101
|
Bailey CM, Anderson KS. A mechanistic view of human mitochondrial DNA polymerase gamma: providing insight into drug toxicity and mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1213-22. [PMID: 20083238 DOI: 10.1016/j.bbapap.2010.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 02/08/2023]
Abstract
Mitochondrial DNA polymerase gamma (Pol gamma) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol gamma is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol gamma holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase gamma, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure-function relationships to explain drug toxicity and mitochondrial disease.
Collapse
Affiliation(s)
- Christopher M Bailey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
102
|
Ellison CK, Burton RS. Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. J Evol Biol 2010; 23:528-38. [PMID: 20070459 DOI: 10.1111/j.1420-9101.2009.01917.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Organismal fitness requires functional integration of nuclear and mitochondrial genomes. Structural and regulatory elements coevolve within lineages and several studies have found that interpopulation hybridization disrupts mitonuclear interactions. Because mitochondrial RNA polymerase (mtRPOL) plays key roles in both mitochondrial DNA (mtDNA) replication and transcription, the interaction between mtRPOL and coevolved regulatory sites in the mtDNA may be central to mitonuclear integration. Here, we generate interpopulation hybrids between divergent populations of the copepod Tigriopus californicus to obtain lines having different combinations of mtRPOL and mtDNA. Lines were scored for mtDNA copy number and ATP6 (mtDNA) gene expression. We find that there is a genotype-dependent negative association between mitochondrial transcriptional response and mtDNA copy number. We argue that an observed increase in mtDNA copy number and reduced mtDNA transcription in hybrids reflects the regulatory role of mtRPOL; depending on the mitonuclear genotype, hybridization may disrupt the normal balance between transcription and replication of the mitochondrial genome.
Collapse
Affiliation(s)
- C K Ellison
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
103
|
Hoffmann M, Bellance N, Rossignol R, Koopman WJH, Willems PHGM, Mayatepek E, Bossinger O, Distelmaier F. C. elegans ATAD-3 is essential for mitochondrial activity and development. PLoS One 2009; 4:e7644. [PMID: 19888333 PMCID: PMC2765634 DOI: 10.1371/journal.pone.0007644] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/07/2009] [Indexed: 01/01/2023] Open
Abstract
Background Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved. Results Here, we characterize the Caenorhabditis elegans (C. elegans) ATAD3 homologue (ATAD-3) and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi) animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity. Conclusions In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.
Collapse
Affiliation(s)
- Michael Hoffmann
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
- Institute for Genetics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nadège Bellance
- Institut National de la Santé et de la Recherche Médicale (INSERM), U688 Physiopathologie Mitochondriale, Universite Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Rodrigue Rossignol
- Institut National de la Santé et de la Recherche Médicale (INSERM), U688 Physiopathologie Mitochondriale, Universite Victor Segalen-Bordeaux 2, Bordeaux, France
| | - Werner J. H. Koopman
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Microscopical Imaging Center, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter H. G. M. Willems
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Microscopical Imaging Center, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ertan Mayatepek
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
- * E-mail: (FD); (OB)
| | - Felix Distelmaier
- Department of General Pediatrics, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (FD); (OB)
| |
Collapse
|
104
|
Goffart S, Spelbrink H. Inducible expression in human cells, purification, and in vitro assays for the mitochondrial DNA helicase Twinkle. Methods Mol Biol 2009; 554:103-19. [PMID: 19513670 DOI: 10.1007/978-1-59745-521-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Mitochondrial DNA (mtDNA) maintenance can be and has been studied in a wide variety of organisms, some more tractable than others. We use human and mouse cell culture models to study proteins and mechanisms of mtDNA replication. Recent advances in cell culture systems allow us to streamline the analysis of replication proteins both in vivo in cell culture and in vitro following protein purification. One such system, the inducible 293 Flp-In(TM) TREx(TM) system, will be described here in detail with the emphasis on the mitochondrial DNA helicase Twinkle, in particular its mitochondrial purification following over-expression, and basic activity and multimerization assays.
Collapse
Affiliation(s)
- Steffi Goffart
- Institute of Medical Technology, University of Tampere, Tampere, Finland
| | | |
Collapse
|
105
|
Keeney PM, Quigley CK, Dunham LD, Papageorge CM, Iyer S, Thomas RR, Schwarz KM, Trimmer PA, Khan SM, Portell FR, Bergquist KE, Bennett JP. Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 2009; 20:897-907. [PMID: 19374590 DOI: 10.1089/hum.2009.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled gDNA used in this study.
