101
|
gga-miR-142-3p negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via the NF-κB and MAPK signaling by targeting TAB2. Inflamm Res 2021; 70:1217-1231. [PMID: 34554275 DOI: 10.1007/s00011-021-01499-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Mycoplasma gallisepticum (MG), a notorious avian pathogen, leads to considerable economic losses in the poultry industry. MG infection is characterized by severe, uncontrollable inflammation and host DNA damage. Micro ribonucleic acids (miRNAs) have emerged as important regulators in microbial pathogenesis. However, the role of miRNAs in MG infection is poorly characterized. In this study, we validated the functional roles of gga-miR-142-3p. METHODS The relative expression of gga-miR-142-3p in the lungs of the MG-infected chicken embryos and the MG-infected chicken embryonic fibroblast cell line (DF-1) was determined by reverse transcription quantitative real-time PCR analysis. Bioinformatics database was used to analysis the target gene of gga-miR-142-3p. The luciferase reporter assay as well as gene expression analysis were conducted to validate the target gene. To further explore the biological functions of gga-miR-142-3p upon MG infection, the cell proliferation was quantified using Cell Counting Kit-8 (CCK-8). Meanwhile, cell cycle analysis and apoptosis were measured using a flow cytometer. RESULTS gga-miR-142-3p was significantly upregulated in both MG-infected chicken-embryo lungs and the DF-1 cells. gga-miR-142-3p over expression significantly downregulated the expression of pro-inflammatory cytokines, including interleukin-1β, interleukin-6 and tumor necrosis factor alpha after MG infection. Meanwhile, gga-miR-142-3p enhanced the host defense against MG infection by facilitating cell proliferation, promoting cell progression and inhibiting cell apoptosis. Interestingly, TAB2 knockdown groups show similar results, whereas, TAB2 over-expression groups and gga-miR-142-3p inhibitor groups had thoroughly opposite results. The expression of p-p65 in nuclear factor kappa B (NF-κB) and p-p38 in the mitogen-activated protein kinase (MAPK) pathway was decreased when gga-miR-142-3p was over-expressed. CONCLUSION Upon MG infection, upregulation of gga-miR-142-3p alleviates inflammation by negatively regulating the signaling pathways of NF-κB and MAPKs by targeting TAB2 and facilitates cell proliferation by inhibiting cell apoptosis and promoting cell cycle progression to defend against MG infection.
Collapse
|
102
|
Xia A, Li X, Quan J, Chen X, Xu Z, Jiao X. Mycobacterium tuberculosis Rv0927c Inhibits NF-κB Pathway by Downregulating the Phosphorylation Level of IκBα and Enhances Mycobacterial Survival. Front Immunol 2021; 12:721370. [PMID: 34531869 PMCID: PMC8438533 DOI: 10.3389/fimmu.2021.721370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/17/2021] [Indexed: 11/14/2022] Open
Abstract
Through long-term coevolution with its host, Mycobacterium tuberculosis (M. tuberculosis) uses multiple strategies to escape host defenses. The M. tuberculosis Rv0927c protein is predicted to be a short-chain dehydrogenase/reductase related to bacterial metabolism. However, the role of Rv0927c during M. tuberculosis infection remains unclear. Here, we observed that Rv0927c inhibited the expression of IL-6, TNF-α, and IL-1β, an effect dependent on NF-κB and p38 pathways. Western blot analysis of macrophages infected with recombinant Mycobacterium smegmatis strains showed that Rv0927c attenuated NF-κB activation by downregulating the phosphorylation of IκBα. Additionally, Rv0927c enhanced intracellular survival of M. smegmatis and pathological effects in mice. In conclusion, our findings demonstrate that Rv0927c functions as a regulator of inflammatory genes and enhances the survival of M. smegmatis.
Collapse
Affiliation(s)
- Aihong Xia
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xin Li
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Juanjuan Quan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
103
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
104
|
Li S, Qu L, Wang X, Kong L. Novel insights into RIPK1 as a promising target for future Alzheimer's disease treatment. Pharmacol Ther 2021; 231:107979. [PMID: 34480965 DOI: 10.1016/j.pharmthera.2021.107979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is an intractable neurodegenerative disease showing a clinical manifestation with memory loss, cognitive impairment and behavioral dysfunction. The predominant pathological characteristics of AD include neuronal loss, β-amyloid (Aβ) deposition and hyperphosphorylated Tau induced neurofibrillary tangles (NFTs), while considerable studies proved these could be triggered by neuronal death and neuroinflammation. Receptor-interacting protein kinase 1 (RIPK1) is a serine/threonine kinase existed at the cross-point of cell death and inflammatory signaling pathways. Emerging investigations have shed light on RIPK1 for its potential role in AD progression. The present review makes a bird's eye view on the functions of RIPK1 and mainly focus on the underlying linkages between RIPK1 and AD from comprehensive aspects including neuronal death, Aβ and Tau, inflammasome activation, BBB rupture, AMPK/mTOR, mitochondrial dysfunction and O-glcNAcylation. Moreover, the discovery of RIPK1 inhibitors, ongoing clinical trials along with future RIPK1-targeted therapeutics are also reviewed.
Collapse
Affiliation(s)
- Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
105
|
Liu E, Sun J, Yang J, Li L, Yang Q, Zeng J, Zhang J, Chen D, Sun Q. ZDHHC11 Positively Regulates NF-κB Activation by Enhancing TRAF6 Oligomerization. Front Cell Dev Biol 2021; 9:710967. [PMID: 34490261 PMCID: PMC8417235 DOI: 10.3389/fcell.2021.710967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a RING domain ubiquitin ligase that plays an important role in nuclear factor-κB (NF-κB) signaling by regulating activation of the TAK1 and IKK complexes. However, the molecular mechanisms that regulate TRAF6 E3 activity remain unclear. Here, we found that ZDHHC11, a member of the DHHC palmitoyl transferase family, functions as a positive modulator in NF-κB signaling. ZDHHC11 overexpression activated NF-κB, whereas ZDHHC11 deficiency impaired NF-κB activity stimulated by IL-1β, LPS, and DNA virus infection. Furthermore, Zdhhc11 knockout mice had a lower level of serum IL6 upon treatment with LPS and D-galactosamine or HSV-1 infection than control mice. Mechanistically, ZDHHC11 interacted with TRAF6 and then enhanced TRAF6 oligomerization, which increased E3 activity of TRAF6 for synthesis of K63-linked ubiquitination chains. Collectively, our study indicates that ZDHHC11 positively regulates NF-κB signaling by promoting TRAF6 oligomerization and ligase activity, subsequently activating TAK1 and IKK complexes.
Collapse
Affiliation(s)
- Enping Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiawei Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Lin Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Qili Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuqin Zeng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
106
|
Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X, Gong Y, Chen Q, Zhong B, Dai L, Qi S, Zhang Z, Zhang H, Hu H. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Cell Mol Immunol 2021; 18:1981-1994. [PMID: 33184450 PMCID: PMC8322076 DOI: 10.1038/s41423-020-00564-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/27/2020] [Indexed: 02/05/2023] Open
Abstract
Activation of the TAK1 signalosome is crucial for mediating the innate immune response to pathogen invasion and is regulated by multiple layers of posttranslational modifications, including ubiquitination, SUMOylation, and phosphorylation; however, the underlying molecular mechanism is not fully understood. In this study, TRIM60 negatively regulated the formation and activation of the TAK1 signalosome. Deficiency of TRIM60 in macrophages led to enhanced MAPK and NF-κB activation, accompanied by elevated levels of proinflammatory cytokines but not IFN-I. Immunoprecipitation-mass spectrometry assays identified TAB2 as the target of TRIM60 for SUMOylation rather than ubiquitination, resulting in impaired formation of the TRAF6/TAB2/TAK1 complex and downstream MAPK and NF-κB pathways. The SUMOylation sites of TAB2 mediated by TRIM60 were identified as K329 and K562; substitution of these lysines with arginines abolished the SUMOylation of TAB2. In vivo experiments showed that TRIM60-deficient mice showed an elevated immune response to LPS-induced septic shock and L. monocytogenes infection. Our data reveal that SUMOylation of TAB2 mediated by TRIM60 is a novel mechanism for regulating the innate immune response, potentially paving the way for a new strategy to control antibacterial immune responses.
