101
|
Sap KA, Reits EA. Strategies to Investigate Ubiquitination in Huntington's Disease. Front Chem 2020; 8:485. [PMID: 32596207 PMCID: PMC7300180 DOI: 10.3389/fchem.2020.00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Many neurodegenerative disorders including Huntington's Disease are hallmarked by intracellular protein aggregates that are decorated by ubiquitin and different ubiquitin ligases and deubiquitinating enzymes. The protein aggregates observed in Huntington's Disease are caused by a polyglutamine expansion in the N-terminus of the huntingtin protein (Htt). Improving the degradation of mutant Htt via the Ubiquitin Proteasome System prior to aggregation would be a therapeutic strategy to delay or prevent the onset of Huntington's Disease for which there is currently no cure. Here we examine the current approaches used to study the ubiquitination of both soluble Htt as well as insolubilized Htt present in aggregates, and we describe what is known about involved (de)ubiquitinating enzymes. Furthermore, we discuss novel methodologies to study the dynamics of Htt ubiquitination in living cells using fluorescent ubiquitin probes, to identify and quantify Htt ubiquitination by mass spectrometry-based approaches, and various approaches to identify involved ubiquitinating enzymes.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
102
|
Arslanhan MD, Gulensoy D, Firat-Karalar EN. A Proximity Mapping Journey into the Biology of the Mammalian Centrosome/Cilium Complex. Cells 2020; 9:E1390. [PMID: 32503249 PMCID: PMC7348975 DOI: 10.3390/cells9061390] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail. Application of proximity-based labeling methods to the centrosome/cilium complex generated spatial and temporal interaction maps for its components and provided key insights into these questions. In this review, we first describe the structure and cell cycle-linked regulation of the centrosome/cilium complex. Next, we explain the inherent biochemical and temporal limitations in probing the structure and function of the centrosome/cilium complex and describe how proximity-based labeling approaches have addressed them. Finally, we explore current insights into the knowledge we gained from the proximity mapping studies as it pertains to centrosome and cilium biogenesis and systematic characterization of the centrosome, cilium and centriolar satellite interactomes.
Collapse
Affiliation(s)
| | | | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, 34450 Istanbul, Turkey; (M.D.A.); (D.G.)
| |
Collapse
|
103
|
Gingras AC. Connecting proteins: shareable tools for reproducible interaction mapping. Biochem Cell Biol 2020; 98:309-313. [PMID: 31689129 DOI: 10.1139/bcb-2019-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Room 992, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
104
|
Ummethum H, Hamperl S. Proximity Labeling Techniques to Study Chromatin. Front Genet 2020; 11:450. [PMID: 32477404 PMCID: PMC7235407 DOI: 10.3389/fgene.2020.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Mammals contain over 200 different cell types, yet nearly all have the same genomic DNA sequence. It is a key question in biology how the genetic instructions in DNA are selectively interpreted by cells to specify various transcriptional programs and therefore cellular identity. The structural and functional organization of chromatin governs the transcriptional state of individual genes. To understand how genomic loci adopt different levels of gene expression, it is critical to characterize all local chromatin factors as well as long-range interactions in the 3D nuclear compartment. Much of our current knowledge regarding protein interactions in a chromatin context is based on affinity purification of chromatin components coupled to mass spectrometry (AP-MS). AP-MS has been invaluable to map strong protein-protein interactions in the nucleus. However, the interaction is detected after cell lysis and biochemical enrichment, allowing for loss or gain of false positive or negative interaction partners. Recently, proximity-dependent labeling methods have emerged as powerful tools for studying chromatin in its native context. These methods take advantage of engineered enzymes that are fused to a chromatin factor of interest and can directly label all factors in proximity. Subsequent pull-down assays followed by mass spectrometry or sequencing approaches provide a comprehensive snapshot of the proximal chromatin interactome. By combining this method with dCas9, this approach can also be extended to study chromatin at specific genomic loci. Here, we review and compare current proximity-labeling approaches available for studying chromatin, with a particular focus on new emerging technologies that can provide important insights into the transcriptional and chromatin interaction networks essential for cellular identity.
Collapse
Affiliation(s)
- Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
105
|
Postic G, Marcoux J, Reys V, Andreani J, Vandenbrouck Y, Bousquet MP, Mouton-Barbosa E, Cianférani S, Burlet-Schiltz O, Guerois R, Labesse G, Tufféry P. Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration. J Proteome Res 2020; 19:2807-2820. [PMID: 32338910 DOI: 10.1021/acs.jproteome.0c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions play a major role in the molecular machinery of life, and various techniques such as AP-MS are dedicated to their identification. However, those techniques return lists of proteins devoid of organizational structure, not detailing which proteins interact with which others. Proposing a hierarchical view of the interactions between the members of the flat list becomes highly tedious for large data sets when done by hand. To help hierarchize this data, we introduce a new bioinformatics protocol that integrates information of the multimeric protein 3D structures available in the Protein Data Bank using remote homology detection, as well as information related to Short Linear Motifs and interaction data from the BioGRID. We illustrate on two unrelated use-cases of different complexity how our approach can be useful to decipher the network of interactions hidden in the list of input proteins, and how it provides added value compared to state-of-the-art resources such as Interactome3D or STRING. Particularly, we show the added value of using homology detection to distinguish between orthologs and paralogs, and to distinguish between core obligate and more facultative interactions. We also demonstrate the potential of considering interactions occurring through Short Linear Motifs.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France.,Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Universite Paris-Saclay, 91400 Orsay, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Victor Reys
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, 38000 Grenoble, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31000 Toulouse, France
| | - Raphael Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gilles Labesse
- CBS, Univ. Montpellier, CNRS, INSERM, 34095 Montpellier, France
| | - Pierre Tufféry
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, RPBS, 75013 Paris, France
| |
Collapse
|
106
|
Samavarchi-Tehrani P, Samson R, Gingras AC. Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches. Mol Cell Proteomics 2020; 19:757-773. [PMID: 32127388 PMCID: PMC7196579 DOI: 10.1074/mcp.r120.001941] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
The study of protein subcellular distribution, their assembly into complexes and the set of proteins with which they interact with is essential to our understanding of fundamental biological processes. Complementary to traditional assays, proximity-dependent biotinylation (PDB) approaches coupled with mass spectrometry (such as BioID or APEX) have emerged as powerful techniques to study proximal protein interactions and the subcellular proteome in the context of living cells and organisms. Since their introduction in 2012, PDB approaches have been used in an increasing number of studies and the enzymes themselves have been subjected to intensive optimization. How these enzymes have been optimized and considerations for their use in proteomics experiments are important questions. Here, we review the structural diversity and mechanisms of the two main classes of PDB enzymes: the biotin protein ligases (BioID) and the peroxidases (APEX). We describe the engineering of these enzymes for PDB and review emerging applications, including the development of PDB for coincidence detection (split-PDB). Lastly, we briefly review enzyme selection and experimental design guidelines and reflect on the labeling chemistries and their implication for data interpretation.
Collapse
Affiliation(s)
| | - Reuben Samson
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
107
|
Escudero-Paniagua B, Bartolomé RA, Rodríguez S, De Los Ríos V, Pintado L, Jaén M, Lafarga M, Fernández-Aceñero MJ, Casal JI. PAUF/ZG16B promotes colorectal cancer progression through alterations of the mitotic functions and the Wnt/β-catenin pathway. Carcinogenesis 2020; 41:203-213. [PMID: 31095674 DOI: 10.1093/carcin/bgz093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 05/15/2019] [Indexed: 12/29/2022] Open
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased β-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/β-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.
Collapse
Affiliation(s)
| | | | - Sandra Rodríguez
- Molecular Cytogenetics Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vivian De Los Ríos
- Proteomics Core Facility, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Laura Pintado
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Marta Jaén
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Universidad de Cantabria-IDIVAL, Santander, Spain
| | | | | |
Collapse
|
108
|
Li Q, Sun Y, Jarugumilli GK, Liu S, Dang K, Cotton JL, Xiol J, Chan PY, DeRan M, Ma L, Li R, Zhu LJ, Li JH, Leiter AB, Ip YT, Camargo FD, Luo X, Johnson RL, Wu X, Mao J. Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription. Cell Stem Cell 2020; 26:675-692.e8. [PMID: 32259481 DOI: 10.1016/j.stem.2020.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/30/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.
