101
|
Sugiyama M, Saeki A, Hasebe A, Kamesaki R, Yoshida Y, Kitagawa Y, Suzuki T, Shibata K. Activation of inflammasomes in dendritic cells and macrophages by Mycoplasma salivarium. Mol Oral Microbiol 2015; 31:259-69. [PMID: 26177301 DOI: 10.1111/omi.12117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/27/2023]
Abstract
Interleukin-1β (IL-1β) plays crucial roles in the pathogenesis of periodontal disease. It is produced after the processing of pro-IL-1β by caspase-1, which is activated by the inflammasome-a multiprotein complex comprising nucleotide-binding domain leucine-rich repeat-containing receptor (NLR), the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), and procaspase-1. Mycoplasma salivarium preferentially inhabits the gingival sulcus and the incidence and number of organisms in the oral cavity increase significantly with the progression of periodontal disease. To initially clarify the association of this organism with periodontal diseases, this study determined whether it induces IL-1β production by innate immune cells such as dendritic cells or macrophages by using Mycoplasma pneumoniae as a positive control. Both live and heat-killed M. salivarium and M. pneumoniae cells induced IL-1β production by XS106 murine dendritic cells as well as pyroptosis. The activities were significantly downregulated by silencing of caspase-1. Bone-marrow-derived macrophage (BMMs) from wild-type and NLR-containing protein 3 (NLRP3)-, ASC-, and caspase-1-deficient mice were examined for IL-1β production in response to these mycoplasmas. Live M. salivarium and M. pneumoniae cells almost completely lost the ability to induce IL-1β production by BMMs from ASC- and caspase-1-deficient mice. Their activities toward BMMs from NLRP3-deficient mice were significantly but not completely attenuated. These results suggest that live M. salivarium and M. pneumoniae cells can activate several types of inflammasomes including the NLRP3 inflammasome. Both M. salivarium and M. pneumoniae cells can activate THP-1 human monocytic cells to induce IL-1β production. Hence, the present finding that M. salivarium induces IL-1β production by dendritic cells and macrophages may suggest the association of this organism with periodontal diseases.
Collapse
Affiliation(s)
- M Sugiyama
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.,Division Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - A Saeki
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - A Hasebe
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - R Kamesaki
- Division Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Y Yoshida
- Division of Biomaterials and Bioengineering, Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Y Kitagawa
- Division Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - T Suzuki
- Department of Molecular Bacteriology and Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - K Shibata
- Division of Oral Molecular Microbiology, Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| |
Collapse
|
102
|
Yen H, Sugimoto N, Tobe T. Enteropathogenic Escherichia coli Uses NleA to Inhibit NLRP3 Inflammasome Activation. PLoS Pathog 2015; 11:e1005121. [PMID: 26332984 PMCID: PMC4557958 DOI: 10.1371/journal.ppat.1005121] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are related strains capable of inducing severe gastrointestinal disease. For optimal infection, these pathogens actively modulate cellular functions through the deployment of effector proteins in a type three secretion system (T3SS)-dependent manner. In response to enteric pathogen invasion, the Nod-like receptor pyrin domain containing (NLRP) inflammasome has been increasingly recognized as an important cytoplasmic sensor against microbial infection by activating caspase-1 and releasing IL-1β. EPEC and EHEC are known to elicit inflammasome activation in macrophages and epithelial cells; however, whether the pathogens actively counteract such innate immune responses is unknown. Using a series of compound effector-gene deletion strains of EPEC, we screened and identified NleA, which could subdue host IL-1β secretion. It was found that the reduction is not because of blocked NF-κB activity; instead, the reduction results from inhibited caspase-1 activation by NleA. Immunostaining of human macrophage-like cells following infection revealed limited formation of inflammasome foci with constituents of total caspase-1, ASC and NLRP3 in the presence of NleA. Pulldown of PMA-induced differentiated THP-1 lysate with purified MBP-NleA reveals that NLRP3 is a target of NleA. The interaction was verified by an immunoprecipitation assay and direct interaction assay in which purified MBP-NleA and GST-NLRP3 were used. We further showed that the effector interacts with regions of NLRP3 containing the PYD and LRR domains. Additionally, NleA was found to associate with non-ubiquitinated and ubiquitinated NLRP3 and to interrupt de-ubiquitination of NLRP3, which is a required process for inflammasome activation. Cumulatively, our findings provide the first example of EPEC-mediated suppression of inflammasome activity in which NieA plays a novel role in controlling the host immune response through targeting of NLRP3. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) cause severe intestinal dysfunction, including watery diarrhea or severe bloody diarrhea, and acute kidney failure (hemolytic uremic syndrome). Transmitted through ingestion of contaminated food, these pathogens colonize and disrupt the linings of intestinal epithelial cells. EPEC and EHEC interrupt many cellular functions, including the inflammation response, to increase their chances of proliferation and survival in the intestine. Upon detection of the invasion, epithelial cells and immune cells secrete inflammatory cytokines to further boost the immune response for efficient clearance of the pathogens. IL-1β is an important inflammatory cytokine, and its secretion is regulated by a multimeric protein complex, termed the inflammasome, in host cells. In this study, we discovered that EPEC injects a bacterial effector protein, NleA, to inhibit the secretion of IL-1β. Exploring the potential mechanisms, we found that NleA does so by directly associating with NLRP3 (Nod-Like Receptor 3), one of the three basic components of the inflammasome, and that the presence of NleA interrupts the de-ubiquitination of NLRP3, which is a prerequisite for the assembly of the inflammasome. As a result, NleA reduces the formation of the NLRP3 inflammasome and negatively regulates the secretion of IL-1β.