Collapse
Affiliation(s)
- Zhiwen Gu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xueying Chen
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Qi
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiaomeng Wang
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Yanqiu Gong
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Qianqian Chen
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Bo Zhong
- Department of Virology, College of Life Sciences, Department of Immunology, Medical Research Institute, Wuhan University, Wuhan, 430072, China
| | - Lunzhi Dai
- Department of General Practice and Lab of PTM, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, USA, 77030.
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
107
|
TRAF6 Phosphorylation Prevents Its Autophagic Degradation and Re-Shapes LPS-Triggered Signaling Networks. Cancers (Basel) 2021; 13:cancers13143618. [PMID: 34298830 PMCID: PMC8303406 DOI: 10.3390/cancers13143618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Here, we reveal that basal turnover and autophagy-induced decay of the ubiquitin E3 ligase TRAF6 is antagonized by IKKε-mediated phosphorylation at five serines. Phosphoproteomic experiments show that TRAF6 and its phosphorylation contribute to the remodeling of LPS- and autophagyinduced signaling networks, revealing an intricate link between inflammatory and metabolic processes that are frequently dysregulated in cancer. Abstract The ubiquitin E3 ligase TNF Receptor Associated Factor 6 (TRAF6) participates in a large number of different biological processes including innate immunity, differentiation and cell survival, raising the need to specify and shape the signaling output. Here, we identify a lipopolysaccharide (LPS)-dependent increase in TRAF6 association with the kinase IKKε (inhibitor of NF-κB kinase subunit ε) and IKKε-mediated TRAF6 phosphorylation at five residues. The reconstitution of TRAF6-deficient cells, with TRAF6 mutants representing phosphorylation-defective or phospho-mimetic TRAF6 variants, showed that the phospho-mimetic TRAF6 variant was largely protected from basal ubiquitin/proteasome-mediated degradation, and also from autophagy-mediated decay in autolysosomes induced by metabolic perturbation. In addition, phosphorylation of TRAF6 and its E3 ligase function differentially shape basal and LPS-triggered signaling networks, as revealed by phosphoproteome analysis. Changes in LPS-triggered phosphorylation networks of cells that had experienced autophagy are partially dependent on TRAF6 and its phosphorylation status, suggesting an involvement of this E3 ligase in the interplay between metabolic and inflammatory circuits.
Collapse
|
108
|
Methods to Study the Effect of IKK Inhibition on TNF-Inducing Apoptosis and Necroptosis in Cultured Cells. Methods Mol Biol 2021. [PMID: 34236642 DOI: 10.1007/978-1-0716-1669-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The engagement of TNF on TNFR can result in cell survival or cell death depending on the different complex formation downstream this interaction. Here we describe reagents and assay procedures that can be used to study caspase-independent cell death (necroptosis) in cultured cells, in response to pharmacological interventions with NF-kappaB and death inhibitors. We provide protocol to detect death-specific proteins using immunoblot and to dissect necrosome complex by sequential co-immunoprecipitation of death-specific components during necroptosis.
Collapse
|
109
|
Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain. Biophys J 2021; 120:3355-3362. [PMID: 34242591 DOI: 10.1016/j.bpj.2021.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
TAK1-binding protein 2 (TAB2) has generally been considered to bind specifically to K63-linked polyubiquitin chains via its C-terminal Npl4 zinc-finger (NZF) domain. However, a recent study showed that the NZF domain of TAB2 (TAB2-NZF) could also interact with K6-linked polyubiquitin chains. Here, we report the crystal structure of TAB2-NZF in complex with K6-linked diubiquitin (K6-Ub2) at 1.99-Å resolution. TAB2-NZF simultaneously interacts with the distal and proximal ubiquitin moieties of K6-Ub2. By comparing the structures of TAB2-NZF in complex with K6-Ub2 and with K63-linked diubiquitin (K63-Ub2), we reveal that the binding mechanism of TAB2-NZF with K6-Ub2 is similar to that with K63-Ub2, except for the flexible C-terminal region of the distal ubiquitin. Therefore, we conclude that the C-terminal flexibility of the distal ubiquitin contributes to the dual specificity of TAB2-NZF toward K6- and K63-linked ubiquitin chains. This study provides important insights into the functions of K6-linked ubiquitin chains, which are currently unclear.
Collapse
|
110
|
Zhou Y, Liao Y, Zhang C, Liu J, Wang W, Huang J, Du Q, Liu T, Zou Q, Huang H, Liu P, Ooi S, Chen R, Xia M, Jiang H, Xu M, Pan Y, Yao S. TAB2 Promotes the Stemness and Biological Functions of Cervical Squamous Cell Carcinoma Cells. Stem Cells Int 2021; 2021:6550388. [PMID: 34306095 PMCID: PMC8266450 DOI: 10.1155/2021/6550388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells are a key population participating in the promotion of the cervical cancer progression through interacting with cancer cells. Existing studies have preliminary revealed that cervical cancer stem cells contribute to tumor recurrence and chemotherapy resistance. However, the specific mechanisms involved in regulating cell functions remain largely unknown. Here, we analyzed published data from public databases and our global transcriptome data, thus identifying cancer-related signaling pathways and molecules. According to our findings, upregulated TAB2 was correlated to stem cell-like properties of cervical cancer. Immunohistochemistry staining of TAB2 in normal and cervical cancer tissues was performed. The cell function experiments demonstrated that knockdown of TAB2 reduced the stemness of cervical cancer cells and, importantly, prevented cervical cancer progression. Collectively, the therapeutic scheme targeting TAB2 may provide an option for overcoming tumor relapse and chemoresistance of cervical cancer via obstructing stemness maintenance.
Collapse
Affiliation(s)
- Yijia Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Jiaming Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Tianyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Pan Liu
- Department of Obstetrics and Gynecology, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Shiyin Ooi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Run Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Meng Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Manman Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 Guangdong, China
| |
Collapse
|
111
|
An unconventional role of an ASB family protein in NF-κB activation and inflammatory response during microbial infection and colitis. Proc Natl Acad Sci U S A 2021; 118:2015416118. [PMID: 33431678 DOI: 10.1073/pnas.2015416118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor κB (NF-κB)-mediated signaling pathway plays a crucial role in the regulation of inflammatory process, innate and adaptive immune responses. The hyperactivation of inflammatory response causes host cell death, tissue damage, and autoinflammatory disorders, such as sepsis and inflammatory bowel disease. However, how these processes are precisely controlled is still poorly understood. In this study, we demonstrated that ankyrin repeat and suppressor of cytokine signaling box containing 1 (ASB1) is involved in the positive regulation of inflammatory responses by enhancing the stability of TAB2 and its downstream signaling pathways, including NF-κB and mitogen-activated protein kinase pathways. Mechanistically, unlike other members of the ASB family that induce ubiquitination-mediated degradation of their target proteins, ASB1 associates with TAB2 to inhibit K48-linked polyubiquitination and thereby promote the stability of TAB2 upon stimulation of cytokines and lipopolysaccharide (LPS), which indicates that ASB1 plays a noncanonical role to further stabilize the target protein rather than induce its degradation. The deficiency of Asb1 protects mice from Salmonella typhimurium- or LPS-induced septic shock and increases the survival of mice. Moreover, Asb1-deficient mice exhibited less severe colitis and intestinal inflammation induced by dextran sodium sulfate. Given the crucial role of ASB proteins in inflammatory signaling pathways, our study offers insights into the immune regulation in pathogen infection and inflammatory disorders with therapeutic implications.