Collapse
Affiliation(s)
- Qi Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yang Sun
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gopala K Jarugumilli
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shun Liu
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyvan Dang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer L Cotton
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jordi Xiol
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Pui Yee Chan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael DeRan
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lifang Ma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rui Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joyce H Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Department of Hematology/Oncology, Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Xuelian Luo
- Departments of Pharmacology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy L Johnson
- Division of Basic Science Research, Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
109
|
Firat-Karalar EN. Proximity mapping of the microtubule plus-end tracking protein SLAIN2 using the BioID approach. ACTA ACUST UNITED AC 2020; 44:61-72. [PMID: 32256142 PMCID: PMC7129064 DOI: 10.3906/biy-2002-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The centrosome is the main microtubule-organizing center of animal cells, which plays key roles in critical cellular processes ranging from cell division to cellular signaling. Accordingly, defects in the structure and function of centrosomes cause various human diseases such as cancer and primary microcephaly. To elucidate the molecular defects underlying these diseases, the biogenesis and functions of the centrosomes have to be fully understood. An essential step towards addressing these questions is the identification and functional dissection of the full repertoire of centrosome proteins. Here, we used high-resolution imaging and showed that the microtubule plus-end tracking protein SLAIN2 localizes to the pericentriolar material at the proximal end of centrioles. To gain insight into its cellular functions and mechanisms, we applied in vivo proximity-dependent biotin identification to SLAIN2 and generated its proximity interaction map. Gene ontology analysis of the SLAIN2 interactome revealed extensive interactions with centriole duplication, ciliogenesis, and microtubule-associated proteins, including previously characterized and uncharacterized interactions. Collectively, our results define SLAIN2 as a component of pericentriolar material and provide an important resource for future studies aimed at elucidating SLAIN2 functions at the centrosome.
Collapse
Affiliation(s)
- Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, İstanbul Turkey
| |
Collapse
|
110
|
Multi-level and lineage-specific interactomes of the Hox transcription factor Ubx contribute to its functional specificity. Nat Commun 2020; 11:1388. [PMID: 32170121 PMCID: PMC7069958 DOI: 10.1038/s41467-020-15223-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors (TFs) control cell fates by precisely orchestrating gene expression. However, how individual TFs promote transcriptional diversity remains unclear. Here, we use the Hox TF Ultrabithorax (Ubx) as a model to explore how a single TF specifies multiple cell types. Using proximity-dependent Biotin IDentification in Drosophila, we identify Ubx interactomes in three embryonic tissues. We find that Ubx interacts with largely non-overlapping sets of proteins with few having tissue-specific RNA expression. Instead most interactors are active in many cell types, controlling gene expression from chromatin regulation to the initiation of translation. Genetic interaction assays in vivo confirm that they act strictly lineage- and process-specific. Thus, functional specificity of Ubx seems to play out at several regulatory levels and to result from the controlled restriction of the interaction potential by the cellular environment. Thereby, it challenges long-standing assumptions such as differential RNA expression as determinant for protein complexes. Many transcription factors regulate gene expression in a lineage- and process-specific manner, despite being expressed in several cell types. Here, the authors show that the Hox transcription factor Ubx has lineage-specific interactomes, which contribute to its cell context-dependent functions.
Collapse
|
111
|
Gonatopoulos-Pournatzis T, Niibori R, Salter EW, Weatheritt RJ, Tsang B, Farhangmehr S, Liang X, Braunschweig U, Roth J, Zhang S, Henderson T, Sharma E, Quesnel-Vallières M, Permanyer J, Maier S, Georgiou J, Irimia M, Sonenberg N, Forman-Kay JD, Gingras AC, Collingridge GL, Woodin MA, Cordes SP, Blencowe BJ. Autism-Misregulated eIF4G Microexons Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell 2020; 77:1176-1192.e16. [PMID: 31999954 DOI: 10.1016/j.molcel.2020.01.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/15/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022]
Abstract
Microexons represent the most highly conserved class of alternative splicing, yet their functions are poorly understood. Here, we focus on closely related neuronal microexons overlapping prion-like domains in the translation initiation factors, eIF4G1 and eIF4G3, the splicing of which is activity dependent and frequently disrupted in autism. CRISPR-Cas9 deletion of these microexons selectively upregulates synaptic proteins that control neuronal activity and plasticity and further triggers a gene expression program mirroring that of activated neurons. Mice lacking the Eif4g1 microexon display social behavior, learning, and memory deficits, accompanied by altered hippocampal synaptic plasticity. We provide evidence that the eIF4G microexons function as a translational brake by causing ribosome stalling, through their propensity to promote the coalescence of cytoplasmic granule components associated with translation repression, including the fragile X mental retardation protein FMRP. The results thus reveal an autism-disrupted mechanism by which alternative splicing specializes neuronal translation to control higher order cognitive functioning.
Collapse
Affiliation(s)
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Eric W Salter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Robert J Weatheritt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Brian Tsang
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaghayegh Farhangmehr
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xinyi Liang
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | | | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Tyler Henderson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mathieu Quesnel-Vallières
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona 08003, Spain
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Barcelona 08010, Spain
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
112
|
Ugur E, Bartoschek MD, Leonhardt H. Locus-Specific Chromatin Proteome Revealed by Mass Spectrometry-Based CasID. Methods Mol Biol 2020; 2175:109-121. [PMID: 32681487 DOI: 10.1007/978-1-0716-0763-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biotin proximity labeling has largely extended the toolbox of mass spectrometry-based interactomics. To date, BirA, engineered BirA variants, or other biotinylating enzymes have been widely applied to characterize protein interactions. By implementing chromatin purification-based methods the genome-wide interactome of proteins can be defined. However, acquiring a high-resolution interactome of a single genomic locus preferably by multiplexed measurements of several distinct genomic loci in parallel remains challenging. We recently developed CasID, a novel approach where the catalytically inactive Cas9 (dCas9) is coupled to the promiscuous biotin ligase BirA (BirA∗). With CasID, first the local proteome at repetitive telomeric, major satellite, and minor satellite regions was determined. With more efficient biotin ligases and sensitive mass spectrometry, others have successfully identified the chromatin composition at even smaller genomic, non-repetitive regions of a few hundred base pairs in length. Here, we summarize the most recent developments towards interactomics at a single genomic locus and provide a step-by-step protocol based on the CasID approach.
Collapse
Affiliation(s)
- Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
113
|
Cloutier P, Poitras C, Faubert D, Bouchard A, Blanchette M, Gauthier MS, Coulombe B. Upstream ORF-Encoded ASDURF Is a Novel Prefoldin-like Subunit of the PAQosome. J Proteome Res 2019; 19:18-27. [PMID: 31738558 DOI: 10.1021/acs.jproteome.9b00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PAQosome is an 11-subunit chaperone involved in the biogenesis of several human protein complexes. We show that ASDURF, a recently discovered upstream open reading frame (uORF) in the 5' UTR of ASNSD1 mRNA, encodes the 12th subunit of the PAQosome. ASDURF displays significant structural homology to β-prefoldins and assembles with the five known subunits of the prefoldin-like module of the PAQosome to form a heterohexameric prefoldin-like complex. A model of the PAQosome prefoldin-like module is presented. The data presented here provide an example of a eukaryotic uORF-encoded polypeptide whose function is not limited to cis-acting translational regulation of downstream coding sequence and highlights the importance of including alternative ORF products in proteomic studies.