Collapse
Affiliation(s)
- Hilo Yen
- Department of Biomedical Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Nakaba Sugimoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toru Tobe
- Department of Biomedical Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
- * E-mail:
| |
Collapse
|
103
|
|
104
|
Hecker A, Küllmar M, Wilker S, Richter K, Zakrzewicz A, Atanasova S, Mathes V, Timm T, Lerner S, Klein J, Kaufmann A, Bauer S, Padberg W, Kummer W, Janciauskiene S, Fronius M, Schweda EKH, Lochnit G, Grau V. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26202987 DOI: 10.4049/jimmunol.1400974] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.
Collapse
Affiliation(s)
- Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany; Institute of Animal Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Srebrena Atanasova
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Verena Mathes
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Sabrina Lerner
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Jochen Klein
- Department of Pharmacology, Goethe University College of Pharmacy, D-60438 Frankfurt, Germany
| | - Andreas Kaufmann
- Institute for Immunology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany
| | - Wolfgang Kummer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, D-30625 Hannover, Germany
| | - Martin Fronius
- Institute of Animal Physiology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany; Department of Physiology, University of Otago, Dunedin 9054, New Zealand; and
| | - Elke K H Schweda
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, S-58183 Linköping, Sweden
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, D-35385 Giessen, Germany;
| |
Collapse
|
105
|
Gualdoni GA, Lingscheid T, Schmetterer KG, Hennig A, Steinberger P, Zlabinger GJ. Azithromycin inhibits IL-1 secretion and non-canonical inflammasome activation. Sci Rep 2015; 5:12016. [PMID: 26152605 PMCID: PMC4495566 DOI: 10.1038/srep12016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/29/2015] [Indexed: 12/28/2022] Open
Abstract
Deregulation of inflammasome activation was recently identified to be involved in the pathogenesis of various inflammatory diseases. Although macrolide antibiotics display well described immunomodulatory properties, presumably involved in their clinical effects, their impact on inflammasome activation has not been investigated. We compared the influence of macrolides on cytokine induction in human monocytes. The role of intracellular azithromycin-accumulation was examined by interference with Ca++-dependent uptake. We have also analysed the signalling cascades involved in inflammasome activation, and substantiated the findings in a murine sepsis model. Azithromycin, but not clarithromycin or roxithromycin, specifically inhibited IL-1α and IL-1β secretion upon LPS stimulation. Interference with Ca++-dependent uptake abolished the cytokine-modulatory effect, suggesting a role of intracellular azithromycin accumulation in the modulatory role of this macrolide. Azithromycin’s inhibiting effects were observed upon LPS, but not upon flagellin, stimulation. Consistent with this observation, we found impaired induction of the LPS-sensing caspase-4 whereas NF-κB signalling was unaffected. Furthermore, azithromycin specifically affected IL-1β levels in a murine endotoxin sepsis model. We provide the first evidence of a differential impact of macrolides on the inflammasome/IL-1β axis, which may be of relevance in inflammasome-driven diseases such as chronic obstructive pulmonary disease or asthma.
