101
|
Lin X, Liu X, Wang L, Jiang J, Sun Y, Zhu Q, Chen Z, He Y, Hu P, Xu Q, Gao F, Lin Y, Jaiswal S, Xiang M, Wang J. Targeted next-generation sequencing identified ADAMTS5 as novel genetic substrate in patients with bicuspid aortic valve. Int J Cardiol 2017; 252:150-155. [PMID: 29162281 DOI: 10.1016/j.ijcard.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Bicuspid Aortic Valve (BAV) is the most common congenital heart disease, affecting >1% of the general population. Up to date, three genes, NOTCH1, GATA5 and SMAD6, have been linked to the isolated form of BAV. However, potential genetic determinants remain largely unknown in most BAV patients. MATERIAL AND METHODS Targeted next-generation sequencing of 7 BAV candidate genes (NOTCH1, GATA5, SMAD6, NOS3, ADAMTS5, Alk2 and SMAD2) was performed in 32 BAV patients. Additional 35 BAV patients and 238 tricuspid aortic valve (TAV) patients, consisting of 107 patients from the transcatheter aortic valve implantation (TAVI) registry and 131 patients from the coronary artery disease (CAD) registry, were selected for further genotyping. RESULTS We found 2 rare non-synonymous variants in 2/7 genes in 3 BAV patients: one was NOTCH1:c.4297G>A and the other one was ADMTS5:c.935C>A that shared by two patients. NOTCH1:c.4297G>A has not been reported previously. ADMTS5:c.935C>A was predicted to be pathogenic by all applied algorithms. Alignment of protein sequences from all available species revealed that ADMTS5:p.Arg312Leu, produced by ADMTS5:c.935C>A, is located in a highly conserved region. The minor allele frequency of ADMTS5:c.935C>A in BAV patients was significantly higher than the matched population in TAV group (0.015 vs. 0, P=0.048). CONCLUSION Our results suggested that ADMTS5:c.935C>A are potentially associated with BAV. Further studies, such as large sample case-control replication test and functional research, are needed to explore the role of this rare variant in the development of BAV.
Collapse
Affiliation(s)
- Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lihan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jubo Jiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yinghao Sun
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qifeng Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zexin Chen
- Department of Clinical Epidemiology & Biostatistics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yuxin He
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Po Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Qiyuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Feng Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yan Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Sanjay Jaiswal
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Provincial Key Lab of Cardiovascular Research, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
102
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
103
|
Yang P, Bu P, Li C. miR-124 inhibits proliferation, migration and invasion of malignant melanoma cells via targeting versican. Exp Ther Med 2017; 14:3555-3562. [PMID: 29042947 PMCID: PMC5639313 DOI: 10.3892/etm.2017.4998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/20/2017] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miR)-124 has been implicated in malignant melanoma (MM). However, the detailed regulatory mechanism of miR-124 in the malignant phenotypes of MM cells has remained largely elusive. A total of 68 pairs of MM tissues and adjacent tissues were collected. Reverse-transcription quantitative polymerase chain reaction was used to examine the mRNA expression of versican as well as the expression of miR-124, and the protein expression of versican was assessed by western blot analysis. MTT, wound healing and Transwell assays were used to determine cell proliferation, migration and invasion, respectively. A bioinformatics analysis and a luciferase reporter assay were used to confirm the targeting association between miR-124 and versican. miR-124 was significantly downregulated in MM tissues compared with that in adjacent non-tumorous tissues, and decreased expression of miR-124 was associated with increased tumor thickness, advanced clinical stage and node metastasis of MM. Furthermore, the expression levels of miR-124 were also reduced in MM cell lines compared with normal human skin HACAT cells. Forced overexpression of miR-124 caused a significant reduction in the proliferation, migration and invasion of MM A375 cells. Versican was significantly upregulated in MM tissues and cell lines, and was identified as a novel target of miR-124 in A375 cells using a luciferase reporter gene assay, and miR-124 was revealed to negatively regulate the protein expression of versican in A375 cells. Overexpression of versican impaired the suppressive effects of miR-124 on the proliferation, migration and invasion of A375 cells. In conclusion, miR-124 inhibited the malignant phenotypes of MM cells at least partly via inhibition of versican. Therefore, the miR-124/versican axis may be used as a promising therapeutic target for inhibiting MM growth and metastasis.
Collapse
Affiliation(s)
- Ping Yang
- Department of Burn Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Pingyuan Bu
- Department of Burn Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chengyuan Li
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
104
|
Expression of matrix metalloproteinase genes during basement membrane degradation in the metamorphosis of Bombyx mori. Gene 2017; 638:26-35. [PMID: 28943345 DOI: 10.1016/j.gene.2017.09.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 11/20/2022]
Abstract
The present study was conducted to clarify the involvement of the basement membrane (BM) in insect metamorphosis through analysis of the expression profile of two types of metalloproteinase (MMP and ADAMTS) genes in several organs, their ecdysone involvement, and the histological change of BM. BM was observed around wing sac and in the wing cavity and around fat bodies at the W0 stage but disappeared after the W3 stage, and wing discs evaginated and fat body cells scattered after the W3 stage. The disappearance of the BM of midgut and silk glands was not observed after the W3 stage, but degenerated epithelium cells in the midgut and shrunken cells in the silk gland were observed after the W3 stage. BmMMP1 showed a peak at P0 in the wing discs, fat bodies, midgut, and silk gland. BmMMP2 showed a broad peak around pupation in the wing discs, fat bodies, midgut, and silk gland. BmADAMTS-1 showed enhanced expression at W2 in the wing discs, fat bodies, midgut, and hemocyte, while BmADAMTS-L showed enhanced expression at W3 in the fat bodies, midgut, silk gland, and hemocyte. After pupation, they showed a different expression in different organs. All of four genes were induced by 20-hydroxyecdysone in wing discs in vitro. The present results suggested the involvement of MMPs and ADAMTS in the BM digestion and the morphogenesis of organs during Bombyx metamorphosis.