Collapse
Affiliation(s)
- Paula M Keeney
- Morris K. Udall Parkinson's Disease Research Center of Excellence, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Mitochondrial DNA mutations and human disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:113-28. [PMID: 19761752 DOI: 10.1016/j.bbabio.2009.09.005] [Citation(s) in RCA: 443] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 09/04/2009] [Accepted: 09/09/2009] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are a group of clinically heterogeneous diseases, commonly defined by a lack of cellular energy due to oxidative phosphorylation (OXPHOS) defects. Since the identification of the first human pathological mitochondrial DNA (mtDNA) mutations in 1988, significant efforts have been spent in cataloguing the vast array of causative genetic defects of these disorders. Currently, more than 250 pathogenic mtDNA mutations have been identified. An ever-increasing number of nuclear DNA mutations are also being reported as the majority of proteins involved in mitochondrial metabolism and maintenance are nuclear-encoded. Understanding the phenotypic diversity and elucidating the molecular mechanisms at the basis of these diseases has however proved challenging. Progress has been hampered by the peculiar features of mitochondrial genetics, an inability to manipulate the mitochondrial genome, and difficulties in obtaining suitable models of disease. In this review, we will first outline the unique features of mitochondrial genetics before detailing the diseases and their genetic causes, focusing specifically on primary mtDNA genetic defects. The functional consequences of mtDNA mutations that have been characterised to date will also be discussed, along with current and potential future diagnostic and therapeutic advances.
Collapse
|
107
|
Di Re M, Sembongi H, He J, Reyes A, Yasukawa T, Martinsson P, Bailey LJ, Goffart S, Boyd-Kirkup JD, Wong TS, Fersht AR, Spelbrink JN, Holt IJ. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res 2009; 37:5701-13. [PMID: 19625489 PMCID: PMC2761280 DOI: 10.1093/nar/gkp614] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 11/13/2022] Open
Abstract
The accessory subunit of mitochondrial DNA polymerase gamma, POLGbeta, functions as a processivity factor in vitro. Here we show POLGbeta has additional roles in mitochondrial DNA metabolism. Mitochondrial DNA is arranged in nucleoprotein complexes, or nucleoids, which often contain multiple copies of the mitochondrial genome. Gene-silencing of POLGbeta increased nucleoid numbers, whereas over-expression of POLGbeta reduced the number and increased the size of mitochondrial nucleoids. Both increased and decreased expression of POLGbeta altered nucleoid structure and precipitated a marked decrease in 7S DNA molecules, which form short displacement-loops on mitochondrial DNA. Recombinant POLGbeta preferentially bound to plasmids with a short displacement-loop, in contrast to POLGalpha. These findings support the view that the mitochondrial D-loop acts as a protein recruitment centre, and suggest POLGbeta is a key factor in the organization of mitochondrial DNA in multigenomic nucleoprotein complexes.
Collapse
Affiliation(s)
- M. Di Re
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - H. Sembongi
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - J. He
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - A. Reyes
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - T. Yasukawa
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - P. Martinsson
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - L. J. Bailey
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - S. Goffart
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - J. D. Boyd-Kirkup
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - T. S. Wong
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - A. R. Fersht
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - J. N. Spelbrink
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| | - I. J. Holt
- MRC-Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK, Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland and MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridgae, CB2 0QH, UK
| |
Collapse
|
108
|
Lefort N, Yi Z, Bowen B, Glancy B, De Filippis EA, Mapes R, Hwang H, Flynn CR, Willis WT, Civitarese A, Højlund K, Mandarino LJ. Proteome profile of functional mitochondria from human skeletal muscle using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS. J Proteomics 2009; 72:1046-60. [PMID: 19567276 PMCID: PMC2774790 DOI: 10.1016/j.jprot.2009.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 06/12/2009] [Accepted: 06/20/2009] [Indexed: 10/20/2022]
Abstract
Mitochondria can be isolated from skeletal muscle in a manner that preserves tightly coupled bioenergetic function in vitro. The purpose of this study was to characterize the composition of such preparations using a proteomics approach. Mitochondria isolated from human vastus lateralis biopsies were functional as evidenced by their response to carbohydrate and fat-derived fuels. Using one-dimensional gel electrophoresis and HPLC-ESI-MS/MS, 823 unique proteins were detected, and 487 of these were assigned to the mitochondrion, including the newly characterized SIRT5, MitoNEET and RDH13. Proteins detected included 9 of the 13 mitochondrial DNA-encoded proteins and 86 of 104 electron transport chain (ETC) and ETC-related proteins. In addition, 59 of 78 proteins of the 55S mitoribosome, several TIM and TOM proteins and cell death proteins were present. This study presents an efficient method for future qualitative assessments of proteins from functional isolated mitochondria from small samples of healthy and diseased skeletal muscle.