Collapse
Affiliation(s)
- Guido A Gualdoni
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Tilman Lingscheid
- Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
106
|
Li Y, Li N, Yan Z, Li H, Chen L, Zhang Z, Fan G, Xu K, Li Z. Dysregulation of the NLRP3 inflammasome complex and related cytokines in patients with multiple myeloma. ACTA ACUST UNITED AC 2015; 21:144-51. [PMID: 26146985 DOI: 10.1179/1607845415y.0000000029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The NLRP3 inflammasome complex, an important regulatory factor of inflammation and cell apoptosis, has attracted considerable attention in the development of tumor. Here, we analyzed the expression and clinical significance of NLRP3 inflammasome complex and related cytokines in patients with multiple myeloma (MM). METHODS Peripheral blood and bone marrow of 38 newly diagnosed myeloma patients and 25 age- and gender-matched healthy people were studied. NLRP3 and caspase-1 were analyzed using quantitative real-time polymerase chain reaction and Western blot and IL-1beta, IL-18, RANKL, and OPG were evaluated by enzyme-linked immunosorbent assay. RESULTS We showed that aberrant NLRP3 and caspase-1 expression were observed in MM and down-regulated compared with the healthy people. We further demonstrated that NLRP3 mRNA was negatively correlated with beta2-microglobulin and plasma cell percentage in MM. The downstream cytokines IL-18 and sRANKL/OPG in MM patients were higher than that in control group. Moreover, the lower mRNA levels of NLRP3 and caspase-1 were shown to be positively correlated with IL-1beta in newly diagnosed MM patients. CONCLUSIONS This study demonstrated that dysregulated expression of NLRP3-caspase-1-IL-1beta axis was observed in patients with MM, suggesting they might be involved in the pathogenesis of MM.
Collapse
Affiliation(s)
- Yanjie Li
- a Laboratory Center of Diagnostics , Xuzhou Medical College , China
| | - Ning Li
- b Department of Geratology , The Second Affiliated Hospital of Xuzhou Medical College, General Hospital of Xuzhou Mining Group , China
| | - Zhiling Yan
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Hujun Li
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Lili Chen
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Zhiyao Zhang
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Guoqin Fan
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Kailin Xu
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| | - Zhenyu Li
- c Department of Hematology , The Affiliated Hospital of Xuzhou Medical College , China
| |
Collapse
|
107
|
Sarrabay G, Grandemange S, Touitou I. Diagnosis of cryopyrin-associated periodic syndrome: challenges, recommendations and emerging concepts. Expert Rev Clin Immunol 2015; 11:827-35. [DOI: 10.1586/1744666x.2015.1047765] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
108
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
109
|
Zumla A, Rao M, Parida SK, Keshavjee S, Cassell G, Wallis R, Axelsson-Robertsson R, Doherty M, Andersson J, Maeurer M. Inflammation and tuberculosis: host-directed therapies. J Intern Med 2015; 277:373-87. [PMID: 24717092 DOI: 10.1111/joim.12256] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) is an airborne infectious disease that kills almost two million individuals every year. Multidrug-resistant (MDR) TB is caused by strains of Mycobacterium tuberculosis (M. tb) resistant to isoniazid and rifampin, the backbone of first-line antitubercular treatment. MDR TB affects an estimated 500,000 new patients annually. Genetic analysis of drug-resistant MDR-TB showed that airborne transmission of undetected and untreated strains played a major role in disease outbreaks. The need for new TB vaccines and faster diagnostics, as well as the development of new drugs, has recently been highlighted. The major problem in terms of current TB research and clinical demands is the increasing number of cases of extensively drug-resistant and 'treatment-refractory' TB. An emerging scenario of adjunct host-directed therapies is intended to target pulmonary TB where inflammatory processes can be deleterious and lead to immune exhaustion. 'Target-organ-saving' strategies may be warranted to prevent damage to infected tissues and achieve focused, clinically relevant and long-lasting anti-M. tb cellular immune responses. Candidates for such interventions may be biological agents or already approved drugs that can be 're-purposed' to interfere with biologically relevant cellular checkpoints. Here, we review current concepts of inflammation in TB disease and discuss candidate pathways for host-directed therapies to achieve better clinical outcomes.
Collapse
Affiliation(s)
- A Zumla
- University College London, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Ulland TK, Ferguson PJ, Sutterwala FS. Evasion of inflammasome activation by microbial pathogens. J Clin Invest 2015; 125:469-77. [PMID: 25642707 DOI: 10.1172/jci75254] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of the inflammasome occurs in response to infection with a wide array of pathogenic microbes. The inflammasome serves as a platform to activate caspase-1, which results in the subsequent processing and secretion of the proinflammatory cytokines IL-1β and IL-18 and the initiation of an inflammatory cell death pathway termed pyroptosis. Effective inflammasome activation is essential in controlling pathogen replication as well as initiating adaptive immune responses against the offending pathogens. However, a number of pathogens have developed strategies to evade inflammasome activation. In this Review, we discuss these pathogen evasion strategies as well as the potential infectious complications of therapeutic blockade of IL-1 pathways.