Collapse
|
105
|
Hope C, Emmerich PB, Papadas A, Pagenkopf A, Matkowskyj KA, Van De Hey DR, Payne SN, Clipson L, Callander NS, Hematti P, Miyamoto S, Johnson MG, Deming DA, Asimakopoulos F. Versican-Derived Matrikines Regulate Batf3-Dendritic Cell Differentiation and Promote T Cell Infiltration in Colorectal Cancer. THE JOURNAL OF IMMUNOLOGY 2017; 199:1933-1941. [PMID: 28754680 DOI: 10.4049/jimmunol.1700529] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Colorectal cancer originates within immunologically complex microenvironments. To date, the benefits of immunotherapy have been modest, except in neoantigen-laden mismatch repair-deficient tumors. Approaches to enhance tumor-infiltrating lymphocytes in the tumor bed may substantially augment clinical immunotherapy responses. In this article, we report that proteolysis of the tolerogenic matrix proteoglycan versican (VCAN) strongly correlated with CD8+ T cell infiltration in colorectal cancer, regardless of mismatch repair status. Tumors displaying active VCAN proteolysis and low total VCAN were associated with robust (10-fold) CD8+ T cell infiltration. Tumor-intrinsic WNT pathway activation was associated with CD8+ T cell exclusion and VCAN accumulation. In addition to regulating VCAN levels at the tumor site, VCAN proteolysis results in the generation of bioactive fragments with novel functions (VCAN-derived matrikines). Versikine, a VCAN-derived matrikine, enhanced the generation of CD103+CD11chiMHCIIhi conventional dendritic cells (cDCs) from Flt3L-mobilized primary bone marrow-derived progenitors, suggesting that VCAN proteolysis may promote differentiation of tumor-seeding DC precursors toward IRF8- and BATF3-expressing cDCs. Intratumoral BATF3-dependent DCs are critical determinants for T cell antitumor immunity, effector T cell trafficking to the tumor site, and response to immunotherapies. Our findings provide a rationale for testing VCAN proteolysis as a predictive and/or prognostic immune biomarker and VCAN-derived matrikines as novel immunotherapy agents.
Collapse
Affiliation(s)
- Chelsea Hope
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Philip B Emmerich
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Athanasios Papadas
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Adam Pagenkopf
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Kristina A Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Dana R Van De Hey
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Susan N Payne
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Natalie S Callander
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and
| | - Peiman Hematti
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Michael G Johnson
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705.,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| | - Dustin A Deming
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792.,William S. Middleton Memorial Veterans Hospital, Madison, WI 53705; and.,McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| | - Fotis Asimakopoulos
- Division of Hematology and Medical Oncology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, Madison, WI 53792
| |
Collapse
|
106
|
Chen Y, Huang J, Tang C, Chen X, Yin Z, Heng BC, Chen W, Shen W. Small molecule therapeutics for inflammation-associated chronic musculoskeletal degenerative diseases: Past, present and future. Exp Cell Res 2017; 359:1-9. [PMID: 28739444 DOI: 10.1016/j.yexcr.2017.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Inflammation-associated chronic musculoskeletal degenerative diseases (ICMDDs) like osteoarthritis and tendinopathy often results in morbidity and disability, with consequent heavy socio-economic burden. Current available therapies such as NSAIDs and glucocorticoid are palliative rather than disease-modifying. Insufficient systematic research data on disease molecular mechanism also makes it difficult to exploit valid therapeutic targets. Small molecules are designed to act on specific signaling pathways and/or mechanisms of cellular physiology and function, and have gradually shown potential for treating ICMDDs. In this review, we would examine and analyze recent developments in small molecule drugs for ICMDDs, suggest possible feasible improvements in treatment modalities, and discuss future research directions.
Collapse
Affiliation(s)
- Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Orthopaedics Research Institute of Zhejiang Univerisity, China.
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310009, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang 310000, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang 310000, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
107
|
Akinfenwa PY, Bond WS, Ildefonso CJ, Hurwitz MY, Hurwitz RL. Versican G1 domain enhances adenoviral-mediated transgene expression and can be modulated by inhibitors of the Janus kinase (JAK)/STAT and Src family kinase pathways. J Biol Chem 2017; 292:14381-14390. [PMID: 28684419 PMCID: PMC5582833 DOI: 10.1074/jbc.m116.773549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
To examine the biochemical influences that may contribute to the success of gene therapy for ocular disorders, the role of versican, a vitreous component, in adenoviral-mediated transgene expression was examined. Versican is a large chondroitin sulfate-containing, hyaluronic acid-binding proteoglycan present in the extracellular matrix and in ocular vitreous body. Y79 retinoblastoma cells and CD44-negative SK-N-DZ neuroblastoma cells transduced with adenoviral vectors in the presence of versican respond with an activation of transgene expression. Proteolysis of versican generates a hyaluronan-binding G1 domain. The addition of recombinant versican G1 to SK-N-DZ cells results in a similar activation of transgene expression, and treatment with dasatinib, an inhibitor of Src family kinases, also mimics the effects of versican. Enhancement is accompanied by an increase in signal transducer and activator of transcription 5 (STAT5) phosphorylation and is abrogated by treatment with C188-9, a STAT3/5 inhibitor, or with ruxolitinib, a Janus kinase 1/2 (JAK1/2) inhibitor. These data implicate versican G1 in enhancing adenoviral vector transgene expression in a hyaluronic acid-CD44 independent manner that is down-regulated by inhibitors of the JAK/STAT pathway and enhanced by inhibitors of the Src kinase pathway.