Collapse
Affiliation(s)
- Natalie Lefort
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| | - Zhengping Yi
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Benjamin Bowen
- Harrington Department of Bioengineering, Arizona State University, Tempe, Arizona
| | - Brian Glancy
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| | | | - Rebekka Mapes
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
| | - Hyonson Hwang
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| | - Charles R. Flynn
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
| | - Wayne T. Willis
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| | - Anthony Civitarese
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| | - Kurt Højlund
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Lawrence J. Mandarino
- Center for Metabolic Biology, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
- Department of Kinesiology, Arizona State University, Tempe, Arizona
| |
Collapse
|
109
|
Holt IJ. Mitochondrial DNA replication and repair: all a flap. Trends Biochem Sci 2009; 34:358-65. [PMID: 19559620 DOI: 10.1016/j.tibs.2009.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 10/20/2022]
Abstract
The mitochondrial genome is dwarfed by its neighbour in the nucleus, and, thus, it has been sensible for far more resources to be invested in the study of nuclear, rather than mitochondrial, DNA metabolism. Furthermore, few researchers have considered using mitochondrial DNA (mtDNA) as a model system for nuclear DNA metabolism. A quick look into the history of mtDNA provides ready answers as to why this was the case; however, recently mitochondria have been found to contain several nuclear replication and repair factors, so is there any potential to adopt the mitochondrion as a tool to unravel some of the intricacies of replication and repair in higher-order eukaryotes? Perhaps it is now time to invite the Cinderella genome to the ball.
Collapse
Affiliation(s)
- Ian J Holt
- MRC Mitochondrial Biology Unit, Cambridge, UK.
| |
Collapse
|
110
|
What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy? Int J Biochem Cell Biol 2009; 41:1914-27. [PMID: 19549572 DOI: 10.1016/j.biocel.2009.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/13/2009] [Accepted: 06/16/2009] [Indexed: 01/19/2023]
Abstract
A growing body of evidence shows that mitochondria are heterogeneous in terms of structure and function. Increased heterogeneity has been demonstrated in a number of disease models including ischemia-reperfusion and nutrient-induced beta cell dysfunction and diabetes. Subcellular location and proximity to other organelles, as well as uneven distribution of respiratory components have been considered as the main contributors to the basal level of heterogeneity. Recent studies point to mitochondrial dynamics and autophagy as major regulators of mitochondrial heterogeneity. While mitochondrial fusion mixes the content of the mitochondrial network, fission dissects the mitochondrial network and generates depolarized segments. These depolarized mitochondria are segregated from the networking population, forming a pre-autophagic pool contributing to heterogeneity. The capacity of a network to yield a depolarized daughter mitochondrion by a fission event is fundamental to the generation of heterogeneity. Several studies and data presented here provide a potential explanation, suggesting that protein and membranous structures are unevenly distributed within the individual mitochondrion and that inner membrane components do not mix during a fusion event to the same extent as the matrix components do. In conclusion, mitochondrial subcellular heterogeneity is a reflection of the mitochondrial lifecycle that involves frequent fusion events in which components may be unevenly mixed and followed by fission events generating disparate daughter mitochondria, some of which may fuse again, others will remain solitary and join a pre-autophagic pool.
Collapse
|
111
|
Iyer S, Thomas RR, Portell FR, Dunham LD, Quigley CK, Bennett JP. Recombinant mitochondrial transcription factor A with N-terminal mitochondrial transduction domain increases respiration and mitochondrial gene expression. Mitochondrion 2009; 9:196-203. [PMID: 19460293 PMCID: PMC2783715 DOI: 10.1016/j.mito.2009.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/26/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
We developed a scalable procedure to produce human mitochondrial transcription factor A (TFAM) modified with an N-terminal protein transduction domain (PTD) and mitochondrial localization signal (MLS) that allow it to cross membranes and enter mitochondria through its "mitochondrial transduction domain" (MTD=PTD+MLS). Alexa488-labeled MTD-TFAM rapidly entered the mitochondrial compartment of cybrid cells carrying the G11778A LHON mutation. MTD-TFAM reversibly increased respiration and levels of respiratory proteins. In vivo treatment of mice with MTD-TFAM increased motor endurance and complex I-driven respiration in mitochondria from brain and skeletal muscle. MTD-TFAM increases mitochondrial bioenergetics and holds promise for treatment of mitochondrial diseases involving deficiencies of energy production.