Collapse
|
111
|
Genome-wide expression profiles of necrotizing enterocolitis versus spontaneous intestinal perforation in human intestinal tissues: dysregulation of functional pathways. Ann Surg 2015; 260:1128-37. [PMID: 24368664 DOI: 10.1097/sla.0000000000000374] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To provide a comprehensive database of gene regulation and compare differentially regulated molecular networks in human tissues of necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP). BACKGROUND Both NEC and SIP are devastating surgical emergencies associated with high morbidity and mortality in preterm infants. Their pathophysiology and molecular mechanisms remain unclear. METHODS Differential whole genome microarray analysis was performed on intestinal tissues collected from NEC (n = 15) and SIP (n = 12) infants and compared with tissues collected from surgical-control patients with noninflammatory intestinal conditions (n = 14). Validation of 52 target gene expressions was performed by quantitative polymerase chain reaction. Regulatory networks of significantly affected genes were constructed according to functional pathways. RESULTS Extensive and significant changes of gene expression were observed in NEC tissues, which comprised multiple pathways of angiogenesis, arginine metabolism, cell adhesion and chemotaxis, extracellular matrix remodeling, hypoxia and oxidative stress, inflammation, and muscle contraction. These dysregulated genes could be networked downstream of key receptors, TLR2, TLR4, and TREM1, and mediated via NF-κB, AP-1, and HIF1A transcription factor pathways, indicating predominant microbial and inflammatory involvement. In contrast, SIP tissues exhibited much milder and less diversified expressional changes, with target genes significantly associated with G-protein-mediated muscle contraction and extracellular matrix remodeling. CONCLUSIONS The molecular evidence suggests that NEC and SIP are likely 2 different diseases caused by distinct etiology and pathophysiology. This first comprehensive database on differential gene expression profiles of human NEC and SIP tissues could lead to development of disease-specific diagnostic and prognostic biomarkers and new therapeutic strategies for improving outcomes.
Collapse
|
112
|
Yang Q, Stevenson HL, Scott MJ, Ismail N. Type I interferon contributes to noncanonical inflammasome activation, mediates immunopathology, and impairs protective immunity during fatal infection with lipopolysaccharide-negative ehrlichiae. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:446-61. [PMID: 25481711 DOI: 10.1016/j.ajpath.2014.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 12/29/2022]
Abstract
Ehrlichia species are intracellular bacteria that cause fatal ehrlichiosis, mimicking toxic shock syndrome in humans and mice. Virulent ehrlichiae induce inflammasome activation leading to caspase-1 cleavage and IL-18 secretion, which contribute to development of fatal ehrlichiosis. We show that fatal infection triggers expression of inflammasome components, activates caspase-1 and caspase-11, and induces host-cell death and secretion of IL-1β, IL-1α, and type I interferon (IFN-I). Wild-type and Casp1(-/-) mice were highly susceptible to fatal ehrlichiosis, had overwhelming infection, and developed extensive tissue injury. Nlrp3(-/-) mice effectively cleared ehrlichiae, but displayed acute mortality and developed liver injury similar to wild-type mice. By contrast, Ifnar1(-/-) mice were highly resistant to fatal disease and had lower bacterial burden, attenuated pathology, and prolonged survival. Ifnar1(-/-) mice also had improved protective immune responses mediated by IFN-γ and CD4(+) Th1 and natural killer T cells, with lower IL-10 secretion by T cells. Importantly, heightened resistance of Ifnar1(-/-) mice correlated with improved autophagosome processing, and attenuated noncanonical inflammasome activation indicated by decreased activation of caspase-11 and decreased IL-1β, compared with other groups. Our findings demonstrate that IFN-I signaling promotes host susceptibility to fatal ehrlichiosis, because it mediates ehrlichia-induced immunopathology and supports bacterial replication, perhaps via activation of noncanonical inflammasomes, reduced autophagy, and suppression of protective CD4(+) T cells and natural killer T-cell responses against ehrlichiae.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Heather L Stevenson
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie J Scott
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nahed Ismail
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
113
|
Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection. Microbes Infect 2014; 16:954-61. [DOI: 10.1016/j.micinf.2014.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
|
114
|
Yang J, Xu H, Shao F. The immunological function of familial Mediterranean fever disease protein Pyrin. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1156-61. [DOI: 10.1007/s11427-014-4758-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/11/2014] [Indexed: 02/04/2023]
|
115
|
Lo JH, Lin CM, Chen MJ, Chen TT. Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genomics 2014; 15:887. [PMID: 25306446 PMCID: PMC4201688 DOI: 10.1186/1471-2164-15-887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray. Results From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed. Conclusions The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-887) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
116
|
Wang S, Lei T, Zhang K, Zhao W, Fang L, Lai B, Han J, Xiao L, Wang N. Xenobiotic pregnane X receptor (PXR) regulates innate immunity via activation of NLRP3 inflammasome in vascular endothelial cells. J Biol Chem 2014; 289:30075-81. [PMID: 25202020 DOI: 10.1074/jbc.m114.578781] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pregnane X receptor (PXR) is a member of nuclear receptor superfamily and responsible for the detoxification of xenobiotics. Our previously study demonstrated that PXR is expressed in endothelial cells (ECs) and acts as a master regulator of detoxification genes to protect ECs against xenobiotics. Vascular endothelial cells are key sentinel cells to sense the pathogens and xenobiotics. In this study, we examined the potential function of PXR in the regulation of innate immunity in vasculatures. Treatments with PXR agonists or overexpression of a constitutively active PXR in cultured ECs increased gene expression of the key pattern recognition receptors, including Toll-like receptors (TLR-2, -4, -9) and NOD-like receptors (NOD-1 and -2 and NLRP3). In particular, PXR agonism triggered the activation of NLRP3 inflammasome and the ensuing cleavage and maturation of caspase-1 and interleukin-1β (IL-1β). Conversely, selective antagonism or gene silencing of PXR abrogated NLRP3 inflammasome activation. In addition, we identified NLRP3 as a transcriptional target of PXR by using the promoter-reporter and ChIP assays. In summary, our findings revealed a novel regulatory mechanism of innate immune by PXR, which may act as a master transcription factor controlling the convergence between the detoxification of xenobiotics and the innate immunity against them.