Collapse
Affiliation(s)
- Philippe Cloutier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Christian Poitras
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Annie Bouchard
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Mathieu Blanchette
- School of Computer Science , McGill University , 3480 University Street , Montréal , Quebec H3A 0E9 , Canada
| | - Marie-Soleil Gauthier
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada
| | - Benoit Coulombe
- Institut de Recherches Cliniques de Montréal , 110 Avenue des Pins Ouest , Montréal , Quebec H2W 1R7 , Canada.,Département de Biochimie et Médecine Moléculaire, Faculté de Médecine , Université de Montréal , 2900 Boulevard Édouart-Montpetit , Montréal , Quebec H3T 1J4 , Canada
| |
Collapse
|
114
|
Zhang X, Brachner A, Kukolj E, Slade D, Wang Y. SIRT2 deacetylates GRASP55 to facilitate post-mitotic Golgi assembly. J Cell Sci 2019; 132:jcs232389. [PMID: 31604796 PMCID: PMC6857597 DOI: 10.1242/jcs.232389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/01/2019] [Indexed: 01/25/2023] Open
Abstract
Sirtuin 2 (SIRT2) is an NAD-dependent sirtuin deacetylase that regulates microtubule and chromatin dynamics, gene expression and cell cycle progression, as well as nuclear envelope reassembly. Recent proteomic analyses have identified Golgi proteins as SIRT2 interactors, indicating that SIRT2 may also play a role in Golgi structure formation. Here, we show that SIRT2 depletion causes Golgi fragmentation and impairs Golgi reassembly at the end of mitosis. SIRT2 interacts with the Golgi reassembly stacking protein GRASP55 (also known as GORASP2) in mitosis when GRASP55 is highly acetylated on K50. Expression of wild-type and the K50R acetylation-deficient mutant of GRASP55, but not the K50Q acetylation-mimetic mutant, in GRASP55 and GRASP65 (also known as GORASP1) double-knockout cells, rescued the Golgi structure and post-mitotic Golgi reassembly. Acetylation-deficient GRASP55 exhibited a higher self-interaction efficiency, a property required for Golgi structure formation. These results demonstrate that SIRT2 regulates Golgi structure by modulating GRASP55 acetylation levels.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Andreas Brachner
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Eva Kukolj
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dea Slade
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 4110 Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
115
|
Hu Z, Ghosh A, Stolze SC, Horváth M, Bai B, Schaefer S, Zündorf S, Liu S, Harzen A, Hajheidari M, Sarnowski TJ, Nakagami H, Koncz Z, Koncz C. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:411-429. [PMID: 31276249 PMCID: PMC6852550 DOI: 10.1111/tpj.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Ajit Ghosh
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhet3114, Bangladesh
| | - Sara C. Stolze
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mihály Horváth
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Bing Bai
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Sabine Schaefer
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Simone Zündorf
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Shanda Liu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Anne Harzen
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mohsen Hajheidari
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Botanical InstituteCologne Biocenter, Cluster of Excellence on Plant Sciences, University of CologneD‐50674CologneGermany
| | - Tomasz J. Sarnowski
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5A02‐106WarsawPoland
| | - Hirofumi Nakagami
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Zsuzsa Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Csaba Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Plant BiologyBiological Research Center of Hungarian Academy of SciencesTemesvári krt. 62H‐6726SzegedHungary
| |
Collapse
|
116
|
Engelberg K, Chen CT, Bechtel T, Sánchez Guzmán V, Drozda AA, Chavan S, Weerapana E, Gubbels MJ. The apical annuli of Toxoplasma gondii are composed of coiled-coil and signalling proteins embedded in the inner membrane complex sutures. Cell Microbiol 2019; 22:e13112. [PMID: 31470470 DOI: 10.1111/cmi.13112] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1-5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super-resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring-like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled-coil and signalling proteins assembled in a pore-like structure crossing the IMC barrier maintained during internal budding.
Collapse
Affiliation(s)
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Precision Medicine Center, Department of Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Tyler Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Victoria Sánchez Guzmán
- Department of Biology, Boston College, Chestnut Hill, Massachusetts.,Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Allison A Drozda
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | - Suyog Chavan
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| | | | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts
| |
Collapse
|
117
|
Agbo L, Lambert JP. Proteomics contribution to the elucidation of the steroid hormone receptors functions. J Steroid Biochem Mol Biol 2019; 192:105387. [PMID: 31173874 DOI: 10.1016/j.jsbmb.2019.105387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Steroid hormones have far-ranging biological impacts and more are continuously being uncovered. Over the last decades, proteomics approaches have become key to better understand biological processes. Due to multiple technical breakthroughs allowing for the concurrent identification and/or quantification of thousands of analytes using mass spectrometers, researchers employing proteomics tools today can now obtain truly holistic views of multiple facets of the human proteome. Here, we review how the field of proteomics has contributed to discoveries about steroid hormones, their receptors and their impact on human pathologies. In particular, the involvement of steroid receptors in cancer initiation, development, metastasis and treatment will be highlighted. Techniques at the forefront of the proteomics field will also be discussed to present how they can contribute to a better understanding of steroid hormone receptors.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Québec, QC, Canada; Research Center CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
118
|
Ras functional proximity proteomics establishes mTORC2 as new direct ras effector. Oncotarget 2019; 10:5126-5135. [PMID: 31497244 PMCID: PMC6718260 DOI: 10.18632/oncotarget.27025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023] Open
Abstract
Although oncogenic mutations in the three major Ras isoforms, KRAS, HRAS and NRAS, are present in nearly a third of human cancers, therapeutic targeting of Ras remains a challenge due to its structure and complex regulation. However, an in-depth examination of the protein interactome of oncogenic Ras may provide new insights into key regulators, effectors and other mediators of its tumorigenic functions. Previous proteomic analyses have been limited by experimental tools that fail to capture the dynamic, transient nature of Ras cellular interactions. Therefore, in a recent study, we integrated proximity-dependent biotin labeling (BioID) proteomics with CRISPR screening of identified proteins to identify Ras proximal proteins required for Ras-dependent cancer cell growth. Oncogenic Ras was proximal to proteins involved in unexpected biological processes, such as vesicular trafficking and solute transport. Critically, we identified a direct, bona fide interaction between active Ras and the mTOR Complex 2 (mTORC2) that stimulated mTORC2 kinase activity. The oncogenic Ras-mTORC2 interaction resulted in a downstream pro-proliferative transcriptional program and promoted Ras-dependent tumor growth in vivo. Here we provide additional insight into the Ras isoform-specific protein interactomes, highlighting new opportunities for unique tumor-type therapies. Finally, we discuss the active Ras-mTORC2 interaction in detail, providing a more complete understanding of the direct relationship between Ras and mTORC2. Collectively, our findings support a model wherein Ras integrates an expanded array of pro-oncogenic signals to drive tumorigenic processes, including action on mTORC2 as a direct effector of Ras-driven proliferative signals.
Collapse
|
119
|
The endosomal sorting adaptor HD-PTP is required for ephrin-B:EphB signalling in cellular collapse and spinal motor axon guidance. Sci Rep 2019; 9:11945. [PMID: 31420572 PMCID: PMC6697728 DOI: 10.1038/s41598-019-48421-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 08/02/2019] [Indexed: 12/25/2022] Open
Abstract
The signalling output of many transmembrane receptors that mediate cell-cell communication is restricted by the endosomal sorting complex required for transport (ESCRT), but the impact of this machinery on Eph tyrosine kinase receptor function is unknown. We identified the ESCRT-associated adaptor protein HD-PTP as part of an EphB2 proximity-dependent biotin identification (BioID) interactome, and confirmed this association using co-immunoprecipitation. HD-PTP loss attenuates the ephrin-B2:EphB2 signalling-induced collapse of cultured cells and axonal growth cones, and results in aberrant guidance of chick spinal motor neuron axons in vivo. HD-PTP depletion abrogates ephrin-B2-induced EphB2 clustering, and EphB2 and Src family kinase activation. HD-PTP loss also accelerates ligand-induced EphB2 degradation, contrasting the effects of HD-PTP loss on the relay of signals from other cell surface receptors. Our results link Eph function to the ESCRT machinery and demonstrate a role for HD-PTP in the earliest steps of ephrin-B:EphB signalling, as well as in obstructing premature receptor depletion.
Collapse
|
120
|
Das PP, Macharia MW, Lin Q, Wong SM. In planta proximity-dependent biotin identification (BioID) identifies a TMV replication co-chaperone NbSGT1 in the vicinity of 126 kDa replicase. J Proteomics 2019; 204:103402. [PMID: 31158515 DOI: 10.1016/j.jprot.2019.103402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive, single-stranded RNA virus. It encodes two replicases (126 kDa and 183 kDa), a movement protein and a coat protein. These proteins interact with host proteins for successful infection. Some host proteins such as eEF1α, Tm-1, TOM1, 14-3-3 proteins directly interact with Tobamovirus replication proteins. There are host proteins in the virus replication complex which do not interact with viral replicases directly, such as pyruvate kinase and glyceraldehyde-3-phosphate dehydrogenase. We have used Proximity-dependent biotin identification (BioID) technique to screen for transient or weak protein interactions of host proteins and viral replicase in vivo. We transiently expressed BirA* tagged TMV 126 kDa replicase in TMV infected Nicotiana benthamiana plants. Among 18 host proteins, we identified NbSGT1 as a potential target for further characterization. Silencing of NbSGT1 in N. benthamiana plants increased its susceptibility to TMV infection, and overexpression of NbSGT1 increased resistance to TMV infection. There were weak interactions between NbSGT1 and TMV replicases but no interaction between them was found in Y2H assay. It suggests that the interaction might be transient or indirect. Therefore, the BioID technique is a valuable method to identify weak or transient/indirect interaction(s) between pathogen proteins and host proteins in plants. BIOLOGICAL SIGNIFICANCE: TMV is a well characterized positive-strand RNA virus model for study of virus-plant host interactions. It infects >350 plant species and is one of the significant pathogens of crop loss globally. Many host proteins are involved in TMV replication complex formation. To date there are few techniques available for identifying interacting host proteins to viral proteins. There is limited knowledge on transient or non-interacting host proteins during virus infection/replication. In this study, we used agroinfiltration-mediated in planta BioID technique to identify transiently or non-interacting host proteins to viral proteins in TMV-infected N. benthamiana plants. This technique allowed us to identify potential candidate proteins in the vicinity of TMV 126 kDa replicase. We have selected NbSGT1 and its overexpression suppresses TMV replication and increase plant resistance. NbSGT1 is believed to interact transiently or indirectly with TMV replicases in the presence of Hsp90/Hsp70. BioID is a novel and powerful technique to identify transiently or indirectly interacting proteins in the study of pathogen-host interactions.
