CFS (n = 22) versus patients with MS (n = 20) versus healthy controls (n = 23) and determined their relationship to fatigue and pain before and after exercise. METHODS Blood samples and fatigue and pain ratings were obtained at baseline and 0.5, 8, 24, and 48 hours after sustained moderate exercise. Leukocyte mRNA of four metabolite-detecting receptors (acid-sensing ion channel 3, purinergic type 2X4 and 2X5 receptors, and transient receptor potential vanilloid type 1) and four adrenergic (α-2a, β-1, and β-2 receptors and catechol-O-methyltransferase) and five immune markers (CD14, toll-like receptor 4 [TLR4], interleukin [IL] 6, IL-10, and lymphotoxin α) was examined using quantitative polymerase chain reaction. RESULTS Patients with CFS had greater postexercise increases in fatigue and pain (10-29 points above baseline, p < .001) and greater mRNA increases in purinergic type 2X4 receptor, transient receptor potential vanilloid type 1, CD14, and all adrenergic receptors than controls (mean ± standard error = 1.3 ± 0.14- to 3.4 ± 0.90-fold increase above baseline, p = .04-.005). Patients with CFS with comorbid fibromyalgia (n = 18) also showed greater increases in acid-sensing ion channel 3 and purinergic type 2X5 receptors (p < .05). Patients with MS had greater postexercise increases than controls in β-1 and β-2 adrenergic receptor expressions (1.4 ± 0.27- and 1.3 ± 0.06-fold increases, respectively, p = .02 and p < .001) and greater decreases in TLR4 (p = .02). In MS, IL-10 and TLR4 decreases correlated with higher fatigue scores. CONCLUSIONS Postexercise mRNA increases in metabolite-detecting receptors were unique to patients with CFS, whereas both patients with MS and patients with CFS showed abnormal increases in adrenergic receptors. Among patients with MS, greater fatigue was correlated with blunted immune marker expression.
Collapse
|
112
|
Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 2011; 134:127-38. [PMID: 22233754 DOI: 10.1016/j.pharmthera.2011.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
The acid-sensing ion channel 3 (ASIC3) is a pH sensor that responds to mild extracellular acidification and is predominantly expressed in nociceptors. There is much interest in targeting ASIC3 to relieve pain associated with tissue acidosis, and selective drugs targeting ASIC3 have been used to relieve acid-evoked pain in animal models and human studies. There is accumulating evidence that ASIC3 is widely expressed in many neuronal and non-neuronal cells, such as neurons in the brain and adipose cells, albeit to a lesser extent than in nociceptors. Asic3-knockout mice have reduced anxiety levels and enhanced insulin sensitivity, suggesting that antagonizing ASIC3 has additional benefits. This view is tempered by recent studies suggesting that Asic3-knockout mice may experience cardiovascular disturbances. Due to the development of ASIC3 antagonists as analgesics, we review here the additional benefits, safety, risks, and strategy associated with antagonizing ASIC3 function.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
113
|
ASICs Do Not Play a Role in Maintaining Hyperalgesia Induced by Repeated Intramuscular Acid Injections. PAIN RESEARCH AND TREATMENT 2011; 2012:817347. [PMID: 22191025 PMCID: PMC3236358 DOI: 10.1155/2012/817347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/04/2011] [Indexed: 11/30/2022]
Abstract
Repeated intramuscular acid injections produce long-lasting mechanical hyperalgesia that depends on activation of ASICs. The present study investigated if pH-activated currents in sensory neurons innervating muscle were altered in response to repeated acid injections, and if blockade of ASICs reverses existing hyperalgesia. In muscle sensory neurons, the mean acid-evoked current amplitudes and the biophysical properties of the ASIC-like currents were unchanged following acidic saline injections when compared to neutral pH saline injections or uninjected controls. Moreover, increased mechanical sensitivity of the muscle and paw after the second acid injection was unaffected by local blockade of ASICs (A-317567) in the muscle. As a control, electron microscopic analysis showed that the tibial nerve was undamaged after acid injections. Our previous studies demonstrated that ASICs are important in the development of hyperalgesia to repeated acid injections. However, the current data suggest that ASICs are not involved in maintaining hyperalgesia to repeated intramuscular acid injections.