Collapse
|
112
|
Jiang S, Wu Y, Wu S, Ye S, Kong R, Chang J, Xia M, Bao J, Peng X, Hong X, Qian Z, Li H. Silencing TAK1 reduces MAPKs-MMP2/9 expression to reduce inflammation-driven neurohistological disruption post spinal cord injury. Cell Death Discov 2021; 7:96. [PMID: 33966042 PMCID: PMC8106686 DOI: 10.1038/s41420-021-00481-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Microglia activation post traumatic spinal cord injury (SCI) provokes accumulation of inflammatory metabolites, leading to increasing neurological disruption. Our previous studies demonstrated that blocking MAPKs pathway mitigated microglia inflammatory activation and prevented cords from neuroinflammation-induced secondary injury. Transforming growth factor-β-activated kinase 1 (TAK1) is an upstream gate regulating activation of MAPKs signaling. To validate the therapeutic effect of TAK1 inhibition in neuroinflammation post SCI, in the current study, cultures of microglia BV2 line was undergone lipopolysaccharide (LPS) stimulation in the presence of TAK1 inhibitor 5Z-7-Oxozeaenol (ZO), LPS, or control. LPS triggered inflammatory level, cell migration, and matrix metalloproteinase (MMP) 2/9 production, which was reduced in ZO-treated cultures. TAK1 inhibition by ZO also decreased activation of MAPKs pathway, indicating that ZO-mediated alleviation of neuroinflammation is likely modulated via TAK1/MAPKs axis. In vivo, neuroinflammatory level and tissue destruction were assessed in adult male mice that were undergone SCI by mechanical trauma, and treated with ZO by intraperitoneal injection. Compared with SCI mice, ZO-treated mice exhibited less microglia pro-inflammatory activation and accumulation adjacent to injured core linked to reduced MMP2/9 expression, leading to minor tissue damage and better locomotor recovery. To sum up, the obtained data proved that in the early phase post SCI, TAK1 inhibition impedes microglia biological activities including activation, enzymatic synthesis, and migration via downregulation of MAPKs pathway, and the effects may be accurately characterized as potent anti-inflammation.
Collapse
Affiliation(s)
- Shuai Jiang
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Shunjie Wu
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Suhui Ye
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Chang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingjie Xia
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Junping Bao
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Xin Peng
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China
| | - Xin Hong
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China.
| | - Zhanyang Qian
- Spine Center, Zhongda Hospital of Southeast University, Nanjing, China.
| | - Haijun Li
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University, Taizhou People's Hospital, Taizhou, China.
| |
Collapse
|
113
|
Guo W, Li J, Huang H, Fu F, Lin Y, Wang C. LncRNA PCIR Is an Oncogenic Driver via Strengthen the Binding of TAB3 and PABPC4 in Triple Negative Breast Cancer. Front Oncol 2021; 11:630300. [PMID: 34012913 PMCID: PMC8128249 DOI: 10.3389/fonc.2021.630300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (LncRNA) as the key regulators in all stages of tumorigenesis and metastasis. However, the underlying mechanisms are largely unknown. Here, we report a lncRNA RP11-214F16.8, which renamed Lnc-PCIR, is upregulated and higher RNA level of Lnc-PCIR was positively correlated to the poor survival of patients with triple negative breast cancer (TNBC) tissues. Lnc-PCIR overexpression significantly promoted cell proliferation, migration, and invasion in vitro and in vivo. RNA pulldown, RNA immunoprecipitation (RIP) and RNA transcriptome sequencing technology (RNA-seq) was performed to identify the associated proteins and related signaling pathways. Mechanistically, higher Lnc-PCIR level of blocks PABPC4 proteasome-dependent ubiquitination degradation; stable and highly expressed PABPC4 can further increase the stability of TAB3 mRNA, meanwhile, overexpression of Lnc-PCIR can disrupt the binding status of TAB3 and TAB2 which lead to activate the TNF-α/NF-κB pathway in TNBC cells. Our findings suggest that Lnc-PCIR promotes tumor growth and metastasis via up-regulating the mRNA/protein level of TAB3 and PABPC4, activating TNF-α/NF-κB signaling pathway in TNBC.
Collapse
Affiliation(s)
- Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Jingyi Li
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Breast Cancer Institute, Fujian Medical University, Fuzhou, China
| |
Collapse
|
114
|
DNA double-strand break repair: Putting zinc fingers on the sore spot. Semin Cell Dev Biol 2021; 113:65-74. [DOI: 10.1016/j.semcdb.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
|
115
|
Lange SM, Nelen MI, Cohen P, Kulathu Y. Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation. Structure 2021; 29:238-251.e4. [PMID: 33238146 PMCID: PMC7955167 DOI: 10.1016/j.str.2020.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/05/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023]
Abstract
Interleukin-1 receptor associated kinases (IRAKs) are key players in innate immune signaling that mediate the host response to pathogens. In contrast to the active kinases IRAK1 and IRAK4, IRAK2 and IRAK3 are pseudokinases lacking catalytic activity and their functions are poorly understood. IRAK3 is thought to be a negative regulator of innate immune signaling and mutations in IRAK3 are associated with asthma and cancer. Here, we report the crystal structure of the human IRAK3 pseudokinase domain in a closed, pseudoactive conformation. IRAK3 dimerizes in a unique way through a head-to-head arrangement not observed in any other kinases. Multiple conserved cysteine residues imply a potential redox control of IRAK3 conformation and dimerization. By analyzing asthma-associated mutations, we identify an evolutionarily conserved surface on IRAK3 that could form an interaction interface with IRAK4, suggesting a model for the negative regulation of IRAK4 by IRAK3.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dow Street, Dundee, Scotland DD1 5EH, UK
| | - Marina I Nelen
- Discovery, Janssen Research and Development, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dow Street, Dundee, Scotland DD1 5EH, UK.
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, Dow Street, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
116
|
Meng Y, Sandow JJ, Czabotar PE, Murphy JM. The regulation of necroptosis by post-translational modifications. Cell Death Differ 2021; 28:861-883. [PMID: 33462412 PMCID: PMC7937688 DOI: 10.1038/s41418-020-00722-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
Necroptosis is a caspase-independent, lytic form of programmed cell death whose errant activation has been widely implicated in many pathologies. The pathway relies on the assembly of the apical protein kinases, RIPK1 and RIPK3, into a high molecular weight cytoplasmic complex, termed the necrosome, downstream of death receptor or pathogen detector ligation. The necrosome serves as a platform for RIPK3-mediated phosphorylation of the terminal effector, the MLKL pseudokinase, which induces its oligomerization, translocation to, and perturbation of, the plasma membrane to cause cell death. Over the past 10 years, knowledge of the post-translational modifications that govern RIPK1, RIPK3 and MLKL conformation, activity, interactions, stability and localization has rapidly expanded. Here, we review current knowledge of the functions of phosphorylation, ubiquitylation, GlcNAcylation, proteolytic cleavage, and disulfide bonding in regulating necroptotic signaling. Post-translational modifications serve a broad array of functions in modulating RIPK1 engagement in, or exclusion from, cell death signaling, whereas the bulk of identified RIPK3 and MLKL modifications promote their necroptotic functions. An enhanced understanding of the modifying enzymes that tune RIPK1, RIPK3, and MLKL necroptotic functions will prove valuable in efforts to therapeutically modulate necroptosis.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
117
|
A transposon screen identifies enhancement of NF-κB pathway as a mechanism of resistance to eribulin. Breast Cancer 2021; 28:884-895. [PMID: 33616862 DOI: 10.1007/s12282-021-01224-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/07/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Eribulin mesylate (eribulin) is an efficient microtubule inhibitor that is used for metastatic breast cancer. However, breast cancer can develop resistance to eribulin. This resistance mechanism needs to be elucidated. METHODS A transposon mutagenesis screen was conducted using a pPB-SB-CMV-puro-SD plasmid and pCMV-PBase transposase. Viability and cytotoxicity were analyzed by MTT assay and flow cytometry, respectively. Real-time PCR and western blot were used for gene expression analysis. In addition, vivo study was also designed to analyze therapy efficiency. RESULTS TAB2, which is part of the nuclear factor-kappa B (NF-κB) pathway, was identified as a candidate eribulin-resistant gene. TAB2 down-regulation resulted in significantly lower cell viability and higher cytotoxicity of cells treated with eribulin, while TAB2 up-regulation showed opposite results. Similarly, combination of NF-κB inhibitors [Bay-117082 and QNZ (quinazoline derivative)] with eribulin showed significantly lower cell viability and higher drug cytotoxicity than single agent treatment with eribulin in MDA-MB-231 cells. However, QNZ increased NF-κB activity in MCF7 cells by up-regulating TAB2, which reduced the sensitivity to eribulin. Furthermore, combination of Bay-117082 with eribulin induced greater regression of MDA-MB-231 tumors compared to eribulin monotherapy in vivo. CONCLUSIONS These results consistently illustrated that TAB2-NF-κB pathway may increases resistance to eribulin in breast cancer models. Moreover, these results support the use of a combination strategy of eribulin with NF-κB inhibitors, and provide evidence that transposon mutagenesis screens are capable of identifying drug-resistant genes.