Collapse
Affiliation(s)
- Prem Prakash Das
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Mercy Wairimu Macharia
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore.
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore (NUS), 14 Science Drive 4, 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore; National University of Singapore Suzhou Research Institute, Suzhou, Jiangsu, China.
| |
Collapse
|
121
|
Béganton B, Solassol I, Mangé A, Solassol J. Protein interactions study through proximity-labeling. Expert Rev Proteomics 2019; 16:717-726. [PMID: 31269821 DOI: 10.1080/14789450.2019.1638769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: The proteome is a dynamic system in which protein-protein interactions play a crucial part in shaping the cell phenotype. However, given the current limitations of available technologies to describe the dynamic nature of these interactions, the identification of protein-protein interactions has long been a major challenge in proteomics. In recent years, the development of BioID and APEX, two proximity-tagging technologies, have opened-up new perspectives and have already started to change our conception of protein-protein interactions, and more generally, of the proteome. With a broad range of application encompassing health, these new technologies are currently setting milestones crucial to understand fine cellular mechanisms. Area covered: In this article, we describe both the recent and the more conventional available tools to study protein-protein interactions, compare the advantages and the limitations of these techniques, and discuss the recent advancements led by the proximity tagging techniques to refine our conception of the proteome. Expert opinion: The recent development of proximity labeling techniques emphasizes the growing importance of such technologies to decipher cellular mechanism. Although several challenges still need to be addressed, many fields can benefit from these tools and notably the detection of new therapeutic targets for patient care.
Collapse
Affiliation(s)
- Benoît Béganton
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| | - Isabelle Solassol
- Translational Research Unit, Montpellier Cancer Institute , Montpellier , France
| | - Alain Mangé
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France
| | - Jérôme Solassol
- IRCM, INSERM, Univ Montpellier, ICM , Montpellier , France.,Department of Pathology and onco-biology, CHU Montpellier , Montpellier , France
| |
Collapse
|
122
|
Gillingham AK, Bertram J, Begum F, Munro S. In vivo identification of GTPase interactors by mitochondrial relocalization and proximity biotinylation. eLife 2019; 8:45916. [PMID: 31294692 PMCID: PMC6639074 DOI: 10.7554/elife.45916] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
The GTPases of the Ras superfamily regulate cell growth, membrane traffic and the cytoskeleton, and a wide range of diseases are caused by mutations in particular members. They function as switchable landmarks with the active GTP-bound form recruiting to the membrane a specific set of effector proteins. The GTPases are precisely controlled by regulators that promote acquisition of GTP (GEFs) or its hydrolysis to GDP (GAPs). We report here MitoID, a method for identifying effectors and regulators by performing in vivo proximity biotinylation with mitochondrially-localized forms of the GTPases. Applying this to 11 human Rab GTPases identified many known effectors and GAPs, as well as putative novel effectors, with examples of the latter validated for Rab2, Rab5, Rab9 and Rab11. MitoID can also efficiently identify effectors and GAPs of Rho and Ras family GTPases such as Cdc42, RhoA, Rheb, and N-Ras, and can identify GEFs by use of GDP-bound forms.
Collapse
Affiliation(s)
| | - Jessie Bertram
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
123
|
Nishimura T, Fakim H, Brandmann T, Youn JY, Gingras AC, Jinek M, Fabian MR. Human MARF1 is an endoribonuclease that interacts with the DCP1:2 decapping complex and degrades target mRNAs. Nucleic Acids Res 2019; 46:12008-12021. [PMID: 30364987 PMCID: PMC6294520 DOI: 10.1093/nar/gky1011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis arrest female 1 (MARF1) is a cytoplasmic RNA binding protein that is essential for meiotic progression of mouse oocytes, in part by limiting retrotransposon expression. MARF1 is also expressed in somatic cells and tissues; however, its mechanism of action has yet to be investigated. Human MARF1 contains a NYN-like domain, two RRMs and eight LOTUS domains. Here we provide evidence that MARF1 post-transcriptionally silences targeted mRNAs. MARF1 physically interacts with the DCP1:DCP2 mRNA decapping complex but not with deadenylation machineries. Importantly, we provide a 1.7 Å resolution crystal structure of the human MARF1 NYN domain, which we demonstrate is a bona fide endoribonuclease, the activity of which is essential for the repression of MARF1-targeted mRNAs. Thus, MARF1 post-transcriptionally represses gene expression by serving as both an endoribonuclease and as a platform that recruits the DCP1:DCP2 decapping complex to targeted mRNAs.
Collapse
Affiliation(s)
- Tamiko Nishimura
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hana Fakim
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Ji-Young Youn
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Switzerland
| | - Marc R Fabian
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
124
|
Saettone A, Nabeel-Shah S, Garg J, Lambert JP, Pearlman RE, Fillingham J. Functional Proteomics of Nuclear Proteins in Tetrahymena thermophila: A Review. Genes (Basel) 2019; 10:E333. [PMID: 31052454 PMCID: PMC6562869 DOI: 10.3390/genes10050333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Identification and characterization of protein complexes and interactomes has been essential to the understanding of fundamental nuclear processes including transcription, replication, recombination, and maintenance of genome stability. Despite significant progress in elucidation of nuclear proteomes and interactomes of organisms such as yeast and mammalian systems, progress in other models has lagged. Protists, including the alveolate ciliate protozoa with Tetrahymena thermophila as one of the most studied members of this group, have a unique nuclear biology, and nuclear dimorphism, with structurally and functionally distinct nuclei in a common cytoplasm. These features have been important in providing important insights about numerous fundamental nuclear processes. Here, we review the proteomic approaches that were historically used as well as those currently employed to take advantage of the unique biology of the ciliates, focusing on Tetrahymena, to address important questions and better understand nuclear processes including chromatin biology of eukaryotes.
Collapse
Affiliation(s)
- Alejandro Saettone
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Jyoti Garg
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, G1V 0A6, Canada.
- CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Ronald E Pearlman
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jeffrey Fillingham
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
125
|
Pick a Tag and Explore the Functions of Your Pet Protein. Trends Biotechnol 2019; 37:1078-1090. [PMID: 31036349 DOI: 10.1016/j.tibtech.2019.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Protein tags have been essential for advancing our knowledge of the function of proteins, their localization, and the mapping of their interaction partners. Expressing epitope-tagged proteins has become a standard practice in every life science laboratory and, thus, continues to enable new studies. In recent years, several new tagging moieties have entered the limelight, many of them bringing new functionalities, such as targeted protein degradation, accurate quantification, and proximity labeling. Other novel tags aim at tackling research questions in challenging niches. In this review, we elaborate on recently introduced tags and the opportunities they provide for future research endeavors. In addition, we highlight how the genome-engineering revolution may boost the field of protein tags.
Collapse
|
126
|
Guard SE, Poss ZC, Ebmeier CC, Pagratis M, Simpson H, Taatjes DJ, Old WM. The nuclear interactome of DYRK1A reveals a functional role in DNA damage repair. Sci Rep 2019; 9:6539. [PMID: 31024071 PMCID: PMC6483993 DOI: 10.1038/s41598-019-42990-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
The chromosome 21 encoded protein kinase DYRK1A is essential for normal human development. Mutations in DYRK1A underlie a spectrum of human developmental disorders, and increased dosage in trisomy 21 is implicated in Down syndrome related pathologies. DYRK1A regulates a diverse array of cellular processes through physical interactions with substrates and binding partners in various subcellular compartments. Despite recent large-scale protein-protein interaction profiling efforts, DYRK1A interactions specific to different subcellular compartments remain largely unknown, impeding progress toward understanding emerging roles for this kinase. Here, we used immunoaffinity purification and quantitative mass spectrometry to identify nuclear interaction partners of endogenous DYRK1A. This interactome was enriched in DNA damage repair factors, transcriptional elongation factors and E3 ubiquitin ligases. We validated an interaction with RNF169, a factor that promotes homology directed repair upon DNA damage, and found that DYRK1A expression and kinase activity are required for maintenance of 53BP1 expression and subsequent recruitment to DNA damage loci. Further, DYRK1A knock out conferred resistance to ionizing radiation in colony formation assays, suggesting that DYRK1A expression decreases cell survival efficiency in response to DNA damage and points to a tumor suppressive role for this kinase.