Collapse
|
114
|
An antinociceptive role for substance P in acid-induced chronic muscle pain. Proc Natl Acad Sci U S A 2011; 109:E76-83. [PMID: 22084095 DOI: 10.1073/pnas.1108903108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Release of substance P (SP) from nociceptive nerve fibers and activation of its receptor neurokinin 1 (NK1) are important effectors in the transmission of pain signals. Nonetheless, the role of SP in muscle pain remains unknown. Here we show that a single i.m. acid injection in mice lacking SP signaling by deletion of the tachykinin precursor 1 (Tac1) gene or coadministration of NK1 receptor antagonists produces long-lasting hyperalgesia rather than the transient hyperalgesia seen in control animals. The inhibitory effect of SP was found exclusively in neurons expressing acid-sensing ion channel 3, where SP enhances M-channel-like potassium currents through the NK1 receptor in a G protein-independent but tyrosine kinase-dependent manner. Furthermore, the SP signaling could alter action potential thresholds and modulate the expression of TTX-resistant sodium currents in medium-sized muscle nociceptors. Thus, i.m. SP mediates an unconventional NK1 receptor signal pathway to inhibit acid activation in muscle nociceptors, resulting in an unexpected antinociceptive effect against chronic mechanical hyperalgesia, here induced by repeated i.m. acid injection.
Collapse
|
115
|
Chen WH, Hsieh CL, Huang CP, Lin TJ, Tzen JT, Ho TY, Lin YW. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain. J Biomed Sci 2011; 18:82. [PMID: 22070775 PMCID: PMC3233511 DOI: 10.1186/1423-0127-18-82] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/09/2011] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation. Methods Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG) neurons. Results In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA) at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation. Conclusions In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- College of Agriculture and Natural Resources, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
116
|
Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome. PAIN RESEARCH AND TREATMENT 2011; 2012:427869. [PMID: 22110941 PMCID: PMC3200121 DOI: 10.1155/2012/427869] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/08/2011] [Indexed: 12/19/2022]
Abstract
In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.
Collapse
|
117
|
Acid-sensing channels in human bladder: expression, function and alterations during bladder pain syndrome. J Urol 2011; 186:1509-16. [PMID: 21855903 DOI: 10.1016/j.juro.2011.05.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 12/27/2022]
Abstract
PURPOSE We examined the possible role of H(+) activated acid-sensing ion channels in pain perception. We characterized expression in bladder dome biopsies from patients with bladder pain syndrome and controls, in cultured human urothelium and in urothelial TEU-2 cells. MATERIALS AND METHODS Cold cut biopsies from the bladder dome were obtained in 8 asymptomatic controls and 28 patients with bladder pain syndrome symptoms. Acid-sensing ion channel expression was analyzed by quantitative real-time polymerase chain reaction and immunofluorescence. Channel function was measured by electrophysiology. RESULTS Acid-sensing ion channel 1a, 2a and 3 mRNA was detected in the human bladder. Similar amounts of acid-sensing ion channel 1a and 3 were detected in detrusor smooth muscle while in urothelium acid-sensing ion channel 3 levels were higher than levels of acid-sensing ion channel 1a. Acid-sensing ion channel 2a mRNA levels were lower than acid-sensing ion channel 1a and 3 levels in each layer. Acid-sensing ion channel currents were measured in TEU-2 cells and in primary cultures of human urothelium. Activated acid-sensing ion channel expression was confirmed by quantitative real-time polymerase chain reaction. TEU-2 cell differentiation caused acid-sensing ion channel 2a and 3 mRNA up-regulation, and acid-sensing ion channel 1a mRNA down-regulation. Patients with bladder pain syndrome showed up-regulation of acid-sensing ion channel 2a and 3 mRNA but acid-sensing ion channel 1a remained unchanged. In contrast, transient receptor potential vanilloid 1 mRNA was down-regulated during bladder pain syndrome. All differences were statistically significant (p <0.05). CONCLUSIONS Several acid-sensing ion channel subunits are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Up-regulation of acid-sensing ion channel 2a and 3 in patients with bladder pain syndrome suggests involvement in increased pain and hyperalgesia. Down-regulation of transient receptor potential vanilloid 1 mRNA might indicate that a different regulatory mechanism controls its expression in the human bladder.
