101
|
König A, Müller R, Mogavero S, Hube B. Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cell Microbiol 2020; 23:e13272. [PMID: 32978997 DOI: 10.1111/cmi.13272] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
102
|
Faris JD, Friesen TL. Plant genes hijacked by necrotrophic fungal pathogens. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:74-80. [PMID: 32492572 DOI: 10.1016/j.pbi.2020.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/22/2023]
Abstract
Plant fungal pathogens can be classified according to their lifestyles. Biotrophs feed on living tissue and constitute an economically significant group of pathogens historically. Necrotrophs, which feed on dead tissue, have become economically significant over recent decades, especially those of the Dothideomycetes, which produce necrotrophic effectors (NEs) to modulate the host response. Some of these pathogens interact with their hosts in an inverse gene-for-gene manner, where NEs are recognized by specific dominant genes in the host leading to host-mediated programmed cell death allowing the pathogen to cause disease. Whereas the NE genes tend to be unique, several of the plant 'susceptibility' genes belong to the nucleotide-binding leucine-rich repeat class of disease 'resistance' genes, and one is a wall-associated kinase. These susceptible interactions exhibit hallmarks of defense responses to biotrophic pathogens. Therefore, there is now accumulating evidence that many necrotrophic specialists hijack the resistance mechanisms that are effective against biotrophic pathogens.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States.
| | - Timothy L Friesen
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| |
Collapse
|
103
|
Necrotrophic lifestyle of Rhizoctonia solani AG3-PT during interaction with its host plant potato as revealed by transcriptome analysis. Sci Rep 2020; 10:12574. [PMID: 32724205 PMCID: PMC7387450 DOI: 10.1038/s41598-020-68728-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 06/24/2020] [Indexed: 12/30/2022] Open
Abstract
The soil-borne pathogen Rhizoctonia solani infects a broad range of plants worldwide and is responsible for significant crop losses. Rhizoctonia solani AG3-PT attacks germinating potato sprouts underground while molecular responses during interaction are unknown. To gain insights into processes induced in the fungus especially at early stage of interaction, transcriptional activity was compared between growth of mycelium in liquid culture and the growing fungus in interaction with potato sprouts using RNA-sequencing. Genes coding for enzymes with diverse hydrolase activities were strongly differentially expressed, however with remarkably dissimilar time response. While at 3 dpi, expression of genes coding for peptidases was predominantly induced, strongest induction was found for genes encoding hydrolases acting on cell wall components at 8 dpi. Several genes with unknown function were also differentially expressed, thus assuming putative roles as effectors to support host colonization. In summary, the presented analysis characterizes the necrotrophic lifestyle of R. solani AG3-PT during early interaction with its host.
Collapse
|
104
|
Nazarov PA, Baleev DN, Ivanova MI, Sokolova LM, Karakozova MV. Infectious Plant Diseases: Etiology, Current Status, Problems and Prospects in Plant Protection. Acta Naturae 2020; 12:46-59. [PMID: 33173596 PMCID: PMC7604890 DOI: 10.32607/actanaturae.11026] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, there has been an increase in the number of diseases caused by bacterial, fungal, and viral infections. Infections affect plants at different stages of agricultural production. Depending on weather conditions and the phytosanitary condition of crops, the prevalence of diseases can reach 70-80% of the total plant population, and the yield can decrease in some cases down to 80-98%. Plants have innate cellular immunity, but specific phytopathogens have an ability to evade that immunity. This article examined phytopathogens of viral, fungal, and bacterial nature and explored the concepts of modern plant protection, methods of chemical, biological, and agrotechnical control, as well as modern methods used for identifying phytopathogens.
Collapse
Affiliation(s)
- P. A. Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, 141701 Russia
- Federal Scientific Vegetable Center, VNIISSOK, Moscow region, 143080 Russia
| | - D. N. Baleev
- All-Russian Scientific Research Institute of Medicinal and Aromatic Plants, Moscow, 117216 Russia
| | - M. I. Ivanova
- All-Russian Scientific Research Institute of Vegetable Growing, Branch of the Federal Scientific Vegetable Center, Vereya, Moscow region, 140153 Russia
| | - L. M. Sokolova
- All-Russian Scientific Research Institute of Vegetable Growing, Branch of the Federal Scientific Vegetable Center, Vereya, Moscow region, 140153 Russia
| | - M. V. Karakozova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
105
|
Lu Y, Sun J, Gao Y, Liu K, Yuan M, Gao W, Wang F, Fu D, Chen N, Xiao S, Xue C. The key iron assimilation genes ClFTR1, ClNPS6 were crucial for virulence of Curvularia lunata via initiating its appressorium formation and virulence factors. Environ Microbiol 2020; 23:613-627. [PMID: 32452607 DOI: 10.1111/1462-2920.15101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/23/2020] [Indexed: 12/01/2022]
Abstract
Iron is virtually an essential nutrient for all organisms, to understand how iron contributes to virulence of plant pathogenic fungi, we identified ClFTR1 and ClNPS6 in maize pathogen Curvularia lunata (Cochliobolus lunatus) in this study. Disruption of ClNPS6 significantly impaired siderophore biosynthesis. ClFTR1 and ClNPS6 did mediate oxidative stress but had no significant impact on vegetative growth, conidiation, cell wall integrity and sexual reproduction. Conidial germination delayed and appressoria formation reduced in ΔClftr1 comparing with wild type (WT) CX-3. Genes responsible for conidial germination, appressoria formation, non-host selective toxin biosynthesis and cell wall degrading enzymes were also downregulated in the transcriptome of ΔClftr1 and ΔClnps6 compared with WT. The conidial development, toxin biosynthesis and polygalacturonase activity were impaired in the mutant strains with ClFTR1 and ClNPS6 deletion during their infection to maize. ClFTR1 and ClNPS6 were upregulated expression at 12-24 and 48-120 hpi in WT respectively. ClFTR1 positively regulated conidial germination, appressoria formation in the biotrophy-specific phase. ClNPS6 positively regulates non-host selective toxin biosynthesis and cell wall degrading enzyme activity in the necrotrophy-specific phase. Our results indicated that ClFTR1 and ClNPS6 were key genes of pathogen known to conidia development and virulence factors.
Collapse
Affiliation(s)
- Yuanyuan Lu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Jiaying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yibo Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Mingyue Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Weida Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Fen Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Dandan Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Nan Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
| |
Collapse
|
106
|
Genome-Wide Identification of M35 Family Metalloproteases in Rhizoctonia cerealis and Functional Analysis of RcMEP2 as a Virulence Factor during the Fungal Infection to Wheat. Int J Mol Sci 2020; 21:ijms21082984. [PMID: 32340265 PMCID: PMC7215534 DOI: 10.3390/ijms21082984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Rhizoctonia cerealis is the causal pathogen of the devastating disease, sharp eyespot, of the important crop wheat (Triticum aestivum L.). In phytopathogenic fungi, several M36 metalloproteases have been implicated in virulence, but pathogenesis roles of M35 family metalloproteases are largely unknown. Here, we identified four M35 family metalloproteases from R. cerealis genome, designated RcMEP2–RcMEP5, measured their transcriptional profiles, and investigated RcMEP2 function. RcMEP2-RcMEP5 are predicted as secreted metalloproteases since each protein sequence contains a signal peptide and an M35 domain that includes two characteristic motifs HEXXE and GTXDXXYG. Transcription levels of RcMEP2-RcMEP5 markedly elevated during the fungus infection to wheat, among which RcMEP2 expressed with the highest level. Functional dissection indicated that RcMEP2 and its M35 domain could trigger H2O2 rapidly-excessive accumulation, induce cell death, and inhibit expression of host chitinases. This consequently enhanced the susceptibility of wheat to R. cerealis and the predicated signal peptide of RcMEP2 functions required for secretion and cell death-induction. These results demonstrate that RcMEP2 is a virulence factor and that its M35 domain and signal peptide are necessary for the virulence role of RcMEP2. This study facilitates a better understanding of the pathogenesis mechanism of metalloproteases in phytopathogens including R. cerealis.
Collapse
|
107
|
Husin NA, Khairunniza-Bejo S, Abdullah AF, Kassim MSM, Ahmad D, Azmi ANN. Application of Ground-Based LiDAR for Analysing Oil Palm Canopy Properties on the Occurrence of Basal Stem Rot (BSR) Disease. Sci Rep 2020; 10:6464. [PMID: 32296108 PMCID: PMC7160211 DOI: 10.1038/s41598-020-62275-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/06/2020] [Indexed: 11/25/2022] Open
Abstract
Ground-based LiDAR also known as Terrestrial Laser Scanning (TLS) technology is an active remote sensing imaging method said to be one of the latest advances and innovations for plant phenotyping. Basal Stem Rot (BSR) is the most destructive disease of oil palm in Malaysia that is caused by white-rot fungus Ganoderma boninense, the symptoms of which include flattening and hanging-down of the canopy, shorter leaves, wilting green fronds and smaller crown size. Therefore, until now there is no critical investigation on the characterisation of canopy architecture related to this disease using TLS method was carried out. This study proposed a novel technique of BSR classification at the oil palm canopy analysis using the point clouds data taken from the TLS. A total of 40 samples of oil palm trees at the age of nine-years-old were selected and 10 trees for each health level were randomly taken from the same plot. The trees were categorised into four health levels - T0, T1, T2 and T3, which represents the healthy, mildly infected, moderately infected and severely infected, respectively. The TLS scanner was mounted at a height of 1 m and each palm was scanned at four scan positions around the tree to get a full 3D image. Five parameters were analysed: S200 (canopy strata at 200 cm from the top), S850 (canopy strata at 850 cm from the top), crown pixel (number of pixels inside the crown), frond angle (degree of angle between fronds) and frond number. The results taken from statistical analysis revealed that frond number was the best single parameter to detect BSR disease as early as T1. In classification models, a linear model with a combination of parameters, ABD – A (frond number), B (frond angle) and D (S200), delivered the highest average accuracy for classification of healthy-unhealthy trees with an accuracy of 86.67 per cent. It also can classify the four severity levels of infection with an accuracy of 80 per cent. This model performed better when compared to the severity classification using frond number. The novelty of this research is therefore on the development of new approach to detect and classify BSR using point clouds data of TLS.