Collapse
Affiliation(s)
- Shilpa Iyer
- Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence, University of Virginia
| | - Ravindar R. Thomas
- Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence, University of Virginia
| | | | - Lisa D. Dunham
- Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence, University of Virginia
| | - Caitlin K. Quigley
- Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence, University of Virginia
| | - James P. Bennett
- Center for the Study of Neurodegenerative Diseases and the Morris K. Udall Parkinson’s Disease Research Center of Excellence, University of Virginia
| |
Collapse
|
112
|
Hassanin A, Ropiquet A, Couloux A, Cruaud C. Evolution of the mitochondrial genome in mammals living at high altitude: new insights from a study of the tribe Caprini (Bovidae, Antilopinae). J Mol Evol 2009; 68:293-310. [PMID: 19294454 DOI: 10.1007/s00239-009-9208-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 01/29/2009] [Accepted: 02/04/2009] [Indexed: 01/08/2023]
Abstract
Organisms living at high altitude are exposed to severe environmental stress associated with decreased oxygen pressure, cold temperatures, increased levels of UV radiation, steep slopes, and scarce food supplies, which may have imposed important selective constraints on the evolution of the mitochondrial genome. Within mammals, the tribe Caprini is of particular interest for studying the evolutionary effects of life at high altitude, as most species live in mountain regions, where they developed morphological and physiological adaptations for climbing. In this report, we analyzed the complete mitochondrial genome of 24 ruminants, including 20 species of Caprini. The phylogenetic analyses based on 16,117 nucleotides suggested the existence of a new large clade, here named subtribe Caprina, containing all genera, but Pantholops (Pantholopina), Capricornis, Naemorhedus, and Ovibos (Ovibovina). The alignment of the control region showed that all Caprini have between two and four tandem repeats of ~75 bp in the RS2 region, and that several of these copies emerged from recent and independent duplication events. We proposed therefore that the maintenance of at least two RS2 repeats in the control region of Caprini is positively selected, probably for producing a higher number of D-loop strands 3'-ending at different locations. The analyses of base composition at third-codon positions of protein-coding genes revealed that Caprini have the highest percentage of A nucleotide and the lowest percentage of G nucleotide, a pattern which suggests increased rates of cytosine deamination (C-->T transitions) on the H strand of mtDNA. Two nonexclusive hypotheses related to high-altitude life can explain such a mutational pattern: more severe oxidative stress (ROS) and higher metabolic rates. By comparing the relative rates of nonsynonymous and synonymous substitutions in protein-coding genes, we identified that Caprini have higher levels of adaptive variation in the ATPase complex. In addition, we detected several changes in mitochondrial genes that should be tested for their potential role in mountain adaptation.
Collapse
Affiliation(s)
- Alexandre Hassanin
- Muséum national d'Histoire naturelle, Département Systématique et Evolution, UMR 7205-Origine, Structure et Evolution de la Biodiversité, Case postale No. 51, 55 rue Buffon, 75005, Paris , France.
| | | | | | | |
Collapse
|
113
|
Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:171-80. [PMID: 18601959 PMCID: PMC2652735 DOI: 10.1016/j.bbamcr.2008.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 01/14/2023]
Abstract
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Uma D. Vempati
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
114
|
Diaz F, Moraes CT. Mitochondrial biogenesis and turnover. Cell Calcium 2008; 44:24-35. [PMID: 18395251 PMCID: PMC3175594 DOI: 10.1016/j.ceca.2007.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Abstract
Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|
115
|
Abstract
Mitochondria are semi-autonomously reproductive organelles within eukaryotic cells carrying their own genetic material, called the mitochondrial genome (mtDNA). Until some years ago, mtDNA had primarily been used as a tool in population genetics. As scientists began associating mtDNA mutations with dozens of mysterious disorders, as well as the aging process and a variety of chronic degenerative diseases, it became increasingly evident that the information contained in this genome had substantial potential applications to improve human health. Today, mitochondria research covers a wide range of disciplines, including clinical medicine, biochemistry, genetics, molecular cell biology, bioinformatics, plant sciences and physiology. The present review intends to present a summary of the most exiting fields of the mitochondrial research bringing together several contributes in terms of original prospective and future applications.