Collapse
|
118
|
Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA. Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 2011; 152:2348-2356. [PMID: 21843914 DOI: 10.1016/j.pain.2011.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
Abstract
Acid-sensing ion channels (ASICs) are activated by acidic pH and may play a significant role in the development of hyperalgesia. Earlier studies show ASIC3 is important for induction of hyperalgesia after muscle insult using ASIC3-/- mice. ASIC3-/- mice lack ASIC3 throughout the body, and the distribution and composition of ASICs could be different from wild-type mice. We therefore tested whether knockdown of ASIC3 in primary afferents innervating muscle of adult wild-type mice prevented development of hyperalgesia to muscle inflammation. We cloned and characterized artificial miRNAs (miR-ASIC3) directed against mouse ASIC3 (mASIC3) to downregulate ASIC3 expression in vitro and in vivo. In CHO-K1 cells transfected with mASIC3 cDNA in culture, the miR-ASIC3 constructs inhibited protein expression of mASIC3 and acidic pH-evoked currents and had no effect on protein expression or acidic pH-evoked currents of ASIC1a. When miR-ASIC3 was used in vivo, delivered into the muscle of mice using a herpes simplex viral vector, both muscle and paw mechanical hyperalgesia were reduced after carrageenan-induced muscle inflammation. ASIC3 mRNA in DRG and protein levels in muscle were decreased in vivo by miR-ASIC3. In CHO-K1 cells co-transfected with ASIC1a and ASIC3, miR-ASIC3 reduced the amplitude of acidic pH-evoked currents, suggesting an overall inhibition in the surface expression of heteromeric ASIC3-containing channels. Our results show, for the first time, that reducing ASIC3 in vivo in primary afferent fibers innervating muscle prevents the development of inflammatory hyperalgesia in wild-type mice, and thus, may have applications in the treatment of musculoskeletal pain in humans.
Collapse
Affiliation(s)
- Roxanne Y Walder
- Physical Therapy and Rehabilitation Sciences Graduate Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA, USA Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA Department of Internal Medicine, Pain Research Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
119
|
Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition. Neuroscience 2011; 193:89-99. [PMID: 21767613 DOI: 10.1016/j.neuroscience.2011.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/14/2011] [Accepted: 07/07/2011] [Indexed: 01/21/2023]
Abstract
Acid-sensing ion channel 1b (ASIC1b) is a proton-gated Na(+) channel mostly expressed in peripheral sensory neurons. To date, the functional significance of ASIC1b in these cells is unclear due to the lack of a specific inhibitor/blocker. A better understanding of the regulation of ASIC1b may provide a clue for future investigation of its functional importance. One important regulator of acid-sensing ion channels (ASICs) is zinc. In this study, we examined the detailed zinc inhibition of ASIC1b currents and specific amino acid(s) involved in the inhibition. In Chinese hamster ovary (CHO) cells expressing rat ASIC1b subunit, pretreatment with zinc concentration-dependently inhibited the ASIC1b currents triggered by pH dropping from 7.4 to 6.0 with a half-maximum inhibitory concentration of 26 μM. The inhibition of ASIC1b currents by pre-applied zinc was independent of pH, voltage, or extracellular Ca(2+). Further, we showed that the effect of zinc is dependent on the extracellular cysteine, but not histidine residue. Mutating cysteine 149, but not cysteine 58 or cysteine 162, located in the extracellular domain of the ASIC1b subunit abolished the zinc inhibition. These findings suggest that cysteine 149 in the extracellular finger domain of ASIC1b subunit is critical for zinc-mediated inhibition and provide the basis for future mechanistic studies addressing the functional significance of zinc inhibition of ASIC1b.