Collapse
Affiliation(s)
- Nur A Husin
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Khairunniza-Bejo
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Ahmad F Abdullah
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Muhamad S M Kassim
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Smart Farming Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Desa Ahmad
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Aiman N N Azmi
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
108
|
Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, Csukai M, de Vries RP, Endy D, Frisvad JC, Gunde-Cimerman N, Haarmann T, Hadar Y, Hansen K, Johnson RI, Keller NP, Kraševec N, Mortensen UH, Perez R, Ram AFJ, Record E, Ross P, Shapaval V, Steiniger C, van den Brink H, van Munster J, Yarden O, Wösten HAB. Growing a circular economy with fungal biotechnology: a white paper. Fungal Biol Biotechnol 2020; 7:5. [PMID: 32280481 PMCID: PMC7140391 DOI: 10.1186/s40694-020-00095-z] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 12/25/2022] Open
Abstract
Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions. Fungal biotechnology has, thus, the potential to make a significant contribution to climate change mitigation and meeting the United Nation’s sustainable development goals through the rational improvement of new and established fungal cell factories. The White Paper presented here is the result of the 2nd Think Tank meeting held by the EUROFUNG consortium in Berlin in October 2019. This paper highlights discussions on current opportunities and research challenges in fungal biotechnology and aims to inform scientists, educators, the general public, industrial stakeholders and policymakers about the current fungal biotech revolution.
Collapse
Affiliation(s)
- Vera Meyer
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Evelina Y Basenko
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - J Philipp Benz
- 3TUM School of Life Sciences Weihenstephan, Technical University of Munich, Holzforschung München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Gerhard H Braus
- 4Department of Molecular Microbiology & Genetics, Institute of Microbiology & Genetics, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | - Mark X Caddick
- 2Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, UK
| | - Michael Csukai
- 5Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY UK
| | - Ronald P de Vries
- 6Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Drew Endy
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Jens C Frisvad
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Nina Gunde-Cimerman
- 9Department Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | | - Yitzhak Hadar
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Kim Hansen
- 12Biotechnology Research, Production Strain Technology, Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark
| | - Robert I Johnson
- 13Quorn Foods, Station Road, Stokesley, North Yorkshire TS9 7AB UK
| | - Nancy P Keller
- 14Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, 53706 USA
| | - Nada Kraševec
- 15Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Uffe H Mortensen
- 8Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rolando Perez
- 7Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA USA
| | - Arthur F J Ram
- 16Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Eric Record
- 17French National Institute for Agriculture, Food and the Environment, INRAE, UMR1163, Biodiversité et Biotechnologie Fongiques, Aix-Marseille Université, Marseille, France
| | - Phil Ross
- MycoWorks, Inc, 669 Grand View Avenue, San Francisco, USA
| | - Volha Shapaval
- 19Faculty of Science and Technology, Norwegian University of Life Sciences, Droebakveien, 31 1430 Aas, Norway
| | - Charlotte Steiniger
- 1Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | | | - Jolanda van Munster
- 21The University of Manchester, Manchester Institute of Biotechnology (MIB) & School of Natural Sciences, 131 Princess Street, Manchester, M1 7DN UK
| | - Oded Yarden
- 11Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Han A B Wösten
- 22Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
109
|
Global Characterization of GH10 Family Xylanase Genes in Rhizoctonia cerealis and Functional Analysis of Xylanase RcXYN1 During Fungus Infection in Wheat. Int J Mol Sci 2020; 21:ijms21051812. [PMID: 32155734 PMCID: PMC7084588 DOI: 10.3390/ijms21051812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Wheat (Triticum aestivum L.) is an important staple crop. Rhizoctonia cerealis is the causal agent of diseases that are devastating to cereal crops, including wheat. Xylanases play an important role in pathogenic infection, but little is known about xylanases in R. cerealis. Herein, we identified nine xylanase-encoding genes from the R. cerealis genome, named RcXYN1–RcXYN9, examined their expression patterns, and investigated the pathogenicity role of RcXYN1. RcXYN1–RcXYN9 proteins contain two conserved glutamate residues within the active motif in the glycoside hydrolase 10 (GH10) domain. Of them, RcXYN1–RcXYN4 are predicted to be secreted proteins. RcXYN1–RcXYN9 displayed different expression patterns during the infection process of wheat, and RcXYN1, RcXYN2, RcXYN5, and RcXYN9 were expressed highly across all the tested inoculation points. Functional dissection indicated that the RcXYN1 protein was able to induce necrosis/cell-death and H2O2 generation when infiltrated into wheat and Nicotiana benthamiana leaves. Furthermore, application of RcXYN1 protein followed by R. cerealis led to significantly higher levels of the disease in wheat leaves than application of the fungus alone. These results demonstrate that RcXYN1 acts as a pathogenicity factor during R. cerealis infection in wheat. This is the first investigation of xylanase genes in R. cerealis, providing novel insights into the pathogenesis mechanisms of R. cerealis.
Collapse
|
110
|
Zhao Y, Lim J, Xu J, Yu J, Zheng W. Nitric oxide as a developmental and metabolic signal in filamentous fungi. Mol Microbiol 2020; 113:872-882. [DOI: 10.1111/mmi.14465] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| | - Jieyin Lim
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
| | - Jianyang Xu
- Department of Traditional Chinese Medicine General Hospital of Shenzhen University Shenzhen China
| | - Jae‐Hyuk Yu
- Departments of Bacteriology and Genetics Food Research Institute University of Wisconsin‐Madison Madison Wisconsin USA
- Department of Systems Biotechnology Konkuk University Seoul Republic of Korea
| | - Weifa Zheng
- Key Laboratory for Biotechnology of Medicinal Plants Jiangsu Normal University Xuzhou China
| |
Collapse
|
111
|
Villafana RT, Rampersad SN. Diversity, structure, and synteny of the cutinase gene of Colletotrichum species. Ecol Evol 2020; 10:1425-1443. [PMID: 32076525 PMCID: PMC7029052 DOI: 10.1002/ece3.5998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 11/12/2022] Open
Abstract
Colletotrichum species complexes are among the top 10 economically important fungal plant pathogens worldwide because they can infect climacteric and nonclimacteric fruit at the pre and/or postharvest stages. C. truncatum is the major pathogen responsible for anthracnose of green and red bell pepper fruit worldwide. C. brevisporum was recently reported to be a minor pathogen of red bell pepper fruit in Trinidad, but has recently been reported as pathogenic to other host species in other countries. The ability of these phytopathogens to produce and secrete cutinase is required for dismantling the cuticle of the host plant and, therefore, crucial to the necrotrophic phase of their infection strategy. In vitro bioassays using different lipid substrates confirmed the ability of C. truncatum and C. brevisporum isolates from green and red bell peppers to secrete cutinase. The diversity, structure and organization and synteny of the cutinase gene were determined among different Colletotrichum species. Cluster analysis indicated a low level of nucleotide variation among C. truncatum sequences. Nucleotide sequences of C. brevisporum were more related to C. truncatum cutinase nucleotide sequences than to C. gloeosporioides. Cluster patterns coincided with haplotype and there was evidence of significant positive selection with no recombination signatures. The structure of the cutinase gene included two exons with one intervening intron and, therefore, one splice variant. Although amino acid sequences were highly conserved among C. truncatum isolates, diversity "hot spots" were revealed when the 66-amino acid coding region of 200 fungal species was compared. Twenty cutinase orthologues were detected among different fungal species, whose common ancestor is Pezizomycotina and it is purported that these orthologues arose through a single gene duplication event prior to speciation. The cutinase domain was retained both in structure and arrangement among 34 different Colletotrichum species. The order of aligned genomic blocks between species and the arrangement of flanking protein domains were also conserved and shared for those domains immediately located at the N- and C-terminus of the cutinase domain. Among these were an RNA recognition motif, translation elongation factor, signal peptide, pentatricopeptide repeat, and Hsp70 family of chaperone proteins, all of which support the expression of the cutinase gene. The findings of this study are important to understanding the evolution of the cutinase gene in C. truncatum as a key component of the biotrophic-necrotrophic switch which may be useful in developing gene-targeting strategies to decrease the pathogenic potential of Colletotrichum species.