Collapse
Affiliation(s)
- Marco Crimi
- National Institute of Molecular Genetics (INGM), Functional Genomics Unit, Milan, Italy.
| | | |
Collapse
|
116
|
Shadel GS. Expression and maintenance of mitochondrial DNA: new insights into human disease pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1445-56. [PMID: 18458094 DOI: 10.2353/ajpath.2008.071163] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are central players in cellular energy metabolism and, consequently, defects in their function result in many characterized metabolic diseases. Critical for their function is mitochondrial DNA (mtDNA), which encodes subunits of the oxidative phosphorylation complexes essential for cellular respiration and ATP production. Expression, replication, and maintenance of mtDNA require factors encoded by nuclear genes. These include not only the primary machinery involved (eg, transcription and replication components) but also those in signaling pathways that mediate or sense alterations in mitochondrial function in accord with changing cellular needs or environmental conditions. Mutations in these contribute to human disease pathology by mechanisms that are being revealed at an unprecedented rate. As I will discuss herein, the basic protein machinery required for transcription initiation in human mitochondria has been elucidated after the discovery of two multifunctional mitochondrial transcription factors, h-mtTFB1 and h-mtTFB2, that are also rRNA methyltransferases. In addition, involvement of the ataxia-telangiectasia mutated (ATM) and target of rapamycin (TOR) signaling pathways in regulating mitochondrial homeostasis and gene expression has also recently been uncovered. These advancements embody the current mitochondrial research landscape, which can be described as exploding with discoveries of previously unanticipated roles for mitochondria in human disease and aging.
Collapse
Affiliation(s)
- Gerald S Shadel
- Departments of Pathology and Genetics, Yale University School of Medicine, 310 Cedar St., P.O. Box 208023, New Haven, CT 06520-8023.
| |
Collapse
|
117
|
Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M. The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 2008; 43:645-652. [PMID: 18439778 DOI: 10.1016/j.exger.2008.03.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 02/20/2008] [Accepted: 03/11/2008] [Indexed: 12/21/2022]
Abstract
It has been suggested that deletions of mitochondrial DNA (mtDNA) are important players with regard to the ageing process. Since the early 1990s, the 4977 bp deletion has been studied in various tissues, especially in postmitotic tissues with high energy demand. Unfortunately, some of these studies included less than 10 subjects, so the aim of our study was to quantify reliably the deletion amount in nine different regions of human brain, heart and skeletal muscle in a cohort of 92 individuals. The basal ganglia contain the highest deletion amounts with values up to 2.93% and differences in deletion levels between early adolescence and older ages were up to three orders of magnitude. Values in frontal lobe were on average an order of magnitude lower, but lowest in cerebellar tissue where the amount was on average only 5 x 10(-3) of the basal ganglia. The deletion started to accumulate in iliopsoas muscle early in the fourth decade of life with values between 0.00019% and 0.0035% and was highest in a 102-year-old woman with 0.14%. In comparison to skeletal muscle, the overall abundance in heart muscle of the left ventricle was only one-third. The best linear logarithmic correlation between amount of the deletion and age was found in substantia nigra with r=0.87 (p<0.0005) followed by anterior wall of the left ventricle (r=0.82; p<0.0005). With regard to mitochondrial DNA damage, we propose to use the 4977 bp deletion as an ideal biomarker to discriminate between physiological ageing and accelerated ageing. The biological meaning of mitochondrial deletions in the process of ageing is under discussion, but there is experimental evidence that large-scale deletions impair the oxidative phosphorylation in single cells and sensitize these cells to undergo apoptosis.
Collapse
Affiliation(s)
- Christoph Meissner
- Department of Legal Medicine, University Hospital Schleswig-Holstein-Campus Luebeck, Kahlhorststrasse 31-35, 23562 Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
118
|
Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 2007; 283:3665-3675. [PMID: 18063578 DOI: 10.1074/jbc.m708444200] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) occurs in cells in nucleoids containing several copies of the genome. Previous studies have identified proteins associated with these large DNA structures when they are biochemically purified by sedimentation and immunoaffinity chromatography. In this study, formaldehyde cross-linking was performed to determine which nucleoid proteins are in close contact with the mtDNA. A set of core nucleoid proteins is found in both native and cross-linked nucleoids, including 13 proteins with known roles in mtDNA transactions. Several other metabolic proteins and chaperones identified in native nucleoids, including ATAD3, were not observed to cross-link to mtDNA. Additional immunofluorescence and protease susceptibility studies showed that an N-terminal domain of ATAD3 previously proposed to bind to the mtDNA D-loop is directed away from the mitochondrial matrix, so it is unlikely to interact with mtDNA in vivo. These results are discussed in relation to a model for a layered structure of mtDNA nucleoids in which replication and transcription occur in the central core, whereas translation and complex assembly may occur in the peripheral region.
Collapse
Affiliation(s)
- Daniel F Bogenhagen
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651.
| | - Denis Rousseau
- Laboratoire Biochimie et Biophysique des Systèmes Intégrés p438B, Institut de Recherches en Technologies et Sciences pour le Vivant, UMR5092 CNRS-UJF-CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Stephanie Burke
- Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651
| |
Collapse
|