Collapse
|
120
|
de Resende MA, Silva LFS, Sato K, Arendt-Nielsen L, Sluka KA. Blockade of opioid receptors in the medullary reticularis nucleus dorsalis, but not the rostral ventromedial medulla, prevents analgesia produced by diffuse noxious inhibitory control in rats with muscle inflammation. THE JOURNAL OF PAIN 2011; 12:687-97. [PMID: 21330219 DOI: 10.1016/j.jpain.2010.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/03/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022]
Abstract
UNLABELLED Diffuse Noxious Inhibitory Controls (DNIC) involves application of a noxious stimulus outside the testing site to produce analgesia. In human subjects with a variety of chronic pain conditions, DNIC is less effective; however, in animal studies, DNIC is more effective after tissue injury. While opioids are involved in DNIC analgesia, the pathways involved in this opioid-induced analgesia are not clear. The aim of the present study was to test the effectiveness of DNIC in inflammatory muscle pain, and to study which brainstem sites mediate DNIC- analgesia. Rats were injected with 3% carrageenan into their gastrocnemius muscle and responses to cutaneous and muscle stimuli were assessed before and after inflammation, and before and after DNIC induced by noxious heat applied to the tail (45 °C and 47 °C). Naloxone was administered systemically, into rostral ventromedial medulla (RVM), or bilaterally into the medullary reticularis nucleus dorsalis (MdD) prior to the DNIC-conditioning stimuli. DNIC produced a similar analgesic effect in both acute and the chronic phases of inflammation reducing both cutaneous and muscle sensitivity in a dose-dependent manner. Naloxone systemically or microinjected into the MdD prevented DNIC-analgesia, while naloxone into the RVM had no effect on DNIC analgesia. Thus, DNIC analgesia involves activation of opioid receptors in the MdD. PERSPECTIVE The current study shows that DNIC activates opioid receptors in the MdD, but not the RVM, to produce analgesia. These data are important for understanding clinical studies on DNIC as well as for potential treatment of chronic pain patients.
Collapse
|
121
|
Li WG, Xu TL. ASIC3 channels in multimodal sensory perception. ACS Chem Neurosci 2011; 2:26-37. [PMID: 22778854 DOI: 10.1021/cn100094b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.
Collapse
Affiliation(s)
- Wei-Guang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Le Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
122
|
Abstract
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I review the historical background and recent advances in understanding the roles of a relatively newly discovered family of receptors, the degenerin/epithelial sodium channels (DEG/ENaC). These animal-specific cation channels show a remarkable sequence and functional diversity in different species and seem to exert their functions in diverse sensory modalities. Functions for DEG/ENaC channels have been implicated in mechanosensation as well as chemosensory transduction pathways. In spite of overall sequence diversity, all family members share a unique protein topology that includes just two transmembrane domains and an unusually large and highly structured extracellular domain, that seem to be essential for both their mechanical and chemical sensory functions. This review will discuss many of the recent discoveries and controversies associated with sensory function of DEG/ENaC channels in both vertebrate and invertebrate model systems, covering the role of family members in taste, mechanosensation, and pain.
Collapse
|
123
|
Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, Cook SP, Kane S, Urban MO. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 2010; 161:950-60. [PMID: 20860671 DOI: 10.1111/j.1476-5381.2010.00918.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Inflammatory pain is triggered by activation of pathways leading to the release of mediators such as bradykinin, prostaglandins, interleukins, ATP, growth factors and protons that sensitize peripheral nociceptors. The activation of acid-sensitive ion channels (ASICs) may have particular relevance in the development and maintenance of inflammatory pain. ASIC3 is of particular interest due to its restricted tissue distribution in the nociceptive primary afferent fibres and its high sensitivity to protons. EXPERIMENTAL APPROACH To examine the contribution of ASIC3 to the development and maintenance of muscle pain and inflammatory pain, we studied the in vivo efficacy of a selective ASIC3 inhibitor, APETx2, in rats. KEY RESULTS Administration of APETx2 into the gastrocnemius muscle prior to the administration of low pH saline prevented the development of mechanical hypersensitivity, whereas APETx2 administration following low-pH saline was ineffective in reversing hypersensitivity. The prevention of mechanical hypersensitivity produced by acid administration was observed whether APETx2 was applied via i.m. or i.t. routes. In the complete Freund's adjuvant (CFA) inflammatory pain model, local administration of APETx2 resulted in a potent and complete reversal of established mechanical hypersensitivity, whereas i.t. application of APETx2 was ineffective. CONCLUSIONS AND IMPLICATIONS ASIC3 contributed to the development of mechanical hypersensitivity in the acid-induced muscle pain model, whereas ASIC3 contributed to the maintenance of mechanical hypersensitivity in the CFA inflammatory pain model. The contribution of ASIC3 to established hypersensitivity associated with inflammation suggests that this channel may be an effective analgesic target for inflammatory pain states.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Departments of Pain Research and Medicinal Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
The incidence of chronic pain is estimated to be 20-25% worldwide. Few patients with chronic pain obtain complete relief from the drugs that are currently available, and more than half report inadequate relief. Underlying the challenge of developing better drugs to manage chronic pain is incomplete understanding of the heterogeneity of mechanisms that contribute to the transition from acute tissue insult to chronic pain and to pain conditions for which the underlying pathology is not apparent. An intact central nervous system (CNS) is required for the conscious perception of pain, and changes in the CNS are clearly evident in chronic pain states. However, the blockage of nociceptive input into the CNS can effectively relieve or markedly attenuate discomfort and pain, revealing the importance of ongoing peripheral input to the maintenance of chronic pain. Accordingly, we focus here on nociceptors: their excitability, their heterogeneity and their role in initiating and maintaining pain.