Collapse
|
118
|
Wang K, Chen Y, Gao S, Wang M, Ge M, Yang Q, Liao M, Xu L, Chen J, Zeng Z, Chen H, Zhang XK, Lin T, Zhou H. Norlichexanthone purified from plant endophyte prevents postmenopausal osteoporosis by targeting ER α to inhibit RANKL signaling. Acta Pharm Sin B 2021; 11:442-455. [PMID: 33643823 PMCID: PMC7893202 DOI: 10.1016/j.apsb.2020.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Although different types of drugs are available for postmenopausal osteoporosis, the limitations of the current therapies including drug resistances and adverse effects require identification of novel anti-osteoporosis agents. Here, we defined that norlichexanthone (NOR), a natural product, is a ligand of estrogen receptor-alpha (ERα) and revealed its therapeutic potential for postmenopausal osteoporosis. We used mammalian-one hybrid assay to screen for ERα modulators from crude extracts of several plant endophytes. As a result, NOR purified from the extract of endophyte ARL-13 was identified as a selective ERα modulator. NOR directly bound to ERα with an affinity in nanomolar range, revealing that it is a natural ligand of ERα. NOR induced osteoblast formation in MC3T3-E1 precursor cells. Conversely, NOR inhibited receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclast formation in both RAW264.7 macrophages and mouse primary monocytes. Mechanistically, NOR inhibited RANKL-induced association of ERα and TRAF6 to prevent ERα-mediated TRAF6 activation via Lys63-linked ubiquitination. Importantly, NOR exhibited potent anti-osteoporosis efficacy in an ovariectomized mouse model. Comparing to estrogen, NOR was of much less capability in stimulating endometrial hyperplasia and promoting mammalian cancer cell proliferation. Taken together, our study identified NOR as a natural and high affinity ligand of ERα with substantial anti-osteoporosis but less estrogenic activity.
Collapse
Affiliation(s)
- Keqi Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Yongyan Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Shuo Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Maosi Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mengmeng Ge
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Qian Yang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Mingkai Liao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Haifeng Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
| | - Xiao-kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
| | - Ting Lin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
- Corresponding authors. Tel.: +86 592 2881105; fax: +86 592 2881105.
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen 361102, China
- Corresponding authors. Tel.: +86 592 2881105; fax: +86 592 2881105.
| |
Collapse
|
119
|
Rosenbaum SR, Wilski NA, Aplin AE. Fueling the Fire: Inflammatory Forms of Cell Death and Implications for Cancer Immunotherapy. Cancer Discov 2021; 11:266-281. [PMID: 33451983 DOI: 10.1158/2159-8290.cd-20-0805] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 10/01/2020] [Indexed: 11/16/2022]
Abstract
Unleashing the immune system with immune checkpoint inhibitors (ICI) has significantly improved overall survival for subsets of patients with stage III/IV cancer. However, many tumors are nonresponsive to ICIs, in part due to a lack of tumor-infiltrating lymphocytes (TIL). Converting these immune "cold" tumors to "hot" tumors that are thus more likely to respond to ICIs is a major obstacle for cancer treatment. Triggering inflammatory forms of cell death, such as necroptosis and pyroptosis, may alter the tumor immune microenvironment and the influx of TILs. We present an emerging view that promoting tumor-localized necroptosis and pyroptosis may ultimately enhance responses to ICI. SIGNIFICANCE: Many tumor types respond poorly to ICIs or respond but subsequently acquire resistance. Effective therapies for ICI-nonresponsive tumors are lacking and should be guided by evidence from preclinical studies. Promoting inflammatory cell death mechanisms within the tumor may alter the local immune microenvironment toward an ICI-responsive state.
Collapse
Affiliation(s)
- Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicole A Wilski
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. .,Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
120
|
Jahan AS, Elbæk CR, Damgaard RB. Met1-linked ubiquitin signalling in health and disease: inflammation, immunity, cancer, and beyond. Cell Death Differ 2021; 28:473-492. [PMID: 33441937 DOI: 10.1038/s41418-020-00676-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022] Open
Abstract
Post-translational modification of proteins with ubiquitin (ubiquitination) provides a rapid and versatile mechanism for regulating cellular signalling systems. Met1-linked (or 'linear') ubiquitin chains have emerged as a key regulatory signal that controls cell death, immune signalling, and other vital cellular functions. The molecular machinery that assembles, senses, and disassembles Met1-linked ubiquitin chains is highly specific. In recent years, the thorough biochemical and genetic characterisation of the enzymes and proteins of the Met1-linked ubiquitin signalling machinery has paved the way for substantial advances in our understanding of how Met1-linked ubiquitin chains control cell signalling and biology. Here, we review current knowledge and recent insights into the role of Met1-linked ubiquitin chains in cell signalling with an emphasis on their role in disease biology. Met1-linked ubiquitin has potent regulatory functions in immune signalling, NF-κB transcription factor activation, and cell death. Importantly, mounting evidence shows that dysregulation of Met1-linked ubiquitin signalling is associated with multiple human diseases, including immune disorders, cancer, and neurodegeneration. We discuss the latest evidence on the cellular function of Met1-linked ubiquitin in the context of its associated diseases and highlight new emerging roles of Met1-linked ubiquitin chains in cell signalling, including regulation of protein quality control and metabolism.
Collapse
Affiliation(s)
- Akhee Sabiha Jahan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Camilla Reiter Elbæk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
121
|
Wang J, Li K, Zhang X, Li G, Liu T, Wu X, Brown SL, Zhou L, Mi QS. MicroRNA-155 Controls iNKT Cell Development and Lineage Differentiation by Coordinating Multiple Regulating Pathways. Front Cell Dev Biol 2021; 8:619220. [PMID: 33585457 PMCID: PMC7874147 DOI: 10.3389/fcell.2020.619220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
The development of invariant natural killer T (iNKT) cells requires a well-attuned set of transcription factors, but how these factors are regulated and coordinated remains poorly understood. MicroRNA-155 (miR-155) is a key regulator of numerous cellular processes that affects cell development and homeostasis. Here, we found that miR-155 was highly expressed in early iNKT cells upon thymic selection, and then its expression is gradually downregulated during iNKT cell development. However, the mice with miR-155 germline deletion had normal iNKT cell development. To address if downregulated miR-155 is required for iNKT cell development, we made a CD4Cre.miR-155 knock-in (KI) mouse model with miR-155 conditional overexpression in the T cell lineage. Upregulated miR-155 led to interruption of iNKT cell development, diminished iNKT17 and iNKT1 cells, augmented iNKT2 cells, and these defects were cell intrinsic. Furthermore, defective iNKT cells in miR-155KI mice resulted in the secondary innate-like CD8 T cell development. Mechanistically, miR-155 modulated multiple targets and signaling pathways to fine tune iNKT cell development. MiR-155 modulated Jarid2, a critical component of a histone modification complex, and Tab2, the upstream activation kinase complex component of NF-κB, which function additively in iNKT development and in promoting balanced iNKT1/iNKT2 differentiation. In addition, miR-155 also targeted Rictor, a signature component of mTORC2 that controls iNKT17 differentiation. Taken together, our results indicate that miR-155 serves as a key epigenetic regulator, coordinating multiple signaling pathways and transcriptional programs to precisely regulate iNKT cell development and functional lineage, as well as secondary innate CD8 T cell development.