Collapse
Affiliation(s)
- Patricia Y Akinfenwa
- From the Interdepartmental Program in Translational Biology and Molecular Medicine.,the Departments of Pediatrics
| | - Wesley S Bond
- From the Interdepartmental Program in Translational Biology and Molecular Medicine.,the Departments of Pediatrics.,Texas Children's Cancer and Hematology Centers, and
| | - Cristhian J Ildefonso
- From the Interdepartmental Program in Translational Biology and Molecular Medicine.,the Departments of Pediatrics.,Texas Children's Cancer and Hematology Centers, and
| | - Mary Y Hurwitz
- the Departments of Pediatrics.,Texas Children's Cancer and Hematology Centers, and.,Center for Cell and Gene Therapy and
| | - Richard L Hurwitz
- From the Interdepartmental Program in Translational Biology and Molecular Medicine, .,the Departments of Pediatrics.,Texas Children's Cancer and Hematology Centers, and.,Center for Cell and Gene Therapy and.,Molecular and Cellular Biology, and.,Ophthalmology Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
108
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
109
|
Gueye NA, Mead TJ, Koch CD, Biscotti CV, Falcone T, Apte SS. Versican Proteolysis by ADAMTS Proteases and Its Influence on Sex Steroid Receptor Expression in Uterine Leiomyoma. J Clin Endocrinol Metab 2017; 102:1631-1641. [PMID: 28323982 PMCID: PMC5443325 DOI: 10.1210/jc.2016-3527] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/01/2017] [Indexed: 11/19/2022]
Abstract
CONTEXT Leiomyomas have abundant extracellular matrix (ECM), with upregulation of versican, a large proteoglycan. OBJECTIVE We investigated ADAMTS (a disintegrin-like and metalloprotease with thrombospondin type 1 motifs) protease-mediated versican cleavage in myometrium and leiomyoma and the effect of versican knockdown in leiomyoma cells. DESIGN We used quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting, immunohistochemistry, and RNA in situ hybridization for analysis of myometrium, leiomyoma and immortalized myometrium and leiomyoma cells. Short interfering RNA (siRNA) was used to knockdown versican in leiomyoma cells. SETTING This study was performed in an academic laboratory. PATIENTS Study subjects were women with symptomatic or asymptomatic leiomyoma. MAIN OUTCOME MEASURES We quantified messenger RNAs (mRNAs) for versican splice variants. We identified ADAMTS-cleaved versican in myometrium and leiomyoma and ADAMTS messenger RNAs and examined the effect of VCAN siRNA on smooth muscle differentiation and expression of estrogen and progesterone receptors. RESULTS The women in the symptomatic group (n = 7) had larger leiomyoma (P = 0.01), heavy menstrual bleeding (P < 0.01), and lower hemoglobin levels (P = 0.02) compared with the asymptomatic group (n = 7), but were similar in age and menopausal status. Versican V0 and V1 isoforms were upregulated in the leiomyomas of symptomatic versus asymptomatic women (P = 0.03 and P = 0.04, respectively). Abundant cleaved versican was detected in leiomyoma and myometrium, as well as in myometrial and leiomyoma cell lines. ADAMTS4 (P = 0.03) and ADAMTS15 (P = 0.04) were upregulated in symptomatic leiomyomas. VCAN siRNA did not effect cell proliferation, apoptosis, or smooth muscle markers, but reduced ESR1 and PR-A expression (P = 0.001 and P = 0.002, respectively). CONCLUSIONS Versican in myometrium, leiomyomas and in the corresponding immortalized cells is cleaved by ADAMTS proteases. VCAN siRNA suppresses production of estrogen receptor 1 and progesterone receptor-A. These findings have implications for leiomyoma growth.
Collapse
Affiliation(s)
- Ndeye-Aicha Gueye
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Timothy J. Mead
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Christopher D. Koch
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
- Department of Chemistry, Cleveland State University, Cleveland, Ohio 44115
| | | | - Tommaso Falcone
- Department of Obstetrics and Gynecology and Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Suneel S. Apte
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
110
|
Asimakopoulos F, Hope C, Johnson MG, Pagenkopf A, Gromek K, Nagel B. Extracellular matrix and the myeloid-in-myeloma compartment: balancing tolerogenic and immunogenic inflammation in the myeloma niche. J Leukoc Biol 2017; 102:265-275. [PMID: 28254840 DOI: 10.1189/jlb.3mr1116-468r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
The last 10-15 years have witnessed a revolution in treating multiple myeloma, an incurable cancer of Ab-producing plasma cells. Advances in myeloma therapy were ushered in by novel agents that remodel the myeloma immune microenvironment. The first generation of novel agents included immunomodulatory drugs (thalidomide analogs) and proteasome inhibitors that target crucial pathways that regulate immunity and inflammation, such as NF-κB. This paradigm continued with the recent regulatory approval of mAbs (elotuzumab, daratumumab) that impact both tumor cells and associated immune cells. Moreover, recent clinical data support checkpoint inhibition immunotherapy in myeloma. With the success of these agents has come the growing realization that the myeloid infiltrate in myeloma lesions-what we collectively call the myeloid-in-myeloma compartment-variably sustains or deters tumor cells by shaping the inflammatory milieu of the myeloma niche and by promoting or antagonizing immune-modulating therapies. The myeloid-in-myeloma compartment includes myeloma-associated macrophages and granulocytes, dendritic cells, and myeloid-derived-suppressor cells. These cell types reflect variable states of differentiation and activation of tumor-infiltrating cells derived from resident myeloid progenitors in the bone marrow-the canonical myeloma niche-or myeloid cells that seed both canonical and extramedullary, noncanonical niches. Myeloma-infiltrating myeloid cells engage in crosstalk with extracellular matrix components, stromal cells, and tumor cells. This complex regulation determines the composition, activation state, and maturation of the myeloid-in-myeloma compartment as well as the balance between immunogenic and tolerogenic inflammation in the niche. Redressing this balance may be a crucial determinant for the success of antimyeloma immunotherapies.