Collapse
Affiliation(s)
- Ria T. Villafana
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| | - Sephra N. Rampersad
- Faculty of Science and TechnologyDepartment of Life SciencesBiochemistry Research LabThe University of the West IndiesSt. AugustineTrinidad and Tobago – West Indies
| |
Collapse
|
112
|
Précigout PA, Claessen D, Makowski D, Robert C. Does the Latent Period of Leaf Fungal Pathogens Reflect Their Trophic Type? A Meta-Analysis of Biotrophs, Hemibiotrophs, and Necrotrophs. PHYTOPATHOLOGY 2020; 110:345-361. [PMID: 31577162 DOI: 10.1094/phyto-04-19-0144-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We performed a meta-analysis to search for a relation between the trophic type and latent period of fungal pathogens. The pathogen incubation period and the level of resistance of the hosts were also investigated. This ecological knowledge would help us to more efficiently regulate crop epidemics for different types of pathogens. We gathered latent period data from 103 studies dealing with 51 fungal pathogens of the three major trophic types (25 biotrophs, 15 hemibiotrophs, and 11 necrotrophs), representing 2,542 mean latent periods. We show that these three trophic types display significantly different latent periods. Necrotrophs exhibited the shortest latent periods (<100 degree-days [DD]), biotrophs had intermediate ones (between 100 and 200 DD), and hemibiotrophs had the longest latent periods (>200 DD). We argue that this relation between trophic type and latent period points to two opposing host exploitation strategies: necrotrophs mount a rapid destructive attack on the host tissue, whereas biotrophs and hemibiotrophs avoid or delay the damaging phase. We query the definition of hemibiotrophic pathogens and discuss whether the length of the latent period is determined by the physiological limits inherent to each trophic type or by the adaptation of pathogens of different trophic types to the contrasting conditions experienced in their interaction with the host.
Collapse
Affiliation(s)
- Pierre-Antoine Précigout
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS-ENS-INSERM UMR8197, Ecole Normale Supérieure, 75005 Paris, France
- UMR EcoSys, Institut National de la Recherche Agronomique (INRA), AgroParisTech, 78850 Thiverval-Grignon, France
| | - David Claessen
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS-ENS-INSERM UMR8197, Ecole Normale Supérieure, 75005 Paris, France
| | - David Makowski
- UMR Agronomie, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Corinne Robert
- UMR EcoSys, Institut National de la Recherche Agronomique (INRA), AgroParisTech, 78850 Thiverval-Grignon, France
| |
Collapse
|
113
|
Whole-genome and time-course dual RNA-Seq analyses reveal chronic pathogenicity-related gene dynamics in the ginseng rusty root rot pathogen Ilyonectria robusta. Sci Rep 2020; 10:1586. [PMID: 32005849 PMCID: PMC6994667 DOI: 10.1038/s41598-020-58342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 01/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ilyonectria robusta causes rusty root rot, the most devastating chronic disease of ginseng. Here, we for the first time report the high-quality genome of the I. robusta strain CD-56. Time-course (36 h, 72 h, and 144 h) dual RNA-Seq analysis of the infection process was performed, and many genes, including candidate effectors, were found to be associated with the progression and success of infection. The gene expression profile of CD-56 showed a trend of initial inhibition and then gradually returned to a profile similar to that of the control. Analyses of the gene expression patterns and functions of pathogenicity-related genes, especially candidate effector genes, indicated that the stress response changed to an adaptive response during the infection process. For ginseng, gene expression patterns were highly related to physiological conditions. Specifically, the results showed that ginseng defenses were activated by CD-56 infection and persisted for at least 144 h thereafter but that the mechanisms invoked were not effective in preventing CD-56 growth. Moreover, CD-56 did not appear to fully suppress plant defenses, even in late stages after infection. Our results provide new insight into the chronic pathogenesis of CD-56 and the comprehensive and complex inducible defense responses of ginseng root to I. robusta infection.
Collapse
|
114
|
Hane JK, Paxman J, Jones DAB, Oliver RP, de Wit P. "CATAStrophy," a Genome-Informed Trophic Classification of Filamentous Plant Pathogens - How Many Different Types of Filamentous Plant Pathogens Are There? Front Microbiol 2020; 10:3088. [PMID: 32038539 PMCID: PMC6986263 DOI: 10.3389/fmicb.2019.03088] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
The traditional classification of fungal and oomycete phytopathogens into three classes – biotrophs, hemibiotrophs, or necrotrophs – is unsustainable. This study highlights multiple phytopathogen species for which these labels have been inappropriately applied. We propose a novel and reproducible classification based solely on genome-derived analysis of carbohydrate-active enzyme (CAZyme) gene content called CAZyme-Assisted Training And Sorting of -trophy (CATAStrophy). CATAStrophy defines four major divisions for species associated with living plants. These are monomertrophs (Mo) (corresponding to biotrophs), polymertrophs (P) (corresponding to necrotrophs), mesotrophs (Me) (corresponding to hemibiotrophs), and vasculartrophs (including species commonly described as wilts, rots, or anthracnoses). The Mo class encompasses symbiont, haustorial, and non-haustorial species. Me are divided into the subclasses intracellular and extracellular Me, and the P into broad and narrow host sub-classes. This gives a total of seven discrete plant-pathogenic classes. The classification provides insight into the properties of these species and offers a facile route to develop control measures for newly recognized diseases. Software for CATAStrophy is available online at https://github.com/ccdmb/catastrophy. We present the CATAStrophy method for the prediction of trophic phenotypes based on CAZyme gene content, as a complementary method to the traditional tripartite “biotroph–hemibiotroph–necrotroph” classifications that may encourage renewed investigation and revision within the fungal biology community.
Collapse
Affiliation(s)
- James K Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia.,Curtin Institute for Computation, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
| | - Jonathan Paxman
- Department of Mechanical Engineering, Curtin University, Perth, WA, Australia
| | - Darcy A B Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Pierre de Wit
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
115
|
Nanomaterials: new weapons in a crusade against phytopathogens. Appl Microbiol Biotechnol 2020; 104:1437-1461. [DOI: 10.1007/s00253-019-10334-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
116
|
Chen Y, Mi Y, Li Q, Dong F, Guo Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int J Biol Macromol 2020; 143:714-723. [DOI: 10.1016/j.ijbiomac.2019.09.127] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 12/30/2022]
|
117
|
Antić TC, Janošević D, Maksimović VM, Živić M, Budimir S, Glamočlija J, Mitrović AL. Biochemical and histological characterization of succulent plant Tacitus bellus response to Fusarium verticillioides infection in vitro. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153086. [PMID: 31812905 DOI: 10.1016/j.jplph.2019.153086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
We present changes in Tacitus bellus antioxidative system that specifically correspond to subsequent phases of hemibiotroph Fusarium verticillioides infection revealed by histological analysis. T. bellus response to spore germination 6 h post inoculation (hpi), manifested as first oxidative burst, was characterized by transient decrease in malondialdehyde (MDA) content, transient increase in catalase (CAT), low level of superoxide dismutase (SOD) and peroxidase (POD) activity, as well as with transient decrease in total antioxidant capacity (TAC), total phenol content (TPC) and phenylalanine ammonium lyase activity (PAL), and no changes in polyphenol oxidase (PPO) activity, or phenolic profile. During the biotrophic phase of F. verticillioides infection, characterized by hyphae spread intercellularly in epidermal and mesophyll tissue, the host antioxidative system was suppressed. The transition to necrotrophic phase of F. verticillioides infection (inter- and intracellular colonization and sporulation), occurred 3-4 days post inoculation (dpi). During the necrotrophic phase, 5-7 dpi, slowed progression of colonization of T. bellus mesophyll cells occurred and it coincided with sharp increase in MDA content and CAT, SOD and POD activities, but the drop in TAC, TPC content, and PPO activity, as well as the production of phytotoxin fusaric acid. Presented results add to the knowledge of events and mechanisms related to the transition from biotrophy to necrotrophy in F. verticillioides.
Collapse
Affiliation(s)
- Tijana Cvetić Antić
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Dušica Janošević
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Vuk M Maksimović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia
| | - Miroslav Živić
- University of Belgrade, Faculty of Biology, Studentski trg 16, Belgrade, Serbia
| | - Snežana Budimir
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Jasmina Glamočlija
- Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Aleksandra Lj Mitrović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, Belgrade, Serbia.
| |
Collapse
|
118
|
Liu F, Selin C, Zou Z, Dilantha Fernando WG. LmCBP1, a secreted chitin-binding protein, is required for the pathogenicity of Leptosphaeria maculans on Brassica napus. Fungal Genet Biol 2019; 136:103320. [PMID: 31863838 DOI: 10.1016/j.fgb.2019.103320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/08/2019] [Accepted: 12/17/2019] [Indexed: 01/22/2023]
Abstract
Leptosphaeria maculans is the causal agent of blackleg disease on Brassica napus. Determining the underlying functions of genes required for pathogenesis is essential for understanding the infection process. A chitin-binding protein (LmCBP1) was discovered as a pathogenicity factor for the infection of B. napus by L. maculans through gene knockout using the CRISPR-Cas9 system. Chitin-binding activity was demonstrated through a chitin-protein binding assay. A secreted signal peptide was detected using a yeast secreted-signal peptide trap assay. An increased expression level during the infection stage was also observed, suggesting that LmCBP1 is a secreted protein. The knockout mutants showed decreased infection on B. napus, with reduced pathogenicity on ten cultivars with/without diverse R genes. The mutants were more sensitive to H2O2 compared to wild type L. maculans isolate JN3. This study provides evidence of the virulence of a novel chitin-binding protein LmCBP1 on B. napus through mutants created via the CRISPR-Cas9 system.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
119
|
Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA. Insight into plant cell wall degradation and pathogenesis of Ganoderma boninense via comparative genome analysis. PeerJ 2019; 7:e8065. [PMID: 31879570 PMCID: PMC6927665 DOI: 10.7717/peerj.8065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 10/20/2019] [Indexed: 12/20/2022] Open
Abstract
Background G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels. Methods In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3. Results G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis. Discussion This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.