Collapse
Affiliation(s)
- Jie Wang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Kai Li
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xilin Zhang
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Guihua Li
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Tingting Liu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Xiaojun Wu
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, MI, United States.,Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
122
|
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ 2021; 28:591-605. [PMID: 33432113 PMCID: PMC7798376 DOI: 10.1038/s41418-020-00708-5] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is complex, multifaceted, and is crucial for the modulation of a vast number of cellular processes. Ubiquitination is tightly regulated at different levels by a range of enzymes including E1s, E2s, and E3s, and an array of DUBs. The UPS directs protein degradation through the proteasome, and regulates a wide array of cellular processes including transcription and epigenetic factors as well as key oncoproteins. Ubiquitination is key to the dynamic regulation of programmed cell death. Notably, the TNF signaling pathway is controlled by competing ubiquitin conjugation and deubiquitination, which governs both proteasomal degradation and signaling complex formation. In the inflammatory response, ubiquitination is capable of both activating and dampening inflammasome activation through the control of either protein stability, complex formation, or, in some cases, directly affecting receptor activity. In this review, we discuss the enzymes and targets in the ubiquitin system that regulate fundamental cellular processes regulating cell death, and inflammation, as well as disease consequences resulting from their dysregulation. Finally, we highlight several pre-clinical and clinical compounds that regulate ubiquitin system enzymes, with the aim of restoring homeostasis and ameliorating diseases.
Collapse
Affiliation(s)
- Peter E Cockram
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.,Departments of Discovery Chemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthias Kist
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sumit Prakash
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Si-Han Chen
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ingrid E Wertz
- Departments of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA. .,Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Domagoj Vucic
- Departments of Early Discovery Biochemistry, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
123
|
Xu YR, Lei CQ. TAK1-TABs Complex: A Central Signalosome in Inflammatory Responses. Front Immunol 2021; 11:608976. [PMID: 33469458 PMCID: PMC7813674 DOI: 10.3389/fimmu.2020.608976] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.
Collapse
Affiliation(s)
- Yan-Ran Xu
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cao-Qi Lei
- Hubei Key Laboratory of Cell Homeostasis, Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
124
|
Weinelt N, van Wijk SJL. Ubiquitin-dependent and -independent functions of OTULIN in cell fate control and beyond. Cell Death Differ 2020; 28:493-504. [PMID: 33288901 PMCID: PMC7862380 DOI: 10.1038/s41418-020-00675-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ubiquitination, and its control by deubiquitinating enzymes (DUBs), mediates protein stability, function, signaling and cell fate. The ovarian tumor (OTU) family DUB OTULIN (FAM105B) exclusively cleaves linear (Met1-linked) poly-ubiquitin chains and plays important roles in auto-immunity, inflammation and infection. OTULIN regulates Met1-linked ubiquitination downstream of tumor necrosis factor receptor 1 (TNFR1), toll-like receptor (TLR) and nucleotide-binding and oligomerization domain-containing protein 2 (NOD2) receptor activation and interacts with the Met1 ubiquitin-specific linear ubiquitin chain assembly complex (LUBAC) E3 ligase. However, despite extensive research efforts, the receptor and cytosolic roles of OTULIN and the distributions of multiple Met1 ubiquitin-associated E3-DUB complexes in the regulation of cell fate still remain controversial and unclear. Apart from that, novel ubiquitin-independent OTULIN functions have emerged highlighting an even more complex role of OTULIN in cellular homeostasis. For example, OTULIN interferes with endosome-to-plasma membrane trafficking and the OTULIN-related pseudo-DUB OTULINL (FAM105A) resides at the endoplasmic reticulum (ER). Here, we discuss how OTULIN contributes to cell fate control and highlight novel ubiquitin-dependent and -independent functions.
Collapse
Affiliation(s)
- Nadine Weinelt
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany
| | - Sjoerd J L van Wijk
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstrasse 3a, 60528, Frankfurt am Main, Germany.
| |
Collapse
|
125
|
Gough P, Myles IA. Tumor Necrosis Factor Receptors: Pleiotropic Signaling Complexes and Their Differential Effects. Front Immunol 2020; 11:585880. [PMID: 33324405 PMCID: PMC7723893 DOI: 10.3389/fimmu.2020.585880] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Since its discovery in 1975, TNFα has been a subject of intense study as it plays significant roles in both immunity and cancer. Such attention is well deserved as TNFα is unique in its engagement of pleiotropic signaling via its two receptors: TNFR1 and TNFR2. Extensive research has yielded mechanistic insights into how a single cytokine can provoke a disparate range of cellular responses, from proliferation and survival to apoptosis and necrosis. Understanding the intracellular signaling pathways induced by this single cytokine via its two receptors is key to further revelation of its exact functions in the many disease states and immune responses in which it plays a role. In this review, we describe the signaling complexes formed by TNFR1 and TNFR2 that lead to each potential cellular response, namely, canonical and non-canonical NF-κB activation, apoptosis and necrosis. This is followed by a discussion of data from in vivo mouse and human studies to examine the differential impacts of TNFR1 versus TNFR2 signaling.
Collapse
Affiliation(s)
- Portia Gough
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
126
|
Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, Chandra R. Neuroinflammation Mechanisms and Phytotherapeutic Intervention: A Systematic Review. ACS Chem Neurosci 2020; 11:3707-3731. [PMID: 33146995 DOI: 10.1021/acschemneuro.0c00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is indicated in the pathogenesis of several acute and chronic neurological disorders. Acute lesions in the brain parenchyma induce intense and highly complex neuroinflammatory reactions with similar mechanisms among various disease prototypes. Microglial cells in the CNS sense tissue damage and initiate inflammatory responses. The cellular and humoral constituents of the neuroinflammatory reaction to brain injury contribute significantly to secondary brain damage and neurodegeneration. Inflammatory cascades such as proinflammatory cytokines from invading leukocytes and direct cell-mediated cytotoxicity between lymphocytes and neurons are known to cause "collateral damage" in models of acute brain injury. In addition to degeneration and neuronal cell loss, there are secondary inflammatory mechanisms that modulate neuronal activity and affect neuroinflammation which can even be detected at the behavioral level. Hence, several of health conditions result from these pathogenetic conditions which are underlined by progressive neuronal function loss due to chronic inflammation and oxidative stress. In the first part of this Review, we discuss critical neuroinflammatory mediators and their pathways in detail. In the second part, we review the phytochemicals which are considered as potential therapeutic molecules for treating neurodegenerative diseases with an inflammatory component.
Collapse
Affiliation(s)
- Navrinder Kaur
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| | - Heerak Chugh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
| | - Meena K. Sakharkar
- College of Pharmacy and Nutrition, University of Sasketchwan, Saskatoon S7N 5E5, Canada
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), S.S. Nagar, Mysuru-570015, India
- Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research JSS AHER, Mysuru-570015, India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, New Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi-110007, India
| |
Collapse
|
127
|
Kalchiem-Dekel O, Yao X, Barochia AV, Kaler M, Figueroa DM, Karkowsky WB, Gordon EM, Gao M, Fergusson MM, Qu X, Liu P, Li Y, Seifuddin F, Pirooznia M, Levine SJ. Apolipoprotein E Signals via TLR4 to Induce CXCL5 Secretion by Asthmatic Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:185-197. [PMID: 32338995 DOI: 10.1165/rcmb.2019-0209oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1β secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-β-activated kinase 1), IκKβ (inhibitor of nuclear factor κ B kinase subunit β), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKβ, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKβ, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKβ/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.