Collapse
Affiliation(s)
- Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA; .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Chelsea Hope
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Michael G Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Adam Pagenkopf
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Kimberly Gromek
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Bradley Nagel
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| |
Collapse
|
111
|
Unusual life cycle and impact on microfibril assembly of ADAMTS17, a secreted metalloprotease mutated in genetic eye disease. Sci Rep 2017; 7:41871. [PMID: 28176809 PMCID: PMC5296908 DOI: 10.1038/srep41871] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/30/2023] Open
Abstract
Secreted metalloproteases have diverse roles in the formation, remodeling, and the destruction of extracellular matrix. Recessive mutations in the secreted metalloprotease ADAMTS17 cause ectopia lentis and short stature in humans with Weill-Marchesani-like syndrome and primary open angle glaucoma and ectopia lentis in dogs. Little is known about this protease or its connection to fibrillin microfibrils, whose major component, fibrillin-1, is genetically associated with ectopia lentis and alterations in height. Fibrillin microfibrils form the ocular zonule and are present in the drainage apparatus of the eye. We show that recombinant ADAMTS17 has unique characteristics and an unusual life cycle. It undergoes rapid autocatalytic processing in trans after its secretion from cells. Secretion of ADAMTS17 requires O-fucosylation and its autocatalytic activity does not depend on propeptide processing by furin. ADAMTS17 binds recombinant fibrillin-2 but not fibrillin-1 and does not cleave either. It colocalizes to fibrillin-1 containing microfibrils in cultured fibroblasts and suppresses fibrillin-2 (FBN2) incorporation in microfibrils, in part by transcriptional downregulation of Fbn2 mRNA expression. RNA in situ hybridization detected Adamts17 expression in specific structures in the eye, skeleton and other organs, where it may regulate the fibrillin isoform composition of microfibrils.
Collapse
|
112
|
Wight TN. Provisional matrix: A role for versican and hyaluronan. Matrix Biol 2016; 60-61:38-56. [PMID: 27932299 DOI: 10.1016/j.matbio.2016.12.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/22/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022]
Abstract
Hyaluronan and versican are extracellular matrix (ECM) components that are enriched in the provisional matrices that form during the early stages of development and disease. These two molecules interact to create pericellular "coats" and "open space" that facilitate cell sorting, proliferation, migration, and survival. Such complexes also impact the recruitment of leukocytes during development and in the early stages of disease. Once thought to be inert components of the ECM that help hold cells together, it is now quite clear that they play important roles in controlling cell phenotype, shaping tissue response to injury and maintaining tissue homeostasis. Conversion of hyaluronan-/versican-enriched provisional matrix to collagen-rich matrix is a "hallmark" of tissue fibrosis. Targeting the hyaluronan and versican content of provisional matrices in a variety of diseases including, cardiovascular disease and cancer, is becoming an attractive strategy for intervention.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, United States.
| |
Collapse
|
113
|
McMahon M, Ye S, Izzard L, Dlugolenski D, Tripp RA, Bean AGD, McCulloch DR, Stambas J. ADAMTS5 Is a Critical Regulator of Virus-Specific T Cell Immunity. PLoS Biol 2016; 14:e1002580. [PMID: 27855162 PMCID: PMC5113859 DOI: 10.1371/journal.pbio.1002580] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) provides physical scaffolding for cellular constituents and initiates biochemical and biomechanical cues that are required for physiological activity of living tissues. The ECM enzyme ADAMTS5, a member of the ADAMTS (A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs) protein family, cleaves large proteoglycans such as aggrecan, leading to the destruction of cartilage and osteoarthritis. However, its contribution to viral pathogenesis and immunity is currently undefined. Here, we use a combination of in vitro and in vivo models to show that ADAMTS5 enzymatic activity plays a key role in the development of influenza-specific immunity. Influenza virus infection of Adamts5-/- mice resulted in delayed virus clearance, compromised T cell migration and immunity and accumulation of versican, an ADAMTS5 proteoglycan substrate. Our research emphasises the importance of ADAMTS5 expression in the control of influenza virus infection and highlights the potential for development of ADAMTS5-based therapeutic strategies to reduce morbidity and mortality. The extracellular matrix enzyme ADAMTS5 enhances the clearance of viruses by facilitating migration of T lymphocytes to the periphery following influenza virus infection. Movement of immune cells is critical for effective clearance of pathogens. The response to influenza virus infection requires immune cell trafficking between the lung, mediastinal lymph node and other peripheral lymphoid organs such as the spleen. We set out to assess the contribution of a specific extracellular matrix enzyme, ADAMTS5, to migration of lymphocytes and overall pathogenesis following infection. In our studies, we demonstrate that mice lacking Adamts5 have fewer influenza-specific lymphocytes in the lung and spleen following infection. These observations correlated with an accumulation of influenza-specific lymphocytes in the mediastinal lymph node and increased virus titres. This work suggests that ADAMTS5 is necessary for immune cell migration to the periphery, where lymphocyte function is required to fight infection.
Collapse
Affiliation(s)
- Meagan McMahon
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Siying Ye
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Leonard Izzard
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | - Ralph A. Tripp
- College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Andrew G. D. Bean
- Australian Animal Health Laboratory, CSIRO, East Geelong, Victoria, Australia
| | | | - John Stambas
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|
114
|
Barallobre-Barreiro J, Lynch M, Yin X, Mayr M. Systems biology-opportunities and challenges: the application of proteomics to study the cardiovascular extracellular matrix. Cardiovasc Res 2016; 112:626-636. [PMID: 27635058 PMCID: PMC5157133 DOI: 10.1093/cvr/cvw206] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/31/2016] [Accepted: 09/09/2016] [Indexed: 12/29/2022] Open
Abstract
Systems biology approaches including proteomics are becoming more widely used in cardiovascular research. In this review article, we focus on the application of proteomics to the cardiac extracellular matrix (ECM). ECM remodelling is a hallmark of many cardiovascular diseases. Proteomic techniques using mass spectrometry (MS) provide a platform for the comprehensive analysis of ECM proteins without a priori assumptions. Proteomics overcomes various constraints inherent to conventional antibody detection. On the other hand, studies that use whole tissue lysates for proteomic analysis mask the identification of the less abundant ECM constituents. In this review, we first discuss decellularization-based methods that enrich for ECM proteins in cardiac tissue, and how targeted MS allows for accurate protein quantification. The second part of the review will focus on post-translational modifications including hydroxylation and glycosylation and on the release of matrix fragments with biological activity (matrikines), all of which can be interrogated by proteomic techniques.