Collapse
Affiliation(s)
- Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Lutfi Che Me
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ummul Syafiqah Ruslan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | | |
Collapse
|
120
|
Semisynthesis and biological evaluation of some novel Mannich base derivatives derived from a natural lignan obovatol as potential antifungal agents. Bioorg Chem 2019; 94:103469. [PMID: 31787345 DOI: 10.1016/j.bioorg.2019.103469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023]
Abstract
Obovatol, a novel lignan isolated from the leaf and stem bark of Magnolia obovata Thunb exhibits many important biological activities. To discover natural-product-based potential fungicides with novel structural skeletons, a series of Mannich base derivatives were prepared by the C-4-aminomethylated modification of obovatol and all synthesized compounds were evaluated for antifungal activities in vitro against several phytopathogenic fungi using the spore germination method and the mycelium growth rate method. Furthermore, their structures were also characterized by 1H NMR, 13C NMR, and HR-MS, and compound 2k was further analyzed by single-crystal X-ray diffraction. Among all of the derivatives, compounds 2b (IC50 = 28.68 µg/mL) and 2g (IC50 = 16.90 µg/mL) demonstrated greater inhibition of Botrytis cinerea spore germination than two positive controls, hymexazol and difenoconazole. Compounds 2c, 2f, and 2g displayed potent mycelial growth inhibition of B. cinerea with an average inhibition rate (AIR) of >90% at a concentration of 100 µg/mL. Additionally, the structure-activity relationships (SARs) suggested that the introduction of a diethylamino, pyrrolyl, 1-methyl-piperazinyl or 1-ethyl-piperazinyl groups on the C-4 position of obovatol may be more likely to yield potential antifungal compounds than the introduction of 4-phenyl-piperazinyl or 4-phenyl-piperidinyl groups.
Collapse
|
121
|
Investigating host-pathogen meta-metabolic interactions of Magnaporthe oryzae infected barley using infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2019; 412:139-147. [PMID: 31760448 DOI: 10.1007/s00216-019-02216-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022]
Abstract
Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging is a useful tool for identifying important meta-metabolomic features pertinent for enhancing our understanding of biological systems. Magnaporthe oryzae (M. oryzae) is a filamentous fungus that is the primary cause of rice blast disease. True to its name, M. oryzae primarily destroys rice crops and can also destroy other cereal crops as well. In a previous study, the F-box E3 ligase protein in M. oryzae was noted to be crucial for its growth and pathogenicity. In this study, we inoculated three separate sets of barley with wild-type M. oryzae, an F-box E3 ligase protein knock out of M. oryzae, and a control solution. Over the course of the infection (8 days), we imaged each treatment after development of an advanced polarity switching method, which allowed for the detection of low and high molecular weight compounds that ionize in positive or negative polarities. A set of features from initial experiments were chosen for another analysis using tandem mass spectrometry. Serotonin, a barley defense metabolite, was a compound identified in both positive and negative modes. Serotonin was putatively identified using MS1 data including carbon estimation and sulfur counting then confirmed based on tandem mass spectrometry fragmentation patterns. Metabolites in the melanin pathway, important for infection development of M. oryzae, were also identified using MS1 data but were unable to be confirmed with MS/MS due to their low abundances.
Collapse
|
122
|
Rawlinson C, See PT, Moolhuijzen P, Li H, Moffat CS, Chooi YH, Oliver RP. The identification and deletion of the polyketide synthase-nonribosomal peptide synthase gene responsible for the production of the phytotoxic triticone A/B in the wheat fungal pathogen Pyrenophora tritici-repentis. Environ Microbiol 2019; 21:4875-4886. [PMID: 31698543 PMCID: PMC6915911 DOI: 10.1111/1462-2920.14854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The economically important necrotrophic fungal pathogen, Pyrenophora tritici-repentis (Ptr), causes tan spot of wheat, a disease typified by foliar necrosis and chlorosis. The culture filtrate of an Australian Ptr isolate, M4, possesses phytotoxic activity and plant bioassay guided discovery led to the purification of necrosis inducing toxins called triticone A and B. High-resolution LC-MS/MS analysis of the culture filtrate identified an additional 37 triticone-like compounds. The biosynthetic gene cluster responsible for triticone production (the Ttc cluster) was identified and deletion of TtcA, a hybrid polyketide synthase (PKS)-nonribosomal peptide synthase (NRPS), abolished production of all triticones. The pathogenicity of mutant (ttcA) strains was not visibly affected in our assays. We hypothesize that triticones possess general antimicrobial activity important for competition in multi-microbial environments.
Collapse
Affiliation(s)
- Catherine Rawlinson
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Pao Theen See
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Hang Li
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, Curtin University, Perth, 6150, Western Australia, Australia
| |
Collapse
|
123
|
Calm Before the Storm: A Glimpse into the Secondary Metabolism of Aspergillus welwitschiae, the Etiologic Agent of the Sisal Bole Rot. Toxins (Basel) 2019; 11:toxins11110631. [PMID: 31671681 PMCID: PMC6891411 DOI: 10.3390/toxins11110631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aspergillus welwitschiae is a species of the Nigri section of the genus Aspergillus. In nature, it is usually a saprotroph, decomposing plant material. However, it causes the bole rot disease of Agave sisalana (sisal), a plant species used for the extraction of hard natural fibers, causing great economic loss to this culture. In this study, we isolated and sequenced one genome of A. welwitschiae (isolate CCMB 674 (Collection of Cultures of Microorganisms of Bahia)) from the stem tissues of sisal and performed in silico and wet lab experimental strategies to describe its ability to produce mycotoxins. CCMB 674 possesses 64 secondary metabolite gene clusters (SMGCs) and, under normal conditions, it produces secondary metabolism compounds that could disturb the cellular cycle of sisal or induce abnormalities in plant growth, such as malformin C. This isolate also produces a pigment that might explain the characteristic red color of the affected tissues. Additionally, this isolate is defective for the production of fumonisin B1, and, despite bearing the full cluster for the synthesis of this compound, it did not produce ochratoxin A. Altogether, these results provide new information on possible strategies used by the fungi during the sisal bole rot, helping to better understand this disease and how to control it.
Collapse
|
124
|
Pettongkhao S, Churngchow N. Novel Cell Death-Inducing Elicitors from Phytophthora palmivora Promote Infection on Hevea brasiliensis. PHYTOPATHOLOGY 2019; 109:1769-1778. [PMID: 31246138 DOI: 10.1094/phyto-01-19-0002-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Elicitors play an important role in plant and pathogen interactions. The discovery of new elicitors and their effects on plant defense responses is significant and challenging. In this study, we investigated novel elicitors from Phytophthora palmivora and their effects on plant defenses. A crude elicitor isolated by ethanol precipitation from culture filtrates of P. palmivora induced cell death in tobacco leaves. When tobacco leaves were infiltrated with this cell death-inducing elicitor, the accumulations of H2O2, salicylic acid (SA), scopoletin (Scp), and abscisic acid (ABA) were detected. Accumulations of SA, Scp, and ABA were also induced in rubber tree leaves. P. palmivora infection significantly increased in rubber tree leaves pretreated with the elicitor and cotreated with the elicitor and zoospores of P. palmivora. This elicitor can be described as compound elicitor because Fourier-transform infrared spectroscopy revealed that it consisted of both polysaccharide and protein. We also found that the cell death effect caused by this compound elicitor was completely neutralized by Proteinase K. The compound elicitor was composed of four fractions which were beta-glucan, high-molecular-weight glycoprotein, broad-molecular-weight glycoprotein and 42-kDa protein. Interestingly, the broad-molecular-weight glycoprotein caused the highest level of cell death in tobacco leaves, while the beta-glucan had no effect. The high-molecular-weight glycoprotein, broad-molecular-weight glycoprotein and 42-kDa protein fractions not only caused cell death in tobacco leaves but also induced high levels of SA accumulation. Furthermore, these three fractions clearly promoted P. palmivora infection of rubber tree leaves.
Collapse
Affiliation(s)
- Sittiporn Pettongkhao
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Nunta Churngchow
- Department of Biochemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| |
Collapse
|
125
|
Parra Amin JE, Cuca LE, González-Coloma A. Antifungal and phytotoxic activity of benzoic acid derivatives from inflorescences of Piper cumanense. Nat Prod Res 2019; 35:2763-2771. [DOI: 10.1080/14786419.2019.1662010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Luis E. Cuca
- Department of Chemistry, Universidad Nacional de Colombia-sede, Bogotá, Colombia
| | | |
Collapse
|
126
|
Zhang S, Lin C, Zhou T, Zhang LH, Deng YZ. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cell Microbiol 2019; 22:e13114. [PMID: 31487436 DOI: 10.1111/cmi.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Nuclear import of proteins relies on nuclear import receptors called importins/karyopherins (Kaps), whose functions were reported in yeasts, fungi, plants, and animal cells, including cell cycle control, morphogenesis, stress sensing/response, and also fungal pathogenecity. However, limited is known about the physiological function and regulatory mechanism of protein import in the rice-blast fungus Magnaporthe oryzae. Here, we identified an ortholog of β-importin in M. oryzae encoded by an ortholog of KAP119 gene. Functional characterisation of this gene via reverse genetics revealed that it is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The mokap119Δ mutant was also defective in formation of appressorium-like structure from hyphal tips. By affinity assay and liquid chromatography-tandem mass spectrometry, we identified potential MoKap119-interacting proteins and further verified that MoKap119 interacts with the cyclin-dependent kinase subunit MoCks1 and mediates its nuclear import. Transcriptional profiling indicated that MoKap119 may regulate transcription of infection-related genes via MoCks1 regulation of MoSom1. Overall, our findings provide a novel insight into the regulatory mechanism of M. oryzae pathogenesis likely by MoKap119-mediated nuclear import of the cyclin-dependent kinase subunit MoCks1.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Chaoxiang Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Tian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
127
|
Deciphering the intrinsic properties of fungal proteases in optimizing phytopathogenic interaction. Gene 2019; 711:143934. [PMID: 31228540 DOI: 10.1016/j.gene.2019.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
Phytopathogenic fungi secrete a wide range of enzymes to penetrate and colonize host tissues. Of them protease activity is reported to increase disease aggressiveness in the plant. With the aim to explore the reason of the higher infection potential of proteases, we have compared several genomic and proteomic attributes among different hydrolytic enzymes coded by five pathogenic fungal species which are the potent infectious agents of plant. Categorizing the enzymes into four major groups, namely protease, lipase, amylase and cell-wall degraders, we observed that proteases are evolutionary more conserved, have higher expression levels, contain more hydrophobic buried residues, short linear motifs and post-translational modified (PTM) sites than the other three groups of enzymes. Again, comparing these features of protease between pathogenic and non-pathogenic Aspergillus sps, we have hypothesized that protein structural properties could play significant roles in imposing infection potency to the fungal proteases.