Collapse
Affiliation(s)
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | | | | | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, and
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, and
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
128
|
Partners in crime: POPX2 phosphatase and its interacting proteins in cancer. Cell Death Dis 2020; 11:840. [PMID: 33037179 PMCID: PMC7547661 DOI: 10.1038/s41419-020-03061-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphorylation and dephosphorylation govern intracellular signal transduction and cellular functions. Kinases and phosphatases are involved in the regulation and development of many diseases such as Alzheimer’s, diabetes, and cancer. While the functions and roles of many kinases, as well as their substrates, are well understood, phosphatases are comparatively less well studied. Recent studies have shown that rather than acting on fewer and more distinct substrates like the kinases, phosphatases can recognize specific phosphorylation sites on many different proteins, making the study of phosphatases and their substrates challenging. One approach to understand the biological functions of phosphatases is through understanding their protein–protein interaction network. POPX2 (Partner of PIX 2; also known as PPM1F or CaMKP) is a serine/threonine phosphatase that belongs to the PP2C family. It has been implicated in cancer cell motility and invasiveness. This review aims to summarize the different binding partners of POPX2 phosphatase and explore the various functions of POPX2 through its interactome in the cell. In particular, we focus on the impact of POPX2 on cancer progression. Acting via its different substrates and interacting proteins, POPX2’s involvement in metastasis is multifaceted and varied according to the stages of metastasis.
Collapse
|
129
|
Morgan EL, Chen Z, Van Waes C. Regulation of NFκB Signalling by Ubiquitination: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma? Cancers (Basel) 2020; 12:E2877. [PMID: 33036368 PMCID: PMC7601648 DOI: 10.3390/cancers12102877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with over 600,000 cases per year. The primary causes for HNSCC include smoking and alcohol consumption, with an increasing number of cases attributed to infection with Human Papillomavirus (HPV). The treatment options for HNSCC currently include surgery, radiotherapy, and/or platinum-based chemotherapeutics. Cetuximab (targeting EGFR) and Pembrolizumab (targeting PD-1) have been approved for advanced stage, recurrent, and/or metastatic HNSCC. Despite these advances, whilst HPV+ HNSCC has a 3-year overall survival (OS) rate of around 80%, the 3-year OS for HPV- HNSCC is still around 55%. Aberrant signal activation of transcription factor NFκB plays an important role in the pathogenesis and therapeutic resistance of HNSCC. As an important mediator of inflammatory signalling and the immune response to pathogens, the NFκB pathway is tightly regulated to prevent chronic inflammation, a key driver of tumorigenesis. Here, we discuss how NFκB signalling is regulated by the ubiquitin pathway and how this pathway is deregulated in HNSCC. Finally, we discuss the current strategies available to target the ubiquitin pathway and how this may offer a potential therapeutic benefit in HNSCC.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute of Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA;
| | | |
Collapse
|
130
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1196] [Impact Index Per Article: 239.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
131
|
Liu L, Lalaoui N. 25 years of research put RIPK1 in the clinic. Semin Cell Dev Biol 2020; 109:86-95. [PMID: 32938551 DOI: 10.1016/j.semcdb.2020.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
Receptor Interacting Protein Kinase 1 (RIPK1) is a key regulator of inflammation. To warrant cell survival and appropriate immune responses, RIPK1 is post-translationally regulated by ubiquitylations, phosphorylations and caspase-8-mediated cleavage. Dysregulations of these post-translational modifications switch on the pro-death function of RIPK1 and can cause inflammatory diseases in humans. Conversely, activation of RIPK1 cytotoxicity can be advantageous for cancer treatment. Small molecules targeting RIPK1 are under development for the treatment of cancer, inflammatory and neurogenerative disorders. We will discuss the molecular mechanisms controlling the functions of RIPK1, its pathologic role in humans and the therapeutic opportunities in targeting RIPK1, specifically in the context of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Lin Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
132
|
Musaus M, Navabpour S, Jarome TJ. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Neurobiol Learn Mem 2020; 174:107286. [PMID: 32745599 DOI: 10.1016/j.nlm.2020.107286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
| | - Timothy J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
133
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
134
|
Mifflin L, Ofengeim D, Yuan J. Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target. Nat Rev Drug Discov 2020; 19:553-571. [PMID: 32669658 PMCID: PMC7362612 DOI: 10.1038/s41573-020-0071-y] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a key mediator of cell death and inflammation. The unique hydrophobic pocket in the allosteric regulatory domain of RIPK1 has enabled the development of highly selective small-molecule inhibitors of its kinase activity, which have demonstrated safety in preclinical models and clinical trials. Potential applications of these RIPK1 inhibitors for the treatment of monogenic and polygenic autoimmune, inflammatory, neurodegenerative, ischaemic and acute conditions, such as sepsis, are emerging. This article reviews RIPK1 biology and disease-associated mutations in RIPK1 signalling pathways, highlighting clinical trials of RIPK1 inhibitors and potential strategies to mitigate development challenges. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) — a key mediator of cell death and inflammation — is activated in human diseases. Here, Yuan and colleagues discuss current understanding of RIPK1 biology and its association with diseases including inflammatory and autoimmune disorders, neurodegenerative diseases and sepsis. The clinical development of small-molecule RIPK1 inhibitors and associated challenges are discussed.
Collapse
Affiliation(s)
- Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Dimitry Ofengeim
- Rare and Neurologic Disease Research, Sanofi, Framingham, MA, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
135
|
Zhang J, Webster JD, Dugger DL, Goncharov T, Roose-Girma M, Hung J, Kwon YC, Vucic D, Newton K, Dixit VM. Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Rep 2020; 27:2679-2689.e3. [PMID: 31141691 DOI: 10.1016/j.celrep.2019.04.111] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Cellular inhibitor of apoptosis proteins cIAP1 and cIAP2 ubiquitinate nuclear factor κB (NF-κB)-inducing kinase (NIK) to suppress non-canonical NF-κB signaling and substrates such as receptor interacting protein kinase 1 (RIPK1) to promote cell survival. We investigate how these functions contribute to homeostasis by eliminating cIap2 from adult cIap1-deficient mice. cIAP1 and cIAP2 (cIAP1/2) deficiency causes rapid weight loss and inflammation, with aberrant cell death, indicated by cleaved caspases-3 and -8, prevalent in intestine and liver. Deletion of Casp8 and Ripk3 prevents this aberrant cell death, reduces the inflammation, and prolongs mouse survival, whereas Ripk3 loss alone offers little benefit. Residual inflammation in mice lacking cIap1/2, Casp8, and Ripk3 is reduced by inhibition of NIK. Loss of Casp8 and Mlkl (mixed lineage kinase domain-like), but not Mlkl loss alone, also prevents cIAP1/2-deficient mice from dying around embryonic day 11. Therefore, a major function of cIAP1/2 in vivo is to suppress caspase-8-dependent cell death.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Debra L Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Tatiana Goncharov
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Jeffrey Hung
- Department of Pathology, Genentech, South San Francisco, CA 94080, USA
| | - Youngsu C Kwon
- Department of Translational Immunology, Genentech, South San Francisco, CA 94080, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
136
|
Chen Z, Lin CX, Song B, Li CC, Qiu JX, Li SX, Lin SP, Luo WQ, Fu Y, Fang GB, Wei-Ping L, Saw PE, Ding Y. Spermidine activates RIP1 deubiquitination to inhibit TNF-α-induced NF-κB/p65 signaling pathway in osteoarthritis. Cell Death Dis 2020; 11:503. [PMID: 32632306 PMCID: PMC7338517 DOI: 10.1038/s41419-020-2710-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 01/15/2023]
Abstract
Spermidine has been known to inhibit the production of pro-inflammatory cytokines. However, there are no reports about anti-inflammatory effects of spermidine on osteoarthritis (OA). Herein, we examined whether OA progression could be delayed by intraperitoneal injection (i.p.) of spermidine in the anterior cruciate ligament transection (ACLT) and TNF-α induced arthritis (TIA) mouse models. During the process, human FLS cells (H-FLS) were used to investigate the potential ubiquitination mechanism of spermidine-mediated RIP1 in TNF-α-induced NF-κB/p65 signaling. We found that spermidine attenuated synovitis, cartilage degeneration and osteophyte formation, resulting in substantially lower OARSI scores and TNF-α scores in spermidine-treated ACLT and TIA mice. In terms of the mechanism, 9 μM spermidine did not affect the viability, proliferation, cell cycle and apoptosis of H-FLS, and exerted inhibitory effects by activating CYLD-mediated RIP1 deubiquitination on TNF-α-induced NF-κB/p65 signaling in H-FLS. From these data, we can conclude that spermidine attenuates OA progression by the inhibition of TNF-α-induced NF-κB pathway via the deubiquitination of RIP1 in FLS. Therefore, intake of spermidine could be a potential therapy for preventing OA.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chuang-Xin Lin
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.,Department of Orthopedic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515000, P. R. China
| | - Bin Song
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Chang-Chuan Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Jun-Xiong Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Shi-Xun Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Si-Peng Lin
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Wen-Qiang Luo
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Yuan Fu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Gui-Bin Fang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
| | - Li Wei-Ping
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| | - Yue Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China.