Collapse
Affiliation(s)
| | - Marc Lynch
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
115
|
Yasukawa M, Liu Y, Hu L, Cogdell D, Gharpure KM, Pradeep S, Nagaraja AS, Sood AK, Zhang W. ADAMTS16 mutations sensitize ovarian cancer cells to platinum-based chemotherapy. Oncotarget 2016; 8:88410-88420. [PMID: 29179445 PMCID: PMC5687615 DOI: 10.18632/oncotarget.11120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignant tumors in women. The prognosis of ovarian cancer patients depends, in part, on their response to platinum-based chemotherapy. Our recent analysis of genomics and clinical data from the Cancer Genome Atlas demonstrated that somatic mutations of ADAMTS 1, 6, 8, 9, 15, 16, 18 and L1 genes were associated with higher sensitivity to platinum and longer progression-free survival, overall survival, and platinum-free survival duration in 512 patients with high-grade serous ovarian carcinoma. Among the ADAMTS mutations, ADAMTS16 is the most commonly affected gene in ovarian cancer. However, the functional role of these mutations in ovarian cancer cells is largely unknown. We performed in vitro studies to compare the functional effects of the six identified ADAMTS missense mutations on the platinum sensitivity of ovarian cancer cells. We also used a well-characterized in vivo mouse model to evaluate the response of ovarian cancer cells with ADAMTS16 mutations to platinum-based therapy. Our results showed that exogenously expressed ADAMTS16 missense mutations inhibited cell growth or sensitized tumor cells to cisplatin and inhibited tumor growth in vivo. Orthotopic xenograft experiments showed that mice injected with ovarian cancer cells that exogenously expressed ADAMTS16 mutations had a better response to cisplatin treatment. Thus, these functional studies provide evidence that mutations of ADAMTS16 actively contribute to therapeutic response in ovarian cancer.
Collapse
Affiliation(s)
- Maya Yasukawa
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Obstetrics and Gynecology, Showa University School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Yuexin Liu
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Limei Hu
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David Cogdell
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kshipra M Gharpure
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunila Pradeep
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Archana S Nagaraja
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anil K Sood
- Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhang
- Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina, USA
| |
Collapse
|
116
|
Wei Y, Bai L. Recent advances in the understanding of molecular mechanisms of cartilage degeneration, synovitis and subchondral bone changes in osteoarthritis. Connect Tissue Res 2016; 57:245-61. [PMID: 27285430 DOI: 10.1080/03008207.2016.1177036] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA), the most common form of degenerative joint disease, is linked to high morbidity. It is predicted to be the single greatest cause of disability in the general population by 2030. The development of disease-modifying therapy for OA currently face great obstacle mainly because the onset and development of the disease involve complex molecular mechanisms. In this review, we will comprehensively summarize biological and pathological mechanisms of three key aspects: degeneration of articular cartilage, synovial immunopathogenesis, and changes in subchondral bone. For each tissue, we will focus on the molecular receptors, cytokines, peptidases, related cell, and signal pathways. Agents that specifically block mechanisms involved in synovial inflammation, degeneration of articular cartilage, and subchondral bone remodeling can potentially be exploited to produce targeted therapy for OA. Such new comprehensive agents will benefit affected patients and bring exciting new hope for the treatment of OA.
Collapse
Affiliation(s)
- Yingliang Wei
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| | - Lunhao Bai
- a Department of Orthopedic Surgery, Sheng-Jing Hospital , China Medical University , ShenYang , China
| |
Collapse
|
117
|
Immunoregulatory roles of versican proteolysis in the myeloma microenvironment. Blood 2016; 128:680-5. [PMID: 27259980 DOI: 10.1182/blood-2016-03-705780] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/30/2016] [Indexed: 01/14/2023] Open
Abstract
Myeloma immunosurveillance remains incompletely understood. We have demonstrated proteolytic processing of the matrix proteoglycan, versican (VCAN), in myeloma tumors. Whereas intact VCAN exerts tolerogenic activities through Toll-like receptor 2 (TLR2) binding, the immunoregulatory consequences of VCAN proteolysis remain unknown. Here we show that human myeloma tumors displaying CD8(+) infiltration/aggregates underwent VCAN proteolysis at a site predicted to generate a glycosaminoglycan-bereft N-terminal fragment, versikine Myeloma-associated macrophages (MAMs), rather than tumor cells, chiefly produced V1-VCAN, the precursor to versikine, whereas stromal cell-derived ADAMTS1 was the most robustly expressed VCAN-degrading protease. Purified versikine induced early expression of inflammatory cytokines interleukin 1β (IL-1β) and IL-6 by human myeloma marrow-derived MAMs. We show that versikine signals through pathways both dependent and independent of Tpl2 kinase, a key regulator of nuclear factor κB1-mediated MAPK activation in macrophages. Unlike intact VCAN, versikine-induced Il-6 production was partially independent of Tlr2. In a model of macrophage-myeloma cell crosstalk, versikine induced components of "T-cell inflammation," including IRF8-dependent type I interferon transcriptional signatures and T-cell chemoattractant CCL2. Thus the interplay between stromal cells and myeloid cells in the myeloma microenvironment generates versikine, a novel bioactive damage-associated molecular pattern that may facilitate immune sensing of myeloma tumors and modulate the tolerogenic consequences of intact VCAN accumulation. Therapeutic versikine administration may potentiate T-cell-activating immunotherapies.
Collapse
|
118
|
Anti-ADAMTS5 monoclonal antibodies: implications for aggrecanase inhibition in osteoarthritis. Biochem J 2016; 473:e1-4. [PMID: 26657033 DOI: 10.1042/bj20151072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular matrix of articular cartilage is structurally specialized for efficient absorption of mechanical impact. In particular, giant aggregates of the large chondroitin sulfate proteoglycan, aggrecan, with the glycosaminoglycan, hyaluronan, allow cartilage to resist compressive load. Proteolysis of aggrecan by members of the proteinase family ADAMTS (A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif), was identified as an early step in the inexorable destruction of cartilage in osteoarthritis (OA). Of the investigated proteinases, ADAMTS5 has emerged as a principal mediator of aggrecan loss in OA, convincingly so in mouse models, and with high probability in humans. ADAMTS5 has a bipartite organization, comprising a proteinase domain and an ancillary domain containing exosites for interaction with aggrecan and other substrates. In a recent issue of this journal, Santamaria et al. characterized anti-ADAMTS5 monoclonal antibodies isolated from a phage display library. By blocking the catalytic site of the ADAMTS5 immunogen with a synthetic inhibitor, the authors of the paper biased selection of antibodies to the ancillary domain. This work, together with other antibodies targeting ADAMTS5, offers diverse, high-affinity and, as far as can be determined, selective aggrecanase inhibitors. Mapping of their epitopes provided novel insights into ADAMTS5 interactions with aggrecan. These monoclonal antibodies deserve continued investigation for potential arthritis therapy, although their successful use will require a comprehensive understanding of the physiological roles of ADAMTS5, and its regulation, intrinsic properties and intermolecular interactions.