Collapse
Affiliation(s)
- Shaolan Wang
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Ting Lei
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Kang Zhang
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Wenxiang Zhao
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Li Fang
- Institute of Cardiovascular Science, Peking University, Beijing 100191, China
| | - Baochang Lai
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Jie Han
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and
| | - Nanping Wang
- From the Cardiovascular Research Center, School of Medicine, Xi'an Jiaotong University, Xi'an 710061 and Institute of Cardiovascular Science, Peking University, Beijing 100191, China
| |
Collapse
|
117
|
Niebuhr M, Baumert K, Heratizadeh A, Satzger I, Werfel T. Impaired NLRP3 inflammasome expression and function in atopic dermatitis due to Th2 milieu. Allergy 2014; 69:1058-67. [PMID: 24894535 DOI: 10.1111/all.12428] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis patients are frequently colonized with Staphylococcus aureus (S. aureus) that produce the staphylococcal exotoxin α-toxin. However, only patients with AD suffer from bacterial superinfections with this pathogen, which implicates immunological differences in AD vs psoriasis in combating these bacteria. S. aureus recognition is partially mediated by intracellular nucleotide-binding oligomerization domain receptors (NLRs), which link α-toxin to caspase-1 activation through the formation of the NLRP3 inflammasome and to IL-1β secretion. OBJECTIVE To investigate (i) NLRP3 expression in the context of different T-helper cytokine milieus and (ii) its function in response to sublytic α-toxin stimulation in patients with AD and psoriasis compared with healthy controls. METHODS NLRP3 expression and function were investigated in lesional AD and psoriasis skin as well as in primary keratinocytes (HPKs) and monocytes upon stimulation with Th1, Th2, Th17 and Th22 cytokines or staphylococcal α-toxin, respectively, at the mRNA and protein (ELISA, immunohistochemistry and immunofluorescence) level. RESULTS NLRP3 and caspase-1 expressions were reduced in lesional AD skin compared to psoriatic and healthy skin. IL-4, IL-5 and IL-13 downregulated NLRP3 and ASC, whereas interferon-γ upregulated NLRP3 in HPKs. In monocytes, caspase-1 expression was reduced by Th2 cytokines and enhanced by a Th1 milieu. Caspase-1-dependent IL-1β secretion was impaired in monocytes from patients with AD compared to patients with psoriasis and healthy controls by α-toxin stimulation following priming with lipoteichoic acid. CONCLUSION Impaired NLRP3 expression and function may partially explain how skin colonization and infection with S. aureus can contribute to chronic skin inflammation in AD.