| |
Collapse
|
137
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
138
|
Wang XD, Zhao CS, Wang QL, Zeng Q, Feng XZ, Li L, Chen ZL, Gong Y, Han J, Li Y. The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1. EMBO Rep 2020; 21:e48035. [PMID: 32410369 DOI: 10.15252/embr.201948035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Negative regulation of immunoreceptor signaling is required for preventing hyperimmune activation and maintaining immune homeostasis. The roles of p38IP in immunoreceptor signaling remain unclear. Here, we show that p38IP suppresses T-cell receptor (TCR)/LPS-activated NF-κB and p38 by targeting TAK1 kinase and that p38IP protein levels are downregulated in human PBMCs from rheumatoid arthritis (RA) patients, inversely correlating with the enhanced activity of NF-κB and p38. Mechanistically, p38IP interacts with TAK1 to disassemble the TAK1-TAB (TAK1-binding protein) complex. p38IP overexpression decreases TCR-induced binding of K63-linked polyubiquitin (polyUb) chains to TAK1 but increases that to TAB2, and p38IP knockdown shows the opposite effects, indicating unanchored K63-linked polyUb chain transfer from TAB2 to TAK1. p38IP dynamically interacts with TAK1 upon stimulation, because of the polyUb chain transfer and the higher binding affinity of TAK1 and p38IP for polyUb-bound TAB2 and TAK1, respectively. Moreover, p38IP scaffolds the deubiquitinase USP4 to deubiquitinate TAK1 once TAK1 is activated. These findings reveal a novel role and the mechanisms of p38IP in controlling TCR/LPS signaling and suggest that p38IP might participate in RA pathogenesis.
Collapse
Affiliation(s)
- Xu-Dong Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Long Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xing-Zhi Feng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lianbo Li
- Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Zhi-Long Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
139
|
Aashaq S, Batool A, Andrabi KI. TAK1 mediates convergence of cellular signals for death and survival. Apoptosis 2020; 24:3-20. [PMID: 30288639 DOI: 10.1007/s10495-018-1490-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Collapse
Affiliation(s)
- Sabreena Aashaq
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Asiya Batool
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Khurshid I Andrabi
- Department of Biotechnology, University of Kashmir, Hazratbal, Srinagar, 190006, India
| |
Collapse
|
140
|
Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, McDermott MF. TNF receptor signalling in autoinflammatory diseases. Int Immunol 2020; 31:639-648. [PMID: 30838383 DOI: 10.1093/intimm/dxz024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| |
Collapse
|
141
|
Shen C, Zhong Y, Huang X, Wang Y, Peng Y, Li K, Zhou B, Zhang L, Rao L. Associations between TAB2 gene polymorphisms and dilated cardiomyopathy in a Chinese population. Biomark Med 2020; 14:441-450. [PMID: 32270697 DOI: 10.2217/bmm-2019-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The present study aimed to investigate the role of TAB2 gene polymorphisms in dilated cardiomyopathy (DCM) susceptibility and prognosis in a Chinese population. Materials & methods: A total of 343 DCM patients and 451 controls were enrolled and had their blood genotyped. Survival analysis was evaluated with Kaplan-Meier curves and Cox regression analysis. Results: G carriers (AG/GG) and AG genotype of rs237028 had a higher DCM susceptibility as well as a worse DCM prognosis. Additionally, C carriers (CT/CC) of rs652921 and G carriers (TG/GG) of rs521845 had a higher DCM risk and CC homozygote of rs652921 had a worse DCM prognosis. These associations were still significant after adjustment for the Bonferroni correction. Conclusion: TAB2 gene polymorphisms were associated with DCM susceptibility and prognosis in the Chinese population.
Collapse
Affiliation(s)
- Can Shen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Zhong
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingming Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Peng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
142
|
Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 2020; 11:210. [PMID: 32231206 PMCID: PMC7105474 DOI: 10.1038/s41419-020-2399-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
Abstract
Escaping programmed cell death is a hallmark of cancer. NF-κB transcription factors are key regulator of cell survival and aberrant NF-κB signaling has been involved in the pathogenesis of most human malignancies. Although NF-κB is best known for its antiapoptotic role, other processes regulating the life/death balance, such as autophagy and necroptosis, seem to network with NF-κB. This review discusses how the reciprocal regulation of NF-κB, autophagy and programmed cell death affect cancer development and progression.
Collapse
|
143
|
Pawar AS, Eirin A, Tang H, Zhu XY, Lerman A, Lerman LO. Upregulated tumor necrosis factor-α transcriptome and proteome in adipose tissue-derived mesenchymal stem cells from pigs with metabolic syndrome. Cytokine 2020; 130:155080. [PMID: 32240922 PMCID: PMC7529712 DOI: 10.1016/j.cyto.2020.155080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) have endogenous reparative properties, and may constitute an exogenous therapeutic intervention in patients with chronic kidney disease. The microenvironment of metabolic syndrome (MetS) induces fat inflammation, with abundant expression of tumor necrosis factor (TNF)-α. MetS may also alter the content of adipose tissue-derived MSCs, and we hypothesized that the inflammatory profile of MetS manifests via upregulating MSC mRNAs and proteins of the TNF-α pathway. METHODS Domestic pigs were fed a 16-week Lean or MetS diet (n = 4 each). MSCs were harvested from abdominal subcutaneous fat, and their extracellular vesicles (EVs) isolated. Expression profiles of mRNAs and proteins in MSCs and EVs were obtained by high-throughput sequencing and proteomics. Nuclear translocation of the pro-inflammatory transcription factor (NF)-kB was evaluated in MSC and in pig renal tubular cells (TEC) co-incubated with EVs. RESULTS We found 13 mRNAs and 4 proteins in the TNF-α pathway upregulated in MetS- vs. Lean-MSCs (fold-change > 1.4, p < 0.05), mostly via TNF-α receptor-1 (TNF-R1) signaling. Three mRNAs were upregulated in MetS-EVs. MetS-MSCs, as well as TECs co-incubated with MetS-EVs, showed increased nuclear translocation of NF-kB. Using qPCR, JUNB, MAP2K7 and TRAF2 genes followed the same direction of RNA-sequencing findings. CONCLUSIONS MetS upregulates the TNF-α transcriptome and proteome in swine adipose tissue-derived MSCs, which are partly transmitted to their EV progeny, and are associated with activation of NF-kB in target cells. Hence, the MetS milieu may affect the profile of endogenous MSCs and their paracrine vectors and limit their use as an exogenous regenerative therapy. Anti-inflammatory strategies targeting the TNF-α pathway might be a novel strategy to restore MSC phenotype, and in turn function.