Collapse
|
128
|
Śliwińska EB, Martyka R, Martyka M, Cichoń M, Tryjanowski P. A biotrophic fungal infection of the great burnet Sanguisorba officinalis indirectly affects caterpillar performance of the endangered scarce large blue butterfly Phengaris teleius. INSECT SCIENCE 2019; 26:555-568. [PMID: 29115041 DOI: 10.1111/1744-7917.12556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Interactions between ecological communities of herbivores and microbes are commonly mediated by a shared plant. A tripartite interaction between a pathogenic fungus-host plant-herbivorous insect is an example of such mutual influences. In such a system a fungal pathogen commonly has a negative influence on the morphology and biochemistry of the host plant, with consequences for insect herbivore performance. Here we studied whether the biotrophic fungus Podosphaera ferruginea, attacking the great burnet Sanguisorba officinalis, affects caterpillar performance of the endangered scarce large blue butterfly Phengaris teleius. Our results showed that the pathogenic fungus affected the number and size of inflorescences produced by food-plants and, more importantly, had indirect, plant-mediated effects on the abundance, body mass and immune response of caterpillars. Specifically, we found the relationship between caterpillar abundance and variability in inflorescence size on a plant to be positive among healthy food-plants, and negative among infected food-plants. Caterpillars that fed on healthy food-plants were smaller than those that fed on infected food-plants in one studied season, while there was no such difference in the other season. We observed the relationship between caterpillar immune response and the proportion of infected great burnets within a habitat patch to be positive when caterpillars fed on healthy food-plants, and negative when caterpillars fed on infected food-plants. Our results suggest that this biotrophic fungal infection of the great burnet may impose a significant indirect influence on P. teleius caterpillar performance with potential consequences for the population dynamics and structure of this endangered butterfly.
Collapse
Affiliation(s)
- Ewa B Śliwińska
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Rafał Martyka
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Mirosław Martyka
- Institute of Mathematical and Natural Science, State Higher Vocational School in Tarnów, Tarnów, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
129
|
Verwaaijen B, Wibberg D, Winkler A, Zrenner R, Bednarz H, Niehaus K, Grosch R, Pühler A, Schlüter A. A comprehensive analysis of the Lactuca sativa, L. transcriptome during different stages of the compatible interaction with Rhizoctonia solani. Sci Rep 2019; 9:7221. [PMID: 31076623 PMCID: PMC6510776 DOI: 10.1038/s41598-019-43706-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/30/2019] [Indexed: 12/19/2022] Open
Abstract
The leafy green vegetable Lactuca sativa, L. is susceptible to the soil-born fungus Rhizoctonia solani AG1-IB. In a previous study, we reported on the transcriptional response of R. solani AG1-IB (isolate 7/3/14) during the interspecies interaction with L. sativa cv. Tizian by means of RNA sequencing. Here we present the L. sativa transcriptome and metabolome from the same experimental approach. Three distinct interaction zones were sampled and compared to a blank (non-inoculated) sample: symptomless zone 1, zone 2 showing light brown discoloration, and a dark brown zone 3 characterized by necrotic lesions. Throughout the interaction, we observed a massive reprogramming of the L. sativa transcriptome, with 9231 unique genes matching the threshold criteria for differential expression. The lettuce transcriptome of the light brown zone 2 presents the most dissimilar profile compared to the uninoculated zone 4, marking the main stage of interaction. Transcripts putatively encoding several essential proteins that are involved in maintaining jasmonic acid and auxin homeostasis were found to be negatively regulated. These and other indicator transcripts mark a potentially inadequate defence response, leading to a compatible interaction. KEGG pathway mapping and GC-MS metabolome data revealed large changes in amino acid, lignin and hemicellulose related pathways and related metabolites.
Collapse
Affiliation(s)
- Bart Verwaaijen
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Zrenner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Alfred Pühler
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
130
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
131
|
Dyda M, Wąsek I, Tyrka M, Wędzony M, Szechyńska-Hebda M. Local and systemic regulation of PSII efficiency in triticale infected by the hemibiotrophic pathogen Microdochium nivale. PHYSIOLOGIA PLANTARUM 2019; 165:711-727. [PMID: 29774565 DOI: 10.1111/ppl.12760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/15/2018] [Accepted: 05/11/2018] [Indexed: 05/13/2023]
Abstract
Microdochium nivale is a fungal pathogen that causes yield losses of cereals during winter. Cold hardening under light conditions induces genotype-dependent resistance of a plant to infection. We aim to show how photosystem II (PSII) regulation contributes to plant resistance. Using mapping population of triticale doubled haploid lines, three M. nivale strains and different infection assays, we demonstrate that plants that maintain a higher maximum quantum efficiency of PSII show less leaf damage upon infection. The fungus can establish necrotrophic or biotrophic interactions with susceptible or resistant genotypes, respectively. It is suggested that local inhibition of photosynthesis during the infection of sensitive genotypes is not balanced by a supply of energy from the tissue surrounding the infected cells as efficiently as in resistant genotypes. Thus, defence is limited, which in turn results in extensive necrotic damage. Quantitative trait loci regions, involved in the control of both PSII functioning and resistance, were located on chromosomes 4 and 6, similar to a wide range of PSII- and resistance-related genes. A meta-analysis of microarray experiments showed that the expression of genes involved in the repair and de novo assembly of PSII was maintained at a stable level. However, to establish a favourable energy balance for defence, genes encoding PSII proteins resistant to oxidative degradation were downregulated to compensate for the upregulation of defence-related pathways. Finally, we demonstrate that the structural and functional integrity of the plant is a factor required to meet the energy demand of infected cells, photosynthesis-dependent systemic signalling and defence responses.
Collapse
Affiliation(s)
- Mateusz Dyda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
- Pedagogical University of Cracow, 30-084, Kraków, Poland
| | - Iwona Wąsek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Mirosław Tyrka
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Maria Wędzony
- Pedagogical University of Cracow, 30-084, Kraków, Poland
| | - Magdalena Szechyńska-Hebda
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239, Kraków, Poland
- Plant Breeding and Acclimatization Institute-National Research Institute, 05-870, Blonie, Poland
| |
Collapse
|
132
|
Neu E, Domes HS, Menz I, Kaufmann H, Linde M, Debener T. Interaction of roses with a biotrophic and a hemibiotrophic leaf pathogen leads to differences in defense transcriptome activation. PLANT MOLECULAR BIOLOGY 2019; 99:299-316. [PMID: 30706286 DOI: 10.1007/s11103-018-00818-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 12/22/2018] [Indexed: 05/09/2023]
Abstract
Transcriptomic analysis resulted in the upregulation of the genes related to common defense mechanisms for black spot and the downregulation of the genes related to photosynthesis and cell wall modification for powdery mildew. Plant pathogenic fungi successfully colonize their hosts by manipulating the host defense mechanisms, which is accompanied by major transcriptome changes in the host. To characterize compatible plant pathogen interactions at early stages of infection by the obligate biotrophic fungus Podosphaera pannosa, which causes powdery mildew, and the hemibiotrophic fungus Diplocarpon rosae, which causes black spot, we analyzed changes in the leaf transcriptome after the inoculation of detached rose leaves with each pathogen. In addition, we analyzed differences in the transcriptomic changes inflicted by both pathogens as a first step to characterize specific infection strategies. Transcriptomic changes were analyzed using next-generation sequencing based on the massive analysis of cDNA ends approach, which was validated using high-throughput qPCR. We identified a large number of differentially regulated genes. A common set of the differentially regulated genes comprised of pathogenesis-related (PR) genes, such as of PR10 homologs, chitinases and defense-related transcription factors, such as various WRKY genes, indicating a conserved but insufficient PTI [pathogen associated molecular pattern (PAMP) triggered immunity] reaction. Surprisingly, most of the differentially regulated genes were specific to the interactions with either P. pannosa or D. rosae. Specific regulation in response to D. rosae was detected for genes from the phenylpropanoid and flavonoid pathways and for individual PR genes, such as paralogs of PR1 and PR5, and other factors of the salicylic acid signaling pathway. Differently, inoculation with P. pannosa leads in addition to the general pathogen response to a downregulation of genes related to photosynthesis and cell wall modification.