Collapse
Affiliation(s)
- M. Niebuhr
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| | - K. Baumert
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| | - A. Heratizadeh
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| | - I. Satzger
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| | - T. Werfel
- Division of Immunodermatology and Allergy Research; Department of Dermatology and Allergy; Hannover Medical School; Hannover Germany
| |
Collapse
|
118
|
Wong J, Tran LT, Magun EA, Magun BE, Wood LJ. Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristine. Cancer Biol Ther 2014; 15:1395-403. [PMID: 25046000 PMCID: PMC4130732 DOI: 10.4161/cbt.29922] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic chemotherapeutic drugs, especially when used in combination, are widely employed to treat a variety of cancers in patients but often lead to serious symptoms that negatively affect physical functioning and quality of life. There is compelling evidence that implicates cytotoxic chemotherapy-induced inflammation in the etiology of these symptoms. Because IL-1β plays a central role as an initiator cytokine in immune responses, we compared doxorubicin, a drug known to induce IL-1β production, with ten other commonly prescribed chemotherapeutic drugs in their ability to lead to processing and secretion of IL-1β by primary mouse macrophages. Seven of them (melphalan, cisplatin, vincristine, etoposide, paclitaxel, methotrexate, and cytarabine) caused the production of IL-1β in cells pretreated with lipopolysaccharide. When delivered in combination with doxorubicin, one of the drugs, vincristine, was also capable of synergistically activating the NLRP3-dependent inflammasome and increasing expression of IL-1β, IL-6, and CXCL1. The absence of TNF-α and IL-1 signaling caused a partial reduction in the production of mature IL-1β. Three small-molecule inhibitors known to suppress activity of kinases situated upstream of mitogen-activated kinases (MAPKs) inhibited the expression of IL-1β, IL-6, and CXCL1 when doxorubicin and vincristine were used singly or together, so specific kinase inhibitors may be useful in reducing inflammation in patients receiving chemotherapy.
Collapse
Affiliation(s)
- John Wong
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa T Tran
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Eli A Magun
- Department of Dermatology; Oregon Health & Science University; Portland, OR USA
| | - Bruce E Magun
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| | - Lisa J Wood
- School of Nursing; Massachusetts General Hospital Institute of Health Professions; Boston, MA USA
| |
Collapse
|
119
|
Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc Natl Acad Sci U S A 2014; 111:7391-6. [PMID: 24799678 DOI: 10.1073/pnas.1403477111] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the "Black Death" in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-β (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1β, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1β and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection.
Collapse
|
120
|
Estornes Y, Bertrand MJM. IAPs, regulators of innate immunity and inflammation. Semin Cell Dev Biol 2014; 39:106-14. [PMID: 24718315 DOI: 10.1016/j.semcdb.2014.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/06/2014] [Accepted: 03/28/2014] [Indexed: 12/30/2022]
Abstract
As indicated by their name, members of the Inhibitor of APoptosis (IAP) family were first believed to be functionally restricted to apoptosis inhibition. It is now clear that IAPs have a much wider spectrum of action, and recent studies even suggest that some of its members primarily regulate inflammatory responses. Inflammation, the first response of the immune system to infection or tissue injury, is highly regulated by ubiquitylation - a posttranslational modification of proteins with various consequences. In this review, we focus on the recently reported functions of XIAP, cIAP1 and cIAP2 as ubiquitin ligases regulating innate immunity and inflammation.
Collapse
Affiliation(s)
- Yann Estornes
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium.
| |
Collapse
|
121
|
Belibasakis GN, Bostanci N. Inflammatory and bone remodeling responses to the cytolethal distending toxins. Cells 2014; 3:236-46. [PMID: 24709959 PMCID: PMC4092851 DOI: 10.3390/cells3020236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxins (CDTs) are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Oral Microbiology and Immunology, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| | - Nagihan Bostanci
- Oral Translational Research, Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Plattenstrasse 11, Zürich 8032, Switzerland.
| |
Collapse
|
122
|
Knetter SM, Bearson SMD, Huang TH, Kurkiewicz D, Schroyen M, Nettleton D, Berman D, Cohen V, Lunney JK, Ramer-Tait AE, Wannemuehler MJ, Tuggle CK. Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct clinical, peripheral cytokine and transcriptomic immune response phenotypes. Innate Immun 2014; 21:227-41. [PMID: 24632525 DOI: 10.1177/1753425914525812] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Foodborne salmonellosis costs the US $2.7 billion/year, including $100.0 million in annual losses to pork producers. Pigs colonized with Salmonella are usually asymptomatic with varied severity and duration of fecal shedding. Thus, understanding the responses that result in less shedding may provide a mechanism for control. Fifty-four pigs were inoculated with Salmonella enterica serovar Typhimurium (ST) and clinical signs, fecal ST shedding, growth performance, peripheral cytokines and whole blood gene expression were measured. Persistently shedding (PS) pigs had longer pyrexia and elevated serum IL-1β, TNF-α and IFN-γ compared with low shedding (LS) pigs, while LS pigs had brief pyrexia, less shedding that decreased more rapidly and greater serum CXCL8 than PS pigs. The PS pigs up-regulated genes involved with the STAT1, IFNB1 and IFN-γ networks on d 2, while up-regulation of genes involved in immune response regulation were only detected in LS pigs. This is the first study to examine host responses to ST infection at a clinical, performance, cytokine and transcriptomic level. The results indicated that pigs with different shedding outcomes developed distinct immune responses within the first 2 d of ST infection, and elucidated alternative mechanisms that could be targeted to reduce Salmonella shedding and spread.