Collapse
Affiliation(s)
- Michael S Gold
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
125
|
Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther 2010; 128:549-58. [PMID: 20807551 DOI: 10.1016/j.pharmthera.2010.08.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of many painful conditions. Protons are indeed among the first factors released by injured tissues, inducing a local pH fall that depolarizes peripheral free terminals of nociceptors and leads to pain. ASICs are excitatory cation channels directly gated by extracellular protons that are expressed in the nervous system. In sensory neurons, they act as "chemo-electrical" transducers and are involved in somatic and visceral nociception. Two highly specific inhibitory peptides isolated from animal venoms have considerably helped in the understanding of the physiological roles of these channels in pain. At the peripheral level, ASIC3 is important for inflammatory pain. Its expression and its activity are potentiated by several pain mediators present in the "inflammatory soup" that sensitize nociceptors. ASICs have also been involved in some aspects of mechanosensation and mechanonociception, notably in the gastrointestinal tract, but the underlying mechanisms remain to be determined. At the central level, ASIC1a is largely expressed in spinal cord neurons where it has been proposed to participate in the processing of noxious stimuli and in central sensitization. Blocking ASIC1a in the spinal cord also produces a potent analgesia in a broad range of pain conditions through activation of the opiate system. Targeting ASIC channels at different levels of the nervous system could therefore be an interesting strategy for the relief of pain.
Collapse
Affiliation(s)
- Emmanuel Deval
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 6097 CNRS/Université de Nice-Sophia Antipolis (UNS), 660, route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | | | | | |
Collapse
|
126
|
Gautam M, Benson CJ, Sluka KA. Increased response of muscle sensory neurons to decreases in pH after muscle inflammation. Neuroscience 2010; 170:893-900. [PMID: 20691768 DOI: 10.1016/j.neuroscience.2010.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 12/28/2022]
Abstract
Acid sensing ion channels (ASIC) are found in sensory neurons, including those that innervate muscle tissue. After peripheral inflammation there is an increase in proton concentration in the inflamed tissue, which likely activates ASICs. Previous studies from our laboratory in an animal model of muscle inflammation show that hyperalgesia does not occur in ASIC3 and ASIC1 knockout mice. Therefore, in the present study we investigated if pH activated currents in sensory neurons innervating muscle are altered after induction of muscle inflammation. Sensory neurons innervating mouse (C57/Bl6) muscle were retrogradely labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine perchlorate (DiI). Two weeks after injection of DiI, mice were injected with 3% carrageenan to induce inflammation (n=8; 74 neurons) or pH 7.2 saline (n=5; 40 neurons, control) into the gastrocnemius muscle. 24 h later sensory neurons from L4-L6 dorsal root ganglia (DRG) were isolated and cultured. The following day the DRG neuron cultures were tested for responses to pH by whole-cell patch-clamp technique. Approximately 40% of neurons responded to pH 5 with an inward rapidly desensitizing current consistent with ASIC channels in both groups. The mean pH-evoked current amplitudes were significantly increased in muscle sensory neurons from inflamed mice (pH 5.0, 3602 ± 470 pA) in comparison to the controls (pH 7.4, 1964 ± 370 pA). In addition, the biophysical properties of ASIC-like currents were altered after inflammation. Changes in ASIC channels result in enhanced responsiveness to decreases in pH, and likely contribute to the increased hyperalgesia observed after muscle inflammation.