Collapse
|
119
|
|
120
|
Versican: a novel modulator of hepatic fibrosis. J Transl Med 2016; 96:361-74. [PMID: 26752747 DOI: 10.1038/labinvest.2015.152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Little is known about the deposition and turnover of proteoglycans in liver fibrosis, despite their abundance in the extracellular matrix. Versican plays diverse roles in modulating cell behavior in other fibroproliferative diseases, but remains poorly described in the liver. Hepatic fibrosis was induced by carbon tetrachloride treatment of C57BL/6 mice over 4 weeks followed by recovery over a 28-day period. Primary mouse hepatic stellate cells (HSCs) were activated in culture and versican was transiently knocked down in human (LX2) and mouse HSCs. Expression of versican, A Disintegrin-like and Metalloproteinase with Thrombospondin-1 motifs (ADAMTS)-1, -4, -5, -8, -9, -15, and -20, and markers of fibrogenesis were studied using immunohistochemistry, real-time quantitative PCR, and western blotting. Immunohistochemistry showed increased expression of versican in cirrhotic human livers and the mouse model of fibrosis. Carbon tetrachloride treatment led to significant increases in versican expression and the proteoglycanases ADAMTS-5, -9, -15, and -20, alongside TNF-α, α-smooth muscle actin (α-SMA), collagen-1, and TGF-β expression. During recovery, expression of many of these genes returned to control levels. However, expression of ADAMTS-5, -8, -9, and -15 showed delayed increases in expression at 28 days of recovery, which corresponded with decreases in versican V0 and V1 cleavage products (G1-DPEAAE(1401) and G1-DPEAAE(441)). Activation of primary HSCs in vitro significantly increased versican, α-SMA, and collagen-1 expression. Transient knockdown of versican in HSCs led to decreases in markers of fibrogenesis and reduced cell proliferation, without inducing apoptosis. Versican expression increases during HSC activation and liver fibrosis, and proteolytic processing occurs during the resolution of fibrosis. Knockdown studies in vitro suggest a possible role of versican in modulating hepatic fibrogenesis.
Collapse
|
121
|
Snyder JM, Washington IM, Birkland T, Chang MY, Frevert CW. Correlation of Versican Expression, Accumulation, and Degradation during Embryonic Development by Quantitative Immunohistochemistry. J Histochem Cytochem 2015; 63:952-67. [PMID: 26385570 DOI: 10.1369/0022155415610383] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
Versican, a chondroitin sulfate proteoglycan, is important in embryonic development, and disruption of the versican gene is embryonically lethal in the mouse. Although several studies show that versican is increased in various organs during development, a focused quantitative study on versican expression and distribution during lung and central nervous system development in the mouse has not previously been performed. We tracked changes in versican (Vcan) gene expression and in the accumulation and degradation of versican. Vcan expression and quantitative immunohistochemistry performed from embryonic day (E) 11.5 to E15.5 showed peak Vcan expression at E13.5 in the lungs and brain. Quantitative mRNA analysis and versican immunohistochemistry showed differences in the expression of the versican isoforms in the embryonic lung and head. The expression of Vcan mRNA and accumulation of versican in tissues was complementary. Immunohistochemistry demonstrated co-localization of versican accumulation and degradation, suggesting distinct roles of versican deposition and degradation in embryogenesis. Very little versican mRNA or protein was found in the lungs of 12- to 16-week-old mice but versican accumulation was significantly increased in mice with Pseudomonas aeruginosa lung infection. These data suggest that versican plays an important role in fundamental, overlapping cellular processes in lung development and infection.
Collapse
Affiliation(s)
- Jessica M Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Ida M Washington
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF)
| | - Timothy Birkland
- Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington (JMS, IMW, MYC, CWF),Center for Lung Biology, University of Washington, Seattle, Washington (TB, MYC, CWF)
| |
Collapse
|
122
|
Williams C, Sullivan K, Black LD. Partially Digested Adult Cardiac Extracellular Matrix Promotes Cardiomyocyte Proliferation In Vitro. Adv Healthc Mater 2015; 4:1545-54. [PMID: 25988681 PMCID: PMC4504755 DOI: 10.1002/adhm.201500035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Indexed: 12/13/2022]
Abstract
Stimulating or maintaining the proliferative capacity of postnatal mammalian cardiomyocytes is a major challenge to cardiac regeneration. Previously, it is found that fetal cardiac extracellular matrix (ECM) can promote neonatal rat cardiomyocyte proliferation in vitro better than neonatal or adult ECM. It is hypothesized that partial digestion of adult ECM (PD-ECM) would liberate less crosslinked components that promote cardiomyocyte proliferation, similar to fetal ECM. Neonatal rat cardiac cells are seeded onto substrates coated with adult rat cardiac ECM that has been solubilized in pepsin-HCl for 1, 3, 6, 12, 24, or 48 h. Cardiomyocyte proliferation and fold-change in numbers from 1 to 5 d are highest on 1 and 3 h PD-ECM compared to other conditions. Sarcomeres tend to mature on 24 and 48 h PD-ECM where low proliferation is observed. 3 h PD-ECM is primarily composed of Fibrillin-1, Fibrinogen, and Laminins while 48 h PD-ECM is dominated by Collagen I. Our results suggest that adult ECM retains regenerative cues that may be masked by more abundant, mature ECM components. PD-ECM provides a simple yet powerful approach to promoting cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Corin Williams
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
| | - Kelly Sullivan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
| | - Lauren D. Black
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155 USA
- Cellular, Molecular and Developmental Biology Program, Sackler School for Graduate Biomedical Sciences, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111 USA
| |
Collapse
|
123
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
124
|
Lhamo T, Ismat A. The extracellular protease stl functions to inhibit migration of v'ch1 sensory neuron during Drosophila embryogenesis. Mech Dev 2015; 137:1-10. [PMID: 25953091 DOI: 10.1016/j.mod.2015.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/14/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Abstract
Proper migration of cells through the dense and complex extracellular matrix (ECM) requires constant restructuring of the ECM to allow cells to move forward in a smooth manner. This restructuring can occur through the action of extracellular enzymes. Among these extracellular enzymes is the ADAMTS (A Disintegrin And Metalloprotease with ThromboSpondin repeats) family of secreted extracellular proteases. Drosophila stl encodes an ADAMTS protease expressed in and around the peripheral nervous system (PNS) during embryogenesis. The absence of stl displayed one specific neuron, the v'ch1 sensory neuron, migrating to its target sooner than in wild type. During normal development, the v'ch1 sensory neuron migrates dorsally at the same time it is extending an axon ventrally toward the CNS. Surprisingly, in the absence of stl, the v'ch1 neuron migrated further dorsally as compared to the wild type at stage 15, but did not migrate past its correct target at stage 16, suggesting a novel role for this extracellular protease in inhibiting migration of this neuron past a certain point.