Collapse
Affiliation(s)
- Susan M Knetter
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Ting-Hua Huang
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Martine Schroyen
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Daniel Berman
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Valerie Cohen
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD, USA
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael J Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
123
|
Vladimer GI, Górna MW, Superti-Furga G. IFITs: Emerging Roles as Key Anti-Viral Proteins. Front Immunol 2014; 5:94. [PMID: 24653722 PMCID: PMC3948006 DOI: 10.3389/fimmu.2014.00094] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 12/25/2022] Open
Abstract
Interferon-induced proteins with tetratricopeptide repeats (IFITs) are a family of proteins, which are strongly induced downstream of type I interferon signaling. The molecular mechanism of IFIT anti-viral activity has been studied in some detail, including the recently discovered direct binding of viral nucleic acid, the binding to viral and host proteins, and the possible involvement in anti-viral immune signal propagation. The unique structures of some members of the IFIT family have been solved to reveal an internal pocket for non-sequence-specific, but conformation- and modification-specific, nucleic acid binding. This review will focus on recent discoveries, which link IFITs to the anti-viral response, intrinsic to the innate immune system.
Collapse
Affiliation(s)
- Gregory I Vladimer
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Maria W Górna
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| | - Giulio Superti-Furga
- Laboratory of Giulio Superti-Furga, Center for Molecular Medicine of the Austrian Academy of Sciences , Vienna , Austria
| |
Collapse
|
124
|
Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab 2014; 34:369-75. [PMID: 24398940 PMCID: PMC3948131 DOI: 10.1038/jcbfm.2013.227] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/19/2013] [Accepted: 12/01/2013] [Indexed: 02/07/2023]
Abstract
The inflammasome is an intracellular multiprotein complex involved in the activation of caspase-1 and the processing of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The inflammasome in the central nervous system (CNS) is involved in the generation of an innate immune inflammatory response through IL-1 cytokine release and in cell death through the process of pyroptosis. In this review, we consider the different types of inflammasomes (NLRP1, NLRP2, NLRP3, and AIM2) that have been described in CNS cells, namely neurons, astrocytes, and microglia. Importantly, we focus on the role of the inflammasome after brain and spinal cord injury and cover the potential activators of the inflammasome after CNS injury such as adenosine triphosphate and DNA, and the therapeutic potential of targeting the inflammasome to improve outcomes after CNS trauma.
Collapse
|
125
|
Boudinot P, Zou J, Ota T, Buonocore F, Scapigliati G, Canapa A, Cannon J, Litman G, Hansen JD. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:415-37. [PMID: 24482296 DOI: 10.1002/jez.b.22559] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 12/23/2013] [Indexed: 01/17/2023]
Abstract
The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.
Collapse
Affiliation(s)
- Pierre Boudinot
- Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Jin HS, Park JK, Jo EK. Toll-like Receptors and NOD-like Receptors in Innate Immune Defense during Pathogenic Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.3.215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
127
|
Kameyama T, Takaoka A. Characterization of innate immune signalings stimulated by ligands for pattern recognition receptors. Methods Mol Biol 2014; 1142:19-32. [PMID: 24706271 DOI: 10.1007/978-1-4939-0404-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The innate immunity is an essential step as the front line of host defense, and its aberrant activation particularly in response to nucleic acids is closely related to the pathogenesis of autoimmune and inflammatory diseases. Characterization of the innate immune signalings may provide a pathophysiological insight for better understanding of human diseases. Nucleic acid-mediated activation of pattern recognition receptors triggers the activation of two major intracellular signaling pathways, which are dependent on NF-κB and interferon regulatory factors, transcriptional factors. This leads to the subsequent induction of inflammatory cytokines and type I and III interferons. In this chapter, we first overview the representative families of nucleic acid sensors and their ligands and then show the fundamental techniques for extracellular or intracellular stimulation with these nucleic acid ligands and for detection of innate immune response, that is, IFN and proinflammatory cytokine induction, as assessed by luciferase assay, quantitative RT-PCR (qRT-PCR), and enzyme-linked immunosorbent assay.