Collapse
Affiliation(s)
- M Gautam
- Graduate Program in Physical Therapy and Rehabilitation Science, 1-242 Medical Education Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
127
|
Gu Q, Lee LY. Acid-Sensing Ion Channels and Pain. Pharmaceuticals (Basel) 2010; 3:1411-1425. [PMID: 27713310 PMCID: PMC4033989 DOI: 10.3390/ph3051411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/14/2010] [Accepted: 05/07/2010] [Indexed: 12/19/2022] Open
Abstract
Pathophysiological conditions such as inflammation, ischemia, infection and tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing ion channels (ASICs) are proton-gated cation channels expressed in both central and peripheral nervous systems. Increasing evidence suggests that ASICs represent essential sensors for tissue acidosis-related pain. This review provides an update on the role of ASICs in pain sensation and discusses their therapeutic potential for pain management.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
128
|
Kolker SJ, Walder RY, Usachev Y, Hillman J, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis 2010; 69:903-9. [PMID: 19933746 PMCID: PMC3476728 DOI: 10.1136/ard.2009.117168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Rheumatoid arthritis is an inflammatory disease marked by intra-articular decreases in pH, aberrant hyaluronan regulation and destruction of bone and cartilage. Acid-sensing ion channels (ASICs) are the primary acid sensors in the nervous system, particularly in sensory neurons and are important in nociception. ASIC3 was recently discovered in synoviocytes, non-neuronal joint cells critical to the inflammatory process. OBJECTIVES To investigate the role of ASIC3 in joint tissue, specifically the relationship between ASIC3 and hyaluronan and the response to decreased pH. METHODS Histochemical methods were used to compare morphology, hyaluronan expression and ASIC3 expression in ASIC3+/+ and ASIC3-/- mouse knee joints. Isolated fibroblast-like synoviocytes (FLS) were used to examine hyaluronan release and intracellular calcium in response to decreases in pH. RESULTS In tissue sections from ASIC3+/+ mice, ASIC3 localised to articular cartilage, growth plate, meniscus and type B synoviocytes. In cultured FLS, ASIC3 mRNA and protein was also expressed. In FLS cultures, pH 5.5 increased hyaluronan release in ASIC3+/+ FLS, but not ASIC3-/- FLS. In FLS from ASIC3+/+ mice, approximately 50% of cells (25/53) increased intracellular calcium while only 24% (14/59) showed an increase in ASIC3-/- FLS. Of the cells that responded to pH 5.5, there was significantly less intracellular calcium increases in ASIC3-/- FLS compared to ASIC3+/+ FLS. CONCLUSION ASIC3 may serve as a pH sensor in synoviocytes and be important for modulation of expression of hyaluronan within joint tissue.
Collapse
Affiliation(s)
- S J Kolker
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - R Y Walder
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - Y Usachev
- Department of Pharmacology, Pain Research Program, University of Iowa, Iowa, USA
| | - J Hillman
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - D L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - G S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - K A Sluka
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| |
Collapse
|
129
|
Sluka KA, Winter OC, Wemmie JA. Acid-sensing ion channels: A new target for pain and CNS diseases. CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT 2009; 12:693-704. [PMID: 19736627 PMCID: PMC3494879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Low pH in tissue can evoke pain in animals and humans, and is an important factor in hyperalgesia. Research has also implicated acidosis in psychiatric and neurological diseases. One emerging class of pH-detecting receptors is that of the acid-sensing ion channels (ASICs). Advances in ASIC research have improved the understanding of the role played by pH dynamics in physiological and pathophysiological processes. Increasing evidence suggests that targeting ASICs with pharmacological agents may offer an effective and novel approach for treating pain and diseases of the CNS. However, the development of pharmaceuticals that target ASICs and are suitable for clinical use remains an obstacle. This review provides an update on ASICs and their potential for therapeutic modification in pain and CNS diseases.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olivia C Winter
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - John A Wemmie
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|