Collapse
Affiliation(s)
- Enzo Neu
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
- KWS SAAT SE, 37574, Einbeck, Germany
| | - Helena Sophia Domes
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Ina Menz
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Helgard Kaufmann
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Marcus Linde
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany
| | - Thomas Debener
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz Universität Hannover, 30419, Hannover, Germany.
| |
Collapse
|
133
|
Tugizimana F, Djami-Tchatchou AT, Fahrmann JF, Steenkamp PA, Piater LA, Dubery IA. Time-resolved decoding of metabolic signatures of in vitro growth of the hemibiotrophic pathogen Colletotrichum sublineolum. Sci Rep 2019; 9:3290. [PMID: 30824820 PMCID: PMC6397173 DOI: 10.1038/s41598-019-38692-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023] Open
Abstract
Metabolomics has emerged as a powerful approach to comprehensively interrogate cellular biochemistry. As such, we applied an untargeted liquid chromatography-mass spectrometry metabolomic strategy to elucidate metabolome changes in the anthracnose-causing hemibiotrophic sorghum pathogen, Colletotrichum sublineolum. An in vitro batch culture study model with different carbon sources, glucose, arabinose and rhamnose, were used to support fungal growth over a period of twelve days. Metabolites representing the intracellular and extracellular (secreted) metabolomes were extracted with methanol and subjected to LC-MS analyses. Chemometric modelling revealed a metabolic variation trajectory, comprising three distinct stages that metabolically describe the adaptation of the fungus to diminishing nutrients. Selected marker gene expression indicated stage one (0-3 d.p.i) as corresponding to the early logarithmic phase. Stage two can be interpreted as an intermediate transitionary stage with stage three corresponding to the stationary phase (9-12 d.p.i). Stage one was characterised by up-regulation of endo-metabolites such as ferricrocin, fatty acids and flavone-conjugates, while stage three was characterised by the secretion of phytotoxins, including colletotrichin and colletotric acid. Ultimately, results from our in vitro model reveal previously unknown insights into the dynamic aspects of metabolome reprogramming in the growth phases of Colletotrichum spp as determined by nutrients obtainable from plant cell walls.
Collapse
Affiliation(s)
- Fidele Tugizimana
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Arnaud T Djami-Tchatchou
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Centre, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Paul A Steenkamp
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A Piater
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ian A Dubery
- Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa.
| |
Collapse
|
134
|
Adnan M, Islam W, Shabbir A, Khan KA, Ghramh HA, Huang Z, Chen HYH, Lu GD. Plant defense against fungal pathogens by antagonistic fungi with Trichoderma in focus. Microb Pathog 2019; 129:7-18. [PMID: 30710672 DOI: 10.1016/j.micpath.2019.01.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
Fungal diseases cause considerable damage to the economically important crops worldwide thus posing continuous threat to global food security. Management of these diseases is normally done via utilization of chemicals that have severe negative impact upon human health and surrounding ecosystems. Finding eco-friendly alternatives has led the researchers to focus towards biological control of fungal diseases through biocontrol agents such as antagonistic fungi (AF) and other microorganisms. AF include various genera of fungi that cure the fungal diseases on plants effectively. Furthermore, they play a regulatory role in various plant physiological pathways and interactions. AF are highly host specific having negligible effects on non-target organisms and have fast mass production capability. However, understanding the mechanisms of the effects of AF on plant diseases is a prerequisite for their effective utilization as biocontrol agent. Trichoderma is one of the most important fungal genera known for its antagonistic activity against disease causing fungal pathogens. Therefore, in this review, we have focused upon Trichoderma-mediated fungal diseases management via illustrating its taxonomy, important strains, biodiversity and mode of action. Furthermore, we have assessed the criteria to be followed for selection of AF and the factors influencing their efficiency. Finally, we evaluated the advantages and limitations of Trichoderma as AF. We conclude that effective AF utilization against fungal pathogens can serve as a safe strategy for our Planet.
Collapse
Affiliation(s)
- Muhammad Adnan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan
| | - Asad Shabbir
- The University of Sydney, School of Life and Environmental Sciences, Narrabri, 2390, Australia; University of the Punjab, Department of Botany, Lahore, 54590, Pakistan
| | - Khalid Ali Khan
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Institute of Geography, Fujian Normal University, Fuzhou, 350007, China; Faculty of Forestry and the Forest Environment, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
135
|
Fang YL, Xia LM, Wang P, Zhu LH, Ye JR, Huang L. The MAPKKK CgMck1 Is Required for Cell Wall Integrity, Appressorium Development, and Pathogenicity in Colletotrichum gloeosporioides. Genes (Basel) 2018; 9:E543. [PMID: 30413120 PMCID: PMC6267176 DOI: 10.3390/genes9110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway plays key roles in sensing extracellular signals and transmitting them from the cell membrane to the nucleus in response to various environmental stimuli. A MAPKKK protein CgMck1 in Colletotrichum gloeosporioides was characterized. Phenotypic analyses of the ∆Cgmck1 mutant showed that the CgMck1 was required for vegetative growth, fruiting body development, and sporulation. Additionally, the CgMCK1 deletion mutant showed significant defects in cell wall integrity, and responses to osmotic stresses. The mutant abolished the ability to develop appressorium, and lost pathogenicity to host plants. The ∆Cgmck1 mutant also exhibited a higher sensitivity to antifungal bacterium agent Bacillus velezensis. The deletion mutants of downstream MAPK cascades components CgMkk1 and CgMps1 showed similar defects to the ∆Cgmck1 mutant. In conclusion, CgMck1 is involved in the regulation of vegetative growth, asexual development, cell wall integrity, stresses resistance, and infection morphogenesis in C. gloeosporioides.
Collapse
Affiliation(s)
- Yu-Lan Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Ming Xia
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ping Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Li-Hua Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
136
|
Liu L, Wang Q, Sun Y, Zhang Y, Zhang X, Liu J, Yu G, Pan H. Sssfh1, a Gene Encoding a Putative Component of the RSC Chromatin Remodeling Complex, Is Involved in Hyphal Growth, Reactive Oxygen Species Accumulation, and Pathogenicity in Sclerotinia sclerotiorum. Front Microbiol 2018; 9:1828. [PMID: 30131794 PMCID: PMC6090059 DOI: 10.3389/fmicb.2018.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
SFH1 (for Snf5 homolog) protein, comprised in the RSC (Remodels Structure of Chromatin) chromatin remodeling complex, functions as a transcription factor (TF) to specifically regulate gene transcription and chromatin remodeling. As one of the well-conserved TFs in eukaryotic organisms, little is known about the roles of SFH1 protein in the filamentous fungi. In Sclerotinia sclerotiorum, one of the notorious plant fungal pathogens, there are nine proteins predicted to contain GATA-box domain according to GATA family TF classification, among which Sssfh1 (SS1G_01151) encodes a protein including a GATA-box domain and a SNF5 domain. Here, we characterized the roles of Sssfh1 in the developmental process and fungal pathogenicity by using RNA interference (RNAi)-based gene silencing in S. sclerotiorum. RNA-silenced strains with significantly reduced Sssfh1 RNA levels exhibited slower hyphal growth and decreased reactive oxygen species (ROS) accumulation in hyphae compared to the wild-type (WT) strain. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SsSFH1 interacts with SsMSG5, a MAPK phosphatase in S. sclerotiorum. Furthermore, Sssfh1-silenced strains exhibited enhanced tolerance to NaCl and H2O2. Results of infection assays on soybean and common bean (Phaseolus vulgaris) leaves indicated that Sssfh1 is required for full virulence of S. sclerotiorum during infection in the susceptible host plants. Collectively, our results suggest that the TF SsSFH1 is involved in growth, ROS accumulation and virulence in S. sclerotiorum.
Collapse
Affiliation(s)
- Ling Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Qiaochu Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Ying Sun
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Gang Yu
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, China
| |
Collapse
|
137
|
Samet M, Charfeddine M, Kamoun L, Nouri-Ellouze O, Gargouri-Bouzid R. Effect of compost tea containing phosphogypsum on potato plant growth and protection against Fusarium solani infection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18921-18937. [PMID: 29717429 DOI: 10.1007/s11356-018-1960-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Three composts made of industrial wastes were prepared by mixing olive oil mill waste water (OMW), olive pomace, coffee grounds, and phosphogypsum (0, 10, and 30%). Potato plants (Solanum tuberosum) cultivated in a greenhouse were used to screen compost tea suppressive ability. All compost tea treatments inhibited Fusarium solani growth and improved plant growth and response to F. solani infection. The antagonistic effects of the different treatments were associated with a marked increase of the antioxidant enzymes and PR (pathogenesis related) protein expression and a decrease of disease severity. These results also showed that plant growth and disease suppression were improved by application of phosphogypsum-supplemented compost teas (A10 and A30). This enhancement can be attributed to the influence of phosphogypsum on nutrient elements and microbial diversity in the resulting compost teas.