Collapse
Affiliation(s)
- Steven E Guard
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Zachary C Poss
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christopher C Ebmeier
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Pagratis
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Helen Simpson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - William M Old
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
127
|
Hennigan RF, Fletcher JS, Guard S, Ratner N. Proximity biotinylation identifies a set of conformation-specific interactions between Merlin and cell junction proteins. Sci Signal 2019; 12:12/578/eaau8749. [PMID: 31015291 DOI: 10.1126/scisignal.aau8749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurofibromatosis type 2 is an inherited, neoplastic disease associated with schwannomas, meningiomas, and ependymomas and that is caused by inactivation of the tumor suppressor gene NF2 The NF2 gene product, Merlin, has no intrinsic catalytic activity; its tumor suppressor function is mediated through the proteins with which it interacts. We used proximity biotinylation followed by mass spectrometry and direct binding assays to identify proteins that associated with wild-type and various mutant forms of Merlin in immortalized Schwann cells. We defined a set of 52 proteins in close proximity to wild-type Merlin. Most of the Merlin-proximal proteins were components of cell junctional signaling complexes, suggesting that additional potential interaction partners may exist in adherens junctions, tight junctions, and focal adhesions. With mutant forms of Merlin that cannot bind to phosphatidylinositol 4,5-bisphosphate (PIP2) or that constitutively adopt a closed conformation, we confirmed a critical role for PIP2 binding in Merlin function and identified a large cohort of proteins that specifically interacted with Merlin in the closed conformation. Among these proteins, we identified a previously unreported Merlin-binding protein, apoptosis-stimulated p53 protein 2 (ASPP2, also called Tp53bp2), that bound to closed-conformation Merlin predominately through the FERM domain. Our results demonstrate that Merlin is a component of cell junctional mechanosensing complexes and defines a specific set of proteins through which it acts.
Collapse
Affiliation(s)
- Robert F Hennigan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA.
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Steven Guard
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| |
Collapse
|
128
|
Viita T, Kyheröinen S, Prajapati B, Virtanen J, Frilander MJ, Varjosalo M, Vartiainen MK. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J Cell Sci 2019; 132:jcs226852. [PMID: 30890647 PMCID: PMC6503952 DOI: 10.1242/jcs.226852] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/05/2019] [Indexed: 12/25/2022] Open
Abstract
In addition to its essential functions within the cytoskeleton, actin also localizes to the cell nucleus, where it is linked to many important nuclear processes from gene expression to maintenance of genomic integrity. However, the molecular mechanisms by which actin operates in the nucleus remain poorly understood. Here, we have used two complementary mass spectrometry (MS) techniques, AP-MS and BioID, to identify binding partners for nuclear actin. Common high-confidence interactions highlight the role of actin in chromatin-remodeling complexes and identify the histone-modifying complex human Ada-Two-A-containing (hATAC) as a novel actin-containing nuclear complex. Actin binds directly to the hATAC subunit KAT14, and modulates its histone acetyl transferase activity in vitro and in cells. Transient interactions detected through BioID link actin to several steps of transcription as well as to RNA processing. Alterations in nuclear actin levels disturb alternative splicing in minigene assays, likely by affecting the transcription elongation rate. This interactome analysis thus identifies both novel direct binding partners and functional roles for nuclear actin, as well as forms a platform for further mechanistic studies on how actin operates during essential nuclear processes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tiina Viita
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Salla Kyheröinen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Bina Prajapati
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Jori Virtanen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
- Proteomics Unit, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
129
|
Remnant L, Booth DG, Vargiu G, Spanos C, Kerr ARW, Earnshaw WC. In vitro BioID: mapping the CENP-A microenvironment with high temporal and spatial resolution. Mol Biol Cell 2019; 30:1314-1325. [PMID: 30892990 PMCID: PMC6724601 DOI: 10.1091/mbc.e18-12-0799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The centromere is located at the primary constriction of condensed chromosomes where it acts as a platform regulating chromosome segregation. The histone H3 variant CENP-A is the foundation for kinetochore formation. CENP-A directs the formation of a highly dynamic molecular neighborhood whose temporal characterization during mitosis remains a challenge due to limitations in available techniques. BioID is a method that exploits a “promiscuous” biotin ligase (BirA118R or BirA*) to identify proteins within close proximity to a fusion protein of interest. As originally described, cells expressing BirA* fusions were exposed to high biotin concentrations for 24 h during which the ligase transferred activated biotin (BioAmp) to other proteins within the immediate vicinity. The protein neighborhood could then be characterized by streptavidin-based purification and mass spectrometry. Here we describe a further development to this technique, allowing CENP-A interactors to be characterized within only a few minutes, in an in vitro reaction in lysed cells whose physiological progression is “frozen.” This approach, termed in vitro BioID (ivBioID), has the potential to study the molecular neighborhood of any structural protein whose interactions change either during the cell cycle or in response to other changes in cell physiology.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Daniel G Booth
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and.,Centre for Brain Discovery Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Alastair R W Kerr
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | | |
Collapse
|
130
|
Castel P, Cheng A, Cuevas-Navarro A, Everman DB, Papageorge AG, Simanshu DK, Tankka A, Galeas J, Urisman A, McCormick F. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science 2019; 363:1226-1230. [PMID: 30872527 PMCID: PMC6986682 DOI: 10.1126/science.aav1444] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
RIT1 oncoproteins have emerged as an etiologic factor in Noonan syndrome and cancer. Despite the resemblance of RIT1 to other members of the Ras small guanosine triphosphatases (GTPases), mutations affecting RIT1 are not found in the classic hotspots but rather in a region near the switch II domain of the protein. We used an isogenic germline knock-in mouse model to study the effects of RIT1 mutation at the organismal level, which resulted in a phenotype resembling Noonan syndrome. By mass spectrometry, we detected a RIT1 interactor, leucine zipper-like transcription regulator 1 (LZTR1), that acts as an adaptor for protein degradation. Pathogenic mutations affecting either RIT1 or LZTR1 resulted in incomplete degradation of RIT1. This led to RIT1 accumulation and dysregulated growth factor signaling responses. Our results highlight a mechanism of pathogenesis that relies on impaired protein degradation of the Ras GTPase RIT1.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | - Alex G Papageorge
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Alexandra Tankka
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jacqueline Galeas
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Anatoly Urisman
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
131
|
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3:691-701. [DOI: 10.1038/s41559-019-0813-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
|
132
|
Béganton B, Coyaud E, Mangé A, Solassol J. Approches nouvelles pour l’étude des interactions protéine-protéine. Med Sci (Paris) 2019; 35:223-231. [DOI: 10.1051/medsci/2019035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Le protéome est un système dynamique où les interactions protéine-protéine occupent une place essentielle pour modeler ensemble le phénotype cellulaire. L’identification de ces interactions a toutefois longtemps représenté un obstacle important en protéomique tant les techniques disponibles ne permettaient pas de rendre compte de ces dynamiques d’interactions. Le développement récent du BioID et de l’APEX, deux technologies de marquage de proximité, ouvre aujourd’hui de nouvelles perspectives. Dans cette revue, nous décrivons les outils disponibles pour étudier les interactions protéine-protéine et discutons des progrès récents apportés par les marquages de proximité pour compléter notre vision du protéome et ainsi mieux comprendre les mécanismes cellulaires.