Collapse
Affiliation(s)
- Tashi Lhamo
- Department of Biology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604-3003, USA
| | - Afshan Ismat
- Department of Biology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA 17604-3003, USA.
| |
Collapse
|
125
|
Dubail J, Apte SS. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 2015; 44-46:24-37. [PMID: 25770910 DOI: 10.1016/j.matbio.2015.03.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
The mammalian ADAMTS superfamily comprises 19 secreted metalloproteinases and 7 ADAMTS-like proteins, each the product of a distinct gene. Thus far, all appear to be relevant to extracellular matrix function or to cell-matrix interactions. Most ADAMTS functions first emerged from analysis of spontaneous human and animal mutations and genetically engineered animals. The clinical manifestations of Mendelian disorders resulting from mutations in ADAMTS2, ADAMTS10, ADAMTS13, ADAMTS17, ADAMTSL2 and ADAMTSL4 identified essential roles for each gene, but also suggested potential cooperative functions of ADAMTS proteins. These observations were extended by analysis of spontaneous animal mutations, such as in bovine ADAMTS2, canine ADAMTS10, ADAMTS17 and ADAMTSL2 and mouse ADAMTS20. These human and animal disorders are recessive and their manifestations appear to result from a loss-of-function mechanism. Genome-wide analyses have determined an association of some ADAMTS loci such as ADAMTS9 and ADAMTS7, with specific traits and acquired disorders. Analysis of genetically engineered rodent mutations, now achieved for over half the superfamily, has provided novel biological insights and animal models for the respective human genetic disorders and suggested potential candidate genes for related human phenotypes. Engineered mouse mutants have been interbred to generate combinatorial mutants, uncovering cooperative functions of ADAMTS proteins in morphogenesis. Specific genetic models have provided crucial insights on mechanisms of osteoarthritis (OA), a common adult-onset degenerative condition. Engineered mutants will facilitate interpretation of exome variants identified in isolated birth defects and rare genetic conditions, as well as in genome-wide screens for trait and disease associations. Mammalian forward and reverse genetics, together with genome-wide analysis, together constitute a powerful force for revealing the functions of ADAMTS proteins in physiological pathways and health disorders. Their continuing use, together with genome-editing technology and the ability to generate stem cells from mutants, presents numerous opportunities for advancing basic knowledge, human disease pathways and therapy.
Collapse
Affiliation(s)
- Johanne Dubail
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
126
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 849] [Impact Index Per Article: 84.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
127
|
Brunet FG, Fraser FW, Binder MJ, Smith AD, Kintakas C, Dancevic CM, Ward AC, McCulloch DR. The evolutionary conservation of the A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motif metzincins across vertebrate species and their expression in teleost zebrafish. BMC Evol Biol 2015; 15:22. [PMID: 25879701 PMCID: PMC4349717 DOI: 10.1186/s12862-015-0281-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 01/05/2015] [Indexed: 11/17/2022] Open
Abstract
Background The A Disintegrin-like and Metalloproteinase domain with Thrombospondin-1 motifs (ADAMTS) enzymes comprise 19 mammalian zinc-dependent metalloproteinases (metzincins) with homologues in a wide range of invertebrates. ADAMTS enzymes have a broad range of functions in development and diseases due to their extracellular matrix remodelling activity. Here, we report a detailed characterisation of their evolutionary conservation across vertebrates. Results Using bioinformatics complemented with de novo sequencing, gene sequences for ADAMTS enzymes were obtained from a variety of organisms. Detailed evolutionary analyses revealed a high level of conservation across vertebrates with evidence of ADAMTS gene expansion during two rounds of whole genome duplication (WGD) in vertebrates, while tandem duplication events and gene loss were also apparent. However, the additional round of teleost-specific WGD did not have a significant effect on ADAMTS gene family members suggesting their conserved roles have remained constant in teleost fish. Quantitative reverse-transcriptase polymerase chain reaction analysis revealed dynamic expression of adamts genes throughout zebrafish embryonic development reflecting the key conserved roles they play in vertebrate embryogenesis. Notably, several adamts mRNAs were maternally expressed with a dramatic increase in mRNA levels coinciding with zygotic expression and organogenesis. Broad adamts mRNA expression was also demonstrated in several adult organs indicating potential roles in adult homeostasis. Conclusions Our data highlight the evolution of the ADAMTS gene family through duplication processes across metazoans supplemented by a burst of amplification through vertebrate WGD events. It also strongly posits the zebrafish as a potential model species to further elucidate the function of ADAMTS enzymes during vertebrate development. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0281-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364, Lyon cedex 07, France.
| | - Fiona W Fraser
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | - Marley J Binder
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | - Adam D Smith
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| | | | | | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia. .,Molecular and Medical Research Strategic Research Centre, Deakin University, Geelong, VIC, 3216, Australia.