Collapse
Affiliation(s)
- Mariem Samet
- Laboratoire d'Amélioration des Plantes et Valorisation des Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia.
| | - Mariam Charfeddine
- Laboratoire d'Amélioration des Plantes et Valorisation des Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Lotfi Kamoun
- Groupe Chimique Tunisien, Direction de la Recherche Scientifique, Sfax, Tunisia
| | - Oumèma Nouri-Ellouze
- Laboratoire d'Amélioration des Plantes et Valorisation des Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Laboratoire d'Amélioration des Plantes et Valorisation des Agro-ressources, Ecole Nationale d'Ingénieurs de Sfax, Route Soukra Km 4, B.P 1173, 3038, Sfax, Tunisia
| |
Collapse
|
138
|
Tugizimana F, Mhlongo MI, Piater LA, Dubery IA. Metabolomics in Plant Priming Research: The Way Forward? Int J Mol Sci 2018; 19:ijms19061759. [PMID: 29899301 PMCID: PMC6032392 DOI: 10.3390/ijms19061759] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022] Open
Abstract
A new era of plant biochemistry at the systems level is emerging, providing detailed descriptions of biochemical phenomena at the cellular and organismal level. This new era is marked by the advent of metabolomics—the qualitative and quantitative investigation of the entire metabolome (in a dynamic equilibrium) of a biological system. This field has developed as an indispensable methodological approach to study cellular biochemistry at a global level. For protection and survival in a constantly-changing environment, plants rely on a complex and multi-layered innate immune system. This involves surveillance of ‘self’ and ‘non-self,’ molecule-based systemic signalling and metabolic adaptations involving primary and secondary metabolites as well as epigenetic modulation mechanisms. Establishment of a pre-conditioned or primed state can sensitise or enhance aspects of innate immunity for faster and stronger responses. Comprehensive elucidation of the molecular and biochemical processes associated with the phenotypic defence state is vital for a better understanding of the molecular mechanisms that define the metabolism of plant–pathogen interactions. Such insights are essential for translational research and applications. Thus, this review highlights the prospects of metabolomics and addresses current challenges that hinder the realisation of the full potential of the field. Such limitations include partial coverage of the metabolome and maximising the value of metabolomics data (extraction of information and interpretation). Furthermore, the review points out key features that characterise both the plant innate immune system and enhancement of the latter, thus underlining insights from metabolomic studies in plant priming. Future perspectives in this inspiring area are included, with the aim of stimulating further studies leading to a better understanding of plant immunity at the metabolome level.
Collapse
Affiliation(s)
- Fidele Tugizimana
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Msizi I Mhlongo
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
139
|
Courtial J, Hamama L, Helesbeux JJ, Lecomte M, Renaux Y, Guichard E, Voisine L, Yovanopoulos C, Hamon B, Ogé L, Richomme P, Briard M, Boureau T, Gagné S, Poupard P, Berruyer R. Aldaulactone - An Original Phytotoxic Secondary Metabolite Involved in the Aggressiveness of Alternaria dauci on Carrot. FRONTIERS IN PLANT SCIENCE 2018; 9:502. [PMID: 29774035 PMCID: PMC5943595 DOI: 10.3389/fpls.2018.00502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/03/2018] [Indexed: 05/12/2023]
Abstract
Qualitative plant resistance mechanisms and pathogen virulence have been extensively studied since the formulation of the gene-for-gene hypothesis. The mechanisms involved in the quantitative traits of aggressiveness and plant partial resistance are less well-known. Nevertheless, they are prevalent in most plant-necrotrophic pathogen interactions, including the Daucus carota-Alternaria dauci interaction. Phytotoxic metabolite production by the pathogen plays a key role in aggressiveness in these interactions. The aim of the present study was to explore the link between A. dauci aggressiveness and toxin production. We challenged carrot embryogenic cell cultures from a susceptible genotype (H1) and two partially resistant genotypes (I2 and K3) with exudates from A. dauci strains with various aggressiveness levels. Interestingly, A. dauci-resistant carrot genotypes were only affected by exudates from the most aggressive strain in our study (ITA002). Our results highlight a positive link between A. dauci aggressiveness and the fungal exudate cell toxicity. We hypothesize that the fungal exudate toxicity was linked with the amount of toxic compounds produced by the fungus. Interestingly, organic exudate production by the fungus was correlated with aggressiveness. Hence, we further analyzed the fungal organic extract using HPLC, and correlations between the observed peak intensities and fungal aggressiveness were measured. One observed peak was closely correlated with fungal aggressiveness. We succeeded in purifying this peak and NMR analysis revealed that the purified compound was a novel 10-membered benzenediol lactone, a polyketid that we named 'aldaulactone'. We used a new automated image analysis method and found that aldaulactone was toxic to in vitro cultured plant cells at those concentrations. The effects of both aldaulactone and fungal organic extracts were weaker on I2-resistant carrot cells compared to H1 carrot cells. Taken together, our results suggest that: (i) aldaulactone is a new phytotoxin, (ii) there is a relationship between the amount of aldaulactone produced and fungal aggressiveness, and (iii) carrot resistance to A. dauci involves mechanisms of resistance to aldaulactone.
Collapse
Affiliation(s)
- Julia Courtial
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Latifa Hamama
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Jacques Helesbeux
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, Beaucouzé, France
| | - Mickaël Lecomte
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Yann Renaux
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Esteban Guichard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Linda Voisine
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Claire Yovanopoulos
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Bruno Hamon
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurent Ogé
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Pascal Richomme
- Substances d'Origine Naturelle et Analogues Structuraux, SFR4207 QUASAV, UNIV Angers, Université Bretagne Loire, Beaucouzé, France
| | - Mathilde Briard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Tristan Boureau
- PHENOTIC Platform, IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Séverine Gagné
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Pascal Poupard
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Romain Berruyer
- IRHS, INRA, AGROCAMPUS-Ouest, Université d'Angers, SFR 4207 QUASAV, Beaucouzé, France
- Département de Biologie, Faculté des Sciences, Université d'Angers, Angers, France
| |
Collapse
|
140
|
Khaled AY, Aziz SA, Bejo SK, Nawi NM, Seman IA, Izzuddin MA. Dielectric constant and chlorophyll content measurements for basal stem rot (BSR) disease detection. 2018 INTERNATIONAL CONFERENCE ON SIGNALS AND SYSTEMS (ICSIGSYS) 2018. [DOI: 10.1109/icsigsys.2018.8373570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
141
|
Genome-Wide Transcriptome Analysis Reveals the Comprehensive Response of Two Susceptible Poplar Sections to Marssonina brunnea Infection. Genes (Basel) 2018. [PMID: 29534547 PMCID: PMC5867875 DOI: 10.3390/genes9030154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Marssonina leaf spot disease of poplar (MLDP), caused by the hemibiotrophic pathogen Marssonina brunnea, frequently results in damage to many poplar species. In nature, two formae speciales of M. brunnea exist that are susceptible to different poplar subgenera. Marssonina brunnea f. sp. monogermtubi infects poplar hosts from Populus sect. Aigeiros (Aig), while M. brunnea f. sp. multigermtubi always infects poplar hosts from Populus sect. Leuce Duby (Leu). Based on the fungal penetration structures, a comprehensive transcriptomic approach was used to investigate the gene expression patterns of these two poplar subgenera at three crucial infection stages. MLDP significantly altered the expression patterns of many genes involved in mitogen activated protein kinase (MAPKs) and calcium signaling, transcription factors, primary and secondary metabolism, and other processes in both poplar subgenera. However, major differences in gene expression were also observed between the two poplar subgenera. Aig was most responsive at the initial infection stage, while Leu largely interacted with M. brunnea at the necrotrophic phase. Furthermore, the differentially expressed genes (DEGs) involved in pathways related to biotic stress also differed substantially between the two poplar subgenera. Further analysis indicated that the genes involved in cell wall metabolism and phenylpropanoid metabolism were differentially expressed in the progression of the disease. By examining the expression patterns of genes related to the defense against disease, we found that several genes annotated with causing hypersensitive cell death were upregulated at the necrotrophic phase of MLDP, inferring that plant immune response potentially happened at this infection stage. The present research elucidated the potential molecular differences between the two susceptible interaction systems in MLDP and provided novel insight into the temporal regulation of genes during the susceptible response. To the best of our knowledge, this study also constitutes the first to reveal the molecular mechanisms of poplar in response to the transition of hemibiotrophic fungal pathogens from the biotrophic phase to the necrotrophic phase.
Collapse
|
142
|
Hua C, Zhao JH, Guo HS. Trans-Kingdom RNA Silencing in Plant-Fungal Pathogen Interactions. MOLECULAR PLANT 2018; 11:235-244. [PMID: 29229568 DOI: 10.1016/j.molp.2017.12.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/31/2017] [Accepted: 12/01/2017] [Indexed: 05/02/2023]
Abstract
Fungal pathogens represent a major group of plant invaders that are the causative agents of many notorious plant diseases. Large quantities of RNAs, especially small RNAs involved in gene silencing, have been found to transmit bidirectionally between fungal pathogens and their hosts. Although host-induced gene silencing (HIGS) technology has been developed and applied to protect crops from fungal infections, the mechanisms of RNA transmission, especially small RNAs regulating trans-kingdom RNA silencing in plant immunity, are largely unknown. In this review, we summarize and discuss recent important findings regarding trans-kingdom sRNAs and RNA silencing in plant-fungal pathogen interactions compared with the well-known RNAi mechanisms in plants and fungi. We focus on the interactions between plant and fungal pathogens with broad hosts, represented by the vascular pathogen Verticillium dahliae and non-vascular pathogen Botrytis cinerea, and discuss the known instances of natural RNAi transmission between fungal pathogens and host plants. Given that HIGS has been developed and recently applied in controlling Verticillium wilt diseases, we propose an ideal research system exploiting plant vasculature-Verticillium interaction to further study trans-kingdom RNA silencing.