Collapse
|
133
|
Herbert K, Binet R, Lambert JP, Louphrasitthiphol P, Kalkavan H, Sesma-Sanz L, Robles-Espinoza CD, Sarkar S, Suer E, Andrews S, Chauhan J, Roberts ND, Middleton MR, Gingras AC, Masson JY, Larue L, Falletta P, Goding CR. BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma. Genes Dev 2019; 33:310-332. [PMID: 30804224 PMCID: PMC6411009 DOI: 10.1101/gad.314633.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023]
Abstract
Herbert et al. show that BRN2 is associated with DNA damage response proteins and suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy-, and vemurafenib-induced apoptosis. Whether cell types exposed to a high level of environmental insults possess cell type-specific prosurvival mechanisms or enhanced DNA damage repair capacity is not well understood. BRN2 is a tissue-restricted POU domain transcription factor implicated in neural development and several cancers. In melanoma, BRN2 plays a key role in promoting invasion and regulating proliferation. Here we found, surprisingly, that rather than interacting with transcription cofactors, BRN2 is instead associated with DNA damage response proteins and directly binds PARP1 and Ku70/Ku80. Rapid PARP1-dependent BRN2 association with sites of DNA damage facilitates recruitment of Ku80 and reprograms DNA damage repair by promoting Ku-dependent nonhomologous end-joining (NHEJ) at the expense of homologous recombination. BRN2 also suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy- and vemurafenib-induced apoptosis. Remarkably, BRN2 expression also correlates with a high single-nucleotide variation prevalence in human melanomas. By promoting error-prone DNA damage repair via NHEJ and suppressing apoptosis of damaged cells, our results suggest that BRN2 contributes to the generation of melanomas with a high mutation burden. Our findings highlight a novel role for a key transcription factor in reprogramming DNA damage repair and suggest that BRN2 may impact the response to DNA-damaging agents in BRN2-expressing cancers.
Collapse
Affiliation(s)
- Katharine Herbert
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Medicine, Cancer Research Centre, Université Laval, Quebec G1V 0A6, Canada; CHU de Québec Research Center, CHUL, Quebec G1V 4G2, Canada
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Halime Kalkavan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación Sobre el Genoma Humano, Universidad Nacional Autónoma de México, Santiago de Querétaro 76230, Mexico.,Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Sovan Sarkar
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Sarah Andrews
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Nicola D Roberts
- The Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Oncology Division, Québec Research Center, Québec City, Quebec G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, Quebec G1V 0A6, Canada
| | - Lionel Larue
- Institut Curie, PSL Research University, Normal and Pathological Development of Melanocytes, U1021, Institut National de la Santé et de la Recherche Médicale (INSERM), 91405 Orsay, France.,University Paris-Sud, University Paris-Saclay, UMR 3347, Centre National de la Recherche Scientifique (CNRS), 91505 Orsay, France.,Equipe Labellisée Ligue Contre le Cancer, 91405 Orsay, France
| | - Paola Falletta
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom.,Università Vita-Salute San Raffaele, Milano, 20132 Milano MI, Italy
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
134
|
Lee SY, Seo JK, Rhee HW. Direct Identification of Biotinylated Proteins from Proximity Labeling (Spot-BioID). Methods Mol Biol 2019; 2008:97-105. [PMID: 31124091 DOI: 10.1007/978-1-4939-9537-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, proximity labeling has been developed to map spatially localized proteomes in live cells. Usually, these methods employ enzymatic biotinylation of the proximal proteins with reactive biotin species. The labeled proteins may contain biotinylated modifications, which can be enriched by streptavidin beads through affinity purification. However, during the bead enrichment process, unlabeled proteins can be enriched to have specific binding affinity toward the biotinylated proteins or high binding affinity to the bead surface. If the unlabeled proteins remain attached to the beads after washing and are analyzed by mass spectrometry (MS) using the conventional workflow for the unlabeled peptidome, they would appear as proximal proteins in the targeted space. However, the unlabeled proteins, including the specific interaction partners of the biotinylated proteins, are false positives for proximity labeling. Including the unlabeled proteome in the identification list for proximity labeling does not provide a clear picture of the local proteome in the targeted space. This chapter is a detailed protocol of the first direct identification method (Spot-BioID) for identifying biotin-labeled proteomes of promiscuous biotin ligase (pBirA) labeling.
Collapse
Affiliation(s)
- Song-Yi Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
135
|
Yakubu RR, Nieves E, Weiss LM. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:169-198. [PMID: 31347048 DOI: 10.1007/978-3-030-15950-4_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass Spectrometry (MS) has revolutionized the way we study biomolecules, especially proteins, their interactions and posttranslational modifications (PTM). As such MS has established itself as the leading tool for the analysis of PTMs mainly because this approach is highly sensitive, amenable to high throughput and is capable of assigning PTMs to specific sites in the amino acid sequence of proteins and peptides. Along with the advances in MS methodology there have been improvements in biochemical, genetic and cell biological approaches to mapping the interactome which are discussed with consideration for both the practical and technical considerations of these techniques. The interactome of a species is generally understood to represent the sum of all potential protein-protein interactions. There are still a number of barriers to the elucidation of the human interactome or any other species as physical contact between protein pairs that occur by selective molecular docking in a particular spatiotemporal biological context are not easily captured and measured.PTMs massively increase the complexity of organismal proteomes and play a role in almost all aspects of cell biology, allowing for fine-tuning of protein structure, function and localization. There are an estimated 300 PTMS with a predicted 5% of the eukaryotic genome coding for enzymes involved in protein modification, however we have not yet been able to reliably map PTM proteomes due to limitations in sample preparation, analytical techniques, data analysis, and the substoichiometric and transient nature of some PTMs. Improvements in proteomic and mass spectrometry methods, as well as sample preparation, have been exploited in a large number of proteome-wide surveys of PTMs in many different organisms. Here we focus on previously published global PTM proteome studies in the Apicomplexan parasites T. gondii and P. falciparum which offer numerous insights into the abundance and function of each of the studied PTM in the Apicomplexa. Integration of these datasets provide a more complete picture of the relative importance of PTM and crosstalk between them and how together PTM globally change the cellular biology of the Apicomplexan protozoa. A multitude of techniques used to investigate PTMs, mostly techniques in MS-based proteomics, are discussed for their ability to uncover relevant biological function.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
136
|
Larochelle M, Bergeron D, Arcand B, Bachand F. Proximity-dependent biotinylation by TurboID to identify protein-protein interaction networks in yeast. J Cell Sci 2019; 132:jcs.232249. [DOI: 10.1242/jcs.232249] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023] Open
Abstract
The use of proximity-dependent biotinylation assays coupled to mass spectrometry (PDB-MS) has changed the field of protein-protein interaction studies. Yet, despite the recurrent and successful use of BioID-based protein-protein interactions screening in mammalian cells, the implementation of PDB-MS in yeast has not been effective. Here we report a simple and rapid approach in yeast to effectively screen for proximal and interacting proteins in their natural cellular environment by using TurboID, a recently described version of the BirA biotin ligase. Using the protein arginine methyltransferase Rmt3 and the RNA exosome subunits, Rrp6 and Dis3, the application of PDB-MS in yeast by using TurboID was able to recover protein-protein interactions previously identified using other biochemical approaches and provided new complementary information for a given protein bait. The development of a rapid and effective PDB assay that can systematically analyze protein-protein interactions in living yeast cells opens the way for large-scale proteomics studies in this powerful model organism.
Collapse
Affiliation(s)
- Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - Bruno Arcand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Qc, Canada
| |
Collapse
|
137
|
Localized protein biotinylation at DNA damage sites identifies ZPET, a repressor of homologous recombination. Genes Dev 2018; 33:75-89. [PMID: 30567999 PMCID: PMC6317314 DOI: 10.1101/gad.315978.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022]
Abstract
Here, Moquin et al. show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites and identify ZPET/ZNF280C as a potential DNA damage response protein. Their findings show that ZPET is an HR repressor and also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins. Numerous DNA repair and signaling proteins function at DNA damage sites to protect the genome. Here, we show that fusion of the promiscuous biotin ligase BirAR118G with RAD18 leads to localized protein biotinylation at DNA damage sites, allowing identification of ZPET (zinc finger protein proximal to RAD eighteen)/ZNF280C as a potential DNA damage response (DDR) protein. ZPET binds ssDNA and localizes to DNA double-strand breaks (DSBs) and stalled replication forks. In vitro, ZPET inhibits MRE11 binding to ssDNA. In cells, ZPET delays MRE11 binding to chromatin after DSB formation and slows DNA end resection through binding ssDNA. ZPET hinders resection independently of 53BP1 and HELB. Cells lacking ZPET displayed enhanced homologous recombination (HR), accelerated replication forks under stress, and increased resistance to DSBs and PARP inhibition. These results not only reveal ZPET as an HR repressor but also suggest that localized protein biotinylation at DNA damage sites is a useful strategy to identify DDR proteins.