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Geelong, VIC, 3216, Australia. .,Molecular and Medical Research Strategic Research Centre, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
128
|
Abstract
Versican is a widely distributed chondroitin sulfate proteoglycan that forms large complexes with the glycosaminoglycan hyaluronan (HA). As a consequence of HA binding to its receptor CD44 and interactions of the versican C-terminal globular (G3) domain with a variety of extracellular matrix proteins, versican is a key component of well-defined networks in pericellular matrix and extracellular matrix. It is crucial for several developmental processes in the embryo and there is increasing interest in its roles in cancer and inflammation. Versican proteolysis by ADAMTS proteases is highly regulated, occurs at specific peptide bonds, and is relevant to several physiological and disease mechanisms. In this chapter, methods are described for the isolation and detection of intact and cleaved versican in tissues using morphologic and biochemical techniques. These, together with the methodologies for purification and analysis of recombinant versican and a versican fragment provided here, are likely to facilitate further progress on the biology of versican and its proteolysis.
Collapse
|
129
|
Foulcer SJ, Nelson CM, Quintero MV, Kuberan B, Larkin J, Dours-Zimmermann MT, Zimmermann DR, Apte SS. Determinants of versican-V1 proteoglycan processing by the metalloproteinase ADAMTS5. J Biol Chem 2014; 289:27859-73. [PMID: 25122765 DOI: 10.1074/jbc.m114.573287] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis of the Glu(441)-Ala(442) bond in the glycosaminoglycan (GAG) β domain of the versican-V1 variant by a disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif (ADAMTS) proteases is required for proper embryo morphogenesis. However, the processing mechanism and the possibility of additional ADAMTS-cleaved processing sites are unknown. We demonstrate here that if Glu(441) is mutated, ADAMTS5 cleaves inefficiently at a proximate upstream site but normally does not cleave elsewhere within the GAGβ domain. Chondroitin sulfate (CS) modification of versican is a prerequisite for cleavage at the Glu(441)-Ala(442) site, as demonstrated by reduced processing of CS-deficient or chondroitinase ABC-treated versican-V1. Site-directed mutagenesis identified the N-terminal CS attachment sites Ser(507) and Ser(525) as essential for processing of the Glu(441)-Ala(442) bond by ADAMTS5. A construct including only these two GAG chains, but not downstream GAG attachment sites, was cleaved efficiently. Therefore, CS chain attachment to Ser(507) and Ser(525) is necessary and sufficient for versican proteolysis by ADAMTS5. Mutagenesis of Glu(441) and an antibody to a peptide spanning Thr(432)-Gly(445) (i.e. containing the scissile bond) reduced versican-V1 processing. ADAMTS5 lacking the C-terminal ancillary domain did not cleave versican, and an ADAMTS5 ancillary domain construct bound versican-V1 via the CS chains. We conclude that docking of ADAMTS5 with two N-terminal GAG chains of versican-V1 via its ancillary domain is required for versican processing at Glu(441)-Ala(442). V1 proteolysis by ADAMTS1 demonstrated a similar requirement for the N-terminal GAG chains and Glu(441). Therefore, versican cleavage can be inhibited substantially by mutation of Glu(441), Ser(507), and Ser(525) or by an antibody to the region of the scissile bond.
Collapse
Affiliation(s)
- Simon J Foulcer
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Courtney M Nelson
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Maritza V Quintero
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Balagurunathan Kuberan
- the Departments of Medicinal Chemistry and Bioengineering, University of Utah Health Sciences Center, Salt Lake City, Utah 84112
| | - Jonathan Larkin
- the Experimental Medicine Unit, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, and
| | | | - Dieter R Zimmermann
- the Institute of Surgical Pathology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Suneel S Apte
- From the Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
130
|
ADAMTS4 and ADAMTS5 knockout mice are protected from versican but not aggrecan or brevican proteolysis during spinal cord injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:693746. [PMID: 25101296 PMCID: PMC4101972 DOI: 10.1155/2014/693746] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/22/2022]
Abstract
The chondroitin sulfate proteoglycans (CSPGs) aggrecan, versican, and brevican are large aggregating extracellular matrix molecules that inhibit axonal growth of the mature central nervous system (CNS). ADAMTS proteoglycanases, including ADAMTS4 and ADAMTS5, degrade CSPGs, representing potential targets for ameliorating axonal growth-inhibition by CSPG accumulation after CNS injury. We investigated the proteolysis of CSPGs in mice homozygous for Adamts4 or Adamts5 null alleles after spinal cord injury (SCI). ADAMTS-derived 50–60 kDa aggrecan and 50 kDa brevican fragments were observed in Adamts4−/−, Adamts5−/−, and wt mice but not in the sham-operated group. By contrast Adamts4−/− and Adamts5−/− mice were both protected from versican proteolysis with an ADAMTS-generated 70 kDa versican fragment predominately observed in WT mice. ADAMTS1, ADAMTS9, and ADAMTS15 were detected by Western blot in Adamts4−/− mice' spinal cords after SCI. Immunohistochemistry showed astrocyte accumulation at the injury site. These data indicate that aggrecan and brevican proteolysis is compensated in Adamts4−/− or Adamts5−/− mice by ADAMTS proteoglycanase family members but a threshold of versican proteolysis is sensitive to the loss of a single ADAMTS proteoglycanase during SCI. We show robust ADAMTS activity after SCI and exemplify the requirement for collective proteolysis for effective CSPG clearance during SCI.
Collapse
|
131
|
Dubail J, Aramaki-Hattori N, Bader HL, Nelson CM, Katebi N, Matuska B, Olsen BR, Apte SS. A new Adamts9 conditional mouse allele identifies its non-redundant role in interdigital web regression. Genesis 2014; 52:702-12. [PMID: 24753090 DOI: 10.1002/dvg.22784] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/08/2023]
Abstract
ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5-8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ-line deletion produced from the floxed allele by Cre-lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1-Cre mice. Unlike other ADAMTS single knockouts, limb-specific Adamts9 deletion resulted in soft-tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non-redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9.
Collapse
Affiliation(s)
- Johanne Dubail
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | |
Collapse
|