Collapse
Affiliation(s)
- Chenlei Hua
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China; College of Life Science, University of the Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
143
|
Brunner PC, McDonald BA. Evolutionary analyses of the avirulence effector AvrStb6 in global populations of Zymoseptoria tritici identify candidate amino acids involved in recognition. MOLECULAR PLANT PATHOLOGY 2018; 19:1836-1846. [PMID: 29363872 PMCID: PMC6637991 DOI: 10.1111/mpp.12662] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 01/20/2018] [Indexed: 05/27/2023]
Abstract
We analysed the population genetic diversity of AvrStb6, the first avirulence gene cloned from the wheat pathogen Zymoseptoria tritici, using 142 Z. tritici strains sampled from four wheat fields growing on three continents. Although AvrStb6 was located in a recombination hotspot, it was found in every strain, with 71 polymorphic sites that produced 41 distinct DNA haplotypes encoding 30 AvrStb6 protein isoforms. An AvrStb6 homologue was found in the closest known relative, Z. pseudotritici, but not in three other closely related Zymoseptoria species, indicating that this gene has emerged in Zymoseptoria quite recently. Two AvrStb6 homologues with nucleotide similarities greater than 70% were identified on chromosome 10 in all Z. tritici isolates, suggesting that AvrStb6 belongs to a multigene family of candidate effectors that has expanded recently through gene duplication. The AvrStb6 sequences exhibited strong evidence for non-neutral evolution, including a large number of non-synonymous mutations, with significant positive diversifying selection operating on nine of the 82 codons. It appears that balancing selection is operating across the entire gene in natural field populations. There was also evidence for co-evolving codons within the gene that may reflect compensatory mutations associated with the evasion of recognition by Stb6. Intragenic recombination also appears to have affected the diversity of AvrStb6.
Collapse
Affiliation(s)
- Patrick C. Brunner
- Plant PathologyInstitute of Integrative Biology, ETH Zurich8092 ZurichSwitzerland
| | - Bruce A. McDonald
- Plant PathologyInstitute of Integrative Biology, ETH Zurich8092 ZurichSwitzerland
| |
Collapse
|
144
|
Zaccaron AZ, Bluhm BH. The genome sequence of Bipolaris cookei reveals mechanisms of pathogenesis underlying target leaf spot of sorghum. Sci Rep 2017; 7:17217. [PMID: 29222463 PMCID: PMC5722872 DOI: 10.1038/s41598-017-17476-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/23/2022] Open
Abstract
Bipolaris cookei (=Bipolaris sorghicola) causes target leaf spot, one of the most prevalent foliar diseases of sorghum. Little is known about the molecular basis of pathogenesis in B. cookei, in large part due to a paucity of resources for molecular genetics, such as a reference genome. Here, a draft genome sequence of B. cookei was obtained and analyzed. A hybrid assembly strategy utilizing Illumina and Pacific Biosciences sequencing technologies produced a draft nuclear genome of 36.1 Mb, organized into 321 scaffolds with L50 of 31 and N50 of 378 kb, from which 11,189 genes were predicted. Additionally, a finished mitochondrial genome sequence of 135,790 bp was obtained, which contained 75 predicted genes. Comparative genomics revealed that B. cookei possessed substantially fewer carbohydrate-active enzymes and secreted proteins than closely related Bipolaris species. Novel genes involved in secondary metabolism, including genes implicated in ophiobolin biosynthesis, were identified. Among 37 B. cookei genes induced during sorghum infection, one encodes a putative effector with a limited taxonomic distribution among plant pathogenic fungi. The draft genome sequence of B. cookei provided novel insights into target leaf spot of sorghum and is an important resource for future investigation.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR, 72701, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR, 72701, USA.
| |
Collapse
|
145
|
Yang J, Yin ZQ, Kang ZT, Liu CJ, Yang JK, Yao JH, Luo YY. Transcriptomic profiling of Alternaria longipes invasion in tobacco reveals pathogenesis regulated by AlHK1, a group III histidine kinase. Sci Rep 2017; 7:16083. [PMID: 29167535 PMCID: PMC5700128 DOI: 10.1038/s41598-017-16401-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/12/2017] [Indexed: 11/08/2022] Open
Abstract
Tobacco brown spot, caused by Alternaria species, is a devastating tobacco disease. To explore the role of a group III histidine kinase (AlHK1) on A. longipes pathogenesis, the invasion progress of A. longipes was monitored. We found that the wild-type strain C-00 invaded faster than the AlHK1-disrupted strain HK∆4 in the early and middle infection stages and the reverse trend occurred in the late infection stage. Then, eight invasion transcriptomes were performed using RNA-Seq and 205 shared, 505 C-00 and 222 HK∆4 specific differentially expressed genes (DEGs) were identified. The annotation results showed seven antioxidant activity genes were specifically identified in the HKΔ4 DEGs. A subsequent experiment confirmed that HKΔ4 was more resistant to low concentrations oxidative stress than C-00. In addition, the results from 1) statistics for the number of DEGs, GO enriched terms, DEGs in clusters with rising trends, and 2) analyses of the expression patterns of some DEGs relevant for osmoadaptation and virulence showed that changes in C-00 infection existed mainly in the early and middle stages, while HKΔ4 infection arose mainly in the late stage. Our results reveal firstly the pathogenesis of A. longipes regulated by AlHK1 and provide useful insights into the fungal-plant interactions.
Collapse
Affiliation(s)
- Juan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Qun Yin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Teng Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jian-Hua Yao
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Yi-Yong Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
146
|
Girard IJ, Tong C, Becker MG, Mao X, Huang J, de Kievit T, Fernando WGD, Liu S, Belmonte MF. RNA sequencing of Brassica napus reveals cellular redox control of Sclerotinia infection. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5079-5091. [PMID: 29036633 PMCID: PMC5853404 DOI: 10.1093/jxb/erx338] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/14/2017] [Indexed: 05/12/2023]
Abstract
Brassica napus is one of the world's most valuable oilseeds and is under constant pressure by the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, the causal agent of white stem rot. Despite our growing understanding of host pathogen interactions at the molecular level, we have yet to fully understand the biological processes and underlying gene regulatory networks responsible for determining disease outcomes. Using global RNA sequencing, we profiled gene activity at the first point of infection on the leaf surface 24 hours after pathogen exposure in susceptible (B. napus cv. Westar) and tolerant (B. napus cv. Zhongyou 821) plants. We identified a family of ethylene response factors that may contribute to host tolerance to S. sclerotiorum by activating genes associated with fungal recognition, subcellular organization, and redox homeostasis. Physiological investigation of redox homeostasis was further studied by quantifying cellular levels of the glutathione and ascorbate redox pathway and the cycling enzymes associated with host tolerance to S. sclerotiorum. Functional characterization of an Arabidopsis redox mutant challenged with the fungus provides compelling evidence into the role of the ascorbate-glutathione redox hub in the maintenance and enhancement of plant tolerance against fungal pathogens.
Collapse
Affiliation(s)
- Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chaobo Tong
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xingyu Mao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Junyan Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Teresa de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture, Wuhan 430062, Hubei, China
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
147
|
Gust AA, Pruitt R, Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. TRENDS IN PLANT SCIENCE 2017; 22:779-791. [PMID: 28779900 DOI: 10.1016/j.tplants.2017.07.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
In both plants and animals, defense against pathogens relies on a complex surveillance system for signs of danger. Danger signals may originate from the infectious agent or from the host itself. Immunogenic plant host factors can be roughly divided into two categories: molecules which are passively released upon cell damage ('classical' damage-associated molecular patterns, DAMPs), and peptides which are processed and/or secreted upon infection to modulate the immune response (phytocytokines). We highlight the ongoing challenge to understand how plants sense various danger signals and integrate this information to produce an appropriate immune response to diverse challenges.
Collapse
Affiliation(s)
- Andrea A Gust
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| | - Rory Pruitt
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
148
|
Meena M, Gupta SK, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis. Front Microbiol 2017; 8:1451. [PMID: 28848500 PMCID: PMC5550700 DOI: 10.3389/fmicb.2017.01451] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 01/04/2023] Open
Abstract
Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.
Collapse
Affiliation(s)
- Mukesh Meena
- Department of Botany, Institute of Science, Banaras Hindu UniversityVaranasi, India
| | | | | | | | | | | |
Collapse
|
149
|
Isolation and Characterization of Avirulence Genes in Magnaporthe oryzae. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 2017. [DOI: 10.33736/bjrst.389.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Magnaporthe oryzae is a fungal pathogen contributing to rice blast diseases globally via their Avr (avirulence) gene. Although the occurrence of M. oryzae has been reported in Sarawak since several decades ago, however, none has focused specifically on Avr genes, which confer resistance against pathogen associated molecular pattern-triggered immunity (PTI) in host. The objective of this study is to isolate Avr genes from M. oryzae 7’ (a Sarawak isolate) that may contribute to susceptibility of rice towards diseases. In this study, AvrPiz-t, AVR-Pik, Avr-Pi54, and AVR-Pita1 genes were isolated via PCR and cloning approaches. The genes were then compared with set of similar genes from related isolates derived from NCBI. Results revealed that all eight Avr genes (including four other global isolates) shared similar N-myristoylation site and a novel motif. 3D modeling revealed similar β-sandwich structure in AvrPiz-t and AVR-Pik despite sequence dissimilarities. In conclusion, it is confirmed of the presence of these genes in the Sarawak (M. oryzae) isolate. This study implies that Sarawak isolate may confer similar avirulence properties as their counterparts worldwide. Further R/Avr gene-for-gene relationship studies may aid in strategic control of rice blast diseases in future.
Collapse
|
150
|
Shuping DSS, Eloff JN. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017. [PMID: 28638874 PMCID: PMC5471458 DOI: 10.21010/ajtcam.v14i4.14] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Materials and Methods: Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms “plant fungal pathogen”, “plant extracts” and “phytopathogens”. Proposals are made on the best extractants and bioassay techniques to be used. Results: In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Conclusions: Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase food security for rural farmers, lead to commercial rewards, but it is also much easier to test the efficacy in greenhouse or field experiments. Even if extracts are toxic it may still be useful in the floriculture industry.
Collapse
Affiliation(s)
- D S S Shuping
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| | - J N Eloff
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|