Collapse
|
138
|
Lambert JP, Picaud S, Fujisawa T, Hou H, Savitsky P, Uusküla-Reimand L, Gupta GD, Abdouni H, Lin ZY, Tucholska M, Knight JDR, Gonzalez-Badillo B, St-Denis N, Newman JA, Stucki M, Pelletier L, Bandeira N, Wilson MD, Filippakopoulos P, Gingras AC. Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Mol Cell 2018; 73:621-638.e17. [PMID: 30554943 PMCID: PMC6375729 DOI: 10.1016/j.molcel.2018.11.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/06/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.
Collapse
Affiliation(s)
- Jean-Philippe Lambert
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Takao Fujisawa
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Huayun Hou
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada
| | - Pavel Savitsky
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada; Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Gagan D Gupta
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Hala Abdouni
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Monika Tucholska
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - James D R Knight
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Joseph A Newman
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Laurence Pelletier
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nuno Bandeira
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael D Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
139
|
Vandemoortele G, De Sutter D, Moliere A, Pauwels J, Gevaert K, Eyckerman S. A Well-Controlled BioID Design for Endogenous Bait Proteins. J Proteome Res 2018; 18:95-106. [PMID: 30525648 DOI: 10.1021/acs.jproteome.8b00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The CRISPR/Cas9 revolution is profoundly changing the way life sciences technologies are used. Many assays now rely on engineered clonal cell lines to eliminate the overexpression of bait proteins. Control cell lines are typically nonengineered cells or engineered clones, implying a considerable risk for artifacts because of clonal variation. Genome engineering can also transform BioID, a proximity labeling method that relies on fusing a bait protein to a promiscuous biotin ligase, BirA*, resulting in the tagging of vicinal proteins. We here propose an innovative design to enable BioID for endogenous proteins wherein we introduce a T2A-BirA* module at the C-terminus of endogenous p53 by genome engineering, leading to bicistronic expression of both p53 and BirA* under control of the endogenous promoter. By targeting a Cas9-cytidine deaminase base editor to the T2A autocleavage site, we can efficiently derive an isogenic population expressing a functional p53-BirA* fusion protein. Using quantitative proteomics we show significant benefits over the classical ectopic expression of p53-BirA*, and we provide a first well-controlled view of the proximal proteins of endogenous p53 in colon carcinoma cells. This novel application for base editors expands the CRISPR/Cas9 toolbox and can be a valuable addition for synthetic biology.
Collapse
Affiliation(s)
- Giel Vandemoortele
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| | - Delphine De Sutter
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| | - Aline Moliere
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| | - Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB , B-9000 Ghent , Belgium.,Department of Biomolecular Medicine , Ghent University , B-9000 Ghent , Belgium
| |
Collapse
|
140
|
Yu L, Jearawiriyapaisarn N, Lee MP, Hosoya T, Wu Q, Myers G, Lim KC, Kurita R, Nakamura Y, Vojtek AB, Rual JF, Engel JD. BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Genes Dev 2018; 32:1537-1549. [PMID: 30463901 PMCID: PMC6295165 DOI: 10.1101/gad.318436.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the β-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Natee Jearawiriyapaisarn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mary P Lee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Tomonori Hosoya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Qingqing Wu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Anne B Vojtek
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
141
|
Zhang S, Williamson NA, Bogoyevitch MA. Complementary proteomics strategies capture an ataxin-1 interactome in Neuro-2a cells. Sci Data 2018; 5:180262. [PMID: 30457570 PMCID: PMC6244183 DOI: 10.1038/sdata.2018.262] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/05/2018] [Indexed: 11/25/2022] Open
Abstract
Ataxin-1 mutation, arising from a polyglutamine (polyQ) tract expansion, is the underlying genetic cause of the late-onset neurodegenerative disease Spinocerebellar ataxia type 1 (SCA1). To identify protein partners of polyQ-ataxin-1 in neuronal cells under control or stress conditions, here we report our complementary proteomics strategies of proximity-dependent biotin identification (BioID) and affinity purification (via GFP-Trap pulldown) in Neuro-2a cells expressing epitope-tagged forms of ataxin-1[85Q]. These approaches allowed our enrichment of proximal proteins and interacting partners, respectively, with the subsequent protein identification performed by liquid chromatography-MS/MS. Background proteins, not dependent on the presence of the polyQ-ataxin-1 protein, were additionally defined by their endogenous biotinylation (for the BioID protocol) or by their non-specific interaction with GFP only (in the GFP-Trap protocol). All datasets were generated from biological replicates. Following the removal of the identified background proteins from the acquired protein lists, our experimental design has captured a comprehensive polyQ-ataxin-1 proximal and direct protein partners under normal and stress conditions. Data are available via ProteomeXchange, with identifier PXD010352.
Collapse
Affiliation(s)
- Sunyuan Zhang
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A. Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marie A. Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
142
|
Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr Opin Chem Biol 2018; 48:44-54. [PMID: 30458335 DOI: 10.1016/j.cbpa.2018.10.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
The use of proximity-dependent biotinylation approaches combined with mass spectrometry (e.g. BioID and APEX) has revolutionized the study of protein-protein interactions and organellar proteomics. These powerful techniques are based on the fusion of an enzyme (e.g. a biotin ligase or peroxidase) to a 'bait' protein of interest, which is then expressed in a relevant biological setting. Addition of enzyme substrate enables covalent biotin labeling of proteins in the vicinity of the bait in vivo. These approaches thus allow for the capture and identification of 'neighborhood' proteins in the context of a living cell, and provide data that are complementary to more established techniques such as fractionation or affinity purification. As compared to standard affinity-based purification approaches, proximity-dependent biotinylation (PDB) can help to: first, identify interactions with and amongst membrane proteins, and other polypeptide classes that are less amenable to study by standard pulldown techniques; second, enrich for transient and/or low affinity interactions that are not readily captured using affinity purification approaches; third, avoid post-lysis artefacts associated with standard biochemical purification experiments and; fourth, provide deep insight into the organization of membrane-less organelles and other subcellular structures that cannot be easily isolated or purified. Given the increasing use of these techniques to answer a variety of different types of biological questions, it is important to understand how best to design PDB-MS experiments, what type of data they generate, and how to analyze and interpret the results.
Collapse
|
143
|
Banerjee SL, Dionne U, Lambert JP, Bisson N. Targeted proteomics analyses of phosphorylation-dependent signalling networks. J Proteomics 2018; 189:39-47. [DOI: 10.1016/j.jprot.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/18/2023]
|
144
|
Davies AK, Itzhak DN, Edgar JR, Archuleta TL, Hirst J, Jackson LP, Robinson MS, Borner GHH. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat Commun 2018; 9:3958. [PMID: 30262884 PMCID: PMC6160451 DOI: 10.1038/s41467-018-06172-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Adaptor protein 4 (AP-4) is an ancient membrane trafficking complex, whose function has largely remained elusive. In humans, AP-4 deficiency causes a severe neurological disorder of unknown aetiology. We apply unbiased proteomic methods, including 'Dynamic Organellar Maps', to find proteins whose subcellular localisation depends on AP-4. We identify three transmembrane cargo proteins, ATG9A, SERINC1 and SERINC3, and two AP-4 accessory proteins, RUSC1 and RUSC2. We demonstrate that AP-4 deficiency causes missorting of ATG9A in diverse cell types, including patient-derived cells, as well as dysregulation of autophagy. RUSC2 facilitates the transport of AP-4-derived, ATG9A-positive vesicles from the trans-Golgi network to the cell periphery. These vesicles cluster in close association with autophagosomes, suggesting they are the "ATG9A reservoir" required for autophagosome biogenesis. Our study uncovers ATG9A trafficking as a ubiquitous function of the AP-4 pathway. Furthermore, it provides a potential molecular pathomechanism of AP-4 deficiency, through dysregulated spatial control of autophagy.
Collapse
Affiliation(s)
- Alexandra K Davies
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Daniel N Itzhak
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Tara L Archuleta
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany.
| |
Collapse
|
145
|
Findlay S, Heath J, Luo VM, Malina A, Morin T, Coulombe Y, Djerir B, Li Z, Samiei A, Simo-Cheyou E, Karam M, Bagci H, Rahat D, Grapton D, Lavoie EG, Dove C, Khaled H, Kuasne H, Mann KK, Klein KO, Greenwood CM, Tabach Y, Park M, Côté JF, Masson JY, Maréchal A, Orthwein A. SHLD2/FAM35A co-operates with REV7 to coordinate DNA double-strand break repair pathway choice. EMBO J 2018; 37:embj.2018100158. [PMID: 30154076 PMCID: PMC6138439 DOI: 10.15252/embj.2018100158] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by two major pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). DNA repair pathway choice is governed by the opposing activities of 53BP1, in complex with its effectors RIF1 and REV7, and BRCA1. However, it remains unknown how the 53BP1/RIF1/REV7 complex stimulates NHEJ and restricts HR to the S/G2 phases of the cell cycle. Using a mass spectrometry (MS)-based approach, we identify 11 high-confidence REV7 interactors and elucidate the role of SHLD2 (previously annotated as FAM35A and RINN2) as an effector of REV7 in the NHEJ pathway. FAM35A depletion impairs NHEJ-mediated DNA repair and compromises antibody diversification by class switch recombination (CSR) in B cells. FAM35A accumulates at DSBs in a 53BP1-, RIF1-, and REV7-dependent manner and antagonizes HR by limiting DNA end resection. In fact, FAM35A is part of a larger complex composed of REV7 and SHLD1 (previously annotated as C20orf196 and RINN3), which promotes NHEJ and limits HR Together, these results establish SHLD2 as a novel effector of REV7 in controlling the decision-making process during DSB repair.