Collapse
Affiliation(s)
- Aditya S Pawar
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
144
|
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036368. [PMID: 31427374 DOI: 10.1101/cshperspect.a036368] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor-interacting serine threonine kinase 1 (RIPK1) is a widely expressed kinase that is essential for limiting inflammation in both mice and humans. Mice lacking RIPK1 die at birth from multiorgan inflammation and aberrant cell death, whereas humans lacking RIPK1 are immunodeficient and develop very early-onset inflammatory bowel disease. In contrast to complete loss of RIPK1, inhibiting the kinase activity of RIPK1 genetically or pharmacologically prevents cell death and inflammation in several mouse disease models. Indeed, small molecule inhibitors of RIPK1 are in phase I clinical trials for amyotrophic lateral sclerosis, and phase II clinical trials for psoriasis, rheumatoid arthritis, and ulcerative colitis. This review focuses on which signaling pathways use RIPK1, how activation of RIPK1 is regulated, and when activation of RIPK1 appears to be an important driver of inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
145
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
146
|
Braun H, Staal J. Stabilization of the TAK1 adaptor proteins TAB2 and TAB3 is critical for optimal NF-κB activation. FEBS J 2020; 287:3161-3164. [PMID: 31997570 DOI: 10.1111/febs.15210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
TAB2 and TAB3 bind to K63-linked polyubiquitin chains and recruit the critical kinase MAP3K7 (TAK1). The polyubiquitin-recruited TAK1/TAB2/TAB3 complex comes in close proximity with the IKK (IKKα/IKKβ/IKKγ) complex, which is recruited to M1-linked polyubiquitin chains via the IKKγ (NEMO) component. Together, the two complexes activate the NF-κB family of transcription factors. NF-κB transcription factors are critical mediators of pro-inflammatory signals and must be tightly regulated at multiple levels. Recently, it was discovered that one such point of regulation occurs at the level of TAB2 and TAB3 protein stability by the deubiquitinase USP15. Comment on: https://doi.org/10.1111/febs.15202.
Collapse
Affiliation(s)
- Harald Braun
- Department of Biomedical Molecular Biology, Ghent University, Belgium.,Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Belgium.,Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Belgium
| |
Collapse
|
147
|
Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, Ke M, Yan W, Zheng L, Zhang Y, Huang K. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287:3165-3183. [PMID: 31903660 DOI: 10.1111/febs.15202] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα)- and interleukin 1β (IL-1β)-induced nuclear factor-κB (NF-κB) activation play key roles in inflammation, immunity, and cancer development. Here, we identified one of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 15 (USP15), as a positive regulator in both TNFα- and IL-1β-induced NF-κB activation. Overexpression of USP15 potentiated TNFα- or IL-1β-triggered NF-κB activation and downstream gene transcription, whereas knockdown of USP15 had opposite effects. Mechanistically, upon TNFα stimulation, USP15 showed an enhanced interaction with transforming growth factor-β activated kinase-1 (TAK1)-TAK1 binding protein (TAB) complex to inhibit the proteolysis of TAB2/3 by different pathways. Apart from deubiquitination dependently inducing cleavage of lysine 48-linked TAB2 ubiquitination, USP15 also DUB independently inhibited lysosome-associated TAB2 degradation, thus enhanced TAB2 stabilization. For TAB3, USP15 inhibited NBR1-mediated selective autophagic TAB3 degradation independent of its deubiquitinating activity. Together, our results reveal a novel USP15-mediated mechanism through which efficient NF-κB activation is achieved by differentially maintaining the TAB2/3 stability.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cheng Cheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanzhu Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyi Song
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxiang Ke
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanyao Yan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
148
|
IKEDA F. Diverse ubiquitin codes in the regulation of inflammatory signaling. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:431-439. [PMID: 33177297 PMCID: PMC7725656 DOI: 10.2183/pjab.96.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitin is a small protein used for posttranslational modification and it regulates every aspect of biological functions. Through a three-step cascade of enzymatic action, ubiquitin is conjugated to a substrate. Because ubiquitin itself can be post-translationally modified, this small protein generates various ubiquitin codes and triggers differing regulation of biological functions. For example, ubiquitin itself can be ubiquitinated, phosphorylated, acetylated, or SUMOylated. Via the type three secretion system, some bacterial effectors also modify the ubiquitin system in host cells. This review describes the general concept of the ubiquitin system as well as the fundamental functions of ubiquitin in the regulation of cellular responses during inflammation and bacterial infection.
Collapse
Affiliation(s)
- Fumiyo IKEDA
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
149
|
Cohen P, Kelsall IR, Nanda SK, Zhang J. HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Adv Biol Regul 2020; 75:100666. [PMID: 31615747 PMCID: PMC7132539 DOI: 10.1016/j.jbior.2019.100666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Components of bacteria and viruses activate Toll-Like Receptors in host cells, triggering the formation of the Myddosome and a signalling network that culminates in the production and release of the inflammatory mediators required to combat pathogenic infection. The Myddosome initiates signalling by recruiting and activating five E3 ligases that generate hybrid ubiquitin chains and attach them to components of the Myddosome. These ubiquitin chains act as a scaffold for the recruitment and activation of ubiquitin-binding proteins, which include the "master" protein kinases TAK1 and IKKβ that drive inflammatory mediator production, as well as other proteins like ABIN1 and A20 that restrict activation of the network to prevent the overproduction of these substances that can lead to autoimmunity and organ damage. Here we review recent developments in our understanding of this network, focusing on the unexpected discovery that the E3 ligase HOIL-1 initiates the formation of hybrid ubiquitin chains by forming an ester bond between the first ubiquitin and the protein components of the Myddosome.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom.
| | - Ian R Kelsall
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| | - Sambit K Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| | - Jiazhen Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, United Kingdom
| |
Collapse
|
150
|
Conformational and functional characterization of artificially conjugated non-canonical ubiquitin dimers. Sci Rep 2019; 9:19991. [PMID: 31882959 PMCID: PMC6934565 DOI: 10.1038/s41598-019-56458-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/30/2022] Open
Abstract
Ubiquitylation is an eminent posttranslational modification referring to the covalent attachment of single ubiquitin molecules or polyubiquitin chains to a target protein dictating the fate of such labeled polypeptide chains. Here, we have biochemically produced artificially Lys11-, and Lys27-, and Lys63-linked ubiquitin dimers based on click-chemistry generating milligram quantities in high purity. We show that the artificial linkage used for the conjugation of two ubiquitin moieties represents a fully reliable surrogate of the natural isopeptide bond by acquiring highly resolved nuclear magnetic resonance (NMR) spectroscopic data including ligand binding studies. Extensive coarse grained and atomistic molecular dynamics (MD) simulations allow to extract structures representing the ensemble of domain-domain conformations used to verify the experimental data. Advantageously, this methodology does not require individual isotopic labeling of both ubiquitin moieties as NMR data have been acquired on the isotopically labeled proximal moiety and complementary MD simulations have been used to fully interpret the experimental data in terms of domain-domain conformation. This combined approach intertwining NMR spectroscopy with MD simulations makes it possible to describe the conformational space non-canonically Lys11-, and Lys27-linked ubiquitin dimers occupy in a solution averaged ensemble by taking atomically resolved information representing all residues in ubiquitin dimers into account.
Collapse
|