Collapse
|
128
|
Yuk JM, Jo EK. Crosstalk between autophagy and inflammasomes. Mol Cells 2013; 36:393-9. [PMID: 24213677 PMCID: PMC3887939 DOI: 10.1007/s10059-013-0298-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
A variety of cellular stresses activate the autophagy pathway, which is fundamentally important in protection against injurious stimuli. Defects in the autophagy process are associated with a variety of human diseases, including inflammatory and metabolic diseases. The inflammasomes are emerging as key signaling platforms directing the maturation and secretion of interleukin-1 family cytokines in response to pathogenic and sterile stimuli. Recent studies have identified the critical role of inflammasome activation in host defense and inflammation. Delineation of the relationship between autophagy and inflammasome activation is now being greatly facilitated by the use of mice models of autophagy gene deficiency and clinical studies. We surveyed the recent research regarding the contribution of autophagy to the control of inflammation, in particular the association between autophagy and inflammasomes. Understanding the mechanisms by which autophagy balances inflammation might facilitate the development of autophagy-based therapeutic modalities for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| |
Collapse
|
129
|
Kim JJ, Jo EK. NLRP3 inflammasome and host protection against bacterial infection. J Korean Med Sci 2013; 28:1415-23. [PMID: 24133343 PMCID: PMC3792593 DOI: 10.3346/jkms.2013.28.10.1415] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/20/2013] [Indexed: 01/30/2023] Open
Abstract
The inflammasome is a multi-protein complex that induces maturation of inflammatory cytokines interleukin (IL)-1β and IL-18 through activation of caspase-1. Several nucleotide binding oligomerization domain-like receptor family members, including NLRP3, recognize unique microbial and danger components and play a central role in inflammasome activation. The NLRP3 inflammasome is critical for maintenance of homeostasis against pathogenic infections. However, inflammasome activation acts as a double-edged sword for various bacterial infections. When the IL-1 family of cytokines is secreted excessively, they cause tissue damage and extensive inflammatory responses that are potentially hazardous for the host. Emerging evidence has shown that diverse bacterial pathogens or their components negatively regulate inflammasome activation to escape the immune response. In this review, we discuss the current knowledge of the roles and regulation of the NLRP3 inflammasome during bacterial infections. Activation and regulation of the NLRP3 inflammasome should be tightly controlled to prevent virulence and pathology during infections. Understanding the roles and regulatory mechanisms of the NLRP3 inflammasome is essential for developing potential treatment approaches against pathogenic infections.
Collapse
Affiliation(s)
- Jwa-Jin Kim
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology and Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
130
|
Abstract
Activation of inflammasome signaling can produce harmful inflammation. In this issue of Immunity, Yan et al. (2013) suggest that omega-3 fatty acids commonly found in marine oils can suppress activation of NLRP3 and NLRP1b inflammasomes.
Collapse
Affiliation(s)
- Robyn Marty-Roix
- Division of Infectious Diseases and Immunology, Program in Innate Immunity, Department of Medicine, UMass Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
131
|
Bliska JB, Wang X, Viboud GI, Brodsky IE. Modulation of innate immune responses by Yersinia type III secretion system translocators and effectors. Cell Microbiol 2013; 15:1622-31. [PMID: 23834311 DOI: 10.1111/cmi.12164] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/21/2013] [Accepted: 07/01/2013] [Indexed: 12/13/2022]
Abstract
The innate immune system of mammals responds to microbial infection through detection of conserved molecular determinants called 'pathogen-associated molecular patterns' (PAMPs). Pathogens use virulence factors to counteract PAMP-directed responses. The innate immune system can in turn recognize signals generated by virulence factors, allowing for a heightened response to dangerous pathogens. Many Gram-negative bacterial pathogens encode type III secretion systems (T3SSs) that translocate effector proteins, subvert PAMP-directed responses and are critical for infection. A plasmid-encoded T3SS in the human-pathogenic Yersinia species translocates seven effectors into infected host cells. Delivery of effectors by the T3SS requires plasma membrane insertion of two translocators, which are thought to form a channel called a translocon. Studies of the Yersinia T3SS have provided key advances in our understanding of how innate immune responses are generated by perturbations in plasma membrane and other signals that result from translocon insertion. Additionally, studies in this system revealed that effectors function to inhibit innateimmune responses resulting from insertion of translocons into plasma membrane. Here, we review these advances with the goal of providing insight into how a T3SS can activate and inhibit innate immune responses, allowing a virulent pathogen to bypass host defences.
Collapse
Affiliation(s)
- James B Bliska
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | | | | |
Collapse
|
132
|
Baxt LA, Garza-Mayers AC, Goldberg MB. Bacterial subversion of host innate immune pathways. Science 2013; 340:697-701. [PMID: 23661751 DOI: 10.1126/science.1235771] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The pathogenesis of infection is a continuously evolving battle between the human host and the infecting microbe. The past decade has brought a burst of insights into the molecular mechanisms of innate immune responses to bacterial pathogens. In parallel, multiple specific mechanisms by which microorganisms subvert these host responses have been uncovered. This Review highlights recently characterized mechanisms by which bacterial pathogens avoid killing by innate host responses, including autophagy pathways and a proinflammatory cytokine transcriptional response, and by the manipulation of vesicular trafficking to avoid the toxicity of lysosomal enzymes.
Collapse
Affiliation(s)
- Leigh A Baxt
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA 02139, USA
| | | | | |
Collapse
|