Collapse
Affiliation(s)
- Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - John Heath
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Vincent M Luo
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Abba Malina
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Théo Morin
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Billel Djerir
- Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Zhigang Li
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Estelle Simo-Cheyou
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Martin Karam
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Halil Bagci
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Damien Grapton
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Elise G Lavoie
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Christian Dove
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Husam Khaled
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Koren K Mann
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada
| | - Celia M Greenwood
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, MGill University, Montreal, QC, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Morag Park
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Jean-Francois Côté
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC, Canada.,Département de Médecine (Programmes de Biologie Moléculaire), Université de Montréal, Montreal, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, Quebec City, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, QC, Canada .,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
146
|
From the genome sequence via the proteome to cell physiology – Pathoproteomics and pathophysiology of Staphylococcus aureus. Int J Med Microbiol 2018; 308:545-557. [DOI: 10.1016/j.ijmm.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023] Open
|
147
|
Functions of the COPII gene paralogs SEC23A and SEC23B are interchangeable in vivo. Proc Natl Acad Sci U S A 2018; 115:E7748-E7757. [PMID: 30065114 DOI: 10.1073/pnas.1805784115] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Approximately one-third of the mammalian proteome is transported from the endoplasmic reticulum-to-Golgi via COPII-coated vesicles. SEC23, a core component of coat protein-complex II (COPII), is encoded by two paralogous genes in vertebrates (Sec23a and Sec23b). In humans, SEC23B deficiency results in congenital dyserythropoietic anemia type-II (CDAII), while SEC23A deficiency results in a skeletal phenotype (with normal red blood cells). These distinct clinical disorders, together with previous biochemical studies, suggest unique functions for SEC23A and SEC23B. Here we show indistinguishable intracellular protein interactomes for human SEC23A and SEC23B, complementation of yeast Sec23 by both human and murine SEC23A/B, and rescue of the lethality of sec23b deficiency in zebrafish by a sec23a-expressing transgene. We next demonstrate that a Sec23a coding sequence inserted into the murine Sec23b locus completely rescues the lethal SEC23B-deficient pancreatic phenotype. We show that SEC23B is the predominantly expressed paralog in human bone marrow, but not in the mouse, with the reciprocal pattern observed in the pancreas. Taken together, these data demonstrate an equivalent function for SEC23A/B, with evolutionary shifts in the transcription program likely accounting for the distinct phenotypes of SEC23A/B deficiency within and across species, a paradigm potentially applicable to other sets of paralogous genes. These findings also suggest that enhanced erythroid expression of the normal SEC23A gene could offer an effective therapeutic approach for CDAII patients.
Collapse
|
148
|
Coyaud E, Ranadheera C, Cheng D, Gonçalves J, Dyakov BJA, Laurent EMN, St-Germain J, Pelletier L, Gingras AC, Brumell JH, Kim PK, Safronetz D, Raught B. Global Interactomics Uncovers Extensive Organellar Targeting by Zika Virus. Mol Cell Proteomics 2018; 17:2242-2255. [PMID: 30037810 DOI: 10.1074/mcp.tir118.000800] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Indexed: 11/06/2022] Open
Abstract
Zika virus (ZIKV) is a membrane enveloped Flavivirus with a positive strand RNA genome, transmitted by Aedes mosquitoes. The geographical range of ZIKV has dramatically expanded in recent decades resulting in increasing numbers of infected individuals, and the spike in ZIKV infections has been linked to significant increases in both Guillain-Barré syndrome and microcephaly. Although a large number of host proteins have been physically and/or functionally linked to other Flaviviruses, very little is known about the virus-host protein interactions established by ZIKV. Here we map host cell protein interaction profiles for each of the ten polypeptides encoded in the ZIKV genome, generating a protein topology network comprising 3033 interactions among 1224 unique human polypeptides. The interactome is enriched in proteins with roles in polypeptide processing and quality control, vesicle trafficking, RNA processing and lipid metabolism. >60% of the network components have been previously implicated in other types of viral infections; the remaining interactors comprise hundreds of new putative ZIKV functional partners. Mining this rich data set, we highlight several examples of how ZIKV may usurp or disrupt the function of host cell organelles, and uncover an important role for peroxisomes in ZIKV infection.
Collapse
Affiliation(s)
- Etienne Coyaud
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charlene Ranadheera
- §Public Health Agency of Canada, Zoonotic Diseases and Special Pathogens Program, Winnipeg, Manitoba, Canada
| | - Derrick Cheng
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‖Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - João Gonçalves
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Boris J A Dyakov
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Estelle M N Laurent
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonathan St-Germain
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurence Pelletier
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- **Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John H Brumell
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‡‡Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,§§Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,¶¶Sick Kids IBD Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Peter K Kim
- ¶Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada.,‖Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Safronetz
- §Public Health Agency of Canada, Zoonotic Diseases and Special Pathogens Program, Winnipeg, Manitoba, Canada
| | - Brian Raught
- From the ‡Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; .,‖‖Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
149
|
Uncovering Discrete Synaptic Proteomes to Understand Neurological Disorders. Proteomes 2018; 6:proteomes6030030. [PMID: 30029459 PMCID: PMC6161107 DOI: 10.3390/proteomes6030030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is an immensely heterogeneous organ composed of a diverse collection of neuronal types that interconnect in complex patterns. Synapses are highly specialized neuronal cell-cell junctions with common and distinct functional characteristics that are governed by their protein composition or synaptic proteomes. Even a single neuron can possess a wide-range of different synapse types and each synapse contains hundreds or even thousands of proteins. Many neurological disorders and diseases are caused by synaptic dysfunction within discrete neuronal populations. Mass spectrometry (MS)-based proteomic analysis has emerged as a powerful strategy to characterize synaptic proteomes and potentially identify disease driving synaptic alterations. However, most traditional synaptic proteomic analyses have been limited by molecular averaging of proteins from multiple types of neurons and synapses. Recently, several new strategies have emerged to tackle the ‘averaging problem’. In this review, we summarize recent advancements in our ability to characterize neuron-type specific and synapse-type specific proteomes and discuss strengths and limitations of these emerging analysis strategies.
Collapse
|
150
|
Fasci D, van Ingen H, Scheltema RA, Heck AJR. Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei. Mol Cell Proteomics 2018; 17:2018-2033. [PMID: 30021884 DOI: 10.1074/mcp.ra118.000924] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Indexed: 02/03/2023] Open
Abstract
Cells organize their actions partly through tightly controlled protein-protein interactions-collectively termed the interactome. Here we use crosslinking mass spectrometry (XL-MS) to chart the protein-protein interactions in intact human nuclei. Overall, we identified ∼8,700 crosslinks, of which 2/3 represent links connecting distinct proteins. From these data, we gain insights on interactions involving histone proteins. We observed that core histones on the nucleosomes expose well-defined interaction hot spots. For several nucleosome-interacting proteins, such as USF3 and Ran GTPase, the data allowed us to build low-resolution models of their binding mode to the nucleosome. For HMGN2, the data guided the construction of a refined model of the interaction with the nucleosome, based on complementary NMR, XL-MS, and modeling. Excitingly, the analysis of crosslinks carrying posttranslational modifications allowed us to extract how specific modifications influence nucleosome interactions. Overall, our data depository will support future structural and functional analysis of cell nuclei, including the nucleoprotein assemblies they harbor.
Collapse
Affiliation(s)
- Domenico Fasci
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences.,§Netherlands Proteomics Centre, and
| | - Hugo van Ingen
- ¶NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Richard A Scheltema
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; .,§Netherlands Proteomics Centre, and
| | - Albert J R Heck
- From the ‡Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; .,§Netherlands Proteomics Centre, and
| |
Collapse
|